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Abstract  1 

Sustainable management of blue and green water resources is vital for the stability and 2 

sustainability of watershed ecosystems. Although there has been extensive attention to blue water 3 

(BW) which is closely related to human beings, the relevance of green water (GW) for ecosystem 4 

security is typically disregarded in water resource evaluations. Specifically, comprehensive studies 5 

are scarce on the detection and attribution of variations of blue and green water in the Dongjiang 6 

River Basin (DRB), an important source of regional water supply in the Guangdong-Hong Kong-7 

Macao Greater Bay Area (GBA) of China. Here we assess the variations of BW and GW scarcity, 8 

and quantify the impacts of climate change and land use change on BW and GW in DRB using a 9 

multi-water-flux calibrated Soil and Water Assessment Tool (SWAT). Results show that BW and 10 

green water storage (GWS) in DRB increased slowly with a rate of 0.14 and 0.015 mm a-1, 11 

respectively, while green water flow (GWF) decreased significantly at a rate of -0.21 mm a-1. The 12 

degree of BW and GW scarcity in DRB is low, and the per capita water resources in more than 80% 13 

of DRB exceed 1700 m3 capita-1 a-1. Attribution results show that 88.0%, 88.5%, and 39.4% of 14 

changes in BW, GWF, and GWS result from climate change, respectively. Both climate change and 15 

land use change have decreased BW, while climate change (land use change) have decreased 16 

(increased) GWF in DRB. These findings can guide the optimization of the allocation of blue and 17 

green water resources between upper and lower reach areas in DRB and further improve the 18 

understanding of blue and green water evolution patterns in humid regions.  19 

Key words: Blue and green water; Water scarcity; Climate change, Land use change; Water flow; 20 

Dongjiang River Basin 21 

1 Introduction 22 

Land use and land cover change (LUCC), and climate variability may alter hydrological 23 
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processes in watersheds (Berezovskaya et al., 2004; Chagas et al., 2022; Konapala et al., 2020; 24 

Xuezhi Tan et al., 2022), which successively affect variations of regional water resources (Hoek 25 

van Dijke et al., 2022; Pokhrel et al., 2021; Stocker et al., 2023; Suzuki et al., 2021), potentially 26 

leading to ecosystem degradation and severe water shortage crises (Aghakhani Afshar et al., 2018; 27 

Zuo et al., 2015). With the development of society and the economy, there is an increasing need of 28 

water resources to accommodate human water utilization, encompassing agricultural, domestic, 29 

and industrial water usage. Water scarcity and spatiotemporal mismatch between regional water 30 

supply and demand in certain regions are becoming increasingly severe, significantly affecting 31 

sustainable development in these regions (Cook et al., 2014). Quantifying water resources in a 32 

changing environment is crucial for guiding efficient and sustainable water use. 33 

Previous studies on water resource assessment have explored the effects of climate change 34 

and anthropogenic factors on available water resources, including streamflow (Tan and Gan, 2015; 35 

Tan et al., 2023; Xin et al., 2019), baseflow (Ficklin et al., 2016; Tan et al., 2020), lake water 36 

(Acero Triana and Ajami, 2022; Tao et al., 2020), and groundwater (Han et al., 2020). Falkenmark 37 

and Rockström (2006) introduce a novel perspective on water resource assessment by categorizing 38 

water resources into BW and GW. BW is the total of deep aquifer recharge and river streamflow, 39 

such as water in lakes and rivers. Water users such as industries, agriculture, and municipal users 40 

can directly utilize BW. On the contrary, GW is the portion of precipitation that is not drained to 41 

river for streamflow generation. GW is temporarily retained in the soil before eventually being 42 



 

4 

 

released back into the air by evapotranspiration. GW encompasses both green water flow (GWF) 43 

and green water storage (GWS) (Veettil and Mishra, 2018; Zang and Liu, 2013). Traditional water 44 

resource assessments concentrate on available water resources and only consider BW, but neglect 45 

GW (Dai et al., 2022), although GW is also essential. GW supplies about 80% of total water 46 

resources, sustaining crop growth and the sustainable development of forest and grassland 47 

ecosystems in arid regions or during dry seasons (Li et al., 2018; Schuol et al., 2008). Green water 48 

scarcity can lead to ecosystem degradation and intensify competition between human needs and 49 

ecosystems for water resources (Falkenmark et al., 2003; Veettil and Mishra, 2018). Compared to 50 

traditional streamflow assessment methods, water resource scarcity assessment methods based on 51 

the framework of BW and GW are more appropriate for maintaining sustainable water resource 52 

management (Cooper et al., 2022; Liu et al., 2017). Recently, some studies have characterized 53 

water scarcity by assessing variations of BW and GW. For example, Veettil and Mishra (2020) 54 

assess blue water scarcity and green water scarcity to show the water security status of counties in 55 

the United States. Hoekstra et al. (2012) use the concept of BW footprint to study water scarcity 56 

issues. Schyns et al. (2019) use the GW footprint to investigate green water scarcity and find that 57 

the increasingly severe shortage of GW poses a significant threat to natural ecosystems. 58 

The impacts of climate change and anthropogenic on the hydrological cycle processes in 59 

watersheds have attracted widespread attention (Chouchane et al., 2020; Cooper et al., 2022; 60 

Sherwood and Fu, 2014; Tan and Gan, 2015; Xuejin Tan et al., 2022; Veettil and Mishra, 2016). 61 
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Changes in land use alter the underlying surface conditions. For example, afforestation or 62 

deforestation may exacerbate or alleviate global or regional climate change, and thus affect 63 

hydrological cycle processes (Bai et al., 2020; Lian et al., 2020; Qiu et al., 2023). Changes in land 64 

use often lead to alterations in land-atmosphere interactions, and vegetation cover changes are 65 

essential for regulating climate systems and land ecosystems (Foley et al., 2005; Huang et al., 66 

2020). Large-scale greening could modify geophysical interactions between the atmosphere and 67 

the ground, impacting larger or local regional hydrological cycles. Land degradation (Walters and 68 

Babbar-Sebens, 2016), deforestation (Lee et al., 2011), and urbanization (Mohan and Kandya, 69 

2015; Zhang et al., 2018) also have far-reaching effects on the climate and hydrological cycle.  70 

