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Abstract. Critical soil moisture (CSM), a tipping point of soil moisture (SM) at which surface fluxes shift from the energy to 10 

the water‐limited regime, is essential for the vegetation state and the corresponding land‐atmosphere coupling. However, 

detecting CSM and attributing water-energy limit shifts to climate and ecosystem variables are challenging as in-situ 

observations of water, carbon fluxes, and SM are sparse. In this study, CSM was assessed over China using two satellite-

based methods: the difference between the correlation between SM and evapotranspiration (ET) and the correlation between 

vapor pressure deficit (VPD) and ET; the covariance between VPD and gross primary production (GPP). ET and GPP 15 

products were based on the Penman-Monteith-Leuning (PML) ET and GPP, Global LAnd Surface Satellite (GLASS) ET and 

GPP, Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration (CAMELE) ET, Surface Energy Balance 

Algorithm for Land (SEBAL) ET, Two-Leaf light use efficiency model based (TL) GPP, and SIF-based (GOSIF) GPP. At 

flux sites, ET and GPP products were evaluated by eddy covariance-based measurements; CSM values using two satellite-

based methods were assessed by CSM using the soil moisture-evaporative fraction method. Their consistency at site scales 20 

demonstrated reliable results and applicability to regional scales. Through intercomparison, the spatial pattern of CSM from 

multi-source ET and GPP datasets was consistent and robust in eastern and southern China. Generally, CSM decreased from 

south to north. Pearl River Basin and Southeastern River Basin displayed a relatively high CSM for clay-rich soils (e.g., 0.39 

m3/m3 using PML ET and 10 cm depth SM) and forests (e.g., 0.35 m3/m3 using PML ET and 10 cm depth SM). At four soil 

layers, CSM for grassland and clay was higher than average SM, making them in water-limited regimes. Thus, western 25 

grassland was more susceptible to water stress with increased water demand. These findings highlight the variability in CSM 

and primary determinants of water-energy limit shifts, offering valuable insights into the potential water limitation on 

ecosystems under comparable SM circumstances. 
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1 Introduction 

Critical soil moisture (CSM) serves as an indicator of shifts in the relationship between water and energy availability 30 

(Schwingshackl et al., 2017; Denissen et al., 2020) and is essential in shaping regional climates. Plants adjust their stomatal 

resistance in response to changes in soil moisture (SM) and vapor pressure deficit (VPD) (Grossiord et al., 2020; Li, F. et al., 

2023). Above CSM, there is no alteration in water stress with SM increases (Rodriguez-Iturbe, 2000; Seneviratne et al., 2010; 

Akbar et al., 2018); plants are primarily controlled by VPD. Warm and dry air above the canopy (Grossiord et al., 2020; Li, 

X. et al., 2023) leads to a decrease in both the transpiration process as the largest part of evapotranspiration (ET) (Good et al., 35 

2015) and gross primary production (GPP) coupled with the ET process via plant leaf stomata (Gentine et al., 2019; Liu et al., 

2020). A decrease in ET, in turn, results in elevated surface temperature and VPD (Gentine et al., 2019) and leads to 

increased atmospheric aridity on a large spatial scale, thereby intensifying SM depletion. Below CSM, surface fluxes are 

primarily influenced by SM availabilities in conditions of restricted water supply. During this period, a decrease in SM 

results in a reduction in latent heat flux (LE) and an increase in sensible heat flux (H) (Rodriguez-Iturbe, 2000); SM and leaf 40 

conductance follow a positive linear relationship (Laio et al., 2001; Porporato et al., 2002). Previous studies have examined 

land-atmosphere feedback using different metrics and both observation and simulation data (Seneviratne et al., 2006; Koster 

et al., 2009; Teuling et al., 2009). They found that water and energy limit shifts may be further strengthened by the 

interaction between the land and atmosphere, particularly when positive feedback mechanisms known as the "dry gets dryer" 

effect (Seneviratne et al., 2010; Gentine et al., 2019). Over extended temporal periods, this phenomenon may lead to the 45 

persistence of arid and high-temperature conditions (Zhang et al., 2020). Consequently, it is necessary to quantify the CSM 

characteristics and the influencing environmental factors of water and energy limit shifts. 

Traditionally, under the framework based on the ratio of LE to the total of LE and H (Haghighi et al., 2018; Fu et al., 2022a), 

sparse eddy covariance observations (Feldman et al., 2019; Fu et al., 2022b) pose challenges in adequately capturing 

comprehensive regional or continental-scale CSM and its variations (Dong et al., 2023; Hsu and Dirmeyer, 2023a). In recent 50 

years, the feasibility of conducting large-scale analysis has been enhanced by the growing accessibility of multi-source 

remotely sensed datasets (Liu et al., 2012). Globally, some studies used the ratio of LE to net radiation (Seneviratne et al., 

2010; Schwingshackl et al., 2017), surface temperature diurnal amplitude (Feldman et al., 2019; Fu et al., 2024), and LE 

(Hsu and Dirmeyer, 2023b; Duan et al., 2023). In addition, advancement of global remote sensing products technology has 

facilitated the generation of reliable GPP products (Yuan et al., 2014; Li and Xiao, 2019; Zhang et al., 2019; Bi et al., 2022; 55 

He et al., 2022; Li, F. et al., 2023) and ET products (Yao et al., 2013; Yao et al., 2014; Zhang et al., 2019; Cheng et al., 2021; 

He et al., 2022; Li, C. et al., 2022; Li, F. et al., 2023) for CSM detection. Denissen et al. (2020) proposed a new tipping-point 

metric, the difference between the correlation between SM and ET and the correlation between VPD and ET, to directly 

determine CSM at continental scales. Fu et al. (2022b) first demonstrated that the covariance between GPP and VPD 

indirectly quantifies CSM. The point at which covariance between GPP and VPD transitions from positive to negative during 60 

a period of soil drying is denoted as CSM. However, a source of considerable uncertainty when considering only a single 
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data source and estimation approach exists at a large spatial scale. There are significant differences among satellite-based ET 

and GPP datasets, and CSM varies with different methods, leading to uncertainty as to whether CSM of carbon flux is the 

same as that of water flux. 

