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Abstract. Critical soil moisture (CSM), a tipping point of soil moisture (SM) at which surface fluxes shift from energy‐ to 10 

water‐limited regimes, is essential for the vegetation state and corresponding land‐atmosphere coupling. However, detecting 

CSM and attributing water-energy limit shifts to climate and ecosystem variables are challenging as in-situ observations of 

water, carbon fluxes, and SM are sparse. In this study, CSM was assessed over China in June–September over the period 

2001–2018 using two satellite-based methods: the difference between the correlation between SM and evapotranspiration 

(ET) and the correlation between vapor pressure deficit (VPD) and ET; the covariance between VPD and gross primary 15 

production (GPP). ET and GPP products were based on the Penman-Monteith-Leuning (PML) ET and GPP, Global LAnd 

Surface Satellite (GLASS) ET and GPP, Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration 

(CAMELE) ET, Surface Energy Balance Algorithm for Land (SEBAL) ET, Two-Leaf light use efficiency model based (TL) 

GPP, and SIF-based (GOSIF) GPP. At flux sites, ET and GPP products were evaluated by eddy covariance-based 

measurements; CSM values using two satellite-based methods were assessed by CSM using the soil moisture-evaporative 20 

fraction method. Their consistency at site scales demonstrated reliable results and applicability to regional scales. Through 

intercomparison, the spatial pattern of CSM from multi-source ET and GPP datasets across China was consistent and robust 

in eastern and southern basins. Generally, CSM decreased from southern to northern regions. Pearl River Basin and 

Southeastern River Basin displayed a relatively high CSM for clay-rich soils (e.g., 0.39 m3/m3 using PML ET and 10 cm 

depth SM) and forests (e.g., 0.35 m3/m3 using PML ET and 10 cm depth SM). For four soil layers, grassland and clay had 25 

higher CSM than SM, making them in water-limited regimes. Thus, western grassland with increased ET was more 

susceptible to water stress. These findings highlight the variability in CSM and primary determinants of water-energy limit 

shifts, offering valuable insights into the potential water limitation on ecosystems under comparable SM circumstances. 
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1 Introduction 

Critical soil moisture (CSM) serves as an indicator of shifts in the relationship between water and energy availability 30 

(Schwingshackl et al., 2017; Denissen et al., 2020) and is essential in shaping regional climates. Plants adjust their stomatal 

resistance in response to changes in soil moisture (SM) and vapor pressure deficit (VPD) (Grossiord et al., 2020; Li, F. et al., 

2023). Above CSM, there is no alteration in water stress with SM increases (Rodriguez-Iturbe, 2000; Seneviratne et al., 2010; 

Akbar et al., 2018); plants are primarily controlled by VPD. Warm and dry air above the canopy (Grossiord et al., 2020; Li, 

X. et al., 2023) leads to a decrease in both the transpiration process as the largest part of evapotranspiration (ET) (Good et al., 35 

2015) and gross primary production (GPP) coupled with the ET process via plant leaf stomata (Gentine et al., 2019; Liu et al., 

2020). A decrease in ET, in turn, results in elevated surface temperature and VPD (Gentine et al., 2019) and leads to 

increased atmospheric aridity on a large spatial scale, thereby intensifying the depletion of SM. Below CSM, surface fluxes 

are primarily influenced by SM availabilities in conditions of restricted water supply. During this period, a decrease in SM 

results in a reduction in latent heat flux (LE) and an increase in sensible heat flux (H) (Rodriguez-Iturbe, 2000); the 40 

relationship between SM and leaf conductance follows a linear trend (Laio et al., 2001; Porporato et al., 2002). Previous 

studies have examined land-atmosphere feedback using different metrics and both observation and simulation data 

(Seneviratne et al., 2006; Koster et al., 2009; Teuling et al., 2009). They found that water and energy limit shifts may be 

further strengthened by the interaction between the land and atmosphere, particularly when positive feedback mechanisms 

known as the "dry gets dryer" effect (Seneviratne et al., 2010; Gentine et al., 2019). Over extended temporal periods, this 45 

phenomenon may lead to the persistence of arid and high-temperature conditions (Zhang et al., 2020). Consequently, it is 

necessary to quantify the characteristics of CSM and the influencing environmental factors of water-energy limit shifts. 

Traditionally, under the framework based on the ratio of LE to the total of LE and H (Haghighi et al., 2018; Fu et al., 2022b), 

sparse eddy covariance observations (Feldman et al., 2019; Fu et al., 2022a) pose challenges in adequately capturing 

comprehensive regional or continental-scale CSM and its variations (Dong et al., 2023; Hsu and Dirmeyer, 2023a). In recent 50 

years, the feasibility of conducting large-scale analysis has been enhanced by the growing accessibility of multi-source 

satellite-based datasets (Liu et al., 2012). Globally, some model-based analyses used the ratio of LE to net radiation 

(Seneviratne et al., 2010; Schwingshackl et al., 2017), surface temperature diurnal amplitude (Feldman et al., 2019; Fu et al., 

2024), and LE (Hsu and Dirmeyer, 2023b; Duan et al., 2023). In addition, the advancement of global remote sensing 

products technology has facilitated the generation of reliable GPP products (Yuan et al., 2014; Li and Xiao, 2019; Zhang et 55 

al., 2019; Bi et al., 2022; He et al., 2022; Li, F. et al., 2023) and ET products (Yao et al., 2013; Yao et al., 2014; Zhang et al., 

2019; Cheng et al., 2021; He et al., 2022; Li, C. et al., 2022; Li, F. et al., 2023), which are used in CSM studies. Denissen et 

al. (2020) proposed a new tipping-point metric, the difference between the correlation between SM and ET and the 

correlation between VPD and ET, to straightforwardly determine CSM at continental scales. Fu et al. (2022a) first 

demonstrated that the covariance between GPP and VPD indirectly quantifies CSM. The point at which covariance between 60 

GPP and VPD transitions from positive to negative during a period of soil drying is denoted as CSM. However, a source of 
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considerable uncertainty when considering only a single data source and estimation approach exists at a large spatial scale. 