Climate change is also crucial to the variations in BW and GW resources. Precipitation is the 71 

source of BW and GW, and factors such as temperature, solar radiation, and potential 72 

evapotranspiration significantly influence the changes of BW and GW in watersheds, especially in 73 

GWF (Pandey et al., 2019; Schewe et al., 2014). For a single watershed, BW depends directly on 74 

precipitation and evapotranspiration (GWF) (Shen et al., 2017; Vano et al., 2012). Furthermore, 75 

precipitation intensity can have a significant impact on the redistribution of precipitation, BW, and 76 

GW , by altering infiltration and runoff generation processes (Eekhout et al., 2018; Nearing et al., 77 

2005). Therefore, it is crucial to quantify the effects of climate change and LUCC on BW and GW 78 

resources in a watershed for effective water resource planning and management. 79 

Water resources management is the primary issue to be addressed for water security. 80 
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Hydrological models are important tools to meet various needs in water resource management. 81 

Hydrological model simulation is an effective method to evaluate changes in blue and green water 82 

resources. As a widely used semi-distributed parametric hydrological model, the SWAT model, 83 

which typically subdivides watershed into smaller subbasins, is increasingly used in water 84 

resources management at the watershed scale. Based on the SWAT model, researchers simulated 85 

the spatiotemporal changes in blue and green water resources in Iran (Jeyrani et al., 2021), the 86 

Yangtze River basin (Nie et al., 2023), the Poyang Lake basin (Liu et al., 2023), India (Sharma et 87 

al., 2023). Some studies have also used model simulations to analyze the effects of climate change 88 

and human activities on water resource changes in Meki River basin (Hordofa et al., 2023), China 89 

(Liu et al., 2022), and Ningxia (Wu et al., 2021), etc. However, most of the hydrological models 90 

used in the study were calibrated and validated using only observed streamflow data without 91 

checking the accuracy of other simulated water variables, which can lead to uncertainties in 92 

modeling soil moisture and evapotranspiration (Nie et al., 2023). 93 

The Dongjiang River Basin (DRB) is a crucial water source region for core cities in GBA, 94 

such as Shenzhen, Hong Kong, and Huizhou. Given the significant BW demand from agriculture, 95 

domestic utilization, and industry, as well as the GW demand from over 18,000 km2 of forested 96 

land, the water resource stress in DRB is extremely high, although DRB is located in the wet South 97 

China (Liu et al., 2018). The growing mismatch between increasing water demand and decreasing 98 

water supply, along with seasonal and pollution-induced water scarcity issues, is becoming 99 
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increasingly prominent (Yang et al., 2018). However, the majority of current studies on water 100 

resources of DRB focus on changes and scarcity of surface water and groundwater (BW) while 101 

overlooking the critical role and spatiotemporal variations of GW (Huang et al., 2022; Jiang et al., 102 

2023; Jiefeng Wu et al., 2021). With the high-intensity urbanization and climate change in DRB, 103 

changes of BW and GW resources in DRB remain unknown.  104 

This research aims to analyze the influence of climate change and LUCC on BW and GW in 105 

DRB. The objectives of this research are (a) to build the SWAT model for DRB hydrological 106 

simulation, (b) to quantitatively evaluate the spatial and temporal variation of BW and GW in DRB, 107 

(c) to assess the status of water scarcity in DRB using the framework of BW and GW resources, 108 

and (d) to estimate the effects of climate change and LUCC on BW and GW in DRB. 109 

2 Materials and methods 110 

2.1 Study area 111 

The Dongjiang River is an important tributary of the Pearl River, positioned between 112 

longitude 113°25'-115°52'E and latitude 22°26'-25°12'N. It originates in Xunwu County, Jiangxi 113 

Province, flows through Jiangxi and Guangdong provinces, and goes across major cities including 114 

Longchuan, Heyuan, Dongguan, and Shenzhen. The trunk stream of the Dongjiang River has a 115 

total length of 562 km. DRB covers a watershed area of 3.5×104 km2. DRB is of the subtropical 116 

monsoon climate zone with adequate precipitation and high temperatures. The average annual 117 
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precipitation ranges from 1500-2400 mm, and the average temperature of the basin is 21℃ (Wu 118 

et al., 2019). The altitude of the basin decreases from the northeast to the southwest. Regions of 119 

the upper reaches of DRB are dominated by mountains and hills, those of the middle reaches of 120 

DRB are dominated by hills and plains, and those of the lower reaches of DRB are dominated by 121 

plains.  122 

Previous hydrological simulation studies of DRB mainly use the Boluo hydrometric station 123 

as the outlet of the watershed (He et al., 2013; Jiefeng Wu et al., 2019), so this research only 124 

analyze the area of DRB where water flows to the Boluo station (Fig. 1). The Boluo hydrometric 125 

station is the main control station in the lower reaches of the Dongjiang. The Boluo hydrometric 126 

station occupies a drainage area of 25,325 km2, which is 71.7% of the total area of DRB. Since the 127 

1950s, more than 896 reservoirs, ponds, dams, and other water conservancy facilities have been 128 

constructed in DRB. Among them, the Baipenzhu Reservoir, Fengshuiba Reservoir, and 129 

Xinfengjiang Reservoir are the three largest reservoirs in the basin with a cumulative storage 130 

capacity of 17,048 million m3. The Dongjiang-Shenzhen Water Supply Project constructed in 1964 131 

diverts water from the Dongjiang River to Shenzhen and Hong Kong for providing fresh water 132 

resources for municipal use. Over 70% of Hong Kong's freshwater supply comes from the 133 

Dongjiang River. Therefore, it is crucial to comprehend the shifts in water resources within DRB 134 

for projecting future available water resources for the development of GBA. 135 
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 136 

Figure 1. Location and characteristics of the study area: (a) location of the watershed, spatial distribution of the 137 

hydrometeorological stations, and digital elevation model (Farr et al., 2007), (b) land use map (Xu et al., 138 

2018). 139 

2.2 Methodology 140 

2.2.1 SWAT model 141 

The SWAT model was adopted to simulate hydrological processes and estimate the amount 142 

of BW and GW for DRB (Arnold et al., 1998; Neitsch et al., 2002). The SWAT model is widely 143 

applied to simulate streamflow and surface runoff (Arshad et al., 2022; Martínez-Salvador and 144 

