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Abstract. Atmospheric variables simulated from climate models often present biases relative to the same variables calculated

by reanalysis in the past. In order to use these models to assess the impact of climate change on processes of interest, it is

necessary to correct these biases. Currently, the bias correction methods used operationally correct one-dimensional time series

and are therefore applied separately, physical variable by physical variable and site by site. Multivariate bias correction methods

have been developed to better take into account dependencies between variables and in space. Although the performance of5

multivariate bias correction methods for adjusting the statistical properties of simulated climate variables has already been

evaluated, their effectiveness for different impact models has been little investigated. In this work, we propose a comparison

between two multivariate bias correction methods (R2D2 and dOTC) in three different configurations (intervariable, spatial

and spatial-intervariable) and a univariate correction (CDF-t) through several highly multivariate impact models (phenological

stage, reference evapotranspiration, soil water content, fire weather index) integrating the weather conditions over a whole10

season. Our results show that CDF-t does a fair job in most situations and that there is no single best MBC method. The

performances of multivariate bias correction methods depend both on some characteristics of the studied process and on the

configuration of the chosen bias correction method. When all characteristics are important (multivariate, time cumulative and

spatial) it is found that dOTC in its spatial-intervariable configuration brings improvements in most cases and no significant

improvement in some rare cases. We did not find any multivariate cases where the spatial-intervariable configuration for dOTC15

performs less well than CDF-t.

Keywords. Bias adjustment, Climate model, Agroclimatic indicators, Evapotranspiration, Pheonology model, Fire Weather

Index, Soil Water Content, Spatial analysis.

1 Introduction

In the context of climate change, anticipating and implementing mitigation and adaptation strategies using climate model20

simulations is crucial to understand the possible consequences of future climate on human societies. These projections are
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generated by global and regional climate models (GCMs and RCMs) that are based on well-established physical principles and

constrained by several greenhouse gas emission scenarios, prescribed for example as part of the CMIP6 project (Eyring et al.,

2016). By using these projections as input into impact models, consequences of climate change can be anticipated in a various

number of domains, for instance to investigate changes of vegetation distribution (e.g., Bachelet et al., 2001; Zhang et al.,25

2023; Chuine, 2010), agricultural production (e.g., Bezner Kerr et al., 2022; Wheeler and von Braun, 2013; Zhu et al., 2022),

global water resources (e.g., Bates et al., 2008; Hagemann et al., 2013), biodiversity (Bellard et al., 2012), spread of epidemic

diseases (e.g., Caminade et al., 2014; Chemison et al., 2021).

Hence, providing reliable climate information is essential to obtain robust impact assessments. However, despite consider-

able scientific progress in climate modeling, climate simulations often present biases compared to observations. This means30

that, even over the historical period, key statistical properties such as mean, variance or spatial correlations between physical

variables may differ from those observed (see, e.g., Christensen et al., 2008; Eden et al., 2012; Cattiaux et al., 2013; Mueller

and Seneviratne, 2014). Climate projections for future periods can therefore also be expected to be biased, making some form

of bias adjustment necessary before they can be used as inputs into impact models (Maraun et al., 2010; Teutschbein and Seib-

ert, 2012). To alleviate such errors, many statistical bias correction (BC) methods have been developed over the last decades35

and aim to produce “adjusted” climate simulations. Statistical bias correction consists in transforming climate model simu-

lations to align (a selected set of) their statistical features with those of a reference data set over the historical period. Then,

this transformation can be applied to future simulations to obtain adjusted outputs for the projection period. Simple univariate

statistical features of climate variables can be targeted for correction, such as the mean (using delta-change, e.g., Xu, 1999)

or the variance (using scaling of variance, e.g., Schmidli et al., 2006; Eden et al., 2012; Berg et al., 2012). In general, the40

univariate approaches the most commonly applied rely on the quantile-mapping technique (e.g., Haddad and Rosenfeld, 1997;

Déqué, 2007; Michelangeli et al., 2009; Gudmundsson et al., 2012; Vrac et al., 2012; Cannon et al., 2015) that adjust not only

the simulated mean and variance but also all percentiles. However, by adjusting simulated variables separately for each phys-

ical variable at each specific location, univariate bias correction methods are unable to adjust potential biases in the simulated

inter-variable or spatial properties (e.g., correlations). Studies show that independent applications of univariate bias correction45

methods do not modify the inter-variable or inter-site dependence structure of the simulated variables to be corrected (e.g.,

Wilcke et al., 2013; Ivanov and Kotlarski, 2017; Vrac, 2018), which can therefore lead to inappropriate multivariate situations

if these dependencies are not correctly represented in the climate model. This can have significant consequences when these

corrections are used as inputs into impact models that rely on non-linear relationships between multiple climate variables at

various spatial and temporal scales. Indeed, if the statistical dependencies between input climate variables are not realistically50

simulated, then biases can propagate to simulated impacts that depend on multivariate interactions, regardless of whether simu-

lations are corrected using univariate BC methods (e.g., Boé et al., 2007; Zscheischler et al., 2019). A correct representation of

climatic variables and their dependencies is thus necessary for many impact studies: for instance, appropriate inter-variable and

spatial properties are of paramount importance for spatio-temporal wildfire risk assessments that are determined by complex in-

teractions between wind, temperature, relative humidity and precipitation (Senande-Rivera et al., 2022; Barik and Baidya Roy,55
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2023), or for flood risk assessments, for which the spatial (and temporal) properties of precipitation, soil moisture and water

are involved (Vorogushyn et al., 2018).

To adjust biases in multivariate dependencies, some multivariate bias correction (MBC) methods have been recently devel-

oped in the literature. The objective of MBC is fundamentally the same as that of univariate BC: transforming climate model

simulations so that selected statistical features match those of a reference data set over the calibration period. The difference60

with univariate BCs lies in the fact that statistical features are not only univariate, but also multivariate such as inter-variable

correlations or spatial copula structure. MBC methods can be grouped into three categories based on how they adjust cli-

mate simulations (Vrac, 2018; Robin et al., 2019; François et al., 2020): 1) the “marginal/dependence” category that gathers

MBCs adjusting separately univariate distributions and multivariate properties (e.g., Bárdossy and Pegram, 2012; Mehrotra

and Sharma, 2016; Vrac, 2018; Nahar et al., 2018; Cannon, 2018; Nguyen et al., 2019; Guo et al., 2019; Vrac and Thao, 2020;65

François et al., 2021); 2) the “successive conditional” correction approach, that adjusts the different simulated variables succes-

sively and conditionally on the previously adjusted ones (e.g., Piani and Haerter, 2012; Dekens et al., 2017); 3) the “all-in-one”

category that consists of MBCs simultaneously adjusting univariate and multivariate properties of climate simulations (e.g.,

Robin et al., 2019; Pan et al., 2021).

Due to the differences in the applicability of the various MBC methods, as well as their various underlying assumptions70

and statistical methods used, the quality of multivariate bias-adjusted outputs can differ (François et al., 2020; Guo et al.,

2020). François et al. (2020) carried out an intercomparison study of four MBC methods to adjust simulated temperature and

precipitation outputs. Results show that half of the methods were able to reasonably correct simulated inter-variable and spatial

dependence structures, while some of them presented instability issues. However, even if multivariate bias-adjusted outputs

have appropriate statistical properties, differences of quality can potentially transfer into the often non-linear impact model75

outputs. More generally, the uncertainty introduced by bias correction in the impact modeling chain, in addition to the other

sources of uncertainty (e.g., choice of climate models, forcing scenarios and impact models), requires to be explored on a case-

by-case basis (Rötter et al., 2012; Tao et al., 2018). Regarding univariate BC methods, recent studies have demonstrated their

effectiveness for specific regional impact studies, for instance for hydrological purposes (e.g., Teutschbein and Seibert, 2012;

Chen et al., 2013; Hakala et al., 2018), forest fire prevention (e.g., Yang et al., 2015; Casanueva et al., 2018) or agriculture80

applications (e.g., Oettli et al., 2011; Laux et al., 2021). However, for multivariate BC methods, their suitability for impact

studies is the subject of debates within the scientific community. While, for a specific hydrological application, Räty et al.

(2018) found that using MBC methods is not necessarily beneficial compared to using less sophisticated univariate BC methods,

other studies demonstrated their added value, for instance to improve the realism of simulated multivariate fire weather indices

(e.g., FWI, Cannon, 2018; Casanueva et al., 2018; Zscheischler et al., 2019), multivariate drought indices (Adeyeri et al.,85

2023; Ansari et al., 2023), simulated carbon cycle (Teckentrup et al., 2023), impact on crop modeling (Galmarini et al., 2024)

or hydrological impact projections (Chen et al., 2018; Meyer et al., 2019; Singh and Reza Najafi, 2020; Su et al., 2020;

Tootoonchi et al., 2022; Vogel et al., 2023), although these benefits being less pronounced in non-stationary contexts (Guo

et al., 2020; Van de Velde et al., 2022). These conflicting results could be potentially explained by the fact that these studies

sometimes apply a set of methods in a limited number of dimensional configurations that does not allow the BC-induced90
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uncertainty to be adequately covered. Also, these studies often use impact indicators that depend on statistical features of

climate variables that are not necessarily adjusted by MBC methods (e.g., temporal properties). Identifying all the statistical

characteristics involved in impact metrics is an important aspect to better understand the outputs from impact models and to

provide the nuances needed to correctly assess performances of MBC methods. In addition, a large majority of these studies

applies MBCs to adjust simulated univariate and inter-variable properties in low dimensional contexts and discarding spatial95

consideration (with the exception of Ahn et al., 2023) while the accurate representation of spatial dependence is also relevant to

many impact studies. A more comprehensive overview of the effectiveness of the MBC methods for impact models is therefore

needed, not only by considering several MBC methods and different impact metrics, but also by assessing their capacity to

provide reliable spatial information that is essential for impact studies.