There are significant differences among satellite-based ET and GPP datasets, and CSM varies with different methods, 

leading to uncertainty as to whether CSM of carbon flux is the same as that of water flux. 

Chinese land surface frequently experiences water-energy limit shifts (Xiao, 2014; Zhu et al., 2023). Diagnosing CSM across 65 

various biomes and climatic zones helps to understand water-energy limit regimes determined by distinct flora and soil types 

(Homaee et al., 2002; Hsu and Dirmeyer, 2023b). The association between water, energy, and flux helps to define water-

energy limit shifts. As such, this study uses two innovative metrics and eight satellite-based products to diagnose CSM and 

water-energy limit shifts across China. The goal of this study is to (1) assess the consistency of different methods in 

calculating CSM at flux sites; (2) examine CSM variations across land cover types, soil textures, and water resource 70 

subregions; and (3) investigate dominant factors from climate and ecosystem variables that influence water-energy limit 

shifts. 

2 Material and methods 

2.1 Data 

Eddy covariance flux datasets were compared with eight satellite-based ET and GPP in Section 3.1. Then, CSM derived 75 

from the relationship between SM and evaporative fraction (EF) was used to evaluate the performance of CSM derived from 

the covariance and correlation-difference methods in Section 3.2. Layer-wise SM and satellite-based ET and GPP were used 

for the large-scale detection of CSM. Land cover type, soil texture, and water resource regionalization were all used to 

examine CSM variations in Section 3.3. SM, ET, GPP, and meteorological data were all used to investigate dominant factors 

influencing water-energy limit shifts in Section 3.4. All energy, vegetation, and water variables were resampled or combined 80 

to 0.1°-8 days resolution. The period, limited by the temporal availability of several data sources, covered 2001–2018. 

2.1.1 Evapotranspiration and gross primary production 

Figure 1 illustrates locations of 21 flux sites, and Table 1 shows the detailed information on flux sites. Eddy covariance-

derived measurements were applied to evaluate the performance of satellite-based ET and GPP. Given the fact that 

Huazhaizi, Dashalong, Luodi, Arou, Guantao, Huailai, Miyun, and Daxing did not have GPP data, REddyProc website 85 

(https://www.bgc-jena.mpg.de/5622399/REddyProc/) was used to calculate GPP. REddyProc imported half-hourly net 

ecosystem exchange, LE, H, and meteorological measurements to partition net ecosystem exchange into GPP and ecosystem 

respiration. 

Table 2 contains a list of all spatial data sets used in this study. Advances in remote sensing have substantially fostered the 

development of global ET and GPP products for CSM simulation. Eight satellite-based ET and GPP products are included. 90 

Penman-Monteith-Leuning (PML), with a spatiotemporal resolution of 500 m and 1 day during February 2000–December 

2020, integrates the stomatal conductance theory to relate ET and GPP processes using the Penman-Monteith-Leuning model 
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(Zhang et al., 2019; He et al., 2022) and applies daily meteorological data, land surface temperature from ERA5, enhanced 

Whittaker-filtered MODIS LAI, albedo, and emissivity. The interdependency and mutual restrictions between GPP and ET 

considerably increase the accuracy of the simulation. Global LAnd Surface Satellite (GLASS) ET, with 0.05° resolution and 95 

every 8 days, integrates the MOD16, a revised remote sensing-based Penman-Monteith, the Priestley-Taylor Jet Propulsion 

Laboratory, a modified satellite-based Priestley-Taylor, and the Semi-Empirical Algorithm of the University of Maryland 

using the Bayesian model averaging approach (Yao et al., 2013; Yao et al., 2014); GLASS GPP algorithm incorporates 

effects of atmospheric carbon dioxide content, radiation components, and VPD based on the eddy covariance-light use 

efficiency model introduced by Yuan et al. (2007). It is founded on two underlying assumptions: the fraction of absorbed 100 

photosynthetically active radiation has a linear relationship with the normalized difference vegetation index; constant light 

use efficiency is governed by either air temperature or soil moisture, depending on which component imposes the greatest 

limitation. 

In addition, Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration (CAMELE) provides long-term (1981–

2020) ET, employing ERA5, FLUXCOM, PML, GLDAS, and GLEAM (Li, C. et al., 2022), at 0.1°-8 days and 0.25°-daily 105 

resolutions. Surface Energy Balance Algorithm for Land (SEBAL) ET focuses on 1 km-daily resolution during 2001–2018. 

This product integrates GMAO's meteorological data and NASA's MOD43A1 daily surface albedo, MOD11A1 daily surface 

temperature, and MOD13 vegetation index (Cheng et al., 2021). Two-Leaf light use efficiency model-based (TL) GPP offers 

comprehensive worldwide assessments of GPP, shaded GPP, and sunlit GPP at a spatiotemporal resolution of 0.05°-8 days, 

covering the period from 1992 to 2020. This model applies recent data inputs such as the GLOBMAP LAI, CRUJRA 110 

meteorological data, and ESA-CCI land cover information (Bi et al., 2022). Global, Orbiting carbon observatory-2 SIF-based 

(GOSIF) GPP spans from 2000 to 2020 with 0.05°-8 days resolution. A total of eight SIF-GPP relationships, including both 

universal and biome-specific formulations, are used to estimate GPP from SIF on a per-pixel basis and examined with and 

without intercept terms to account for the uncertainty in converting SIF into GPP estimates (Li and Xiao, 2019). 

2.1.2 Layer-wise soil moisture and meteorological data 115 

Given the recent availability of state-of-the-art gridded SM in China released by Li, Q. et al. (2022), CSM can now be 

investigated in the context of the SM state. Gridded SM reaches 100 cm soil depth with 10 cm intervals at 1 km-daily 

resolution during 2000–2020. It is trained by predictors of ERA5-Land time series, leaf area index (LAI), land cover type, 

topography, and in-situ observed soil attributes at 1789 stations throughout China, using the robust random forest machine 

learning technique. Based on the findings of Li, Q. et al. (2022), the product demonstrates notable benefits over both ERA5-120 

Land and SMAP-L4 datasets, especially in terms of a superior quality level compared to the SoMo.ml dataset at soil depths 

of 10, 20, 80, and 100 cm. Thus, this study utilized SM at these layers. 