Conesa-García, 2020; Nie et al., 2023). The SWAT model is also widely utilized for exploring 145 

changes in BW and GW (Dai et al., 2022; Liang et al., 2018; Schuol et al., 2008).  146 
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In SWAT modeling, DRB was divided into 63 sub-basins (Fig. S1), and each sub-basin was 147 

then categorized into Hydrologic Response Units (HRUs) depending on land use, soils, and slope. 148 

2.2.2 Model calibration and validation 149 

In order to reduce the influence of hydraulic engineering, the SWAT model was calibrated 150 

and validated by utilizing monthly restored natural streamflow at the Boluo and Heyuan 151 

hydrometric stations. The optimum model parameters are shown in Table 1. All the selected 152 

parameters are automatically calibrated with 500 simulations via SWAT-CUP. The warm-up period 153 

for model simulations is the first two years of the simulation period. Reconstructed natural 154 

streamflow in 1970-1979 was used to calibrate the model, and monthly time series of reconstructed 155 

natural streamflow, ET from GLEAM, and soil moisture data from ERA5 during 1980-1989 were 156 

used to validate the model. The calibration period for this research was 1970-1979, and the 157 

validation period was 1980-1989. Three metrics, including the determination coefficient (R2), the 158 

percentage bias (PBIAS), and Nash-Sutcliffe efficiency (NSE) were applied to evaluate the 159 

simulation performance of the SWAT model: 160 
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 164 

where Qnat, Qave, Qsim, and simQ   are monthly natural streamflow, mean monthly natural 165 

streamflow, simulated streamflow, and mean monthly simulated streamflow, respectively. n is the 166 

total number of time step. 167 

Table 1 Range of the main parameters and their optimal values obtained from the model calibration 168 

Parameter Calibration type Initial range Best calibrated value 

GW_REVAP.gw V 0.19-0.2 0.199 

GWQMN.gw V 493-1247 916.493 

SLSUBBSN.hru R 2.6-5.7 2.804 

ESCO.hru V 0.89-0.97 0.901 

CN2.mgt R 0.14-0.27 0.209 

CH_K2.rte V 0.38-1.16 0.926 

ALPHA_BNK.rte V 0.12-0.18 0.165 

SOL_AWC.sol R 0.3-0.6 0.598 

SOL_K.sol R 0.32-0.69 0.669 

CH_K1.sub V 0-0.15 0.0295 

Note: The symbols of V and R denote a replacement and a relative change to the default parameter value, 

respectively. 

This study reconstructed the natural monthly streamflow series of the basin by combining the 169 

inflow and outflow of the three major reservoirs (Xinfengjiang Reservoir, Fengshuba Reservoir, 170 

and Baipenzhu Reservoir) in DRB, based on the watershed water balance (Tu et al., 2018): 171 

nat o o in outQ Q Q Q Q Q= + = + −                              (4) 172 

where ΔQ is the total reduced water volume, Qo, Qin, and Qout are the observed streamflow, 173 

reservoir inflow, and reservoir outflow, respectively. 174 
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2.3 Calculation of blue and green water and water security indicators 175 

2.3.1 Calculation of blue and green water  176 

BW is calculated from the sum of water yield (SWAT output WYLD) and groundwater storage. 177 

The former refers to the amount of water that leaves the HRU and enters the channel. The latter 178 

represents the net amount of water recharged to aquifers (SWAT output GW_RCHG) and the 179 

amount of aquifer water discharges to the main channel (SWAT output GW_W) during a time step 180 

(Hordofa et al., 2023). GW can be divided into two components including GWF which is the actual 181 

evapotranspiration (SWAT output ET) from the HRU, and GWS which is the soil water moisture 182 

(SWAT output SW) (Nie et al., 2023; Veettil and Mishra, 2018). The calculation of the Green Water 183 

Index (GWI) involves dividing the quantity of GW by the sum of BW and GW (Ding et al., 2024; 184 

Nie et al., 2023). 185 

2.3.2 Blue and green water scarcity 186 

Blue water scarcity (BWSC) is determined by the quotient of BW withdrawal and availability. 187 

The estimation of BW withdrawals (BWW) in this study involved the multiplication of the 188 

aggregate population in each sub-basin by the combined water consumption per person (Liang et 189 

al., 2020). The population of each sub-basin was extracted from the population raster data. Blue 190 

water availability (BWA) represents the quantity of water that can be utilized without negatively 191 

impacting the river ecosystems. Exhaustive exploitation of BW in rivers may adversely impacts 192 

river ecosystems. Previous studies have generally used environmental flow requirements (EFR) as 193 

a suitable metric for sustaining robust ecosystems (Honrado et al., 2013). According to the study 194 
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of Richter (2010) and Richter et al. (2012), extracting more than 20% of the water from rivers may 195 

result in ecological degradation. Therefore, 20% of streamflow can be deemed BW and used for 196 

water supply (Veettil and Mishra, 2016). The calculation of EFR, BWA, and BWSC are as follows: 197 

( ) mean( )=0.8a,t a,tEFR Q                                (6) 198 

where EFR(a,t) is the EFR for sub-basin ‘a’ during time ‘t’; Qmean is the long-term monthly average 199 

streamflow. 200 

( ) ( ) ( )a,t a,t a,tBWA Q EFQ= −                              (7) 201 

= /BWSC BWW BWA                                 (8) 202 

Green water scarcity (GWSC) is defined as the ratio between green water footprint (GWFO) 203 

and green water availability (GWA). GWFO denotes the actual evapotranspiration from the 204 

watershed. GWA is the soil moisture that is available for evapotranspiration and vegetation 205 

transpiration and is equal to the initial soil moisture (Liang et al., 2020). The GWSC can be 206 

formulated as: 207 

= /(a,t) (a,t) (a,t)GWSC GWFO GWA                                (9) 208 

where GWSC is green water scarcity；GWFO(x,t) is the actual evapotranspiration；GWA(a,t) is initial 209 

soil moisture。 210 

2.3.3 Regional water stress 211 

The Falkenmark index (FLK) (Falkenmark et al., 1989) is a widely used measures of water 212 

stress, defined as the proportion of BWA to the overall population. The Falkenmark index is 213 
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classified into no stress, stress, scarcity, and absolutely scarcity based on per capita water use. 214 