In this study, which can be seen as a follow-up of François et al. (2020), we present an analysis of two multivariate bias100

correction methods applied to adjust the inter-variable and/or spatial dependence structures of 5 physical variables (daily

mean temperature, total precipitation, near-surface wind speed, short-wave downwelling radiation and near-surface relative

humidity). This study thus complements the analysis on crop models in Galmarini et al. (2024) which showed the added value

of multivariate bias correction methods on yield but did not include a spatial dimension, as well as the findings reported in Ahn

et al. (2023) which focused on hydrological applications using only three climate variables (daily precipitation, minimum and105

maximum daily temperatures).

We focus in particular our analysis on MBC methods that present stable results in high-dimensional contexts, according to

François et al. (2020). We evaluate their performances using four impact metrics (phenological stage, evapotranspiration, soil

water content and fire weather index) from agronomic and forest impact models for three subregions of France in order to

better understand the influence of MBCs. A univariate BC method is also included in the study to assess the potential benefits110

of considering multivariate aspects. In addition to providing a diversified intercomparison framework, the three subregions

were chosen to provide relevant adjusted data to climate services that can be reused in the scientific community. This permits

to have an extensive overview of the performance of the multivariate bias correction methods for impact studies and further

identifying their advantages and limits.

This paper is organized as follows: Section 2 describes the climate model and reference data, the agronomic and forest115

impact models and the multivariate correction methods. The experiment setup and the statistical analyses — focusing on

spatial features — are presented in Sect. 3, as well as the notion of Effective Sample Size, central to the hypothesis testing in

a spatio-temporal context. Section 4 presents key selected results among those obtained. Finally, our findings are summarized

in Sect. 5, along with guidelines for users, element of discussions and perspectives for future research.

2 Data, models and bias correction methods120

2.1 Model simulations and reference data

The climate model used in this study is the IPSL-CM6A-LR coupled model (Boucher et al., 2020) developed at the Institut

Pierre-Simon Laplace (IPSL), part of the 6th Coupled Models Intercomparison Project (CMIP6, Eyring et al., 2016). Daily
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values of 5 physical variables that are used as input variables for impact models have been extracted over a historical period

(1985-2014), which will be used for comparison and calibration, and a future period (2036-2065): daily mean temperature125

(tas), total precipitation (pr), near-surface wind speed (scfWind), short-wave downwelling radiation (rsds) and near-surface

relative humidity (hurs). We selected the ssp585 (SSP5-RCP8.5) scenario, i.e. the scenario with the highest CO2 concentration.

Since our study covers France, the reference data is the gridded “Systeme d’Analyze Fournissant des Renseignements

Atmosphériques à la Neige” (SAFRAN) reanalysis dataset (Vidal et al., 2010). Daily time series of the same 5 variables have a

8 km × 8 km spatial resolution and divide France into 8981 contiguous continental grid cells. IPSL-CM6A-LR data, available130

at the 2.5°× 1.3° resolution, were regridded to the SAFRAN resolution using the nearest-neighbor technique.

Since the historical reference data SAFRAN is available for the same period (1985-2014), a statistical comparison between

bias corrected time series and reference is possible. Then, during the future period, comparison between the projection and the

historical periods are possible for each bias correction method. Moreover, comparison between bias corrected projections is

also possible.135

Three contrasted regions of France were selected, see Fig. 1): Brittany (North-West part of France, 259 grid cells), Ile-de-

France (the region around Paris, 319 grid cells) and Provence (South-East part of France, 337 grid cells). In the latter, some grid

cells are located in the Alps, with quite high mean elevation, up to 2900 m. In these grid cells the temperatures are significantly

lower and the precipitations are significantly higher than in other locations of the region.

2.2 Impact models140

The physical variables described above are used as input variables for several process models in order to compute indicators.

Four impact models have been selected based on their characteristics, which are listed in Table 1 with their main characteristics.

They are briefly discussed here before being detailed in the rest of this section. The widely used reference evapotranspiration,

ET0, is computed on a daily basis. Different phenological plant models have been used to describe main phenological stages,

which depend only on Temperature. They provide one date for each phenological stage per season. Here, we will use flowering145

stage (FLO). Then, using a complete plant model, a cumulative water balance is computed every day. We will use as indicator

the Soil Water Content (SWC). Finally, the Fire Weather Index (FWI), which is a danger indicator for forest wildfires, is also

computed. In summary, FLO depends only on temperature and is cumulative. SWC, ET0 and FWI return daily values involving

all physical variables, except ET0 which does not include Precipitation. All indicators are cumulative, except ET0.

Acronym Time integration Multivariate Daily

Evapotranspiration ET0 × ✓ ✓
Phenological stage FLO ✓ × ×
Soil Water Content SWC ✓ ✓ ✓
Fire Weather Index FWI ✓ ✓ ✓

Table 1. Main features of the different impact model indicators
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Figure 1. Top: map of France showing the three studied regions in France: Brittany (North-West), Ile-de-France (North-center) and Provence

(South-East). Middle and Bottom: summer (JJA) mean temperature (middle) and summer mean daily precipitation (bottom) using SAFRAN

database over the three studied regions and the 1985 - 2014 period : Brittany (left), Ile-de-France (middle) and Provence (right). In Ile-de-

France, the Paris hot spot is visible in the middle of domain (top, center). In Provence, the influence of the Alps, with lower temperatures

(top, right) and higher precipitations (bottom right) than elsewhere is visible in the upper right corner
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Reference evapotranspiration150

The reference evapotranspiration, ET0 (in mm), is a classical and very informative indicator allowing to describe the plant-soil

water losses during the day. It is computed directly from all variables except precipitation, using the Penman–Monteith formula

(Allen et al., 1998), independently to any chosen plant model. ET0 is computed every day of the year, separately at each grid

cell. As indicated in Table 1, ET0 depends thus on marginal and inter-variable properties, with no time integration.

Flowering155

Phenology is considered as the first biophysical indicator of climate change (Menzel et al., 2006) and it is currently used

to explore crops climate suitability (Caubel et al., 2015). We propose to use simple phenological models to simulate main

phenological stages for different crops. Most of these models depend on the accumulation of temperature only (Chuine et al.,

2013). Three plant models, among the major crops cultivated in France, have been selected: wheat, maize and grapevine.

– Wheat is mostly cultivated in and around Ile-de-France, but wheat fields can be found anywhere in France, except at160

high elevations. Flowering stage corresponds to a sum of positive temperature equal to 375 taking into account previous

phenological stages which also depend on photoperiod (not affected by the methods described below). Sowing date was

set to October 1st, every year and for all grid cells.

– A short-cycle variety was chosen for maize in order to achieve late phenological stages in the Northern regions (Brittany

and Ile-de-France). Flowering stage corresponds to a sum of effective temperature (above 6°) equal to 120 from the165

sowing date. Since no irrigation was introduced, water deficit can be expected in the Southern region (Provence). Sowing

date was set to April 10, every year and for all grid cells.

– Vineyards are very common in Provence (except in the Alps), possible in the Ile-de-France region (e.g. nearby Cham-

pagne) and they are being recently developed in Brittany. A rather ubiquitous variety, Chardonay, was chosen. There is

no sowing date for grapevines, but the whole model was re-initialized August 1st of the previous year and calculated170

intermediate phenological stages (as dormancy and budbreak).

We calculated the flowering stage (FLO) for all the three species because it is an important phenological stage which allow

to characterize crop potential production. Moreover, flowering is the latest stage reached in most grid cells and years, except

perhaps in the grid cells covering high mountains in the Provence domain. For one given year, FLO is thus the date, expressed

in Julian days. The interest of these phenological models is that depend thus only on univariate properties and it is time175

cumulative. Global framework and models are described in (Caubel et al., 2015), see also Maury et al. (2021) and Garcia De

Cortazar Atauri and Maury (2019). All the phenological models were translated into R scripts.

Water balance model

We also calculated the Soil Water Content (SWC) using a simplified water balance model (Allen et al., 1998). This model

combines the reference evapotranspiration (ET0 - above described) and the daily precipitation over the time. The evolution of180
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the amount of water available in the soil also takes into account the type of crop planted in the soil (using ks coefficient). SWC

is the daily water content in the soil, expressed as a percentage of the total quantity available (the ’Water Reserve’), taking

into account a soil description. SWC involves all 5 variables and it has a strong temporal component relating to the temporal

occurrence of precipitation. With this indicator, it is possible to assess whether or not the MBCs are able to correct a highly

non-linear transformation of the 5 variables. In comparison to ET0, since SWC is cumulative, it will be possible to assess the185

effect of the MBCs on time-correlated outputs.