Yang et al. (2010) and He et al. (2020) put forth a comprehensive dataset for Chinese regional surface meteorological 

forcing. This dataset encompasses air temperature, air pressure, specific humidity, wind speed, downward shortwave 

radiation, downward longwave radiation, and precipitation. It is presented in the NetCDF format with a spatiotemporal 125 
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resolution of 0.1°-3 hours during 1979–2018. The primary input includes Princeton University’s Global Land Surface Model 

Data, GLDAS, GEWEX-SRB radiation, TRMM precipitation, and China Meteorological Administration observations. Data 

quality control techniques include the elimination of physically implausible values and statistical interpolation using ANU-

Spline. This dataset demonstrates precision levels that lie between those of site-based observation and satellite-based 

estimation, therefore exceeding the accuracy of current international reanalysis datasets. In this study, VPD was computed 130 

by specific humidity and air temperature; VPD, air temperature, precipitation, and downward shortwave radiation were 

employed in the examination of water and energy limitations. 

2.1.3 Land cover types, soil textures, and water resource subregions 

Land cover types, soil textures, and water resource subregions influence CSM. In this study, land cover types (2020) were 

created by human visual interpretation relying on Landsat satellite remote sensing images. It utilized a categorization scheme 135 

including cropland, forests, grassland, water, ice, urban, and barren. Soil textures were compiled from the 1:1,000,000 soil 

type map and the second national soil survey. It was expressed as sand, silt, and clay content within each grid cell. Water 

resource subregions divided by the China Geological Survey included Zhungaer Basin, Pearl River Basin, Yangtze River 

Basin, Southwestern River Basin, Tarim Basin, Songhua River Basin, Changthang Region, Inner Mongolian Plateau Region, 

Liaohe River Basin, Yellow River Basin, Huaihe River Basin, Hexi Corridor Region, Haihe River Basin, Southeastern River 140 

Basin, and Qaidam Basin. The water resources sub-region was based on the principles of groundwater systems and water 

cycles and focused on the inherent features of groundwater resources within distinct natural units. 
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Figure 1: (a) Locations of flux sites, land cover types (2020), and water resource subregions of China. Distributions of (b) clay, (c) 

silt, and (d) sand content (1995). ZGE: Zhungaer Basin, PR: Pearl River Basin, YTR: Yangtze River Basin, SWR: Southwestern 145 
River Basin, TR: Tarim Basin, SR: Songhua River Basin, CT: Changthang Region, NM: Inner Mongolian Plateau Region, LR: 
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Liaohe River Basin, YR: Yellow River Basin, HR: Huaihe River Basin, HC: Hexi Corridor Region, HAR: Haihe River Basin, SER: 

Southeastern River Basin, QB: Qaidam Basin. 

Table 1: Flux site information used in this study. 

Site Land cover types Latitude Longitude Time span Source 

CN-Sw2 

Grassland 

41.79 111.89 2011 Fluxnet 

CN-Du2 42.04 116.28 2006–2008 Fluxnet 

CN-Du3 42.05 116.28 2009–2010 Fluxnet 

CN-Cng 44.59 123.51 2007–2010 Fluxnet 

Damshung 30.49 91.06 2004–2010 Chinaflux 

Xilingela 43.53 116.67 2004–2010 Chinaflux 

Haibei1 37.37 101.18 2003–2010 Chinaflux 

Dashalong 38.84 98.94 2013–2015 TPDC 

Arou 38.04 100.46 2013–2015 TPDC 

Daxing 

Cropland 

39.62 116.43 2008–2010 TPDC 

Miyun 40.63 117.32 2008–2009 TPDC 

Huailai 40.35 115.79 2014–2018 TPDC 

Guantao 36.52 115.13 2008–2009 TPDC 

Yucheng 36.82 116.57 2003–2010 Chinaflux 

Xishuangbanna 
Evergreen broadleaf forests 

21.92 101.26 2003–2010 Chinaflux 

Dinghushan 23.16 112.53 2003–2010 Chinaflux 

Qianyanzhou Evergreen needleleaf forests 26.74 115.05 2003–2010 Chinaflux 

Changbaishan Mixed forests 42.40 128.09 2003–2010 Chinaflux 

Haibei2 Wetland 37.66 101.33 2004–2009 Chinaflux 

Huazhaizi 
barren 

38.76 100.32 2013–2015 TPDC 

Luodi 41.99 101.13 2014–2015 TPDC 

TPDC: National Tibetan Plateau Data Center 150 

Table 2: Spatial gridded data sets used in this study. 

Variable Dataset 
Spatial 

resolution 

Temporal 

resolution 
Unit Time span Reference 

Soil moisture SMCI1.0 0.1° day 0.001m3/m3 2000–2020 Li, Q. et al. (2022) 

Evapotranspiration 

GLASS 0.05° 8-day W/m2 2000–2018 Yao et al. (2013, 2014) 

PML 500 m day 0.01mm 2000–2020 
Zhang et al. (2019) and 

He et al. (2022) 

CAMELE 0.1° 8-day kg/ m2 /s 2001–2019 Li, C. et al. (2022) 

SEBAL 1 km day mm 2001–2018 Cheng et al. (2021) 

Gross primary 

production 

GLASS 0.05° 8-day 

gC/m2 

1982–2018 Yuan et al. (2014) 

PML 500 m day 2000–2020 
Zhang et al. (2019) and 

He et al. (2022) 

GOSIF 0.05° 8-day 2000–2021 Li and Xiao (2019) 

TL 0.05° 8-day 1992–2020 Bi et al. (2022) 

Specific humidity - 0.1° 3-hour kg kg-1 1979–2018 Yang et al. (2010) and 
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Air temperature K He et al. (2020) 

Downward 

shortwave radiation 
W m-2 

Precipitation mm hr-1 

Land cover - 1 km - - 2020 http://www.resdc.cn 

Soil texture - 1 km - - 1995 http://www.resdc.cn 

2.2 Determination of CSM 

CSM, which captures the interconnectedness between SM and EF, derived by the SM and EF method, was used to assess the 

CSM from ET and GPP on the site scale. There must be both positive and negative metrics from the covariance and 

correlation-difference methods. For each grid cell and the entire period per year, negative metrics are displayed when SM is 155 

less than CSM, and positive metrics are shown when SM is greater than CSM. If there is more than one value where SM 

shifts between positive and negative metrics, CSM is treated as unidentified. 

