
Reviewer: In this paper the authors study the formation of heterogeneities of conductivities 
in an initially homogeneous porous media as it undergoes a precipitation/dissolution 
dynamic, during which some part of the media reduces their porosity and hence their 
permeability while other increase. To characterize the consequences of the 
heterogeneities of conductivity upon the transport, they choose to consider the entropy of 
transport quantities, namely (i) concentration of transported non-reactive particles 
undergoing advection and diffusion, (ii) arrival times of these particles. 

Overall, the phenomenon itself of emergence of heterogeneity during this process is of 
interest. The document is clearly written except for a few rare mistakes (see below), 
however the figures could be improved and the global articulation of the concepts seems 
a bit tenuous despite each of them being well explained separately. At the end of the 
article, I am still left wondering why entropy was chosen to characterize this interesting 
heterogeneity of conductivity. I propose a solution to the authors, which is to compare their 
results to reference situations, hydrodynamical situations of thermodynamical situations 
for which the reader could build his intuition. 

Global comments: figures could use some work, validity is good, English is excellent. 

I think we can discuss essentially the figures, which follow the development of the 
argument. 

We thank the reviewer for recognizing the quality of our work and for identifying its 
relevance to the HESS readership. The comments from the reviewer were extremely 
helpful in clarifying and improving our study, and were pivotal in addressing the identified 
scaling in our study. These comments also aided in enhancing our figures. We are 
grateful to the reviewer for the time invested in reviewing our work. The reviewer's 
comments are marked in blue, while our replies are marked in black. We believe that we 
have addressed all the comments, which have significantly improved our work.   

1. Figure 1 
 
1.1 set the aspect ratio of X and Y to 1? daspect([1, 1, 1]) 

 



Figure 1: Evolution of the relative hydraulic conductivity 𝐾 − 𝐾0 [𝑐𝑚 𝑚𝑖𝑛−1] field over time 
for Pe = 0.38: (a) �̃� = 0.25, (b) �̃� = 0.5, (c) �̃� = 0.75, (d) �̃� = 1.0. 

We thank the reviewer for suggesting ways to improve readability of the manuscript. 
Aspect ratio has been updated. Please find attached the updated Figure 1. The snapshots 
of the conductivity field have been taken at normalized times �̃� = 0.25, 0.5, 0.75, 1.0 (as 
opposed to the original manuscript draft where snapshots at �̃� = 0.5, 0.72, 0.94  were 
used). Following the reviewer's suggestion, Figure 1d (dissolution/precipitation areas at 
�̃� = 1.0) has been removed, as it does not carry any essential information. Four snapshots 
of the conductivity field taken at normalized times �̃� = 0.25, 0.5, 0.75, 1.0 have been used 
instead.  

 

1.2 Plot, on the same plot, the Y averaged conductivity versus X, (++ within its 
standard deviation?) 
 

Mean (a) and Variance (b) of the Hydraulic conductivity (vertically in the field) vs. 
Longitudinal X-coordinate 

We thank the reviewer for suggesting further verification of the presented results. Please 
find above the plots of Mean and Variance of vertical rows of the hyd. conductivity field 
(along Y axis) versus X coordinate for normalized times �̃� = 0.5, 0.75, 1.0. The plots show 
that conductivity fluctuations, approximately symmetrical about the initial value, grow with 
time. In general, these fluctuations' amplitude is bigger near the inlet, where more reaction 
has occurred than further downstream of the field. This further confirms the observations 
from Figure 1. 

Although the above plots are important, as they serve for further verification for results 
presented in Figure 1, it is our opinion that they will not add any essential information to 
the paper, therefore we suggest that they remain in this document or added to the paper 
appendix if required. 

 



1.3 It seems the reactive front has not gone through the whole media: could the 
authors show a map where this is the case, probably for t*>1? 

In addition to the updated Figure 1d, which present the reactive field snapshot at �̃� = 1.0, 
please find attached the hyd. conductivity snapshot at �̃� = 1.1. The map includes 
streamlines, obtained with the help of streamline MATLAB function (see discussion on 
streamlines further in the document). Beginning with �̃� = 1.0 and further, we observe 
clearly that the reactive front has arrived at the outlet, as shown by conductivity 
fluctuations at the outlet that appear as a result of the reactive process in the field.  