Chinese land surface frequently experiences water and energy limit shifts (Xiao, 2014; Zhu et al., 2023). Diagnosing large-65 

scale CSM helps to understand water- and energy-limited regimes determined by distinct flora and soil types (Homaee et al., 

2002; Hsu and Dirmeyer, 2023b). The association between water, energy, and flux helps to define water and energy limit 

shifts. As such, this study uses two innovative metrics and eight satellite-based products to diagnose CSM and water and 

energy limit shifts across China. The goal of this study is to (1) assess the consistency of different methods in calculating 

CSM at flux sites; (2) examine CSM variations across land cover types, soil textures, and water resource subregions; and (3) 70 

investigate dominant factors from hydrological, meteorological, and ecological variables that influence water and energy 

limit shifts. 

2 Material and methods 

2.1 Data 

Eddy covariance flux datasets were compared with eight satellite-based ET and GPP in Section 3.1. Then, CSM derived 75 

from the relationship between SM and evaporative fraction (EF) was used to evaluate the performance of CSM derived from 

the covariance and correlation-difference methods in Section 3.2. Layer-wise SM and satellite-based ET and GPP were used 

for the large-scale detection of CSM. Land cover types, soil textures, and water resource subregions were used to examine 

CSM variations in Section 3.3. SM, ET, GPP, and meteorological data were used to investigate dominant factors influencing 

water and energy limit shifts in Section 3.4. All energy, vegetation, and water variables were resampled or combined to 0.1°-80 

8 days resolution. The period, limited by the temporal availability of data sources, covered 2001–2018. 

2.1.1 Evapotranspiration and gross primary production 

Figure 1 illustrates locations of 21 flux sites, and Table 1 shows the detailed information on flux sites. Eddy covariance-

derived measurements were applied to evaluate the performance of satellite-based ET and GPP. Given the fact that 

Huazhaizi, Dashalong, Luodi, Arou, Guantao, Huailai, Miyun, and Daxing did not have GPP data, the REddyProc website 85 

(https://www.bgc-jena.mpg.de/5622399/REddyProc/) was used to calculate GPP. REddyProc imported half-hourly net 

ecosystem exchange, LE, H, and meteorological measurements to partition net ecosystem exchange into GPP and ecosystem 

respiration. 

Table 2 contains a list of all spatial data sets used in this study. Eight satellite-based ET and GPP products are included. 

Penman-Monteith-Leuning (PML) integrates the stomatal conductance theory to relate ET and GPP processes (Zhang et al., 90 

2019; He et al., 2022) and applies daily meteorological data, land surface temperature from ERA5, enhanced Whittaker-

filtered MODIS LAI, albedo, and emissivity. The interdependency and mutual restrictions between GPP and ET 
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considerably improve the simulation accuracy. Global LAnd Surface Satellite (GLASS) ET integrates the MOD16, a revised 

remote sensing-based Penman-Monteith, the Priestley-Taylor Jet Propulsion Laboratory, a modified satellite-based Priestley-

Taylor, and the Semi-Empirical Algorithm of the University of Maryland using the Bayesian model averaging approach 95 

(Yao et al., 2013; Yao et al., 2014); GLASS GPP algorithm incorporates effects of atmospheric carbon dioxide content, 

radiation components, and VPD based on the eddy covariance-light use efficiency model introduced by Yuan et al. (2007). It 

is founded on two underlying assumptions: the fraction of absorbed photosynthetically active radiation has a linear 

relationship with the normalized difference vegetation index; constant light use efficiency is governed by either air 

temperature or soil moisture, depending on which component imposes the greatest limitation. 100 

In addition, Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration (CAMELE) provides long-term (1981–

2020) ET, employing ERA5, FLUXCOM, PML, GLDAS, and GLEAM (Li, C. et al., 2022), at 0.1°-8 days and 0.25°-daily 

resolutions. Surface Energy Balance Algorithm for Land (SEBAL) ET focuses on 1 km-daily resolution during 2001–2018. 

This product integrates GMAO's meteorological data and NASA's MOD43A1 daily surface albedo, MOD11A1 daily surface 

temperature, and MOD13 vegetation index (Cheng et al., 2021). Two-Leaf light use efficiency model-based (TL) GPP offers 105 

comprehensive worldwide GPP, shaded GPP, and sunlit GPP covering the period from 1992 to 2020. This model applies 

recent data inputs such as the GLOBMAP LAI, CRUJRA meteorological data, and ESA-CCI land cover information (Bi et 

al., 2022). Global, Orbiting carbon observatory-2 SIF-based (GOSIF) GPP spans from 2000 to 2020. A total of eight SIF-

GPP relationships, including both universal and biome-specific formulations, are used to estimate GPP from SIF on a per-

pixel basis and examined with and without intercept terms to account for the uncertainty in converting SIF into GPP 110 

estimates (Li and Xiao, 2019). 

2.1.2 Layer-wise soil moisture and meteorological data 

Given the recent availability of state-of-the-art gridded SM in China released by Li, Q. et al. (2022), CSM can now be 

investigated in the context of the SM state. Gridded SM reaches 100 cm soil depth with 10 cm intervals at 1 km-daily 

resolution during 2000–2020. It is trained by predictors of ERA5-Land time series, leaf area index (LAI), land cover type, 115 

topography, and in-situ observed soil attributes at 1789 stations throughout China, using the robust random forest machine 

learning technique. Based on the findings of Li, Q. et al. (2022), the product demonstrates notable benefits over both ERA5-

Land and SMAP-L4 datasets, especially in terms of a superior quality level compared to the SoMo.ml dataset at soil depths 

of 10, 20, 80, and 100 cm. Thus, this study utilized SM of these layers. 

Yang et al. (2010) and He et al. (2020) put forth a comprehensive dataset for Chinese regional surface meteorological 120 

forcing. This dataset encompasses air temperature, air pressure, specific humidity, wind speed, downward shortwave 

radiation, downward longwave radiation, and precipitation. It is presented in the NetCDF format with a spatiotemporal 

resolution of 0.1°-3 hours during 1979–2018. The primary input includes Princeton University’s Global Land Surface Model 

Data, GLDAS, GEWEX-SRB radiation, TRMM precipitation, and China Meteorological Administration observations. Data 

quality control techniques include the elimination of physically implausible values and statistical interpolation using ANU-125 
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Spline. This dataset demonstrates precision levels that lie between those of site-based observation and satellite-based 

estimation, therefore exceeding the accuracy of current international reanalysis datasets. In this study, VPD was computed 

by specific humidity and air temperature; VPD, air temperature, precipitation, and downward shortwave radiation were 

employed in water-energy limit shift attribution. 