Absolute scarcity is regarded to occur in areas where the indicator threshold is less than 500 m3 215 

capita-1 a-1, and no stress is thought to occur in areas where the threshold is larger than 1700 m3 216 

capita-1 a-1.  217 

2.4 Calculation of relative contribution 218 

2.4.1 Scenario design and simulation 219 

Three scenarios were constructed to assess the impacts of climate change and LUCC on BW 220 

and GW by changing climate conditions (land use) while holding land use (climate conditions) for 221 

the three scenarios simulation each (Table 2). The land use map was fixed when simulating the 222 

influences of climate change on blue and green water (S2-S1), while climate conditions was fixed 223 

when simulating the influences of LUCC on blue and green water (S3-S2). The climate conditions 224 

and the land use were altered when assessing the joint influences of climate change and LUCC on 225 

blue and green water (S3-S1). 226 

Table 2 Scenario settings for the simulation of effects of climate change and LUCC on blue and green water 227 

Scenarios Land use 
Climate 

period 

Combined 

effects 

Land use change 

effects 

Climate change 

effects 

S1 1980 1970-1993    

S2 1980 1994-2017   S2-S1 

S3 2015 1994-2017 S3-S1 S3-S2  
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2.4.2 Relative contribution rate calculation 228 

The influences of climate change and LUCC on the changes of blue and green water in 229 

different periods are evaluated utilizing the relative contribution (RC) in this research (Li et al., 230 

2021): 231 

Climate change contribution to BW and GW change is estimated by: 232 

2 1

2 1 3 2

100%C

X X
RC

X X X X

−
= 

− + −
                          (10) 233 

where X1, X2, and X3 are the amount of water including BW or GWF and GWS, respectively 234 

for scenario S1, S2, and S3. 235 

The contribution of LUCC to changes in BW and GW are estimated by Equations 11. 236 

3 2

3 2 2 1

100%L

X X
RC

X X X X

−
= 

− + −
                          (11) 237 

2.5 Data 238 

The dataset used in this study consists of three parts: (1) hydrometeorological data, (2) 239 

geospatial data encompassing DEM, soil type, and land use, and (3) socioeconomic data 240 

encompassing per capita water consumption and population data. 241 

Observed monthly streamflow data of the two hydrological stations in the study were 242 

collected for the years 1970-2000 from Boluo Station and Heyuan Station, and the observed 243 

streamflow time series of these two hydrological stations are of no missing data. Monthly inflow 244 
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and outflow data of the three major reservoirs in DRB were also collected. All hydrologic data 245 

were obtained from the Guangdong Provincial Hydrological Bureau. Meteorological data of daily 246 

precipitation, temperature, and other meteorological data for 1968-2017 from 21 Meteorological 247 

stations in the watershed were obtained from the National Meteorological Information Center of 248 

the China Meteorological Administration. Monthly actual ET data for SWAT model validation was 249 

obtained from the Amsterdam Evapotranspiration Model dataset with a spatial resolution of 0.25° 250 

× 0.25° (Martens et al., 2017). Monthly soil moisture data for SWAT model validation was obtained 251 

from the European Center for Medium-Range Weather Forecasts ERA5-land dataset with a spatial 252 

resolution of 0.1° × 0.1° (Muñoz Sabater, 2019). The actual evapotranspiration and soil moisture 253 

of the watershed equals to the average of all grids included in DRB. 254 

The 90-meter resolution DEM data and 30-meter resolution land use data at ten-year intervals 255 

(i.e., 1980, 1990, 2000, 2010, 2015) are obtained from the Data Center for Resources and 256 

Environmental Sciences of the Chinese Academy of Sciences (Xu et al., 2018). Soil data is 257 

obtained from the 1-km resolution Harmonized World Soil Database dataset from the Food and 258 

Agriculture Organization of the United Nations (Fischer et al., 2008). 259 

The annual per capita integrated water consumption data of DRB from 2000-2017 was 260 

acquired from the Water Resources Bulletin of Guangdong Province. The population data in 2000, 261 

2005, 2010, and 2015 was obtained from the 1 × 1 km spatial raster data of the Resource and 262 

Environment Science and Data Center of the Chinese Academy of Sciences (Xu, 2017). 263 
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3 Results 264 

3.1 Model Performance 265 

The SWAT model shows sufficient accuracies in simulating streamflow, actual 266 

evapotranspiration, and soil moisture changes in DRB and can better simulate both seasonal and 267 

interannual changes in streamflow. During the calibration period, both stations achieved R2 above 268 

0.9, NSE exceeding 0.8, and PBIAS less than 14% (Fig. 2). Both stations had simulated streamflow 269 

R2 greater than 0.8 during the validation period. The NSE for streamflow simulation at the Heyuan 270 

station and Boluo station of the validation were 0.81 and 0.74, respectively. The model performs 271 

well in simulating the ET and soil moisture. Since the GLEAM ET data and ERA5 soil moisture 272 

data are raster data of spatial resolution of 0.25×0.25°, considering the influence of data accuracy 273 

on the results, this study uses the watershed scale to validate the simulation results of ET and soil 274 

moisture. In the validation period, the R2 and NSE for the simulation of evapotranspiration were 275 

0.92 and 0.8, respectively (Fig. S2), while the R2 and the NSE for the soil moisture simulation were 276 

both greater than 0.6. These validation results show that the model can be used to simulate 277 

hydrological regimes in DRB. 278 
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 279 
Figure 2. Simulated and observed monthly streamflow at the (a) Heyuan and (b) Boluo gauge stations 280 

during calibration and validation periods. 281 

 282 

3.2 LUCC and Climate variability in DRB 283 

LUCC in DRB is mainly the decrease of cultivated land and the increase of urban land. The 284 

land use in DRB primarily consisted of forest land (18,875-18833 km2), which is more than 70% 285 

of DRB. From 1980 to 2015, the urban land and water areas showed an increase of 469.4 km2 286 

(137%) and 17.4 km2 (2.8%), while the grassland, cultivated land, and forest land showed a 287 

decrease of 41.3 (4.3%), 487.5 (10.8%), and 42.1 km2 (0.2%), respectively (Table 3).  288 

Table 3 Land use transfer matrix in DRB from 1980 to 2015 289 
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Land use type 

2015 
1980 

total 

(km2)  

Grass 

Land 

(km2) 

Urban 

land 

(km2) 

Cultivated 

Land (km2) 

Forest 

land 

(km2)  

Water 

area 

(km2) 

Unused 

land (km2) 