The data will be taken into account just when the temperature surpasses 10° (Denissen et al., 2020) to avoid the influence of 

ice and snow, and the covariance between VPD and GPP must exhibit a minimum of 7 covariance values within 9-day 

moving windows, with a minimum of 15 data (Fu et al., 2022a). Hence, we concentrated on the warm season, June–160 

September, which includes 16 data each year with 9 covariance values within 8-value moving windows. CSM was 

conducted in each grid cell using satellite-based ET and GPP over the period 2001–2018. 

2.2.1 Soil moisture-evaporative fraction method 

Investigating the relationship between SM and EF in the dry period can isolate the transition from energy limitation to water 

limitation (Feldman et al., 2019). If SM is greater than or less than CSM, the relationship between SM and EF appears as a 165 

flat line or a positive slope line. A linear-plus-plateau model characterizes the relationship precisely measured by eddy 

covariance flux towers (Seneviratne et al., 2010; Schwingshackl et al., 2017): 

EF = {
EFmax + S(SM − CSM), if SM < CSM

EFmax, if SM ≥ CSM
 ,        (1) 

where EF is the evaporative fraction defined as LE/(LE+H); EFmax represents the maximum EF in the energy-limited stage, 

and S is the gradient in the water-limited stage. Here, specific estimated CSM was simultaneously estimated by the Monte 170 

Carlo method. For a set of optimal parameters, the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) above 0.5 was 

considered satisfactory (Herman et al., 2018). Thus, only 8 sites, including Xilingela in 2004, Damshung in 2004, CN-Sw2 

in 2011, CN-Du2 in 2007, CN-Cng in 2010, Miyun in 2009, Huailai in 2015, and Qianyanzhou in 2010, were chosen for 

CMS detection. In addition, the Bayesian Information Criterion (BIC) (Schwarz 1978) was used to select the best fit among 

three-segmented regression candidates (the flat line, the positive slope line, and the linear-plus-plateau). If the flat-line 175 
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regression or the positive-slope regression outperformed the linear-plus-plateau regression, CSM was considered as not 

identified. 

2.2.2 Covariance method 

The covariance method presents a novel method for assessing ecosystem water stress in direct correlation with GPP, as 

illustrated by Fu et al. (2022a). It serves to quantify CSM over large areas. Positive covariances between VPD and GPP 180 

indicate that energy limits GPP. Negative covariances indicate that water limitation has a larger impact on GPP. VPD is 

determined by the disparity between the saturation vapor pressure (es) and the actual vapor pressure (ea). Bolton (1980) 

posits that the calculation of ea involves specific humidity (SH) and surface pressure (Pr): 

ea =
SH×Pr

SH×0.378+0.622
 ,           (2) 

2.2.3 Correlation‐difference method 185 

Another novel correlation‐difference metric, proposed by Denissen et al. (2020), evaluates water versus energy‐limited 

conditions using the detrended anomaly of VPD, ET, and SM: 

CorrVPD = Corr(ET, VPD) − Corr(ET, SM) ,        (3) 

Matlab’s corr tool calculates this metric, which uses Kendall’s rank correlation (Corr) rather than assuming linear 

correlations between variables (van Doorn et al., 2018). If CorrVPD > 0, then the grid cell is energy-limited and vegetation 190 

anomalies (i.e., ET) correlate more strongly with energy anomalies (i.e., VPD) than with water anomalies (i.e., SM). 

CorrVPD < 0, in contrast, is water-limited. When CorrVPD ≈ 0, SM is labeled as CSM, indicating that water and energy 

limit regimes are transitioning. 

2.3 Evaluation criteria 

The correlation coefficient was applied to evaluate the performance of satellite-based ET from CAMELE, GLASS, PML, 195 

and SEBAL and GPP from GOSIF, GLASS, PML, and TL, compared to the eddy covariance observed in-situ ET and GPP. 

A point-to-pixel evaluation was carried out to evaluate the over- or underestimation of ET and GPP for each land cover type 

from all 21 flux sites. We summed 8-day ET and GPP changes in grassland, evergreen broadleaf forests, evergreen 

needleleaf forests, mixed forests, cropland, wetland, and barren land. 

The alignment of CSM obtained by different methods was determined using the chi-square test (McHugh, 2013; Hsu and 200 

Dirmeyer, 2023a). CROSSTAB in MATLAB was used to perform the chi-square test. SM values were divided into two 

groups, below and above CSM. In this case, categorical data was tagged as a binary variable of 0 for drier than CSM and 1 

for wetter than CSM. If there were significant differences with a 95% confidence level, CSM was different. 
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2.4 Partial least square regression 

Partial least square regression has been widely acknowledged as a viable approach for mitigating collinearity issues among 205 

independent variables (Karthikeyan et al., 2020), which is extensively used in quantifying interannual impacts of climate and 

plant growth variations on water and energy dynamics. Performances of the partial least square regression model were 

assessed by five-fold cross-validation using the mean absolute percentage error. Here, the dominant factor of precipitation, 

temperature, incoming shortwave radiation, VPD, ET, GPP, and SM on CorrVPD was identified by the largest variable 

importance in projection scores. 210 

3 Results 

3.1 Consistency of ET and GPP 

Figures 2a and b show good agreement between satellite-based products and site observations in most land cover types. 