2.1.3 Land cover types, soil textures, and water resource subregions 130 

Land cover types, soil textures, and water resource subregions influence CSM. Land cover types (2020) are created by 

human visual interpretation relying on Landsat satellite remote sensing images. The categorization scheme includes cropland, 

forests, grassland, water, ice, urban, and barren. Soil textures, expressed as sand, silt, and clay content within each grid cell, 

are compiled from the 1:1,000,000 soil type map and the second national soil survey. Water resource subregions are divided 

by the China Geological Survey, including Zhungaer Basin, Pearl River Basin, Yangtze River Basin, Southwestern River 135 

Basin, Tarim Basin, Songhua River Basin, Changthang Region, Inner Mongolian Plateau Region, Liaohe River Basin, 

Yellow River Basin, Huaihe River Basin, Hexi Corridor Region, Haihe River Basin, Southeastern River Basin, and Qaidam 

Basin. Water resource subregions are based on the principles of groundwater systems and water cycles and are focused on 

the inherent features of groundwater resources within distinct natural units. 
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 140 

Figure 1: (a) Flux site locations, land cover types (2020), and water resource subregions of China. Distributions of (b) clay, (c) silt, 

and (d) sand content (1995). ZGE: Zhungaer Basin, PR: Pearl River Basin, YTR: Yangtze River Basin, SWR: Southwestern River 

Basin, TR: Tarim Basin, SR: Songhua River Basin, CT: Changthang Region, NM: Inner Mongolian Plateau Region, LR: Liaohe 
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River Basin, YR: Yellow River Basin, HR: Huaihe River Basin, HC: Hexi Corridor Region, HAR: Haihe River Basin, SER: 

Southeastern River Basin, QB: Qaidam Basin. 145 

Table 1: Flux site information used in this study. 

Site Land cover types Latitude Longitude Time span Source 

CN-Sw2 

Grassland 

41.79 111.89 2011 Fluxnet 

CN-Du2 42.04 116.28 2006–2008 Fluxnet 

CN-Du3 42.05 116.28 2009–2010 Fluxnet 

CN-Cng 44.59 123.51 2007–2010 Fluxnet 

Damshung 30.49 91.06 2004–2010 Chinaflux 

Xilingela 43.53 116.67 2004–2010 Chinaflux 

Haibei1 37.37 101.18 2003–2010 Chinaflux 

Dashalong 38.84 98.94 2013–2015 TPDC 

Arou 38.04 100.46 2013–2015 TPDC 

Daxing 

Cropland 

39.62 116.43 2008–2010 TPDC 

Miyun 40.63 117.32 2008–2009 TPDC 

Huailai 40.35 115.79 2014–2018 TPDC 

Guantao 36.52 115.13 2008–2009 TPDC 

Yucheng 36.82 116.57 2003–2010 Chinaflux 

Xishuangbanna 
Evergreen broadleaf forests 

21.92 101.26 2003–2010 Chinaflux 

Dinghushan 23.16 112.53 2003–2010 Chinaflux 

Qianyanzhou Evergreen needleleaf forests 26.74 115.05 2003–2010 Chinaflux 

Changbaishan Mixed forests 42.40 128.09 2003–2010 Chinaflux 

Haibei2 Wetland 37.66 101.33 2004–2009 Chinaflux 

Huazhaizi 
barren 

38.76 100.32 2013–2015 TPDC 

Luodi 41.99 101.13 2014–2015 TPDC 

TPDC: National Tibetan Plateau Data Center 

Table 2: Spatial gridded data sets used in this study. 

Variable Dataset 
Spatial 

resolution 

Temporal 

resolution 
Unit Time span Reference 

Soil moisture SMCI1.0 0.1° day 0.001m3/m3 2000–2020 Li, Q. et al. (2022) 

Evapotranspiration 

GLASS 0.05° 8-day W/m2 2000–2018 Yao et al. (2013, 2014) 

PML 500 m day 0.01mm 2000–2020 
Zhang et al. (2019) and 

He et al. (2022) 

CAMELE 0.1° 8-day kg/ m2 /s 2001–2019 Li, C. et al. (2022) 

SEBAL 1 km day mm 2001–2018 Cheng et al. (2021) 

Gross primary 

production 

GLASS 0.05° 8-day 

gC/m2 

1982–2018 Yuan et al. (2014) 

PML 500 m day 2000–2020 
Zhang et al. (2019) and 

He et al. (2022) 

GOSIF 0.05° 8-day 2000–2021 Li and Xiao (2019) 

TL 0.05° 8-day 1992–2020 Bi et al. (2022) 

Specific humidity - 0.1° 3-hour kg kg-1 1979–2018 Yang et al. (2010) and 
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Air temperature K He et al. (2020) 

Downward 

shortwave radiation 
W m-2 

Precipitation mm hr-1 

Land cover - 1 km - - 2020 http://www.resdc.cn/ 

Soil texture - 1 km - - 1995 http://www.resdc.cn/ 

2.2 Determination of CSM 

CSM derived by the SM and EF method was used to assess the CSM using ET and GPP at the flux site. There must be both 150 

positive and negative metrics from the covariance and correlation-difference methods. For each grid cell and the entire 

period per year, negative metrics are displayed when SM is less than CSM, and positive metrics are shown when SM is 

greater than CSM. The data is taken into account just when the temperature surpasses 10° (Denissen et al., 2020) to avoid the 

influence of ice and snow, and the covariance between VPD and GPP must exhibit a minimum of 7 covariance values within 

9-day moving windows, with a minimum of 15 data (Fu et al., 2022b). Hence, we concentrated on the warm season, June–155 

September, which includes 16 data each year with 8 covariance values within 9-value moving windows. CSM was 

conducted in each grid cell using satellite-based ET and GPP over the period 2001–2018. 