1980 

Grassland 795.6 29.9 18.3 123.5 2.5 0.0 969.7 

Urban land 0.6 319.6 12.4 7.6 2.3 0.0 342.4 

Cultivated 

land 
19.0 269.8 3771.7 427.9 40.4 0.03 4528.8 

Forest land 110.7 183.7 226.2 18278.7 33.1 0.02 18832.5 

Water area 2.5 8.9 12.7 36.8 551.0 0.00 611.9 

Unused land 0.0 0.0 0.02 0.03 0.00 0.45 0.51 

2015 total  928.4 811.9 4041.3 18874.5 629.2 0.51 25285.8 

DRB exhibited significant regional differences in multi-year average precipitation, 290 

temperature, and potential evapotranspiration. The precipitation exhibited an increasing trend from 291 

the central to the south and north of DRB. The temperature and potential evapotranspiration 292 

showed an overall distribution pattern of greater values in the south and minor values in the north 293 

of DRB (Fig. 3). The multi-year average precipitation for the entire DRB was 1790.1 mm, with 294 

annual precipitation ranging from 1236.2-2567.5 mm. The regions with the highest multi-year 295 

average annual precipitation are located in the southeast of DRB, where annual precipitation 296 

exceeds 2200 mm, while the regions with the lowest precipitation are in the northeastern of the 297 

watershed. The average annual temperature in DRB ranged from 19.5-21.3 °C, and the average 298 

annual potential evapotranspiration ranged from 1101.5-1320.6 mm. The south of DRB is 299 

predominantly urban, characterized by the urban heat island effect, while the north of DRB is 300 

mountainous with higher elevations, leading to the spatial distribution of temperatures.  301 

The average temperature and potential evapotranspiration at DRB meteorological stations 302 
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exhibited significant variations, while precipitation showed a relatively minor trend (Fig. 3). 303 

Overall, basin-averaged precipitation and potential evapotranspiration showed a non-significant 304 

decreasing trend, while temperatures showed a significant increasing trend. There was no 305 

significant change trend of precipitation for all stations in DRB (Fig. 3a). Twenty out of 21 306 

meteorological stations in the region showed statistically significant increasing trends in average 307 

temperature, indicating a warming trend (Fig. 3b). Nine stations showed a significant decreasing 308 

trend in potential evapotranspiration, primarily located in northern DRB (Fig. 3c). 309 

 310 

Figure 3. Spatial distribution of annual mean (a) precipitation, (b) temperature, (c) potential 311 

evapotranspiration in DRB from 1960-2017. Each triangle represents the Mann-Kendall test result at a 312 

meteorological station. 313 

The mean precipitation, temperature, and potential evapotranspiration of DRB can be 314 

obtained from the precipitation, temperature, and potential evapotranspiration of stations using the 315 

Tyson polygon method. The inter-annual variation of annual precipitation in DRB showed an 316 

insignificant decreasing trend (-0.51mm a-1). The annual mean temperature showed a significant 317 
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increasing trend (0.024℃ a-1). The annual potential evapotranspiration showed a significant 318 

decreasing trend (-0.38mm a-1) (Fig. S3). 319 

3.3 Blue and green water resources  320 

The average annual BW and GW were 1240.8 and 840.7 mm, respectively. The DRB water 321 

resources were dominated by BW, representing 60.1% of the total water resources, and BW was 322 

1.48 times higher than that of GW resources. The average GWF and GWS were 689.3 and 151.4 323 

mm, respectively. 324 

The annual BW resources in the sub-basins of DRB ranged from 893.7-1990 mm, showing 325 

an increasing trend from the central to the south and north of DRB, aligning with the spatial 326 

distribution of precipitation (Fig. 4a). The regions with abundant BW resources are situated in the 327 

central and southeast parts of DRB (>1300 mm), and the BW in the upper reaches is comparatively 328 

low (<1100 mm). Differences in the spatial distribution of BW are primarily caused by differences 329 

in the spatial distribution of precipitation. Overall, the GWF and GWS are more evenly distributed 330 

in the sub-basins than BW. The annual GWF in the sub-basins of DRB ranged from 573.6-923.6 331 

mm. The sub-basins with higher GWF are primarily located in the Xinfengjiang reservoir area in 332 

the middle reaches (>700 mm), while the low GWF sub-basins are situated in the southwest of 333 

DRB (<600 mm) (Fig. 4b). The land use in the sub-basins where Xinfengjiang Reservoir is located 334 

is primarily water areas, with a higher water evaporation rate than other regions, resulting in a 335 

greater GWF in this area than in other regions. The annual GWS in the sub-basins of DRB ranged 336 
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from 126-190.6 mm. The sub-basins with higher GWS are mainly located in the lower part of DRB 337 

(>150 mm) (Fig. 4c). The distribution pattern of GWS resources has a great relationship with the 338 

soil type of the watershed. The upper reaches and the northwestern part of the watershed are mostly 339 

red soil, while the middle and lower reaches are dominated by reddish soil. Reddish soil has a 340 

smaller water storage capacity than red soil, loses water faster, and has weaker water conservation 341 

and water supply performance than red soil. This is the primary factor for the north-south 342 

discrepancies in the amount of GWS resources in DRB. In addition, the southern region is mostly 343 

of large and medium-sized cities. As urban construction land expands, the land use type in the 344 

region has gradually changed to urban land, industrial land, etc., and the solidification of road 345 

surfaces has reduced the area of bare soil in the region, resulting in a decrease in GWS resources. 346 

The annual GWI (Fig. 4d) showed a spatial pattern opposite to BW, decreasing from 0.45 in the 347 

upper reaches to 0.3 in the lower reaches. The highest GWI is found in the upper reaches, which is 348 

due to the relatively low rainfall in the upper reaches and the lush vegetation, with significant plant 349 

interception and transpiration, resulting in a higher proportion of total evapotranspiration than in 350 

the middle and lower reaches. The central part of the basin has the highest precipitation, leading 351 

to a lower GWI. The southern part of the watershed has the highest temperature, and 352 

evapotranspiration is high. Meanwhile, the lower reaches have a large proportion of agricultural 353 

and urban land, and crop irrigation can increase evapotranspiration. 354 
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 355 

Figure 4. Spatial distribution of mean (a) BW, (b) GWF, (c) GWS, (d) GWI in DRB over during 1970-2017. 356 