In order to avoid problems of soil heterogeneity in each region and to catch as much as possible climate effect, we used a

single type of soil. Thus, a deep soil (140 cm), with more than 200 mm useful water reserve and moderate soil water capacity

(28% at field capacity and 35% at saturation) was chosen for all grid cells in all regions.

Fire Weather Index190

With nearly one third of Metropolitan France (mainland France and Corsica, without overseas territories) covered by woods

and forests, France has among Europe’s highest forest cover (MTES, 2021). Apart from providing resources and recreational

activities, the forest plays a key role in climate regulation, the water cycle, and soil preservation including its role as biodiversity

reservoir, carbon sink and in erosion control. However, weather conditions such as drought, temperature and wind have strong

influence on the forests’ vulnerability to fire and its potential for spreading. Between 2007 and 2019, wildfires destroyed around195

11,500 ha of forest per year in Metropolitan France. In 2022, over 59,000 ha of forests were destroyed (https://bdiff.agriculture.

gouv.fr/incendies). Climate change increases the weather-induced component of the forest fire risk across France and Europe

(Dupuy et al., 2020; Fargeon et al., 2020; Ruffault et al., 2020). The Fire Weather Index (Van Wagner et al., 1987) summarizes

the effects of wind, temperature, humidity and precipitation into a single index used by the national security services as a

danger rating system for forest wildfires. In theory, the FWI is determined every day from the FWI value of the preceding day200

and from noon weather readings: temperature, relative humidity, wind speed, and rain (if any). Similarly to SWC, FWI depends

thus on marginal, inter-variable and temporal properties, the latter not being accounted for in the tested correction methods of

this study. In this work, FWI is daily computed based on simulation or reanalysis data instead of meteorological readings, using

the R package cffdrs (Wang et al., 2017).

2.3 Multivariate bias correction methods205

Multivariate Bias Correction methods (MBC) must be chosen for their capacity to correct the biases and their spatial proper-

ties over large geographical areas. Following the discussion in François et al. (2020), good candidates are dOTC (dynamical

Optimal Transport Correction) and R2D2 (Rank Resampling for Distributions and Dependencies). These methods are briefly

recalled here and we refer to François et al. (2020) and the original papers referenced therein for a more in-depth presentation.

R2D2, proposed in Vrac (2018) consists in two steps. In the first step, each climate variable is adjusted using a univariate210

bias correction method. In this work, CDF-t (described below) is used, but other methods could be used. The second step is

essentially a re-ordering technique, called the Schaake Shuffle (Clark et al., 2004) which reorders a sample such that the rank

structure corresponds to the rank structure of a reference sample. A reference dimension (i.e. one physical variable at one given
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site) is selected, for which the rank chronology of the simulations remains unchanged. Reconstruction of the inter-variable and

spatial rank correlations of the reference is then performed, while preserving the rank temporal dynamics for the reference215

dimension. It must be emphasized that, by construction, R2D2 assumes the intervariable and spatial rank correlations to be

stationary in time.

dOTC (Robin et al., 2019) corrects the marginal distributions and the multivariate dependence at the same time. It is a

generalization of the univariate quantile mapping approach to the multivariate case. Based on optimal transport theory, it builds

a transfer plan, which is a multivariate transfer function from one multivariate distribution to another, that minimizes a cost220

function based on an energy criterion. Two important differences between R2D2 and dOTC are that dOTC does not single out

a particular “reference dimension” and that dOTC does not assume the stationarity of copula structure between the calibration

and the projection periods. dOTC is designed to transfer some of the multivariate properties’ changes between the calibration

and the projection periods from the model to bias corrected data.

As a benchmark, the multivariate dataset is also corrected using the univariate CDF-t correction method (Michelangeli et al.,225

2009). Separately for each variable and at each site, CDF-t estimates a univariate transfer function, denoted T , that links the

Cumulative Distribution Function (CDF) of a climate variable of interest in the model simulations during calibration period to

that of the same variable in the reference dataset. By assuming that T is also valid during the projection period, a “future ref-

erence” CDF can be defined, by applying T to the future climate model CDF. Then, a quantile-quantile approach is performed

between the new reference CDF and the CDF from the model simulations during the projection period. CDF-t is designed to230

take into account potential simulated changes (between calibration and projection periods) of the univariate distribution in the

correction procedure. Thus, the bias-corrected data for the projection period incorporate the model’s projected changes. In the

specific case of precipitations, the "Singularity Stochastic Removal" version of CDF-t (Vrac et al., 2016) is applied, working

the same way as CDF-t but specifically designed to account for rainfall occurrences.

3 Experiments and statistical analysis235

3.1 Experiments

All indicators (ET0, FLO, SWC, FWI) are computed using the 5 physical variables described in Sect. 2.1 (tas, pr, scfWind, rsds

and hurs) simulated by the IPSL model gridded to the SAFRAN 8 km × 8 km mesh (hence, with no correction) or corrected

on the same grid using one of the bias correction methods: CDF-t, dOTC and R2D2. The MBC methods dOTC and R2D2 are

applied according to the three following configurations:240

– The Intervar configuration (I) aims at correcting inter-variable correlations only: the MBC method corrects jointly the 5

physical variables at each grid cell of the domain independently on all other grid cells. In this configuration, the pivot

dimension for R2D2 is Temperature at the considered grid cell.
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– The Spatial configuration (S) aims at correcting the spatial correlations for each physical variable separately: each vari-

able is corrected independently, and for each variable the NS vector of all values in the domain is corrected. Here, the245

pivot dimension for R2D2 is the considered physical variable at the center of the region.

– The Spatial-Intervar configuration (SI) intents to correct simultaneously the inter-variable and the spatial correlations of

the simulations: the complete 5NS vector of all variables in the domain is corrected at once. In this configuration, the

pivot for R2D2 is the Temperature at the center of the region.

In addition to the historical reference data SAFRAN, for each of the three regions, there is thus a total of 8 climate datasets250

with the physical variables described in Sect. 2.1 (tas, pr, scfWind, rsds and hurs): IPSL (gridded to the SAFRAN 8 km× 8 km

mesh) and 7 bias corrected datasets. Using those 9 datasets as input variables, ET0 and FWI are computed every day at all grid

cells. Then, for each plant model and at all grid cells, the SWC is computed every day and FLO is determined for each year.

In this work, the summer season (92 days in June, July and August) has been selected for analysis because variations of ET0,

SWC and FWI are expected to be amplified and differences between MBC configurations largest. In particular, the Provence255

region is characterized by high temperatures and low precipitations in Summer.

3.2 Statistical analysis

Let us denote Z(s, t), one of the output variable, computed at site s ∈ S and Julian day t. There is a total of nS sites in S and

nT Julian days considered for the analysis every year. Measurements (or computations) are repeated during m years of a period

whose climate is considered as being approximately constant. The m years are thus assumed to be independent and identically260

distributed repetitions of the same spatio-temporal process. Several summary statistics, described below, are computed for

visualization and hypothesis testing.

Univariate statistics

For a given spatio-temporal output Z(s, t), the mean and variances are computed at each site,

µ̂(s) = (mnT )−1
m∑

i=1

nT∑

ti=1

Z(s, ti); σ̂2(s) = (mnT )−1
m∑

i=1

nT∑

ti=1

(
Z(s, ti− µ̂(s)

)2
, (1)265

where ti denotes the Julian day t in year i. From these, biases and variances can be computed at each location s according to

Bias(s) = µ̂M (s)− µ̂R(s); VarRatio(s) = σ̂2
M (s)/σ̂2

R(s), (2)

where the index M refers to one of the models (with or without bias correction) and R stands for ’Reference’. These local

statistics can be represented as maps or summarized as boxplots, but in this case the spatial information is lost.

Spatial covariance and Moran’s I270

In order to assess the spatial structure in Z(s, t), the spatial auto-covariance at short distances is computed assuming second-

order stationarity. It is known that given the size of the domains under consideration (from 16,000 km2 to 22,000 km2) and
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the complex topographic structures, in particular in Provence, one must expect that the mean and variance of Z(s, t) vary in

space. However, a locally stationary assumption is possible, at least in Brittany and Ile-de-France, at the 40 km scale, which

corresponds approximately to 5 SAFRAN grid meshes. For a given spatial lag k ∈ {−5,−4, . . . ,4,5}×{−5,−4, . . . ,4,5} the275

empirical spatial covariance is

Ĉ(k) = (mnT nS(k))−1
m∑

i=1

nT∑

ti=1

∑

s∈Sk

(
Z(s, ti)− µ̂(s)

)(
Z(s + k, ti)− µ̂(s + k)

)
, (3)

where Sk is the restriction of S with nS(k) elements such that both s and s + k are in S.