2.2.1 Soil moisture-evaporative fraction method 

Investigating the relationship between SM and EF in the dry period can isolate the transition from energy limitation to water 

limitation (Feldman et al., 2019). CSM captures the interconnectedness between SM and EF. If SM is greater than or less 160 

than CSM, the relationship between SM and EF appears as a flat line or a positive slope line. A linear-plus-plateau model 

characterizes the relationship precisely (Seneviratne et al., 2010; Schwingshackl et al., 2017): 

EF = {
EFmax + S(SM − CSM), if SM < CSM

EFmax, if SM ≥ CSM
 ,        (1) 

where EF is the evaporative fraction defined as LE/(LE+H); EFmax represents the maximum EF in the energy-limited stage, 

and S is the gradient in the water-limited stage. Here, specific estimated CSM was simultaneously estimated by the Monte 165 

Carlo method. For a set of optimal parameters, the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) above 0.5 was 

considered satisfactory (Herman et al., 2018). Thus, only 8 sites, including Xilingela in 2004, Damshung in 2004, CN-Sw2 

in 2011, CN-Du2 in 2007, CN-Cng in 2010, Miyun in 2009, Huailai in 2015, and Qianyanzhou in 2010, were chosen for 

CSM detection. In addition, the Bayesian Information Criterion (BIC) (Schwarz, 1978) was used to select the best fit among 

three-segmented regression candidates (the flat line, the positive slope line, and the linear-plus-plateau). If the flat-line 170 

regression or the positive-slope regression outperformed the linear-plus-plateau regression, CSM was considered as not 

identified. 
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2.2.2 Covariance method 

The covariance method presents a novel method for assessing ecosystem water stress in direct correlation with GPP, as 

illustrated by Fu et al. (2022b). It serves to quantify CSM over large areas. Positive covariances between VPD and GPP 175 

indicate that energy limits GPP. Negative covariances indicate that water limitation has a larger impact on GPP. VPD is 

determined by the disparity between the saturation vapor pressure (es) and the actual vapor pressure (ea). Bolton (1980) 

posits that the calculation of ea involves specific humidity (SH) and surface pressure (Pr): 

ea =
SH×Pr

SH×0.378+0.622
 ,           (2) 

2.2.3 Correlation‐difference method 180 

Another novel correlation‐difference metric, proposed by Denissen et al. (2020), evaluates water versus energy‐limited 

conditions using the detrended anomaly of VPD, ET, and SM: 

∆corr = corr(ET, VPD) − corr(ET, SM) ,        (3) 

Matlab’s corr tool calculates this metric, which uses Kendall’s rank correlation (corr) rather than assuming linear 

correlations between variables (van Doorn et al., 2018). If ∆corr > 0, then the grid cell is in energy-limited regimes and 185 

vegetation anomalies (i.e., ET) correlate more strongly with energy anomalies (i.e., VPD) than with water anomalies (i.e., 

SM). ∆corr < 0, in contrast, the grid cell is in water-limited regimes. When ∆corr ≈ 0, SM is labeled as CSM, indicating that 

water- and energy-limited regimes are transitioning. 

2.3 Evaluation criteria 

The correlation coefficient was applied to evaluate the performance of satellite-based ET from CAMELE, GLASS, PML, 190 

and SEBAL and GPP from GOSIF, GLASS, PML, and TL, compared to the eddy covariance observed in-situ ET and GPP. 

A point-to-pixel evaluation was carried out to evaluate the overestimation or underestimation of ET and GPP for each land 

cover type from all 21 flux sites. We summed 8-day ET and GPP in grassland, evergreen broadleaf forests, evergreen 

needleleaf forests, mixed forests, cropland, wetland, and barren land. 

The alignment of CSM obtained by different methods was determined using the chi-square test (McHugh, 2013; Hsu and 195 

Dirmeyer, 2023a). CROSSTAB in MATLAB was used to perform the chi-square test. SM values were divided into two 

groups, below and above CSM. In this case, categorical data was tagged as a binary variable of 0 for drier than CSM and 1 

for wetter than CSM. If there were significant differences with a 95% confidence level, CSM was different. 

2.4 Partial least square regression 

Partial least square regression has been widely acknowledged as a viable approach for mitigating collinearity issues among 200 

independent variables (Karthikeyan et al., 2020), which is extensively used in quantifying interannual impacts of climate and 
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plant growth variations on water and energy dynamics. Here, performances of the partial least square regression model were 

assessed by five-fold cross-validation using the mean absolute percentage error. The dominant factor (precipitation, 

temperature, incoming shortwave radiation, VPD, ET, GPP, or SM) of ∆corr was identified by the largest variable 

importance in projection scores. 205 

3 Results 

3.1 Consistency of ET and GPP 

Figures 2a and b show good agreement between daily satellite-based products and site observations in most land cover types. 

Across all sites, correlation coefficients obtained from CAMELE, GLASS, PML, and SEBAL ET were 0.74, 0.65, 0.78, and 

0.59, respectively; correlation coefficients obtained from GLASS, TL, GOSIF, and PML GPP were 0.75, 0.71, 0.77, and 210 

0.74, respectively. For ET, the highest correlation coefficient occurred between GLASS and eddy covariance observations in 

mixed forests (0.96), while the lowest value was between SEBAL and site observations in barren (0.47). For GPP, the 

highest correlation coefficient was found between TL and site measurements in mixed forests (0.97), while the lowest value 

was between GLASS and site-based data in barren land (0.32). In general, no single product consistently outperformed 

others over all land cover types. As shown in Figures 2c and d, ET had the highest value in evergreen needleleaf forests and 215 

was the lowest in barren land, while GPP peaked in evergreen broadleaf forests and was the lowest in wetland. In these land 

cover types, ET and GPP derived from satellite-based products were also substantially different and varied quite a bit 

between different products. Especially in evergreen broadleaf forests, ET derived from GLASS (3.37 mm) and CAMELE 

(3.05 mm) and GPP from GOSIF (7.55 gC m-2 day-1) and TL (7.59 gC m-2 day-1) were higher than site observations of 1.74 

mm and 5.26 gC m-2 day-1, respectively. If satellite-based ET and GPP were between ±10% of site-observed values, they 220 

were termed as satisfactory; otherwise, they were either overestimated or underestimated. CAMELE, GLASS, PML, and 