 

 

Relative hydraulic conductivity field 𝐾 − 𝐾0 [𝑐𝑚 𝑚𝑖𝑛−1] for Pe = 0.38 at �̃� = 1.1 (including 
flow-based streamlines) 

 

1.4 Concerning the non-dimensionalization of time, maybe the author could plainly 
state that "qualitatively, t is nondimensionalized so that for t* = 1, the reactive 
front has permeated through the whole media (cf figure 2 a). 

The manuscript draft will be amended accordingly: The normalized time �̃� is defined 

in such a way that for �̃� = 1.0 the reactive front has permeated through the whole 
media. 
 

 
1.5 Units of K are not specified here. Add them or maybe switch to (K-K0)/K0 to 

convince us that these changes are indeed minor as stated in the text? Maybe a 
check of tortuosity would be helpful to convince the readers that the flow remains 
truly along the x direction? 
 
We sincerely thank the reviewer for noticing this error on our part. Units of the 
relative hydraulic conductivity are 𝐾 − 𝐾0 [𝑐𝑚 𝑚𝑖𝑛−1]. This will be specified in the 
caption for Figure 1. Since the initial hydraulic conductivity of the field is about 11 
[𝑐𝑚 𝑚𝑖𝑛−1], one can easily see that the changes in the hydraulic conductivity are 
indeed minor.  
 



A simple check to ensure that the flow remains along the x-direction is by looking 
at a typical streamlines plot (see the hyd. conductivity map with streamlines for �̃� =
1.1 attached again below for your convenience). It is clear from the streamlines 
direction that the flow remains along the x-direction, while the deviations from 
homogeneity account only for slight deviations from straight horizontal streamlines 
(can be visible while zooming in the inlet region, see below). 
 

 

Relative hydraulic conductivity field 𝐾 − 𝐾0 [𝑐𝑚 𝑚𝑖𝑛−1] for Pe = 0.38 at �̃� = 1.1 (including 
flow-based streamlines) 

As the deviations between hydraulic conductivities are small, as well as the 
correlation length of the hyd. conductivity field, the streamlines' deviation from 
linearity is negligible in tortuosity terms. Zoom in on a single streamline (see plot 
below) clearly shows that the deviations from the linear path are minor, and the 
tortuosity here is just about 1. 

 

 

Relative hydraulic conductivity field 𝐾 − 𝐾0 [𝑐𝑚 𝑚𝑖𝑛−1] for Pe = 0.38 at �̃� = 1.1 (including 
flow-based streamlines) – zoom in 



 

We do expect that tortuosity will increase as the reactive process will advance 
further, yet currently it is out of the scope of this study.  

1.6 How come K-K0 is not 0 on the right-hand side of a and b? 

We thank the reviewer for noticing this discrepancy. This was an issue of a small 
numerical deviation from zero due to round-off error, fixed now (see the updated 
Figure 1 above). 

 

1.7 If you decide to keep (d), get rid of the ticks of the colorbar and mark both colors 
as dissolving/precipitating areas. 

Following the reviewer's suggestion, Figure 1d (dissolution/precipitation areas at 
�̃� = 1.0) has been removed, as it does not carry any essential information. Four 

snapshots of the conductivity field taken at normalized times �̃� = 0.25, 0.5, 0.75, 1.0 
have been used instead. The manuscript will be amended accordingly. 

 
 

2. Figure 2 
 
2.1 There are two regimes for the global reactivity and only one for the evolution of 

the conductivity: how come? 
 