Moran’s I (Moran, 1950) is a widely used measure of spatial auto-correlation at short distances. We use here a local, un-

normalized version of Moran’s I given by280

I =
1

mnT

∑
s

∑
s′ ws,s′

m∑

i=1

nt∑

t=1

∑

s

∑

s′

ws,s′
(
Z(s, ti)− µ̂(s)

)(
Z(s′, ti)− µ̂(s′)

)
, (4)

where w(s,s′) is a binary indicator that characterizes the neighborhood structure with w(s,s) = 0. The ’rook’ (resp. ’queen’)

neighborhood corresponds to ||s−s′|| ≤ 1 (resp. to ||s−s′|| ≤
√

2), where the distance is expressed in mesh units. The measure

I in Eq. (4) is local because local means µ̂(s) are used, and contrarily to the usual Moran’s I it is not normalized by the variance,

for an easier implementation of the hypothesis testing presented below. Using the symmetry of the covariance function, direct285

manipulations of Eq. (4) show that

Irook =
Ĉ(0,1) + Ĉ(1,0)

2
and Iqueen =

Ĉ(0,1) + Ĉ(1,0) + Ĉ(1,1) + Ĉ(−1,1)
4

, (5)

which shows that Moran’s I is a summary of the short distance behavior of the spatial covariance function. The spatial covari-

ance will be represented as a function of the distance d = 8||k|| (in km), where k is the spatial lag vector between SAFRAN

grid meshes.290

Spatio-temporal correlation

At larger scales, the spatio-temporal non-stationarity must be acknowledged. We thus decompose Z(s, t) according to

Z(s, t) = µ(s, t) +σ(s, t)ε(s, t), (6)

where the mean µ(s, t) and standard deviation σ(s, t) vary in space and time. They are estimated with their empirical versions:

295

µ̂(s, t) = m−1
m∑

i=1

Z(s, ti); σ̂2(s, t) = m−1
m∑

i=1

(
Z(s, ti)− µ̂(s, t)

)2
. (7)

In Eq. (6), ε(s, t) is a standardized residual. In all generality, the spatio-temporal correlation function Cor
(
ε(s, t),ε(s′, t′)

)
=

ρ(s,s′, t, t′) is any positive definite function of (s,s′, t, t′) (Chen et al., 2021). However, motivated by the absence of complex
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space-time interactions in ε(s, t), such as diffusion or transport, the spatio-temporal correlation function for ε is assumed to be

space-time separable with300

Cor
(
ε(s, t),ε(s′, t′)

)
= ρ(s,s′, t, t′) = ρS(s,s′)ρT (t, t′). (8)

The spatial and temporal correlations are estimated using temporal and spatial repetitions, respectively:

ρ̂S(s,s′) = (mnT )−1
n∑

i=1

nT∑

t=1

Cor
(
ε(s, t),ε(s′, t)

)
; ρT (t, t′) = (mnS)−1

n∑

i=1

∑

s∈S
Cor

(
ε(s, t),ε(s, t′)

)
. (9)

We refer the reader to Chen et al. (2021) and references therein for an in-depth discussion on separability for spatio-temporal

correlation functions, its application and testing.305

Effective Sample Size

When the sample values are spatially correlated, the actual number of data cannot be taken as such for computing the degrees

of freedom for hypothesis testing. One must instead assess the correlation between the values and derive an Effective Sample

Size (ESS), which quantifies the number of independent and identically distributed observations within the sample under

consideration. Let us consider a sample Z of size n with common marginal expectation µ and variance σ2 and with correlation310

matrix R. Then, under the assumption that R is invertible, Vallejos and Osorio (2014) define the ESS as ESS = 1⊤n R−11n,

where ⊤ is the transpose operator and 1n is a vector of 1s of length n. There is a enlightening interpretation to the ESS, in

relation to the estimation of µ when R is known. It can be shown that in this case the best (i.e. unbiased and with minimum

variance) estimator of µ is µ̂ = 1⊤n R−1Z and that its variance is Var(µ̂) = σ2/ESS (Chiles and Delfiner, 2012, Sect. 3.4).

ESS depends on n and on the correlation structure of Z which, in a spatio-temporal context, depends on the space and time315

coordinates of the samples and on the spatio-temporal correlation function. ESS decreases from n to 1 as the correlation

strength decreases from no correlation (i.e. R is the identity matrix of size n×n) to perfect correlation (i.e. R is the n×n

matrix of 1s).

In the spatio-temporal context above, the correlation matrix to be considered is of size nSnT ×nSnT , which can be too

large for an easy inversion (for example, the summer season in Provence would yield to a 31,004× 31,004 matrix). However,320

under the separability assumption in Eq. (8), the computation of the SSE corresponding to one year of data simplifies to

SSE1 = SSES×SSET, with SSES = 1⊤n R−1
S 1n and RS,ij = ρ̂S(si,sj), with 1≤ i, j ≤ nS , and with a similar expression for

SSET . As an illustration, for the summer season in Provence, nS = 337 and nT = 92. Finally, the SSE of a given period (e.g.

the summer season) for m independent years is simply SSEm = mSSE1.

Hypothesis testing325

Two types of statistical tests are performed. The first type aims at testing the absence of bias or differences on global averages.

The basis for this is the two sample t-test with unequal variances (Snedecor and Cochran, 1989). The second family aims at

testing whether variances and Moran’s I are equal or unequal. Fort this, the Fisher’s F-tests of equality of variances, based
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on the ratio of the variances (Snedecor and Cochran, 1989), is used. In all cases, an important parameter for these tests is the

’degrees of freedom’, equal to n− 1 when the n samples are independent. Here, following the discussion in the paragraph330

above, the degrees of freedom is set to SSEm− 1 to take into account the spatio-temporal auto-correlation.

4 Results

We present here a representative selection of the results allowing for interpretation and discussion. Recall that summer (JJA) has

been selected for analysis in this work. For size consideration, it is not possible to present all the results for all combinations

of indicators, plant models and regions, neither in the main text nor as usual Supplementary Material. A complete and un-335

commented presentation of all results is accessible in the technical report Allard et al. (2023), which is freely accessible at

https://hal.inrae.fr/hal-04227826. This reference will serve as Supplementary Material and as a general rule, whenever not

shown results are reported or discussed, they can be found at this URL.

4.1 Phenological stage

Flowering (FLO) stage for the crop studied depends only on temperature. It is a cumulative indicator, the temporal dynamics is340

thus important. It is worth recalling that for FLO stage, there is only one value per year, and that in some occasions (locations

and/or years) FLO stage is never attained, thus producing a NaN value in this case. As a consequence, the statistical tests have

less power and higher type II errors (not rejecting when the null hypothesis is not true) than for the other indicators. For FLO

stage, we shall therefore only comment the cases for which the hypotheses are rejected and not comment cases where the

p-value is higher than 0.1.345

Summary statistics for biases, variance ratio and spatial covariances are shown in Fig. 2 for maize in Ile-de-France (a possible

dominant crop in the future, favored by increased temperatures) and for vine in Provence (currently, a major wine producer

region in France).

The IPSL climate model shows positive bias in Ile-de-France for all plant models, around 5 days for maize (Fig. 2(a) and up

to 8 days for vine (Allard et al., 2023, Fig. 4.1). This is partly due to the Paris region heatspot not properly taken into account350

in GCMs (see Fig. 1middle-center).

In Provence, the situation is contrasted. On the one hand there are some pixels with very high negative bias due, mainly

in the mountainous areas where FLO stage is sometimes not attained due to high elevations, see e.g. Fig 4.11 in Allard et al.

(2023). On the other hand, there seems to be almost no bias for the majority of the pixels with low elevation. Overall, equality

of mean is nonetheless rejected.355

For all bias correction methods, an almost complete reduction of bias can be observed in all regions. For maize in Ile-de-

France, the variance is slightly overestimated for all methods, except for I.dOTC and SI.dOTC for which it is underestimated

(Fig. 2(b). It is correctly reproduced for vine in Provence, except again for I.dOTC and SI.dOTC (2h). Spatial covariances are

flat in Ile-de-France (2c) because values are highly correlated in space. There is more spatial structure in Provence (2i), and

it is correctly reproduced for CDF-t and I.R2D2. The spatial structure is broken for IPSL, and otherwise well reproduced (up360
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IPSL CDF-t/I.R2D2 I.dOTC S.dOTC S.R2D2/SI.R2D2 SI.dOTC

p-values for "equality-of-means" tests

Britt. wheat 0.052 0.856 0.676 0.976 0.872 0.371

maize 0.626 0.788 0.909 0.981 0.828 0.578

vine 1.000 0.807 0.906 0.931 0.850 0.465

IdF wheat 0.016 0.820 0.953 0.820 0.837 0.978

maize 0.009 0.866 0.765 1.000 0.897 0.583

vine 0.000 0.759 0.993 0.891 0.785 0.988

Prov. wheat 0.000 0.831 0.001 0.243 0.894 0.000

maize 0.000 0.106 0.003 0.018 0.114 0.004

vine 0.000 0.000 0.000 0.001 0.002 0.000

p-values for "equality-of-variances" tests

Britt. wheat 0.439 0.973 0.006 0.899 0.869 0.000

maize 0.699 0.160 0.056 0.214 0.334 0.000

vine 1.000 0.062 0.159 0.110 0.195 0.000

IdF wheat 0.887 0.961 0.096 0.975 0.951 0.000

maize 0.594 0.452 0.195 0.520 0.548 0.000

vine 1.000 0.341 0.210 0.405 0.446 0.000

Prov. wheat 0.018 0.002 0.000 0.000 0.000 0.000

maize 0.000 0.368 0.000 0.117 0.397 0.000

vine 1.000 0.058 0.000 0.014 0.033 0.000

p-values for "equality-of-Moran’s I" tests

Britt. wheat 0.448 0.964 0.003 .0.901 0.882 0.000

maize 0.688 0.147 0.017 0.199 0.299 0.000

vine 1.000 0.051 0.099 0.093 0.163 0.000

IdF wheat 0.865 0.947 0.072 0.990 0.968 0.000

maize 0.556 0.432 0.105 0.502 0.526 0.000

vine 1.000 0.333 0.115 0.395 0.434 0.000

Prov. wheat 0.101 0.012 0.000 0.000 0.000 0.000

maize 0.006 0.655 0.000 0.209 0.577 0.000

vine 1.000 0.058 0.000 0.014 0.033 0.000

Table 2. Statistical analysis for FLO in the past: p-values for the Welsh t-test of absence of bias on the average (first block); Fisher F-test of

equality of variance (second block) and its adaptation to testing the equality of Moran’s I (third block). Non rejection at the confidence level