SEBAL ET and GLASS, TL, GOSIF, and PML GPP met satisfied values in 1, 1, 3, 1, 2, 1, 3, and 2 land cover types, 

respectively. PML ET provided the most satisfactory estimates in evergreen broadleaf forests, cropland, and barren land with 

an average bias of 1.05%, 1.13%, and 1.34%, respectively; GOSIF GPP provided the most satisfactory estimate in grassland, 

evergreen needleleaf forests, and mixed forests with an average bias of 4.31%, 9.14%, and 4.29%, respectively. Although 225 

discrepancies existed among multi-source remotely sensed products across flux sites, they offered an opportunity to quantify 

characteristics of large-scale CSM and examine uncertainties from single-source data. 
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Figure 2: Correlation coefficients between daily eddy covariance observations and satellite-based (a) ET and (b) GPP products and 

average (c) ET and (d) GPP across land cover types. The bars show 95% confidence intervals. GL: grassland, EBF: evergreen 230 
broadleaf forests, ENF: evergreen needleleaf forests, MF: mixed forests, CL: cropland, WL: wetland. 

3.2 Consistency of CSM 

Variations of SM and EF were depicted in Figure 3 for eight sites. Fitted lines represented controlling mechanisms in various 

evaporative regimes. Overall, the linear-plus-plateau regression with the lowest BIC outperformed the flat line and the 

positive slope line in the study period. Specifically, CN-Du2 and Qianyanzhou sites showed a great slope at low SM values 235 

with BIC of -80.29 and -98.64, respectively. We also found that grassland CSM in different regions varied greatly. For 

example, grassland at Xilingela had the lowest CSM of 0.079 m3/m3 with SM ranging from 0.06 to 0.20 m3/m3; CSM at 
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Damshung, Southwest China, was 0.175 m3/m3 with SM ranging from 0.14 to 0.26 m3/m3; CSM at CN-Cng in Northeast 

China was 0.457 m3/m3 with high SM ranging from 0.30 to 0.70 m3/m3. Ranges of SM determined CSM value. Moreover, 

vertical lines of different colors represented CSM derived from ∆corr using the correlation-difference method and covariance 240 

between VPD and GPP. To explore the performance of both methods on sites and whether they can be used on a large scale, 

the data applied to both methods was averaged for 8 days, consistent with gridded data. For CN-Du2 and Qianyanzhou sites, 

only positive or negative VPD-GPP covariance and ∆corr were found. For Damshung, CN-Cng, and Huailai sites, we found 

more than one SM value where VPD-GPP covariance or ∆corr was zero. Along with surface soil wetting, there was a change 

of VPD-GPP covariance and ∆corr from positive to negative at these sites, inconsistent with the transition from water to 245 

energy limitation, indicating that CSM was not identifiable. Different from above, VPD-GPP covariance had the optimal 

CSM value that agreed best with the EF-SM-derived CSM at Xilingela and CN-Sw2 sites. Through another technique, ∆corr 

was better than VPD-GPP covariance at Miyun site. In these sites, VPD-GPP covariance and ∆corr changed from negative 

(water limit) to positive (energy limit). Therefore, VPD-GPP covariance and ∆corr had the potential to obtain large-scale 

CSM. 250 
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Figure 3: Variations of soil moisture and evaporative fraction at (a) Xilingela in 2004, (c) Damshung in 2004, (e) CN-Sw2 in 2011, 

(g) CN-Du2 in 2007, (i) CN-Cng in 2010, (k) Miyun in 2009, (m) Huailai in 2015, (o) Qianyanzhou in 2010. Variations of covariance 

(referred to as Cov) between vapor pressure deficit (VPD) and gross primary production (GPP), and correlation-difference metric 

(referred to as ∆corr) at (b) Xilingela in 2004, (d) Damshung in 2004, (f) CN-Sw2 in 2011, (h) CN-Du2 in 2007, (j) CN-Cng in 2010, 255 
(l) Miyun in 2009, (n) Huailai in 2015, (p) Qianyanzhou in 2010. 

3.3 Spatial pattern of CSM 

The number of wet binary bits was used to quantify the agreement among eight ET and GPP-based models at 10 cm soil 

depth. If CSM was identified, SM wetter than CSM was represented as 1, and 0 for others. If CSM was not identified within 
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a year, digits of the mode were treated as 0. If CSM was not detected for all 18 years, it was displayed as empty. The 260 

intercomparison provided helpful insights to examine consistency and discrepancy between multi-source ET and GPP 

products in depicting the spatial distribution of CSM. Figure 4 shows strong disparity in North and Central China, especially 

in Inner Mongolian Plateau Region, Songhua River Basin, Yangtze River Basin, and Yellow River Basin. In these regions, 

the chi-square test showed significant differences among GPP-based models due to their large number of wet binary bits. In 

addition, TL GPP displayed no CSM value in Northwest China. Note that the SM wetter-than-CSM showed agreement in 265 

eastern and southern basins, such as Huaihe River Basin, Liaohe River Basin, Southeastern River Basin, and Pearl River 

Basin, indicating that ET and GPP-based models were consistent in these basins. 

Figure 5 shows the spatial distribution of CSM obtained from covariance between VPD and GOSIF, GLASS, PML, and TL 

GPP, and correlation‐difference metric with Kendall’s rank correlation between the detrended anomaly of CAMELE, 

GLASS, PML, SEBAL ET and 10 cm soil depths SM and the correlation between the detrended anomaly of ET and VPD. 270 

Geographically, they spanned large swaths of land through water-scarce desert regions and lush, rainy forests. Overall, 

spatial patterns of CSM obtained through four ET products were consistent with those from four GPP products, showing a 

decreasing variation from south to north. Specifically for water resource subregions, CSM in semi-humid Huaihe River 

Basin, Haihe River Basin, and Yellow River Basin was about 0.3 m3/m3, respectively, and increased to approximately 0.4 

m3/m3 in Southeastern River Basin and Pearl River Basin. In addition, Table 3 shows the comparison of site-based CSM 275 

from EF-SM and grid-based CSM. It was found that gridded CSM values at CN-Cng, Miyun, and Huailai sites were 

generally consistent with site-based values. Gridded data had spatial continuity, while site observations showed significant 

differences in CSM even between adjacent sites (e.g., CN-Du2 of 0.113 m3/m3 and Miyun of 0.274 m3/m3), resulting in 

inconsistent CSM between satellite and site-based value. 