The reviewer is correct in pointing out that there are two plots in Figure 2 that are 
dedicated to the global reaction rate (2a and 2b), while only one plot is dedicate to 
the evolution of the mean conductivity value (1c) and one for the variance of the 
conductivity (1d). The global reaction rate is depicted in both Figs. 2a (non-
normalized) and 2b (normalized by the field area, sampled by the reactive flow). 
This is due to the fact that the global reaction rate (Figure 1a) exhibits a clear linear 
dependency on the normalized time, which is a clear indication that this rate is 
proportional to the field area sampled by the reactive particles. In order to 
emphasize that, we added a plot of the global reaction rate, normalized by the 
distance, passed by the reactive particles in the field. The normalized global 
reaction rate obtains an approximately constant value, which serves to confirm this 
observation.    

 
2.2 The evolutions could be compared if (a) had its x axis in log scale, to compare 

with (c) and (d). 
 
 
We thank the reviewer for suggesting ways to improve presentation of the 
manuscript. All Figure 2 subfigures have been replotted on the log-log scale to 
facilitate comparison (see the updated Figure 2 below). We suggest that all Figure 
2 plots be plotted on a log-log scale (similar to subfigures 1c and 1d), as this would 



allow to immediately discern power law relationships, that are significant for the 
course of the paper. Should only the X axis be put to log scale, the power law 
relation will not be recognizable visually.  
 
The linearity of the global reaction rate (Figure 1a) was emphasized by specifying 
the slope value of 1 on the log-log scale.  

Also, Figure 1d has been replaced by an updated one: for historical reasons, the 
heterogeneity of the hydraulic conductivity field has been examined by plotting the 
variance of the natural logarithm of the conductivity and not the conductivity itself. 
To improve clarity, we replaced Figure 1d with the plot of the variance of hyd. 
conductivity (NOT its natural logarithm).  

 
 

Figure 2. influence of Peclet number on the evolution of the reactive process in the 

field over time: (a) Global reaction rate �̇�, (b) Normalized global reaction rate �̇�𝑛𝑜𝑟𝑚, 

(c) Deviation of the mean hydraulic conductivity from initial value 𝐾 − 𝐾0 and (d) 

Hydraulic conductivity variance 𝜎𝐾
2, as a function of dimensionless time �̃�. 

 
 
 

2.3 Is there a prediction for the plateau of (a)?  

We thank the reviewer for this important question. The observed plateau, beginning from 
approximately �̃� = 1.0, is explained by the fact that the reactive particles have sampled an 



entire field at that point. As seen from the non-normalized reaction rate, it is proportional 
to the field area, sampled by the reactive flow. This plateau still exhibits smaller changes 
in conductivity due to the stochastic nature of diffusion, which manages to separate 
reactants and drive them out of equilibrium. Over many pore volumes, this process should 
amount to a significant change in the field, and, therefore, this plateau is only local, and 
will change at extremely long-time scales. However, this analysis is out of the scope of 
our study. 

While this subject was referenced briefly in the manuscript (line 483 states: We observe 
that the reaction increases with dimensionless time in a linear fashion, as the reactive 
particles sample more of the field’s territory at an approximately constant mean velocity, 
which allows broader opportunities for reaction. Beginning from �̃� = 1.0, the global reaction 

rate �̇� becomes approximately constant, as the reactive particles have sampled an entire 
field at that point), we suggest expanding this paragraph to include the reasoning that 
appears in our answer to the reviewer's question. The manuscript will be amended 
accordingly. 

 

2.4 I find the scaling of the variance of conductivity following a reciprocal Péclet 
number very interesting and clean. Is there a formal reason for that? I think this 
important result is a bit undersold: only briefly mentioned line 533. It deserves 
more. 

We thank the reviewer for emphasizing the importance of the Peclet scalability finding in 
both the parameters that characterize the evolution of the reactive process in the hydraulic 
conductivity field over time (Global reaction rate – see line 492 in the manuscript, 
Normalized global reaction rate, Mean value of the relative hydraulic conductivity – line 
515 and Variance of hydraulic conductivity – line 531), as well as the thermodynamic 
quantities of interest (Mean normalized Shannon entropy of the transport – line 606 and 
Normalized Shannon entropy of the breakthrough curve (BTC) - line 640).  