0.90 is indicated in bold font. Since FLO is univariate, CDF-t and I.R2D2 with Temperature as pivot variable are equivalent.

to the variance multiplicative effect) for all bias correction methods. Overall, equality of variance and equality of Moran’s I is

always rejected with SI.dOTC and quite often rejected with I.dOTC (Table 2).
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Figure 2. Results for FLO (unit is day) for maize in Ile-de-France (from a) to f)) and grapevine in Provence (from g) to l)). First and third

rows (from a) to c) and g) to i)) correspond to past period with: a) and g) boxplots of differences to SAFRAN; b) and h) boxplots of variance

ratios to SAFRAN; c) and i) spatial covariance (colored points, covariance as a function of distance) and Moran’s I (points on the vertical

dashed line). Second and fourth rows (from d) to f) and j) to l) correspond to future period with: d) and j) boxplots of differences between

future and past; e) and k) boxplots of variance ratios between future and past; f) and l) spatial covariance and Moran’s I ratios between future

and past. 15
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Since FLO stage considers temperature in a cumulative way, the temporal dynamics of the single variable temperature is

key for the interpretation of theses results. Whenever the results are accurate (in terms of bias or (co-)variance ratio) one can

consider that the marginals are well corrected with appropriate temporal dynamics from the climate model. CDF-t (as well as365

I.R2D2 which is equivalent in this univariate setting) does not change the dynamics of the model in terms of ranks. Since CDF-t

provides unbiased results for FLO stage with an accurate variance ratio in both regions, one can conclude that the dynamics

of the IPSL model is in accordance with the reanalysis for Temperature and hence for FLO stage and that CDF-t provides the

correct correction of the bias.

By construction, dOTC will try to correct the marginals and the copulas (intervariable and/or spatial) while not changing too370

much the dynamics of the model (Robin et al., 2019). Therefore, in I.dOTC, S.dOTC and SI.dOTC configurations, the temporal

dynamics of Temperature will be modified when correcting for the intervariable and/or spatial copula. As a general rule, it was

shown in François et al. (2020, Fig. 1, 5 and S5) that the more the variables are to be corrected using dOTC, the more both

the marginals and the temporal dynamics are modified. This result was also partly observed here: as the number of variables to

correct increases from I.dOTC to SI.dOTC, a slight but significant increasing bias is observed for maize in Ile-de-France (Fig.375

2(a)). This also applies for the variance of the I.dOTC and SI.dOTC outputs that is strongly underestimated in both regions

(Fig. 2(b)). Nevertheless, quite interestingly, the increasing deterioration with respect to the dimensional setting is not observed

for S.dOTC. In this setting, each variable is spatially corrected in turn. Given the high spatial autocorrelation of temperature,

dimensions are then somehow redundant, which potentially reduces the number of “effective dimensions” to adjust and so the

complexity of the correction to provide. Consequently, the impact of dOTC on the temporal rank correlation is less pronounced,380

and better results are obtained with S.dOTC. These results illustrate that when using dOTC, one must take care to correct only

the variables that are involved in the process under study.

Overall, results for all R2D2 methods are good, both in terms of bias and variance ratio (Fig. 2(a,b,g,h)). In comparison to

dOTC, R2D2 preserves the temporal rank structure of the pivot variable, which here is temperature: at each pixel for I.R2D2

and at the center of the domain for S.R2D2 and SI.R2D2. In conjunction with the fact that the spatial rank autocorrelation385

for Temperature is very high (not shown), the temporal rank structure is either exactly (I.R2D2) or partially well (S.R2D2 and

SI.R2D2) preserved. Hence, structures in the spatial covariances are well reproduced (Fig. 2(c,i)), but an overall overestimation

in relation to the variance ratio is observed (Fig. 2(b,h)). Notice that if a different pivot variable was chosen, the temporal

dynamics would have been stirred, and therefore less comparable to the reanalysis, see François et al. (2020, Fig. S5) for

an illustration of the modification of the temporal properties of Temperature when Precipitation is the pivot variable. Similar390

results were obtained for the other region × plant models configurations (Allard et al., 2023, Chap. 4 and 5).

When looking at differences and variance ratios in the Future, one can observe an important advance of FLO for all plant

models, regions and methods, from about 9 days for maize in Ile-de-France (Fig. 2(d) to 2 weeks for vine in Provence (Fig.

2(j)). Overall, this difference is similar for all bias correction methods, which is reminiscent of the very similar corrections for

all bias correction methods in the Past. In relation with the strong underestimation of the variance for I.dOTC and SI.dOTC, the395

variance ratio between future and past are higher for these methods than for the others (Fig. 2(e,k)). When looking at the maps
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for Future (Allard et al., 2023, Fig. 5.12 to 5.20), one can see that the Future/Past variance ratios show a strong pixel pattern

for I.dOTC and SI.dOTC.

4.2 Evapotranspiration ET0

ET0 is a climatic indicator computed every day using all variables of that day, except precipitation. It is thus multivariate400

but rather insensitive to the temporal dynamics. Summary statistics computed in Provence are shown in Fig. 3 and p-values

in all regions are reported in Table 3. IPSL is strongly biased with a negative error close to 50 mm, its variance is strongly

underestimated as well as its Moran’s I and its spatial covariance (3, respectively panels a,b,c).

The bias, the variance and the spatial covariance are in general well corrected for all methods. Differences between methods

are nonetheless visible on the variance ratios and the spatial covariances. The variance is overestimated with CDF-t and S.R2D2405

(in Provence, p-values of Fisher’s F-tests are equal to 0.000 and 0.011, respectively) and the spatial covariance structure is

broken with I.R2D2, as evidenced by Morans’I values being divided by a factor ∼3 with respect to SAFRAN (Fig. 3(c)).

Similar results were obtained in the other two regions Allard et al. (2023, chap. 2) in terms of bias, variance and spatial

covariance structure, but to a lesser extent: the bias is not as large, equality of variance is not rejected and Morans’I as well as

the spatial covariance are strongly underestimated.410

Since CDF-t provides an unbiased correction with a variance ratio close to one, even in Provence, one can conclude that the

inter-variable copula of the IPSL model is rather similar to that of the reanalysis. However, ET0 being a multivariate indicator,

multivariate correction methods are expected to lead to improved variance and Moran’s I than CDF-t. It is indeed the case in

Provence where the p-value for the equality of variance is equal to 0 with CDF-t and larger than 0.1 for all methods, except for

S.R2D2. S.R2D2 reshuffles the ranks of the IPSL model to match the rank pattern of the reanalysis (the pivot is at the center415

of the domain) independently for each variable. As a result, the variance and the spatial covariance are slightly increased, in

particular in Provence, which is highly non-stationary.

As already pointed out, in Provence, Moran’s I is reduced by a factor of three when using I.R2D2 (Fig. 3(c)). The reason

for I.R2D2’s poor spatial behavior is that its rank shuffling is performed separately at each pixel, thereby breaking the spatial

correlation present in the IPSL model for all variables other than the pivot. In contrast, the spatial structure is well reproduced420

with SI.R2D2 since in this case the inter-variable and the spatial correlations are taken into account in the correction. All dOTC

bias corrections perform well in terms of bias, variance and spatial covariance, even for I.dOTC. This is due to the fact that

I.dOTC partially preserves the spatial dependencies of the IPSL model (both Intervariable and spatial) as shown in Robin et al.

(2019), which is also evidenced by the fact that the spatial structure is well reproduced with CDF-t.