In DRB, there was no significant increasing trend in either BW or GWS, while GWF 357 

exhibited a significant decreasing trend. The annual trend rate of BW in DRB was 0.14 mm a-1, 358 

with an annual fluctuation range of 713.6-2017.5 mm during 1970-2017. The minimum BW 359 

occurred in 1991, while the maximum was recorded in 2016 (Fig. 5a). The GWF in DRB from 360 

1970 to 2017 exhibited a significant decreasing trend (-0.57 mm a-1) (Fig. 5b). The minimum 361 

GWF occurred in 2005 (603.1 mm), while the maximum was recorded in 1974 (721.3 mm). In 362 

contrast, the GWS in DRB from 1970 to 2017 has been slowly increasing at a rate of 0.015 mm a-363 
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1 (Fig. 5c). The annual fluctuation in GWS was smaller than BW and GWF. The GWI in DRB 364 

from 1970 to 2017 showed no significant decreasing trend at a rate of -0.0003 % a-1 (p>0.05) (Fig. 365 

5d), implying that the redistribution of precipitation in DRB might change slowly. 366 

 367 

Figure 5. Interannual variation of (a) BW, (b) GWF, (c) GWS, (d) GWI in DRB during 1970-2017. 368 

3.4 Blue and green water scarcity 369 

The average blue water scarcity level in DRB was low (22.4%) during 1970-2017. The blue 370 

water scarcity levels in various sub-basins ranged from 0.1-206%. The multi-year average blue 371 

water scarcity, except for one sub-basin in the southwest, was all low (<100%) (Fig. 6a). This 372 

indicates that blue water scarcity is not common in DRB at the annual scale. Regions with 373 

relatively high blue water scarcity (>20%) are mostly situated in the upper reaches of various 374 

tributaries within the watershed, where river streamflow is relatively small. The area with the 375 



 

25 

 

highest blue water scarcity (206%) is located in the 63rd sub-basin of Shenzhen and Huizhou, 376 

reaching a moderate level of blue water scarcity. This region has a large population, with a much 377 

higher blue water demand than other areas. Additionally, this sub-basin is situated in the upper 378 

reaches of the primary tributary of DRB, resulting in a limited supply of BW resources. Although 379 

the northern parts of sub-basins 55, 56, and 61 have large populations, these sub-basins are situated 380 

in downstream of the main Dongjiang River, with a higher streamflow, leading to lower BWSC 381 

levels. The average GWSC in the entire basin from 1970-2017 was low (41.4%). The blue water 382 

scarcity levels in various sub-basins ranged from 31-104%. The vegetation cover in DRB is high, 383 

and DRB is thus of relatively high rates of vegetation transpiration and interception evaporation. 384 

The basin experiences a GWSC of nearly 50%, indicating a potential occurrence of GWSC. The 385 

areas with higher GWSC are primarily situated in the middle reaches for DRB (Fig. 6b), where 386 

water surface evaporation is high, resulting in their GWSC exceeding 100%. The evaporated water 387 

in these areas originates from the reservoirs, not the soil, leading to an overestimation of the GWSC 388 

in these sub-basins.  389 

Furthermore, the FLK index was also used to quantify population-driven water resource 390 

scarcity. F1-F4 represent absolute scarcity, scarcity, stress, and no stress, respectively. The results 391 

showed that most regions in DRB have no water scarcity pressure (Fig. 6c). However, the 63rd 392 

sub-basin experienced absolute water scarcity, and the 52nd sub-basin experienced water scarcity. 393 

There were six lower reaches sub-basins and four upper reaches sub-basins facing water stress. 394 
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DRB receives ample precipitation, resulting in a relatively large river flow, generally leading to a 395 

higher FLK index. As a result, the basin faces lower water resource pressure. 396 

 397 
Figure 6. Spatial distribution of mean (a) BWSC, (b) GWSC, and (c) FLK index in DRB over during 1970-398 

2017. 399 

This study also further identified hotspots of BWSC and GWSC in DRB by hierarchical 400 

clustering of BWSC and GWSC in each sub-basin. Figure 7 shows the clustering tree results for 401 

BWSC and GWSC. When the standardized distance was set to 500, all sub-basins could be divided 402 

into four categories according to blue water scarcity: (1) The first category consisted of 27 sub-403 

basins, such as 32, 56, and 28, where the blue water scarcity level was the lowest (<20%). (2) The 404 

second category comprised sub-basin 63, which has the most severe blue water scarcity (206%). 405 

(3) The third category comprised seven sub-basins, such as 52, 58, and 60, all located in the lower 406 

reaches, with relatively high blue water scarcity levels (40%-100%). These sub-basins are mostly 407 

located in the tributaries of the lower reaches, with a relatively large population and smaller river 408 
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streamflow compared to the mainstem of the Dongjiang River. (4) The fourth category consisted 409 

of 28 sub-basins, such as 59, 62, and 8, with blue water scarcity levels ranging from 20% to 40%. 410 

Similarly, hierarchical clustering was conducted for GWSC. When the standardized distance was 411 

set to 500, GWSC in the sub-basins could be divided into three categories: (1) The first category 412 

consisted of 56 sub-basins, such as 37, 56, and 29, with relatively low GWSC levels, all below 413 

50%, indicating low GWSC. (2) The second category consisted of sub-basins 32 and 33, where the 414 

predominant land use type was water areas, leading to higher GWSC due to high water surface 415 

evaporation. (3) The third category consisted of sub-basins 47, 31, 54, 30, and 36, where the water 416 

area proportion in these sub-basins was larger than in others, leading to significant influences from 417 

water surface evaporation. 418 
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 419 

Figure 7. Hierarchical clustering tree of (a) BWSC, (b) GWSC. 420 

The interannual variations in BWSC and GWSC in DRB showed distinct regional differences. 421 

BWSC in the basin was slowly increasing at a rate of 0.3% a-1 (Fig. 8a). The BWSC in the lower 422 

reaches slowly increased at a rate of 1.1 % a-1, while the BWSC in the upper and middle reaches 423 

slowly decreased at -0.47% a-1 and -0.1% a-1, respectively. GWSC in the upper, middle, and lower 424 

reaches of DRB showed a decreasing trend, with basin scale GWSC decreasing significantly at a 425 

rate of -0.04% a-1 (Fig. 8b). Despite the acceleration of urbanization and a significant increase in 426 
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population in the middle and lower reaches of the watershed, blue water availability and the 427 

amount of obtainable BW have been increasing. Additionally, the annual per capita water 428 

consumption in the basin has decreased from 481.0 m³ in 2000 to 245.0 m³ in 2020. As a result, 429 

the rate of increase in BWSC in the watershed has been relatively small. In contrast, the GWF in 430 