Across all sites, correlation coefficients obtained from CAMELE, GLASS, PML, and SEBAL ET were 0.74, 0.65, 0.78, and 

0.59, respectively; correlation coefficients obtained from GLASS, TL, GOSIF, and PML GPP were 0.75, 0.71, 0.77, and 215 

0.74, respectively. For ET, the highest correlation coefficient occurred between GLASS and eddy covariance observations in 

mixed forests (0.96), while the lowest value was between SEBAL and site observations in barren (0.47). For GPP, the 

highest correlation coefficient was found between TL and site measurements in mixed forests (0.97), while the lowest value 

was between GLASS and site-based data in barren land (0.32). In general, no single product consistently outperformed 

others over all types. Figures 2c and d show the comparison between daily site observations and satellite-based ET and GPP 220 

across land cover types. ET had the highest value in evergreen needleleaf forests and was the lowest in barren land, while 

GPP peaked in evergreen broadleaf forests and was the lowest in wetland. In these land cover types, ET and GPP derived 

from satellite-based products were also substantially different and varied quite a bit between different products. Especially in 

evergreen broadleaf forests, ET derived from GLASS (3.37 mm) and CAMELE (3.05 mm) and GPP from GOSIF (7.55 gC 

m-2 day-1) and TL (7.59 gC m-2 day-1) were higher than site observations of 1.74 mm and 5.26 gC m-2 day-1, respectively. If 225 

satellite-based ET and GPP were between ±10% of site-observed values, they were termed as satisfactory; otherwise, they 

were either overestimated or underestimated. CAMELE, GLASS, PML, and SEBAL ET and GLASS, TL, GOSIF, and PML 

GPP met satisfied values in 1, 1, 3, 1, 2, 1, 3, and 2 land cover types, respectively. PML ET provided the most satisfactory 

estimates in evergreen broadleaf forests, cropland, and barren land with an average bias of 1.05%, 1.13%, and 1.34%, 

respectively; GOSIF GPP provided the most satisfactory estimate in grassland, evergreen needleleaf forests, and mixed 230 

forests with an average bias of 4.31%, 9.14%, and 4.29%, respectively. Although discrepancies existed among multi-source 

remotely sensed products across flux sites, they offered an opportunity to quantify characteristics of large-scale CSM and 

examine uncertainties from single-source data. 
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Figure 2: Correlation coefficients between eddy covariance observations and satellite-based (a) ET and (b) GPP products across 235 
land cover types, GL: grassland, EBF: evergreen broadleaf forests, ENF: evergreen needleleaf forests, MF: mixed forests, CL: 

cropland, WL: wetland. Comparison of the daily (c) ET from CAMELE, GLASS, PML, and SEBAL and (d) GPP from GLASS, 

TL, GOSIF, and PML with site measurements across land cover types. The bars show 95% confidence intervals. 

3.2 Consistency of CSM 

Variations of SM and EF were depicted in Figure 3 for eight sites. Fitted lines represented controlling mechanisms in various 240 

evaporative regimes. Overall, the linear-plus-plateau regression with the lowest BIC outperformed the flat line and the 

positive slope line in the study period of all eight sites. Specifically, CN-Du2 and Qianyanzhou sites showed a great slope at 

low SM values with BIC of -80.29 and -98.64, respectively. We also found that grassland CSM in different regions varied 

greatly. Ranges of SM across land cover types determined the CSM value. For example, grassland at Xilingela had the 
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lowest CSM of 0.079 m3/m3 with SM ranging from 0.06 to 0.20 m3/m3; CSM at Damshung, Southwest China, was 0.175 245 

m3/m3 with SM ranging from 0.14 to 0.26 m3/m3; CSM at CN-Cng in Northeast China was 0.457 m3/m3 with high SM 

ranging from 0.30 to 0.70 m3/m3. Moreover, vertical lines of different colors represented CSM derived from CorrVPD using 

the correlation-difference method and Cov using covariance between VPD and GPP. To explore the performance of both 

methods on sites and whether they can be used on a large scale, the data applied to both methods was averaged for 8 days, 

consistent with gridded data with the 8-day time scale. For CN-Du2 and Qianyanzhou sites, only positive or negative Cov 250 

and CorrVPD were found. For Damshung, CN-Cng, and Huailai sites, we found more than one SM value where the Cov or 

CorrVPD was zero. Along with surface soil wetting, there was a change of Cov and CorrVPD from positive to negative at 

these sites, inconsistent with the transition from water to energy limitation, indicating that CSM was not identifiable. 

Different from above, Cov had the optimal CSM value that agreed best with the EF-SM-derived CSM at Xilingela and CN-

Sw2 sites. Through another technique, CorrVPD was better than Cov at Miyun site. In these sites, Cov and CorrVPD 255 

changed from negative (water limit) to positive (energy limit). Therefore, CorrVPD and Cov had the potential to obtain 

large-scale CSM. 
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Figure 3: Variations of soil moisture and evaporative fraction at (a) Xilingela in 2004, (c) Damshung in 2004, (e) CN-Sw2 in 2011, 

(g) CN-Du2 in 2007, (i) CN-Cng in 2010, (k) Miyun in 2009, (m) Huailai in 2015, (o) Qianyanzhou in 2010. Variations of covariance 260 
(referred to as Cov) between vapor pressure deficit and gross primary production, and correlation-difference metric (referred to 

as CorrVPD) at (b) Xilingela in 2004, (d) Damshung in 2004, (f) CN-Sw2 in 2011, (h) CN-Du2 in 2007, (j) CN-Cng in 2010, (l) 

Miyun in 2009, (n) Huailai in 2015, (p) Qianyanzhou in 2010. 

3.3 Spatial pattern of CSM 

The number of wet binary bit was used to quantify the agreement among eight ET and GPP-based models at 10 cm soil 265 

depth. If CSM was identified, the SM wetter than CSM was represented as 1, and 0 for others. If CSM was not identified 
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within a year, digits of the mode were treated as 0. If CSM was not detected for all 18 years, it was displayed as empty. The 

intercomparison provided helpful insights to examine the consistency and discrepancy between multi-source ET and GPP 

products in depicting the spatial distribution of CSM. Figure 4 shows the strong disparity in North and Central China, 

especially in Inner Mongolian Plateau Region, Songhua River Basin, Yangtze River Basin, and Yellow River Basin. In these 270 

regions, the chi-square test showed significant differences among GPP-based models due to their large number of wet binary 

bits. In addition, TL GPP displayed no CSM value in Northwest China. Note that the SM wetter-than-CSM showed 

agreement in eastern and southern basins, such as Huaihe River Basin, Liaohe River Basin, Southeastern River Basin, and 

Pearl River Basin, indicating that ET and GPP-based models were consistent in these basins. 