Furthermore, large-scale CSM depended on roots pulling water out of the unsaturated soil matrix (Feldman et al., 2019) and 280 

varied across vegetation types and soil textures at four soil layers (Figure 6). With shorter root systems and less vegetation, 

barren areas showed low CSM. Forest regions displayed a relatively high CSM (e.g., 0.18 m3/m3 using PML ET and 10 cm 

depth SM). As for soil textures, sand covering the large area was further divided into content of less than 60%, 60–70%, 70–

80%, 80–90%, and higher than 90%. Soil with a majority of clay had a wetter CSM than others (e.g., 0.38 m3/m3 using PML 

ET and 10 cm depth SM) and was to be expected given that clay had a larger negative matric potential compared to coarse 285 

soil textures dominated by sand and silt. In summary, fine soils and luxuriant vegetation had wetter CSM. Additionally, a 

layer-wise CSM analysis was conducted to highlight variations in SM properties for different soil layers. It was evident that 

there were variations in the CSM behavior across layers with higher SM and CSM at 20 cm soil depth. We also found that 

CSM for grassland and clay was higher than average SM at all four layers, which identified a large range of SM within 

water-limited regimes. However, for cropland and forests, differences existed in CSM among four ET-based methods, with 290 

higher CSM from GLASS and SEBAL than others. 
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Figure 4: Spatial pattern of wet binary bit number at 10 cm depth using covariance between vapor pressure deficit (VPD) and 

gross primary production (GPP) from (a) GOSIF, (b) GLASS, (c) PML, (d) TL. Spatial pattern of wet binary bit number at 10 cm 

depth using correlation-difference metric with Kendall’s rank correlation between the detrended anomaly of soil moisture (SM) 295 
and evapotranspiration (ET) from (e) CAMELE, (f) GLASS, (g) PML, and (h) SEBAL and the correlation between the detrended 

anomaly of VPD and those ET products. (i) Disparity of soil moisture regimes among all methods and (j) percentage of area with p 

< 0.05. ZGE: Zhungaer Basin, PR: Pearl River Basin, YTR: Yangtze River Basin, SWR: Southwestern River Basin, TR: Tarim 

Basin, SR: Songhua River Basin, CT: Changthang Region, NM: Inner Mongolian Plateau Region, LR: Liaohe River Basin, YR: 

Yellow River Basin, HR: Huaihe River Basin, HC: Hexi Corridor Region, HAR: Haihe River Basin, SER: Southeastern River 300 
Basin, QB: Qaidam Basin. 
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Figure 5: Spatial pattern of critical soil moisture (CSM) at 10 cm depth using covariance between vapor pressure deficit (VPD) 

and gross primary production (GPP) from (a) GOSIF, (b) GLASS, (c) PML, (d) TL and CSM using correlation-difference metric 

with Kendall’s rank correlation between the detrended anomaly soil moisture (SM) and evapotranspiration (ET) from (e) 305 
CAMELE, (f) GLASS, (g) PML, and (h) SEBAL and the correlation between the detrended anomaly VPD and those ET products. 

And (i–w) the basin-average values. ZGE: Zhungaer Basin, PR: Pearl River Basin, YTR: Yangtze River Basin, SWR: 

Southwestern River Basin, TR: Tarim Basin, SR: Songhua River Basin, CT: Changthang Region, NM: Inner Mongolian Plateau 

Region, LR: Liaohe River Basin, YR: Yellow River Basin, HR: Huaihe River Basin, HC: Hexi Corridor Region, HAR: Haihe 

River Basin, SER: Southeastern River Basin, QB: Qaidam Basin. 310 

Table 3: Site-based CSM from EF-SM and grid-based CSM using satellite-based ET and GPP and 10 cm depth SM. 

Site CSM from 

EF-SM  

CSM using 

GOSIF GPP 

CSM using 

GLASS GPP 

CSM using 

PML GPP 

CSM using 

TL GPP 

CSM using 

CSMELE ET 

CSM using 

GLASS ET 

CSM using 

PML ET 

CSM using 

SEBAL ET 

Xilingela 0.079 0.249 0.263 0.250 0.251 0.266  0.303 - 0.296 

Damshung 0.175 0.381 0.383 0.383 0.383 - 0.364 0.375 0.403 

CN-Sw2 0.132 0.238 0.286 0.218 0.238 - 0.290 0.233 - 

CN-Du2 0.113 0.275 0.300 0.252 0.277 0.260 0.299 - 0.292 

CN-Cng 0.457 0.339 0.369 0.325 0.341 0.376 0.386 0.292 0.304 

Miyun 0.274 0.315 0.336 0.294 0.331 0.304 0.322 0.311 0.316 

Huailai 0.195 0.258 0.278 0.228 0.259 0.221 - - 0.324 

Qianyanzhou 0.138 0.452 0.407 0.327 0.418 - - - - 

 

Figure 6: Soil moisture (SM) at 10 cm, 20 cm, 80 cm, and 100 cm soil depths, and critical soil moisture (CSM) derived from 

CAMELE, GLASS, PML, and SEBAL ET at corresponding soil depths for (a) cropland, (b) forests, (c) grassland, (d) water, (e) ice, 

(f) urban, (g) barren, soils with a majority of (h) clay, (i) silt, and sand with content (j) less than 60, (k) between 60% and 70%, (l) 315 
between 70% and 80%, (m) between 80% and 90%, and (n) higher than 90%. 



18 

 

3.4 Attribution of water and energy limit shifts 

We assessed the spatial pattern of multi-annual average ∆corr at 10 cm soil depth over the period 2001–2018. PML ET was 

used for ∆corr given the fact that it had the best performance (Section 3.1). As shown in Figure 7a, water-limited regimes 

were most common in dry and semi-arid areas. Western and northern regions were generally water-limited, while southern 320 

regions were energy-limited. The cross-validation using partial least square regression shows that the variance that ∆corr was 

explained by precipitation, temperature, incoming shortwave radiation, VPD, ET, GPP, and SM ranged from 73.34% in 

Yangtze River Basin to 99.95% in Haihe River Basin (Figure 7b). 