DRB demonstrated a significant decreasing trend, and the GWS increased slowly. Therefore, the 431 

GWSC in DRB demonstrated a significant decreasing trend. Meanwhile, the FLK index of the 432 

watershed showed a significant decreasing trend (-285.3 m3 per year), which means that the per 433 

capita water resources in the watershed have significantly decreased (Fig. 8c). This is due to the 434 

rapid population growth in the watershed and the slow increase in available water resources. 435 

 436 

Figure 8. Interannual variation of(a) BWSC, (b) GWSC, and (c) FLK index in DRB during 1970-2017. 437 
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3.5 Impacts of LUCC and climate change on blue and green water 438 

To examine the impacts of climate change and LUCC on BW and GW change, this study set 439 

three climate conditions and land use scenarios to explore this effect by comparing the scenarios 440 

(Table 3). The combined impacts of climate change and LUCC on BW and GWS in DRB were 441 

superimposed, and the combined effect on GWF was a negatively synergistic effect. Figure 6 442 

shows the variations in BW and GW under the impacts of climate change (S2-S1) and LUCC (S3-443 

S2), as well as their combined effects (S3-S1), along with the relative contribution of climate 444 

change and LUCC to the BW and GW changes in DRB during 1970-2017. Under the joint 445 

influences of climate change and LUCC, BW decreased by 4.5 mm a-1. Among this decrease, 446 

climate change resulted in a loss in BW of 3.9 mm a-1, contributing 88.0%, while LUCC led to a 447 

loss in BW of 0.5 mm a-1, contributing 12.0% (Fig. 9a). The effect of climate change on BW 448 

variation is much greater than that of LUCC at the basin scale. Under the combined influences of 449 

climate change and LUCC, GWF decreased by 17.0 mm a-1. Among this decrease, climate change 450 

accounted for a decrease in GWF of 19.5 mm a-1, contributing 88.5% to the decrease, while LUCC 451 

led to an increase in GWF of 2.5 mm a-1, contributing 11.5% (Fig. 9b). Overall, the influence of 452 

climate change on GWF changes in the watershed is significantly more pronounced than that of 453 

LUCC. Under the joint influences of climate change and LUCC, GWS increased by 0.7 mm a-1. 454 

Among this increase, climate change contributed to an increase in GWS of 0.3 mm a-1, accounting 455 

for 39.4%, while LUCC contributed to an increase in GWS of 0.4 mm a-1, accounting for 60.6% 456 
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(Fig. 9c). DRB is situated in a humid region with high GWS, resulting in small fluctuations of GWS 457 

in response to precipitation changes. The fluctuations of GWS are primarily influenced by soil 458 

properties and land use. In general, the effect of climate change on the GWS change of DRB is 459 

smaller than the effect of LUCC. 460 

 461 

Figure 9. Effects and relative contribution of climate change and LUCC on the changes in (a) BW, (b) GWF, 462 

and (c) GWS in DRB during 1970 to 2017. 463 

Under the coupled influences of climate change and LUCC, the BW and GW resources in 464 

DRB have changed. However, there were differences in the joint impacts of climate change and 465 
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LUCC on BW and GW. Both climate change and LUCC have led to the decrease of BW in the 466 

watershed, and the combined effect of climate change and LUCC on BW equals to the sum of their 467 

individual effects. Climate change, such as a decrease in potential evapotranspiration, has resulted 468 

in a decrease in GWF in DRB, while LUCC has led to an increase in GWF. Therefore, the joint 469 

impacts of climate change and LUCC on GWF was partially offset, resulting in the joint impacts 470 

of climate change and LUCC on GWF being less than the sum of their absolute individual effects. 471 

Both climate change and LUCC have led to an increase in GWS in DRB, and the joint impacts of 472 

climate change and LUCC on GWS equals to the sum of their individual effects. 473 

4 Discussion 474 

This study used the SWAT model to simulate the changes in BW and GW resources in DRB 475 

over the past five decades and their response to climate change and LUCC. It also assessed the 476 

water resource security in the basin. The findings revealed that the GWF exhibited a decreasing 477 

trend, and the BW and GWS exhibited an increasing trend. Liu et al. (2010) similarly found an 478 

increasing trend in annual surface runoff in DRB. Potential evapotranspiration in DRB showed a 479 

decreasing trend, which may be the main cause of the significant decrease in GWF in the basin 480 

(Fig. S3), and similar conclusions are obtained in He et al. (2013). 481 

We show that water resources in DRB are dominated by BW, with a mean annual GWI of 0.4, 482 

which is the same as what many studies show in humid areas (Nie et al., 2023). Although the GWI 483 
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in humid areas is much smaller than that in arid areas, the ratio of GW in DRB still reaches 40%, 484 

so it is imperative to incorporate GW in the water resources assessment system. The GWI in the 485 

upper and middle reaches of DRB exceeded 0.4, while that in the lower reaches was only about 486 

0.3. These results mean that to ensure the appropriate utilization of water resources, effective water 487 

management in the upper and middle reaches of DRB should consider GW planning while water 488 

management in the lower reaches should mainly consider BW. The assessment results of BWSC 489 

and GWSC in DRB similarly illustrate this issue. The GWSC in the upper and middle reaches was 490 

bigger than that in the lower reaches of DRB, while the BWSC in the lower reaches of DRB was 491 

bigger than in the upper and middle reaches (Fig. 8). 492 

There are robust correlations between BW and precipitation, GWF and potential 493 

evapotranspiration in DRB. Climate change plays a dominant role in variations of BW and GWF. 494 

BW is more sensitive to precipitation and potential evapotranspiration. GWF shows sensitivity to 495 

changes in potential evapotranspiration and GWS is influenced by both precipitation and potential 496 

evapotranspiration (He et al., 2015; Jeyrani et al., 2021). Of course, some studies in arid regions 497 

show that GWF is mainly affected by precipitation (Jun Wu et al., 2021), which may be linked to 498 

the hydrothermal conditions of the basin. There is sufficient precipitation in DRB, where the GWF 499 

changes are mainly energy-limited, and the effect of precipitation on the GWF is smaller.  500 