Figure 5 shows the spatial distribution of CSM obtained from covariance between VPD and GOSIF, GLASS, PML, and TL 275 

GPP, and correlation‐difference metric with Corr between the detrended anomaly of CAMELE, GLASS, PML, SEBAL ET 

and 10 cm soil depths SM and Corr between the detrended anomaly of ET and VPD. Geographically, they spanned large 

swaths of land through water-scarce desert regions and lush, rainy forests. Overall, spatial patterns of CSM obtained through 

four ET products were consistent with those from four GPP products, showing a decreasing variation from South to North 

China. Specifically for water resources subregions, CSM in semi-humid Huaihe River Basin, Haihe River Basin, and Yellow 280 

River Basin was about 0.3 m3/m3, respectively, and increased to approximately 0.4 m3/m3 in Southeastern River Basin and 

Pearl River Basin. In addition, Table 3 shows the comparison of site CSM from EF-SM and gridded CSM. It was found that 

gridded CSM values at CN-Cng, Miyun, and Huailai sites were generally consistent with site-based values. Gridded data had 

spatial continuity, while site observations showed significant differences in CSM even between adjacent sites (e.g., CN-Du2 

of 0.113 m3/m3 and Miyun of 0.274 m3/m3), resulting in inconsistent CSM between satellite and site-based value. 285 

Furthermore, large-scale CSM depended on roots pulling water out of the unsaturated soil matrix (Feldman et al., 2019) and 

varied across vegetation types and soil textures at four soil layers (Figure 6). With shorter root systems and less vegetation 

(i.e., barren), areas with low CSM were water-limited. Forest regions displayed a relatively high CSM (e.g., 0.18 m3/m3 

using PML ET and 10 cm depth SM). As for soil textures, sand covering the large area was further part into content of less 

than 60%, 60–70%, 70–80%, 80–90%, and higher than 90%. Soil with a majority of clay had a wetter CSM than others (e.g., 290 

0.38 m3/m3 using PML ET and 10 cm depth SM) and was to be expected given that clay had a larger negative matric 

potential compared to coarse soil textures dominated by sand and silt. In summary, fine soils and luxuriant vegetation had 

wetter CSM. Additionally, a layer-wise CSM analysis was conducted to highlight variations in SM properties for different 

soil layers. It was evident that there were variations in the CSM behavior across layers with higher SM and CSM at 20 cm 

soil depth than at other depths. We also found that there was higher CSM than SM at all four layers for grassland and clay, 295 

which identified a large range of SM within water-limited regimes. However, for cropland and forests, differences existed in 

CSM among four ET-based methods, with higher CSM from GLASS and SEBAL than others. 
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Figure 4: Spatial pattern of number of wet binary bit at 10 cm depth using covariance between vapor pressure deficit (VPD) and 

gross primary production (GPP) from (a) GOSIF, (b) GLASS, (c) PML, (d) TL. Spatial pattern of number of wet binary bit at 10 300 
cm depth using correlation-difference metric with Kendall’s rank correlation (Corr) between detrended anomaly of soil moisture 

(SM) and evapotranspiration (ET) from (e) CAMELE, (f) GLASS, (g) PML, and (h) SEBAL and Corr between detrended 

anomaly of VPD and those ET products. (i) Disparity of soil moisture regimes among all methods and (j) the percentage of area 

with p < 0.05. ZGE: Zhungaer Basin, PR: Pearl River Basin, YTR: Yangtze River Basin, SWR: Southwestern River Basin, TR: 

Tarim Basin, SR: Songhua River Basin, CT: Changthang Region, NM: Inner Mongolian Plateau Region, LR: Liaohe River Basin, 305 
YR: Yellow River Basin, HR: Huaihe River Basin, HC: Hexi Corridor Region, HAR: Haihe River Basin, SER: Southeastern River 

Basin, QB: Qaidam Basin. 
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Figure 5: The spatial pattern of critical soil moisture (CSM) at 10 cm depth using covariance between vapor pressure deficit (VPD) 

and gross primary production (GPP) from (a) GOSIF, (b) GLASS, (c) PML, (d) TL and CSM using correlation-difference metric 310 
with Kendall’s rank correlation (Corr) between detrended anomaly soil moisture (SM) and evapotranspiration (ET) from (e) 

CAMELE, (f) GLASS, (g) PML, and (h) SEBAL and Corr between detrended anomaly VPD and those ET products. And (i–w) the 

basin-average values of ZGE: Zhungaer Basin, PR: Pearl River Basin, YTR: Yangtze River Basin, SWR: Southwestern River 

Basin, TR: Tarim Basin, SR: Songhua River Basin, CT: Changthang Region, NM: Inner Mongolian Plateau Region, LR: Liaohe 

River Basin, YR: Yellow River Basin, HR: Huaihe River Basin, HC: Hexi Corridor Region, HAR: Haihe River Basin, SER: 315 
Southeastern River Basin, QB: Qaidam Basin. 

Table 3: Site CSM from EF-SM and gridded CSM using satellite-based ET and GPP and 10 cm depth SM. 

Site CSM from 

EF-SM  

CSM using 

GOSIF GPP 

CSM using 

GLASS GPP 

CSM using 

PML GPP 

CSM using 

TL GPP 

CSM using 

CSMELE ET 

CSM using 

GLASS ET 

CSM using 

PML ET 

CSM using 

SEBAL ET 

Xilingela 0.079 0.249 0.263 0.250 0.251 0.266  0.303 - 0.296 

Damshung 0.175 0.381 0.383 0.383 0.383 - 0.364 0.375 0.403 

CN-Sw2 0.132 0.238 0.286 0.218 0.238 - 0.290 0.233 - 

CN-Du2 0.113 0.275 0.300 0.252 0.277 0.260 0.299 - 0.292 

CN-Cng 0.457 0.339 0.369 0.325 0.341 0.376 0.386 0.292 0.304 

Miyun 0.274 0.315 0.336 0.294 0.331 0.304 0.322 0.311 0.316 

Huailai 0.195 0.258 0.278 0.228 0.259 0.221 - - 0.324 

Qianyanzhou 0.138 0.452 0.407 0.327 0.418 - - - - 

 