Variations of dominant factors underlined the relevance of hydrological, meteorological, and ecological variables in inducing 

interannual changes in ∆corr. As shown in Figure 8, blue pixels represented the significant decrease in ∆corr, indicating 325 

increased water stress and correlation between ET and SM. Several typical regions had relatively large areas of significant 

decreases in ∆corr, such as Changthang Region (2.62%) and Tarim Basin (3.49%). ET was the most important predictor 

across 42% of Changthang Region and 24% of Tarim Basin, which confirmed that increasing ET pushed increased water 

stress in these regions. In addition, a significant increase in VPD in the west might cause drought, especially in Tarim Basin, 

where VPD was the most important predictor across 19% of the area. For Haihe River Basin, decreasing SM contributed to 330 

increased water limitation. On the contrary, 4.29% of Hexi Corridor Region showed significant increases in ∆corr; 

increasing SM contributed to decreased water stress. 16.65% of Songhua River Basin showed significant increases in ∆corr; 

decreased water limitation was associated with increasing GPP (greening) in these regions. Moreover, ET and VPD played 

the most important role in 30% and 24% of Pearl River Basin, respectively; the significant decrease in VPD mitigated 

drought in these regions. 335 
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Figure 7: Spatial pattern of (a) ∆corr derived from PML ET and 10 cm soil depth soil moisture and (b) the mean absolute 

percentage error based on partial least square regression for ∆corr estimations. ZGE: Zhungaer Basin, PR: Pearl River Basin, 

YTR: Yangtze River Basin, SWR: Southwestern River Basin, TR: Tarim Basin, SR: Songhua River Basin, CT: Changthang 

Region, NM: Inner Mongolian Plateau Region, LR: Liaohe River Basin, YR: Yellow River Basin, HR: Huaihe River Basin, HC: 340 
Hexi Corridor Region, HAR: Haihe River Basin, SER: Southeastern River Basin, QB: Qaidam Basin. 

 



20 

 

Figure 8: Spatial pattern of significance (p < 0.05) of (a) ∆corr, (b) precipitation (P), (c) incoming shortwave radiation (SRa), (d) 

GOSIF gross primary production (GPP), (e) PML evapotranspiration (ET), (f) soil moisture (SM), (g) temperature (Ta), and (h) 

vapor pressure deficit (VPD) during the period of ∆corr detection using the Mann–Kendall test (Mann, 1945; Kendall, 1948). “De.” 345 
means “decreasing” and “In.” means “increasing”. (i) Attribution of ∆corr variations. Colors indicate the variable that best 

predicts ∆corr dynamics. ZGE: Zhungaer Basin, PR: Pearl River Basin, YTR: Yangtze River Basin, SWR: Southwestern River 

Basin, TR: Tarim Basin, SR: Songhua River Basin, CT: Changthang Region, NM: Inner Mongolian Plateau Region, LR: Liaohe 

River Basin, YR: Yellow River Basin, HR: Huaihe River Basin, HC: Hexi Corridor Region, HAR: Haihe River Basin, SER: 

Southeastern River Basin, QB: Qaidam Basin. 350 

4 Discussion 

Analysis of spatial patterns of CSM using multi-source satellite-based water and carbon fluxes (Figure 2) derived from 

different methods (Figure 3) further enables us to effectively reflect variations from energy to water limitation in 

spatiotemporal continuous grid cells. To address the question of how soil textures and plant features define constraints 

imposed by water supply and energy availability, there has been a growing focus on CSM from site to continental scales. For 355 

instance, Northern California exhibits CSM of 0.15 m3/m3 in semi-arid grassland at the site scale (Baldocchi et al., 2004); 

CSM using satellite‐based surface temperature diurnal amplitude in semi-arid grassland of Africa has been reported to be 

0.12 m3/m3 at the continental scale (Feldman et al., 2019). For specific plants, CSM is around 0.238 m3/m3 using PML ET in 

Inner Mongolian Plateau Region (Figure 5) where grass is abundant. That is in line with the grassland CSM of 0.214 m3/m3 

from the covariance approach across 195 global sites from the Integrated Carbon Observation System, the AmeriFlux, and 360 

the FLUXNET2015 (Fu et al., 2022a). Another study based on the correlation-difference method using SM from the 

European Space Agency Climate Change Initiative program and ET from the FLUXCOM reported large-scale CSM of 

around 0.21 m3/m3 throughout Europe across all grid cells (Denissen et al., 2020). Researchers also found that plants exhibit 

a great vertical water uptake range to alleviate the impact of water stress (Gallego-Elvira et al., 2016), with water uptake 

extending to below 50 cm (Case et al., 2020) or 1–2 m (Tumber-Davila et al., 2022). Low CSM may be attributed to shorter 365 

rooting systems in water-limited environments (Konings and Gentine, 2017), while locations with high humidity, such as 

tropical West Africa and the southern part of Congo Basin (Feldman et al., 2022), exhibit high CSM. Deep-rooted forests 

can better regulate their response to drought with high CSM among soil layers, which means that root systems of plants play 

a key part in determining water- and energy-limited regimes and may help understand regional or continental-scale water- 

and energy-limited regimes that arise from different vegetation and soil conditions. To comprehend the underlying factors 370 

driving CSM, it is necessary to do a more comprehensive analysis of climate and ecosystem conditions: CSM detection 

shows that grassland had a large range of SM within water-limited regimes (Figure 6), where CSM was higher than average 

SM, probably because of shallow root systems affected by moisture; therefore, facing decreased ∆corr (Figure 8), the 

grassland located in the northwestern arid region was more vulnerable. Further, water-limited regions exhibit great 

sensitivity in hydrologic cycles to variations in vegetation functioning, climate variability, and catchment physical conditions. 375 

Consequently, water-limited vegetation exhibits a higher degree of sensitivity to surface disturbances compared to locations 

with higher levels of precipitation. In this scenario, the effect of ET is more pronounced, resulting in a decline in energy 
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limitation, such as Tarim Basin. However, this study focusing on a specific time of year may not be enough to explain the 

critical value that may be shown in the rest of the year. Since CSM values in some grids are not detected by eight products, 

further research is needed for the CSM that may appear in the rest of the year in different regions. In addition, to compare the 380 

performance of multi-source remotely sensed water and carbon fluxes, all data is unified into the 8-day resolution. Therefore, 

a more refined time scale, such as a one-day scale study, is also needed. 