Although BW and GW are mainly affected by climate change, the influences of LUCC on 501 

them cannot be ignored. The reaction of water resources to LUCC is exceedingly intricate and 502 
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involves various hydrological processes, including runoff yield, infiltration, and groundwater (Cuo, 503 

2016; Zhang and Shangguan, 2016). As there is a strong compensatory effect of diverse land use 504 

in the hydrological system, particularly in expansive watersheds, this could create a strong 505 

resistance to GW and BW conversion (Lin et al., 2015). A decrease in forest land or an increase in 506 

cultivated and urban land could lead to a rise in BW and a decline in GW in the watershed. Veettil 507 

and Mishra (2018) demonstrate that there is a 10% rise in forest land cover and a 1.4% drop in BW, 508 

indicating a negative elasticity between the two. However, the effect of urban land on streamflow 509 

in different periods showed the opposite effect. On the one hand, the increase in urban land results 510 

in increases in impermeable area and thus surface runoff in the basin, but at the same time, the 511 

increase in urban land may also reduce groundwater discharge to streamflow. At the same time, 512 

LUCC often results in changes in vegetation. Vegetation variations affect the water cycle by 513 

altering canopy interception (Shao et al., 2018; Jianping Wu et al., 2019), transpiration (Chen et 514 

al., 2023) and canopy evaporation, and ameliorating soil structure (Qiu et al., 2022), Thus 515 

increasing vegetation often increases infiltration and soil moisture and reduces surface runoff. 516 

There are several limitations and uncertainties in this research. (1) Since the quantity of the 517 

BW and GW is derived from the output results of the model simulations, including water yield, ET, 518 

soil moisture, and groundwater, the precision of the outcomes depends largely on the precision of 519 

the model simulations. Given the absence of observed evapotranspiration and soil moisture data 520 

for DRB, this study calibrated and validated the SWAT model using only monthly streamflow, 521 
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which may weaken these results to some extent. To enhance the credibility of the model, this study 522 

also utilized widely used actual evapotranspiration data (GLEAM) and soil moisture (ERA5-land) 523 

during model validation at a basin scale. The findings indicated that the simulation performance is 524 

relatively good and meets the accuracy requirements for simulation. (2) Climate change, LUCC, 525 

and large reservoir operation are the primary factors influencing the changes in hydrological 526 

conditions in DRB. The contributions of reservoir regulation, LUCC, water resource utilization, 527 

and climate change to the distribution of intra-annual flow are 33.5%, -9%, 4.5%, and 1%, 528 

respectively, during 1956-2009 (Tu et al., 2015). The operation of reservoirs, including large 529 

reservoirs like the Xinfengjiang Reservoir, is one of the important reasons for hydrological changes 530 

in DRB (Lin et al., 2014; Zhang et al., 2015). The reservoir module was not established when 531 

constructing the SWAT model in this research. To obtain natural BW and GW volumes in the 532 

watershed and mitigate the impact of hydraulic engineering, reconstructed natural streamflow 533 

based on observed flow was utilized for model calibration and validation. However, hydraulic 534 

engineering significantly influences the annual allocation of BW. The flow restoration considered 535 

the impacts of the three major reservoirs on the Dongjiang River and did not consider the impacts 536 

of other minor hydraulic projects and human water consumption. (3) Both the calculations of 537 

BWSC and the FLK index include environmental flows. This study represented the proportion of 538 

environmental flow in streamflow as 80%. Some studies have suggested that assuming 539 

environmental flow to be 80% of the total water resources in a basin may overestimate water 540 
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scarcity (Liu et al., 2017; Richter et al., 2012). Therefore, we varied the proportion of 541 

environmental flow and assessed the degree of BWSC using 60% and 70% proportions. Results 542 

show that only the 63rd sub-basin changed from severe BWSC to moderate to high BWSC, while 543 

other sub-basins remained with low BWSC. Therefore, the threshold for environmental flow has a 544 

minor impact on this paper. The assessment of BWSC and per capita water resources did not take 545 

into account the water demand of cities such as Shenzhen and Hong Kong, although the water 546 

supply for these cities primarily comes from the Dongjiang River through the Dongjiang-Shenzhen 547 

Water Supply Project. (4) The hydrological modeling approach utilized in this research is a 548 

frequently used method for quantitative analysis of attribution. Nevertheless, it implies 549 

independence between climate change and LUCC and does not adequately distinguish the impacts 550 

of these two components. Such restriction is diffusely recognized to exist (Dey and Mishra, 2017). 551 

Despite this recognized limitation, hydrological modeling methods have been widely used in 552 

numerous similar researches, yielding credible results (Li et al., 2021; Nie et al., 2023). 553 

5 Conclusion 554 

This study analyzed the spatio-temporal evolution of BW and GW, assessed the water security, 555 

and evaluated the effects of climate change and LUCC on BW and GW in DRB using the SWAT 556 

model. The conclusions can be outlined as follows: 557 

(1) During 1970-2017, grassland, cultivated land, and forestland in DRB decreased by 4.3%, 558 
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10.8%, and 0.2%, respectively, while urban land and water areas increased by 137% and 2.8%, 559 

respectively. The annual precipitation and potential evapotranspiration showed a non-significant 560 

decreasing trend, while the annual average temperature showed a significantly increasing trend. 561 

(2) The annual BW, GWF, and green storage in DRB from 1970-2017 were 1240.8 mm, 840.7 562 

mm, and 151.4mm, respectively. BW (0.14 mm a-1) and GWS (0.015 mm a-1) in DRB showed no 563 

significant increasing trend, and GWF (-0.57 mm a-1) showed a significant decreasing trend. 564 

(3) The level of annual BWSC and GWSC in DRB were low, and per capita water resources 565 

exceeded 1,700 m3 capita-1 a-1. BWSC displayed a non-significant increasing trend, while the 566 

GWSC and FLK index displayed a significant decreasing trend, especially in lower reaches.  567 

(4) Climate change was the major driving factor of changes in BW and GWF, and LUCC was 568 

the major driving factor of GWS change. Climate change contributed to 88.0%, 88.5%, and 39.4% 569 

of the changes in BW, GWF, and GWS in DRB, respectively. Both climate change and LUCC 570 

decrease (increase) BW (GWS), while climate change (LUCC) decreases (increases) GWF in DRB. 571 
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