Figure 6: Soil moisture (SM) at 10 cm, 20 cm, 80 cm, and 100 cm soil depths, and critical soil moisture (CSM) derived from 

CAMELE, GLASS, PML, and SEBAL ET at corresponding soil depths for (a) cropland, (b) forests, (c) grassland, (d) water, (e) ice, 320 
(f) urban, (g) barren, soils with a majority of (h) clay, (i) silt, and sand with content (j) less than 60, (k) between 60% and 70%, (l) 

between 70% and 80%, (m) between 80% and 90%, and (n) higher than 90%. 
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3.4 Attribution of water and energy limit shifts 

We assessed the spatial pattern of multi-annual average CorrVPD at 10 cm soil depth SM over the period 2001–2018 and 

attributed interannual changes of CorrVPD to hydrological, meteorological, and ecological predictors. GOSIF GPP and PML 325 

ET were used for the analysis given the fact that they had the best performance (Section 3.1). As shown in Figure 7a, water-

limited regimes were most common in dry and semi-arid areas. Western and northern regions were generally water-limited, 

while southern regions were energy-limited. The cross-validation using partial least square regression shows that the 

variance that CorrVPD was explained by precipitation, temperature, incoming shortwave radiation, VPD, ET, GPP, and SM 

ranged from 73.34% in Yangtze River Basin to 99.95% in Haihe River Basin (Figure 7b). 330 

Variations of dominant factors underlined the relevance of climate and ecosystem variables in inducing shifts in CorrVPD. 

As shown in Figure 8, blue pixels represented the significant decrease in CorrVPD, indicating increased water stress and 

correlation between ET and SM. Several typical regions had relatively large areas with significant decreases in CorrVPD, 

such as Changthang Region (2.62%) and Tarim Basin (3.49%). ET was the most important predictor across 42% of 

Changthang Region and 24% of Tarim Basin. This confirmed that increasing ET pushed increased water stress in these 335 

regions. For Haihe River Basin, decreasing SM contributed to increased water limitation. Contrary to Haihe River Basin, 

4.29% of Hexi Corridor Region showed significant increases in CorrVPD; increasing SM contributed to decreased water 

stress. 16.65% of Songhua River Basin showed significant increases in CorrVPD; decreased water limitation was associated 

with increasing GPP (greening) in these regions. Moreover, ET and VPD played the most important role in 30% and 24% of 

Pearl River Basin, respectively; the significant decrease in VPD mitigated drought in these regions. 340 

 

Figure 7: Spatial pattern of (a) CorrVPD derived from PML ET and 10 cm soil depth soil moisture and (b) the mean absolute 

percentage error based on partial least square regression for CorrVPD estimations. ZGE: Zhungaer Basin, PR: Pearl River Basin, 

YTR: Yangtze River Basin, SWR: Southwestern River Basin, TR: Tarim Basin, SR: Songhua River Basin, CT: Changthang 
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Region, NM: Inner Mongolian Plateau Region, LR: Liaohe River Basin, YR: Yellow River Basin, HR: Huaihe River Basin, HC: 345 
Hexi Corridor Region, HAR: Haihe River Basin, SER: Southeastern River Basin, QB: Qaidam Basin. 

 

Figure 8: Spatial patterns of significance (p<0.05) of (a) CorrVPD, (b) precipitation (P), (c) incoming shortwave radiation (SRa), (d) 

GOSIF gross primary production (GPP), (e) PML evapotranspiration (ET), (f) soil moisture (SM), (g) temperature (Ta), and (h) 

vapor pressure deficit (VPD) during the period of CorrVPD detection using the Mann–Kendall test (Mann, 1945; Kendall, 1948), 350 
“De.” Means “decreasing” and “In.” means “increasing”. (i) Attribution of CorrVPD variations. Colors indicate the variable that 
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best predicts the CorrVPD dynamics. ZGE: Zhungaer Basin, PR: Pearl River Basin, YTR: Yangtze River Basin, SWR: 

Southwestern River Basin, TR: Tarim Basin, SR: Songhua River Basin, CT: Changthang Region, NM: Inner Mongolian Plateau 

Region, LR: Liaohe River Basin, YR: Yellow River Basin, HR: Huaihe River Basin, HC: Hexi Corridor Region, HAR: Haihe 

River Basin, SER: Southeastern River Basin, QB: Qaidam Basin. 355 

4 Discussion 

Analysis of spatial patterns of CSM using multi-source satellite-based water and carbon fluxes (Figure 2) derived from 

different methods (Figure 3) further enables us to effectively reflect variations from energy to water limitation in 

spatiotemporal continuous grid cells. To address the question of how soil textures and plant features define constraints 

imposed by water supply and energy availability, there has been a growing focus on CSM from site to continental scales. For 360 

instance, Northern California exhibits CSM of 0.15 m3/m3 in semi-arid grassland at the site scale (Baldocchi et al., 2004); 

CSM using satellite‐based surface temperature diurnal amplitude in semi-arid grassland of Africa has been reported to be 

0.12 m3/m3 at the continental scale (Feldman et al. 2019). For specific plants, CSM is around 0.238 m3/m3 using PML ET in 

Inner Mongolian Plateau Region (Figure 5) where grass is abundant. That is in line with the grassland CSM of 0.214 m3/m3 

from the covariance approach across 195 global sites from the Integrated Carbon Observation System, the AmeriFlux, and 365 

the FLUXNET2015 (Fu et al. 2022b). Another study based on the correlation-difference method using SM from the 