When looking at future ET0 values according to the IPSL model, one can notice that there is almost no difference between425

ET0 in the future and ET0 in the past (Fig. 3(d)). In contrast, for all bias correction methods there is a daily difference from

7 to 11 mm evapotranspiration in Provence between Future and Past. This result was also observed in the other two regions

(Allard et al., 2023, Fig. 3.1). As a first observation, one notices that a rather small positive difference (around 1 mm) of ET0

between future and past with the IPSL model is amplified to a 7 to 10 mm difference after corrections, depending on the bias

correction method. As a consequence, as ET0 is expected to increase in a warmer climate in temperate regions such as France430
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(Lemaitre-Basset et al., 2022), projected ET0 computed from IPSL is thus likely to be even more biased than in the past. The

variance ratio between future and past ranges between 0.8 and 0.9 for all bias correction methods, and it is as low as 0.75

according to IPSL (Fig. 3(e)). However, the variance underestimation is less pronounced in the other two regions, which are

located in the Northern part of France with less severe evapotranspiration during the summer (Allard et al., 2023, Fig. 3.1). As

a last remark, maps of variance ratios between future and past show important spatial patterns (Allard et al., 2023, Fig. 3.6 to435

3.8). Also, these maps are less regular for dOTC methods than for R2D2 methods.

IPSL CDF-t I.dOTC I.R2D2 S.dOTC S.R2D2 SI.dOTC SI.R2D2

p-values for "equality-of-means" tests

Britt. 0.000 0.396 0.826 0.967 0.817 0.773 0.828 0.966

IdF 0.000 0.468 0.820 0.958 0.923 0.931 0.822 0.951

Prov. 0.000 0.812 0.664 0.804 0.808 0.932 0.609 0.749

p-values for "equality-of-variances" tests

Britt. 0.000 0.101 0.883 0.803 0.729 0.877 0.885 0.795

IdF 0.000 0.212 0.891 0.779 0.940 0.625 0.892 0.746

Prov. 0.000 0.000 0.860 0.439 0.163 0.011 0.834 0.324

p-values for "equality-of-Moran’s I" tests

Britt. 0.000 0.004 0.962 0.000 0.673 0.771 0.885 0.795

IdF 0.000 0.024 0.706 0.000 0.928 0.631 0.893 0.744

Prov. 0.000 0.000 0.604 0.000 0.120 0.007 0.837 0.330
Table 3. Statistical analysis for summer ET0 in the past: p-values for the Welsh t-test of absence of bias on the average (first block); Fisher F-

test of equality of variance (second block) and its adaptation to testing the equality of Moran’s I (third block). Non rejection at the confidence

level 0.90 is indicated in bold font.

4.3 Soil Water Content

The Soil Water Content (SWC) is computed every day using the SWC of the previous day and all physical variables of the

given day. It is thus multivariate and sensitive to the temporal dynamics. The usual summary statistics are shown for maize

in Ile-de-France in Fig. 4. IPSL leads to strongly biased values of SWC and overestimated variances and Moran’s I for all440

combinations of plant models and regions (Fig. 4(a)), only shown for maize in Ile-de-France).

Table 4 reports the p-values for equality of means, variances and Moran’s I, for all models and regions. In general, the bias

is more easily corrected than the variance, which in turn is more easily corrected than Moran’s I. According to the p-values,

Provence seems to be a more difficult region to correct than Brittany and Ile-de-France for all methods, presumably because

it is spatially nonstationary. Most bias correction methods do a fair job at correcting the bias, except I.R2D2 and SI.R2D2 in445

Brittany and Ile-de-France, as well as CDF-t in Provence. Notice however that even though equality of means in Provence is

rejected at the level 0.90 for maize and vine, it is not rejected at the more conservative level 0.95.
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Figure 3. Results for summer ET0 (unit is mm) in Provence. First row corresponds to past period with: a) boxplot of differences to SAFRAN

(the bias for IPSL, varying between −45 and −50, lies out of the range of the plot); b) boxplot of variance ratios to SAFRAN; c) spatial

covariance (colored points, covariance as a function of distance) and Moran’s I (points on the vertical dashed line). Second row corresponds

to future period with: d) boxplot of differences between future and past; e) boxplot of variance ratios between future and past; f) spatial

covariance and Moran’s I ratios between future and past.

Overall, SI.dOTC and I.dOTC methods perform better than CDF-t and S.dOTC, because the highly multivariate aspect

of SWC benefits from the multivariate correction without too much perturbation of the temporal dynamics of the model.

In contrast, I.R2D2 and SI.R2D2 induce a strong perturbation of the temporal dynamics of all variables except the pivot450

variable (here Temperature) impairing a proper reproduction of the variance and the Moran’s I of SWC, which is strongly

underestimated for I.R2D2 (see also Fig. 4(b)). Despite many p-values lower than 0.1, the boxplots of the variance ratio

for S.R2D2 show however a fairly decent reproduction of the variance and the Moran’s I. Quite interestingly, S.R2D2 leads

to a more accurate correction than I.R2D2 and SI.R2D2 even though it does not adjust the inter-variable properties. This

result might seem counter-intuitive and it deserves some explanation. When analyzing the outputs of a time-integrative and455

multivariate process such as SWC, the relative importance of each dimension (time vs. intervariable) plays an important role.

It is well known that I.R2D2 and, to a lesser extent, SI.R2D2, alter the temporal dynamics (François et al., 2020). In contrast,

since S.R2D2 is applied to each variable in turn, the temporal dynamics is not too much altered when the spatial correlation

is important, which is the case for the CMIP6-IPSL model in Brittany and Ile-de-France. Our interpretation of this result is
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that the time dynamics plays a more important role for SWC than the multivariate aspect, when it comes to multivariate bias460

corrections.

The CMIP6-IPSL model indicates lower values of SWC and decreased variances in the future, see Fig. 4(d,e) for maize in

Ile-de-France, and Allard et al. (2023, chap. 7) for other combinations of plant models and all regions. Generally speaking, bias

correction methods tend to lessen these differences, in particular for I.dOTC and SI.dOTC. Recall that these methods where

among the most accurate bias correction methods in the past period. Maps of SWC variance ratio between future and past (Fig.465

5) show that for I.R2D2 the variance of SWC is highly variable at short distances, in accordance with the very low value of

Moran’s I metrics in Fig. 4(c). The variance ratio varies much more smoothly when correcting with SI.dOTC.

Figure 4. Results for summer SWC (unit is %) in Ile-de-France and maize. First row corresponds to past period with: a) boxplot of differences

to SAFRAN; b) boxplot of variance ratios to SAFRAN; c) spatial covariance (colored points, covariance as a function of distance) and

Moran’s I (points on the vertical dashed line). Second row corresponds to future period with: d) boxplot of differences between future and

past; e) boxplot of variance ratios between future and past; f) spatial covariance and Moran’s I ratios between future and past.
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IPSL CDF-t I.dOTC I.R2D2 S.dOTC S.R2D2 SI.dOTC SI.R2D2

p-values for "equality-of-means"

Britt. wheat 0.000 0.570 0.798 0.005 0.467 0.137 0.151 0.002

maize 0.000 0.053 0.370 0.000 0.446 0.661 0.766 0.000

vine 0.000 0.312 0.634 0.000 0.983 0.335 0.570 0.000

IdF wheat 0.000 0.773 0.770 0.131 0.339 0.567 0.441 0.133

maize 0.000 0.884 0.778 0.002 0.290 0.634 0.620 0.006

vine 0.000 0.407 0.724 0.002 0.503 0.577 0.749 0.000

Prov. wheat 0.000 0.024 0.342 0.598 0.387 0.343 0.982 0.409

maize 0.000 0.091 0.688 0.550 0.728 0.841 0.685 0.000

vine 0.000 0.071 0.726 0.269 0.944 0.988 0.492 0.176

p-values for "equality-of-variances"

Britt. wheat 0.000 0.000 0.304 0.000 0.024 0.596 0.000 0.000

maize 0.000 0.000 0.000 0.000 0.000 0.027 0.276 0.000

vine 0.000 0.000 0.955 0.000 0.130 0.053 0.000 0.000

IdF wheat 0.000 0.392 0.016 0.000 0.001 0.016 0.051 0.000

maize 0.000 0.000 0.520 0.000 0.013 0.352 0.825 0.000

vine 0.000 0.000 0.214 0.000 0.007 0.461 0.020 0.000

Prov. wheat 0.000 0.000 0.000 0.050 0.000 0.000 0.526 0.000

maize 0.000 0.000 0.000 0.003 0.000 0.000 0.880 0.000

vine 0.000 0.000 0.012 0.000 0.000 0.007 0.007 0.000

p-values for "equality-of-Moran’s I"

Britt. wheat 0.000 0.000 0.737 0.000 0.015 0.828 0.000 0.000

maize 0.000 0.000 0.015 0.000 0.000 0.014 0.282 0.000

vine 0.000 0.000 0.214 0.000 0.116 0.090 0.000 0.000

IdF wheat 0.000 0.143 0.001 0.000 0.001 0.011 0.051 0.007

maize 0.000 0.000 0.036 0.000 0.014 0.403 0.863 0.000

vine 0.000 0.000 0.007 0.000 0.007 0.331 0.017 0.000

Prov. wheat 0.000 0.000 0.000 0.000 0.000 0.000 0.203 0.000

maize 0.000 0.000 0.000 0.003 0.000 0.000 0.570 0.000

vine 0.000 0.000 0.012 0.000 0.000 0.006 0.008 0.000

Table 4. Statistical analysis for summer SWC in the past. p-values for the Welsh t-test of absence of bias on the average (first block); the

Fisher F-test of equality of variance (second) block and its adaptation to testing the equality of Moran’s I (third block). Non rejection at the

confidence level 0.90 is indicated in bold font.
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Figure 5. For each bias correction method and for maize: map of summer SWC variance ratio between future and past in Ile-de-France (no

unit). From top to bottom and from left to right: IPSL (no correction), CDF-t, Intervar-dOTC, Intervar-R2D2, spatial-dOTC, spatial R2D2,

spatial-intervar-dOTC, spatial-intervar-R2D2.
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4.4 Fire Weather Index

As for SWC, FWI is computed on a daily basis using FWI of the previous day and all physical variables of the current day. It

is thus also multivariate and sensitive to the temporal dynamics. Summary statistics are shown in Fig. 6 for Ile-de-France and470

Provence. The latter experiences high wildfires activity every year. It is not yet the case for the former, but recent projections

show that it will be the case in the future (Fargeon et al., 2020; Galizia et al., 2023; Pimont et al., 2023). Table 5 reports the

p-values for equality of means, variances and Moran’s I for all regions.