Multiple factors contribute to inherent constraints in identifying different regimes associated with the utilization of multi-

source satellite-based ET and GPP. For example, ET and GPP exhibit great uncertainties (Liu et al., 2021) in areas with 

barren land as indicated in Section 3.1. In eastern and southern regions, where satellite-based methods were more reliable, 385 

eight satellite-based SM regimes were in good agreement (Figure 4). Since the CAMELE ET combined PML ET, they 

showed consistency in cropland and forests with a lower CSM than GLASS and SEBAL (Section 3.3). By considering 

variations of energy and water limitations in terrestrial ecosystems (Section 3.4), there is potential to improve the water and 

carbon flux estimation in turn. In addition, SM from ground samplings and gridded sources (Koster et al., 2009) contributes 

to the uncertainty in characterizing CSM as discussed in Section 3.3. For gridded SM, surface climate shows a significant 390 

effect on the upper soil layer SM modeling, while the background aridity leads to low variability of the deeper layer SM (Li, 

Q. et al., 2022). Besides, external forcings seem to be responsible for a shift towards enhanced land-atmosphere coupling 

(Zhang et al., 2020). It should be noted that the South-to-North Water Diversion Project and the Pinglu Canal Project in 

China will result in significant modifications to SM characteristics, which are fundamental components of the concept 

known as CSM. Water management measures may reduce water stress in grasslands affected by climate change and make 395 

southern coastal clay areas more resistant to possible disturbances. Overall, our research can inform large-scale water 

conservancy projects for better water resource allocation from the perspective of the critical effect of SM. 

5 Conclusion 

Our main accomplishment is observing and identifying water and energy limit shifts using multi-source satellite-based water 

and carbon fluxes over China. These shifts show which areas are more likely to be affected by climate change. To do so, we 400 

first examined the consistency of ET and GPP derived from the site- and satellite-based grid observations and the 

consistency of CSM derived from the EF-SM, covariance, and correlation-difference methods. CSM detected by the 

covariance between VPD and GPP and CSM using the correlation‐difference metric using VPD, ET, and SM matched well 

with CSM using the EF-SM method at the site scale, suggesting that these methods could detect large-scale CSM. According 

to satellite-based CSM from four ET products, four GPP products, and the latest SM dataset, surface water- and energy-405 

limited regimes varied among land cover types, soil textures, and water resource subregions; soil textures of clay and land 

cover types of grassland had a large range of SM within water-limited regimes. Based on the spatial pattern of CSM, we 

further attributed the dominant factor of ∆corr and discovered that VPD was the most important predictor across 24% of 

Pearl River Basin and 19% of Tarim Basin. However, unlike the declining VPD in Pearl River Basin, the increasing VPD 
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aggravated the water stress in Tarim Basin, especially for the more fragile grassland in these areas. As environmental change 410 

and extreme disturbances affect CSM, future research directions will aim at the impact of hydraulic projects such as inter-

basin water transfers on CSM, the impact of extreme disturbances such as tropical cyclones and wildfires on CSM, and 

possible changes in CSM. 

This study used multi-source satellite-based water and carbon fluxes and different methods to detect CSM, and more efforts 

were put into the evaluation and validation of CSM. 18 years of datasets used for CSM were quite typical of the long-term 415 

climatology of continental wetness. Since CSM, an emerging property, is generated by multiple processes occurring on the 

land surface, in the atmosphere, and at the interface between them, uncertainties of ET and GPP from the algorithm, 

uncertainties of SM from ground sampling, and enhanced land-atmosphere coupling due to external forcing all contribute to 

CSM uncertainties. We emphasize that SM behavior below and above CSM determines ET and GPP and that water-limited 

regimes of the SM range depend on CSM. Water and carbon fluxes are vulnerable to the sensitivity of ∆corr to hydrological, 420 

meteorological, and ecological predictors. Accordingly, the water and carbon algorithm should consider water-energy limit 

shifts to improve the simulation accuracy. Thus, applying our new understanding of ∆corr and CSM under changing land-

atmosphere conditions will provide a more complete perspective of the evolution of regional terrestrial ecosystems over 

extended periods. 

Data availability 425 

National Tibetan Plateau Data Center (TPDC) offers eight flux sites, consisting of four locations inside the Hexi Corridor 

Region (Huazhaizi, Dashalong, Luodi, and Arou) and four cropland sites within the Haihe River Basin (Guantao, Huailai, 

Miyun, and Daxing) with half-hour records (http://data.tpdc.ac.cn/). ChinaFlux offers data from Damshung, Xilingela, 

Xishuangbanna, Dinghushan, Qianyanzhou, Changbaishan, Yucheng, Haibei1, and Haibei2 flux sites 

(http://www.chinaflux.org/). Fluxnet includes four grassland sites, CN-Sw2, CN-Du2, CN-Du3, and CN-Cng with daily 430 

records, which are available at https://fluxnet.org/data/download-data/. PML provides ET and GPP on the TPDC website. 

GLASS ET and GPP are provided by http://glass.umd.edu/. CAMELE ET is available at Zenodo: 

https://zenodo.org/record/6283239/. SEBAL ET is publicly accessible from the Zenodo repository at 

https://zenodo.org/records/10803216 and https://zenodo.org/records/10803553. TL GPP is available at 

https://doi.org/10.5061/dryad.dfn2z352k. GOSIF GPP is obtained from https://globalecology.unh.edu/. Gridded soil moisture 435 

and meteorological data are available in TPDC. Land cover types and soil textures were contributed by the Data Center for 

Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/). 

http://data.tpdc.ac.cn/
http://www.chinaflux.org/
https://fluxnet.org/data/download-data/
http://glass.umd.edu/
https://zenodo.org/record/6283239
https://doi.org/10.5061/dryad.dfn2z352k
https://globalecology.unh.edu/
http://www.resdc.cn/
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