European Space Agency Climate Change Initiative program and ET from the FLUXCOM reported large-scale CSM of 

around 0.21 m3/m3 throughout Europe across all grid cells (Denissen et al., 2020). Researchers also found that plants exhibit 

a great vertical water uptake range to alleviate the impact of water stress (Gallego-Elvira et al., 2016), with water uptake 

extending to below 50 cm (Case et al., 2020) or 1–2 m (Tumber-Davila et al., 2022). Low CSM may be attributed to shorter 370 

rooting systems in water-limited environments (Konings and Gentine, 2017), while locations with high humidity, such as 

tropical West Africa and the southern part of Congo Basin (Feldman et al. 2022), exhibit high CSM. Deep-rooted forests can 

better regulate their response to drought with high CSM among soil layers, which means that root systems of plants play a 

key part in determining water- and energy-limited regimes and may help understand regional or continental-scale water- and 

energy-limited regimes that arise from different vegetation and soil conditions. To comprehend the underlying factors 375 

driving CSM, it is necessary to do a more comprehensive analysis of climate and ecosystem conditions: CSM detection 

shows that grassland had a large range of SM within the water-limited regimes (Figure 6), where CSM was higher than 

average SM, probably because of shallow root systems affected by moisture; therefore, facing decreased CorrVPD, the 

grassland located in the northwestern arid region is more vulnerable. Further, water-limited regions exhibit great sensitivity 

in hydrologic cycles to variations in vegetation functioning, climate variability, and catchment physical conditions. 380 

Consequently, water-limited vegetation exhibits a higher degree of sensitivity to surface disturbances compared to locations 

with higher levels of precipitation. In this scenario, the effect of ET is more pronounced, resulting in a decline in energy 

limitation, such as Tarim Basin. However, this study focusing on a specific time of year may not be enough to explain the 

critical value that may be shown in the rest of the year. Since CSM values in some grids were not detected by eight products, 

further research is needed for the CSM that may appear in the rest of the year in different regions. In addition, to compare the 385 
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performance of multi-source remotely sensed water and carbon fluxes, we unified all data into the 8-day resolution. 

Therefore, a more refined time scale, such as a one-day scale study, is also needed. 

Multiple factors contributed to inherent constraints in identifying different regimes associated with the utilization of multi-

source satellite-based ET and GPP. For example, ET and GPP exhibited great uncertainties (Liu et al., 2021) in areas with 

barren land as indicated in Section 3.1. In eastern and southern regions (Figure 4), where satellite-based methods were more 390 

reliable, eight satellite-based SM regimes were in good agreement. Since the CAMELE ET combined PML ET, they showed 

consistency in cropland and forests with a lower CSM than GLASS and SEBAL (Section 3.3). By considering variations of 

energy and water limitations in terrestrial ecosystems (Section 3.4), there is potential to improve the water and carbon flux 

estimation in turn. In addition, SM from ground samplings and gridded sources (Koster et al., 2009) contributed to the 

uncertainty in characterizing CSM as discussed in Section 3.3. For gridded SM, surface climate shows a significant effect on 395 

the upper soil layer SM modeling, while the background aridity leads to low variability of the deeper layer SM (Li, Q. et al., 

2022). Besides, external forcings seem to be responsible for a shift towards enhanced land-atmosphere coupling (Zhang et al., 

2020). It should be noted that the South-to-North Water Diversion Project and the Pinglu Canal Project in China would result 

in significant modifications to SM characteristics, which are fundamental components of the concept known as CSM. Water 

management measures may reduce water stress in grasslands affected by climate change and make southern coastal clay 400 

areas more resistant to possible disturbances. Overall, our research could inform large-scale water conservancy projects for 

better allocation of water supply resources. Future research directions could include the impact of hydraulic projects such as 

inter-basin water transfers on CSM, the impact of extreme disturbances such as tropical cyclones and wildfires on CSM, and 

possible changes in CSM. 

5 Conclusion 405 

Our main accomplishment is observing and identifying water and energy limit shifts using multi-source satellite-based water 

and carbon fluxes over China. These shifts show which areas are more likely to be affected by climate change. To do so, we 

first examined the consistency of ET and GPP derived from the site- and satellite-based grid observations and the 

consistency of CSM derived from the EF-SM, covariance, and correlation-difference methods. Then, satellite-based CSM 

from four ET products, four GPP products, and the latest SM dataset was estimated and evaluated. Based on the spatial 410 

pattern of CSM, we further quantified CSM among land cover types, soil textures, and water resource subregions and 

attributed the dominant factor of water and energy limit shifts. 

We discovered that CSM detected by the covariance between VPD and GPP and CSM using the correlation‐difference 

metric using VPD, ET, and SM matches well with CSM using the EF-SM method at the site scale, suggesting that these 

methods could detect large-scale CSM. Surface water and energy-limited regimes varied among land cover types, soil 415 

textures, and water resources subregions. Soil textures of clay and land cover types of grassland had a large range of SM 

within water-limited regimes. VPD was the most important predictor across 24% of Pearl River Basin and 19% of Tarim 
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Basin. However, unlike the declining VPD in Pearl River Basin, the increasing VPD aggravated the water stress in Tarim 

Basin, especially for the more fragile grassland in these areas. 18 years of SM data were quite typical of the long-term 

climatology of continental wetness. Applying our analysis to CSM has considerable significance in the evaluation of global 420 

climate change impacts on regional terrestrial ecosystems over extended periods. 

Data availability 

National Tibetan Plateau Data Center (TPDC) offers eight flux sites, consisting of four locations inside the Hexi Corridor 

Region (Huazhaizi, Dashalong, Luodi, and Arou) and four cropland sites within the Haihe River Basin (Guantao, Huailai, 

Miyun, and Daxing) with half-hour records (http://data.tpdc.ac.cn/). ChinaFlux offers data from Damshung, Xilingela, 425 

Xishuangbanna, Dinghushan, Qianyanzhou, Changbaishan, Yucheng, Haibei1, and Haibei2 flux sites 

(http://www.chinaflux.org/). Fluxnet includes four grassland sites, CN-Sw2, CN-Du2, CN-Du3, and CN-Cng with daily 

records, which are available at https://fluxnet.org/data/download-data/. PML provides ET and GPP on TPDC website. 

GLASS ET and GPP are provided by http://glass.umd.edu/. CAMELE ET is available at Zenodo: 

https://zenodo.org/record/6283239/. SEBAL ET is publicly accessible from the Zenodo repository at 430 

https://doi.org/10.5281/zenodo.4243988 and https://doi.org/10.5281/zenodo.4896147/. TL GPP is available at 

https://doi.org/10.5061/dryad.dfn2z352k/. GOSIF GPP is obtained from https://globalecology.unh.edu/.Gridded soil 

moisture and meteorological data is available in TPDC. Land cover types and soil textures were contributed by Data Center 

for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/). 
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