There is a positive bias and an overestimation of the variance in Ile-de-France (Fig. 6(a,b,c)), a region with currently low

values for FWI and low variance. There is negative bias and an underestimation of the variance in Provence (Fig. 6(g,h,i)),475

a region with high values for FWI and higher variance. Brittany shows results very similar to those of Ile-de-France (Allard

et al., 2023, Chap. 8). Overall, the bias is well corrected for all methods (Fig. 6(a,g)), except I.R2D2 and SI.R2D2 in all regions

(all p-values for all tests are equal to 0.0 for these two methods) and S.R2D2 in Provence (the p-value is equal to 0.008). The

fact that CDF-t leads to a fair correction of the mean, in particular in Provence, is the indication that, once the marginals being

corrected, the interdependence between the variables and the temporal dynamics is well represented in the IPSL model.480

As it was also the case for SWC, I.dOTC and SI.dOTC methods perform better than CDF-t and S.dOTC (Fig. 6(a,g) and Table

5), because the highly multivariate aspect of FWI benefits from the multivariate correction without perturbing too much the

temporal dynamics of the model. S.dOTC, which corrects each variable independently, performs slightly less well in Provence.

In contrast, I.R2D2 and SI.R2D2 induce a strong perturbation of the temporal dynamics impairing a proper correction of

both the bias and the variance. In Provence, where FWI can reach high values and is spatially heterogeneous, the bias and485

the variance is less corrected with S.R2D2 than with the inter-variable versions of R2D2 (Fig. 6(g)), because the multivariate

copula is perturbed by the independent corrections made by S.R2D2 on each variables. However, in Ile-de-France where FWI

is low and spatially homogeneous, it is the opposite: S.R2D2 leads to more accurate corrections than I.R2D2 and SI.R2D2

(Fig. 6(a)). As a result, bias corrections on FWI thus behave like bias corrections on SWC in Ile-de-France due to spatial

homogeneity. It is not the case in Provence, due to the highly non-stationary behavior of all variables involved. As already seen490

on all other indicators, the spatial structure is broken in both regions with I.R2D2 (Fig. 6(c,i)) because the rank shuffling is

performed at each location independently.

FWI definitely increases in the Future in all regions, for the IPSL model, and for all bias correction methods (Fig. 6(d,j)). The

same observation can be made for the variance. Focusing on the Provence region, the average FWI increases by approximately

1 to 4 units, depending on the bias correction method (see also the maps in Fig. 7), and the variance is roughly multiplied by 2.495

As a point of comparison, the relationship between the severity of wildfires and FWI change from linear to exponential when

FWI is larger than 20 (Pimont et al., 2021). Figure 8 shows that the variance increases more in the North-Eastern parts of the

region, which are regions of high mountains. As already observed on other outputs, the map of the variance ratios between

future and past is much smoother with CDF-t and SI.dOTC than with other methods.
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IPSL CDF-t I.dOTC I.R2D2 S.dOTC S.R2D2 SI.dOTC SI.R2D2

p-values for "equality-of-means"

Britt. 0.000 0.000 0.494 0.000 0.144 0.830 0.178 0.000

IdF 0.000 0.058 0.573 0.000 0.232 0.605 0.930 0.000

Prov. 0.000 0.303 0.482 0.040 0.124 0.008 0.265 0.011

p-values for "equality-of-variances"

Britt. 0.000 0.000 0.976 0.000 0.071 0.043 0.021 0.000

IdF 0.000 0.000 0.298 0.000 0.004 0.299 0.915 0.000

Prov. 0.000 0.000 0.021 0.002 0.000 0.000 0.004 0.000

p-values for "equality-of-Moran’s I"

Britt. 0.000 0.000 0.035 0.000 0.084 0.059 0.028 0.000

IdF 0.000 0.000 0.354 0.000 0.001 0.466 0.803 0.000

Prov. 0.000 0.001 0.000 0.000 0.000 0.000 0.004 0.000

Table 5. Statistical analysis for summer FWI in the past: p-values for the Welsh t-test of absence of bias on the average (first block); Fisher

F-test of equality of variance between future and past (second block) and its adaptation to testing the equality of Moran’s I (third block). Non

rejection at the confidence level 0.90 is indicated in bold font.
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Figure 6. Results for summer FWI (no unit) in Ile-de-France (from a) to f)) and in Provence (from g) to l)). First and third rows (from a) to c)

and g) to i)) correspond to past period with: a) and g) boxplots of differences to SAFRAN; b) and h) boxplots of variance ratios to SAFRAN;

c) and f) spatial covariance (colored points, covariance as a function of distance) and Moran’s I (points on the vertical dashed line). Second

and fourth rows (from d) to f) and j) to l) correspond to future period with: d) and j) boxplots of differences between future and past; e) and

k) boxplots of variance ratios between future and past; f) and l) spatial covariance and Moran’s I ratios between future and past. Notice that

in panel g), the boxplot extends to −4.2 with a lowesy value equal to −6.4.25
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Figure 7. For each bias correction method: map of the summer FWI difference between future and past (no unit). From top to bottom and

from left to right: IPSL (no correction), CDF-t, Intervar-dOTC, Intervar-R2D2, spatial-dOTC, spatial R2D2, spatial-intervar-dOTC, spatial-

intervar-R2D2.

26

https://doi.org/10.5194/hess-2024-102
Preprint. Discussion started: 28 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 8. For each bias correction method: map of the summer FWI variance ratio between future and past (no unit). From top to bottom and

from left to right: IPSL (no correction), CDF-t, Intervar-dOTC, Intervar-R2D2, spatial-dOTC, spatial R2D2, spatial-intervar-dOTC, spatial-

intervar-R2D2.
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5 Conclusion and Discussion500

In this work, we have tested two MBC methods, namely R2D2 (Vrac, 2018) and dOTC (Robin et al., 2019), to adjust the

inter-variable and/or spatial dependence structures of 5 physical variables that are input variables for process models having

different characteristics in terms of inter-variable dependencies and time integration. For each MBC method, three different

configurations were considered (intervariable, spatial and a spatial-intervariable) to disentangle the relative effect of the various

dependence structures. A univariate bias correction method (CDF-t, Michelangeli et al. (2009)) was also included in the study505

to assess the potential added value of MBC methods.

We have applied these 7 correction methods to IPSL-CM6A-LR model simulations with respect to the SAFRAN reanalysis

data over three contrasted regions in France, four processes (FLO, ET0, SWC and FWI) and three plant models for FLO

and SWC. This work is thus an extension to plant and forest processes of the study in François et al. (2020), which focused

on climate indicators. To assess the corrections, several statistics have been computed to quantify the differences in means,510

variances, spatial covariances and Moran’s I, on all impact indices. Significance of differences (or ratios) have been formally

assessed using statistical tests. A key element for hypothesis testing on highly correlated domains is the notion of Effective

Sample Size, which quantifies the number of equivalent independent observations within the domain of observation. These

developments constitute a first methodological result, which can be of great use in further studies.

Generally speaking, the averages of the model outputs are better corrected than their variances, which, in turn, are easier to515

correct than the associated Morans’I and spatial covariance. Our study thus highlights that when assessing a bias correction

method, one should not use average differences as only metric.

Our results show that there is no single best MBC method. Depending on the process under study and on the metrics

considered, there can be a method performing better (or worst) than the other ones – or not. However, as shown in Sect. 4, it is

possible to draw partial conclusions and to provide useful recommendations regarding the use of MBCs when multivariate and520

time dependent processes are involved. These conclusions and recommendations, summarized in Tables 6 and 7 respectively,

are now discussed.

As a first finding, it must be highlighted that CDF-t does a fair job in many situations. It suffers from no major defects, but

it can be improved in some situations: all MBC methods perform better than CDF-t when the process is multivariate with no

time integration (such as ET0) and SI.dOTC slightly outperforms CDF-t for multivariate processes with time integration (such525

as SWC and FWI). This result can be interpreted as evidence that the temporal dynamics in IPSL-CM6A-LR model is mostly

well represented. The inter-variable properties are also fairly well represented (otherwise CDF-t would perform poorly for

multivariate processes) but multivariate corrections are nonetheless useful, in particular over spatially heterogeneous regions

such as Provence.

When the process is univariate, such as FLO, multivariate bias correction methods are not recommended. With R2D2 meth-530

ods, if the pivot variable is the physical variable under consideration (which was the case here), there are un-necessary com-

putations but otherwise no harm. If the pivot variable is any other variable, the variable under consideration will be reshuffled,

thereby inducing potentially large errors in the temporal dynamics of the process outputs. With dOTC methods, the multivari-
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ate adjustment entails a less relevant modification of the marginal of the variable under consideration, and hence less accurate

corrections, as could be seen on FLO.535

When the process is highly multivariate, such as ET0, SWC and FWI, multivariate corrections are expected to reduce the

bias. However, care must be taken as to which method should be used for a proper reproduction of the variance and Moran’s

I. Generally speaking, R2D2 methods have stronger impact on the overall dependence structure (multivariate copula and/or

spatial covariance) than dOTC methods. Indeed, while dOTC “bends” the whole copula from the model to the reference, R2D2

does not change the pivot variable, but makes more dramatic changes to the other variables. As a consequence:540

– When the temporal dynamics is not important (as is the case for ET0), most methods improve on CDF-t and perform

well, at the exception of purely spatial configurations (S) when proper intervariable properties are essential to the process

under study.

– When the process is multivariate and the temporal dynamics is important (for example for cumulative processes such

as SWC and FWI), I.R2D2 and SI.R2D2 should be avoided altogether because the Intervariable correction entails large545

perturbations in the temporal dynamics of the ranks for all variables but the pivot. When the process is cumulative,

the bias and the variance are not properly corrected with these methods. Note however that this effect has been partly

corrected in a recent extension of the R2D2 method (Vrac and Thao, 2020, R2D2 v2.0), for which the analog search is

constrained to improve temporal properties.

– For similar reasons, I.R2D2 and SI.R2D2 should be avoided when the spatial structure is important, as is for example550

the case for SWC and FWI when the focus is on water and wildfires management at the regional scale. Indeed, it was

found that I.R2D2 and SI.R2D2 break down the spatial structure of the indicator. This effect is clearly visible in Allard

et al. (2023, Fig. 7.12 to 7.20 and 9.6 to 9.9).

When all dimensions are important (multivariate, time cumulative and spatial), there are only few options. As already

mentioned, CDF-t does a fair job because, contrarily to the marginals, the temporal dynamics and the intervariable copula555

in the IPSL-CM6A-LR model are preserved, but at a coarser spatial resolution. Bias-correcting with univariate correction

methods, such as CDF-t, is a no-risk / no-gain option. However, SI.dOTC brings improvements in most cases and no significant

improvement in some rare cases. We did not find any multivariate cases where SI.dOTC performs less well than CDF-t.

Despite differences in the experiments (different climate variables, processes and BC methods), our results concur in gen-

eral with the main findings reported in Galmarini et al. (2024) and in Ahn et al. (2023), but we also found some important560

differences:

– As already underlined above, compared to univariate bias correction methods, together with these two studies we found

that multivariate methods improve the adjustment of model outputs to the reference in many cases, but there are excep-

tions depending on the method considered, its configuration (I, S or SI) and on the process under study.

– Together with Ahn et al. (2023), we also found that there is no best performing BC method. Table 6 and Table 7 respec-565

tively summarize the results obtained in this study and provide recommendations reported above.
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– Galmarini et al. (2024) considered a total of 12 crop models, which are highly multivariate and integrative in time,

but the spatial dimension was not considered at all. They found that R2D2 (I.R2D2 configuration) was among the best

performing method, which is in contradiction with our findings showing that I.R2D2 and SI.R2D2 do not adjust better

than CDF-t for SWC and FWI. The exact reason for this discrepancy should be explored in future work.570

– Ahn et al. (2023) explored MBC methods on hydrological models using only three input climate variables: minimum and

maximum daily temperatures and daily precipitation. MBC methods were explored in the same three configurations (I,

S, SI) as our study. Notice that the intervariable setting involves thus much less variables than ours and that hydrological

models are highly integrative in time and space. They found that dOTC faces difficulties with increasing number of

dimensions, generating deterioration in univariate correction. This was also reported in François et al. (2020) and it was575

visible in our study on FLO (which depends only in Temperature). However, SI.dOTC was found here to be the best BC

method when the spatial component is important for highly multivariate and time integrative processes, such as SWC

and FWI.

For time and computation considerations, we considered a single climate model (IPSL-CM6A-LR) in this work, and our

analysis was limited to three regions in France. Our findings should be further confirmed in other parts of the world and using580

a larger set of climate models, possibly with higher resolution than the low-resolution IPSL-CM6A-LR model, which was

available at that time.

In the present study, three indicators (Phenological stage FLO, Soil Water Content and Fire Weather Index) depend on

temporal properties. However, none of the bias correction methods applied here were designed to adjust these properties. A

few studies have developed BC methods for the adjustments of (some) temporal properties of climate variables in addition585

to inter-variable and spatial properties (e.g., Mehrotra and Sharma, 2019; Vrac and Thao, 2020; Robin and Vrac, 2021).

However, the adjustment of temporal properties necessarily leads to modify, at best slightly, univariate, inter-variable and/or

spatial properties. Including such bias correction methods in the present intercomparison study would provide an even more

comprehensive overview of the performance of bias correction methods for impact studies.

Finally, a particular effort has been made in this study to explain the performances of correction methods according to590

the different statistical characteristics involved in the calculation of impact indicators. However, statistical characteristics may

contribute in different ways to the values of impact indicators. For example, as already pointed out, values of SWC and

FWI depend (potentially differently) on marginal, inter-variable and temporal properties of the same input climate variables.

Quantifying the contribution of the different statistical characteristics to the variability of the impact indicators, for example

using variance-based sensitivity analysis methods, would not only allow us to improve the understanding of the performances595

of bias correction methods, but also to target the simulated properties that need to be corrected and ultimately to provide a

better guidance on how to apply them for impact studies.
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CDF-t I.R2D2 I.dOTC S.R2D2 S.dOTC SI.R2D2 SI.dOTC

Correct° Univariate w. Time dep. (FLO) ∼ (∼) (✗) (∼) (∼) (∼) (✗)

of 1d-stat. Multivariate dep. (ET0) ∼ ✓ ✓ ∼ ∼ ✓ ✓

Time and multivariate dep. (SWC, FWI) ∼ ✗ ✓ ∼ ∼ ✗ ✓

Correct° Univariate w. Time dep. (FLO) ∼ (∼) (✗) (∼) (∼) (∼) (✗)

of spatial Multivariate dep. (ET0) ∼ ✗ ∼ ∼ ∼ ✓ ✓

struct. Time and multivariate dep. (SWC, FWI) ∼ ✗ ∼ ∼ ∼ ✗ ✓

Table 6. Summary of results for the multivariate BC methods to adjust univariate statistics and spatial structures of the different impact

outputs. Note that these results are based on the adjustments of simulated outputs from the IPSL-CM6A-LR model. Green checks and red

crosses indicate whether BC methods performed well for the metrics and the different statistical characteristics in rows. Orange tildes indicate

cases for which the added value of BC has been found to be limited in our study. Parentheses indicate that a MBC is not useful, because the

process is univariate.

Method Recommendation for multivariate processes (univariate processes should be corrected with a univariate method)

CDF-t Fair but not always optimal corrections for all metrics in all situations. No gain / no risk option

I.R2D2 Restricted to processes with no time integration and no spatial analysis

I.dOTC Fairly good corrections of the marginals

S.R2D2 Comparable to CDF-t in most cases

S.dOTC Comparable to CDF-t in most cases

SI.R2D2 Restricted to processes with no time integration. On those, better than S.R2D2 on spatial metrics

SI.dOTC Outperforms CDF-t for multivariate processes with time integration, both on marginals and on spatial metrics

Table 7. Summary of recommendations for BC methods to adjust muultivariate statistics and spatial structures of the different impact outputs.
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Supplementary material

For size consideration, the comprehensive set of Figures and Tables is accessible in the Technical Report Allard et al. (2023)

which is available on-line at https://hal.inrae.fr/hal-04227826.600
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Appendix: list of abbreviations620

GCM General Circulation Model

RCM Regional Circulation Model

CMIP6 6th Coupled Model Intercomparison Project

IPSL Institut Pierre-Simon Laplace (here, IPSL-CM6A-LR model)

SAFRAN French reanalysis system

ET0 Reference evapotranspiration (in mm)

FLO Flowering (in day of the year)

FWI Fire Weather Index (no unit)

SWC Soil Water content (in %)

ESS Effective Sample Size

BC Bias Correction

MBC Multivariate Bias Correction

CDF Cumulative Distribution Function

CDF-t Cumulative Distribution Function – Transform

R2D2 Rank Resampling for Distributions and Dependencies (an MBC method)

dOTC dynamical Optimal Transport Correction (an MBC method)

I.R2D2, I.dOTC Intervariable setting for R2D2 and dOTC, repsectively

S.R2D2, S.dOTC Spatial setting for R2D2 and dOTC, respectively

SI.R2D2, SI.dOTC Spatial and Intervariable setting for R2D2 and dOTC, respectively
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