All parameters that characterize the evolution of the reactive process in the hydraulic 
conductivity field over time (Global reaction rate, Normalized global reaction rate, Mean 
value of the relative hydraulic conductivity and Variance of hydraulic conductivity) exhibit 
satisfactory scaling with the reciprocal of Peclet (see the above mentioned lines in the 
manuscript, notice the high values of the R square parameter that point at a good quality 
of the proposed fits). Here, notice that the present study employs a Lagrangian definition 
of the Peclet number that differs from the usual Eulerian definition (see section 2.4 in the 
manuscript). Another obviously necessary condition for Peclet scalability is employing 
normalized time �̃� = 𝑡/𝑇𝑝𝑣, where 𝑇𝑝𝑣 is the pore volume time. 

To understand better the underlying reason for the Peclet scalability of the parameters 
that characterize the evolution of the reactive process in the hydraulic conductivity field 
over time, as well as the specific form of the Peclet scaling (such as the dependency on 
the reciprocal of Peclet), let us consider a simplified formulation of Advection-diffusion 
equation (ADE), first without and then with the reaction term. 

Existence of Peclet-scalable solutions to ADE / ADRE 

Consider for simplicity the 1D ADE without the reactive term: 



𝜕𝐶

𝜕𝑡
=  −𝑢 

𝜕𝐶

𝜕𝑥
+ 𝐷

𝜕2𝐶

𝜕𝑥2
 

Here, 𝐶 is the solute concentration, 𝑢 is the advective velocity field, 𝐷 is the diffusion 

coefficient and 𝑥, 𝑡 are the spatial and temporal coordinates. Normalize all variables as in 
the manuscript: 

�̃� = 𝐶/𝐶𝑟𝑒𝑓, �̃� = 𝑥/𝐿, �̃� = 𝑡/(𝐿/𝑈), �̃� = 𝑢/𝑈 

Here, 𝐶𝑟𝑒𝑓 is the reference value for the solute concentration, 𝐿 is the length of the domain 

and 𝑈 is the reference advective velocity. The temporal coordinate 𝑡 is normalized by the 
pore volume time 𝑇𝑝𝑣 = 𝐿/𝑈. The non-dimensionalized ADE obtained is: 

𝜕�̃�

𝜕�̃�
=  −�̃�  

𝜕�̃�

𝜕�̃�
+

1

𝑃𝑒

𝜕2�̃�

𝜕�̃�2
 

  where 𝑃𝑒 = 𝐿 𝑈/𝐷 is the classical definition of the Peclet number. Solutions �̃� =
𝑓(�̃�, �̃�, 𝑃𝑒) are possible if the normalized velocity field �̃� remains identical in the different 
Peclet number scenarios. For the reactive case, let us consider a simple scenario of 
adsorption / desorption reaction, for which parallels can be drawn to the dissolution / 
precipitation scenario in the proposed manuscript (see [Berkowitz et al], [Bear and Chang] 
and [Rubin et al] in the References section). ADRE with the adsorption term G looks as 
follows: 

𝜕𝐶

𝜕𝑡
=  −𝑢 

𝜕𝐶

𝜕𝑥
+ 𝐷

𝜕2𝐶

𝜕𝑥2
− 𝐺/𝜃 

where G is the adsorption term and 𝜃 is the porosity of the medium. A simplest case would 
be to employ the linear case of the Freundlich isotherm model, where the adsorption is 
directly proportional to the concentration (for desorption, the sign of the reaction term 
should be reversed): 

𝑆 = 𝐾𝑑 𝐶 

where 𝐾𝑑 is the distribution coefficient. The reactive term obtains the following shape: 

𝐺 = 𝜌𝑏

𝜕𝑆

𝜕𝑡
=  𝐾𝑑𝜌𝑏

𝜕𝐶

𝜕𝑡
  

where 𝜌𝑏 is the dry bulk density of the solid. After some manipulation, the ADRE for the 
adsorption case may be written as: 

𝑅
𝜕𝐶

𝜕𝑡
=  −𝑢 

𝜕𝐶

𝜕𝑥
+ 𝐷

𝜕2𝐶

𝜕𝑥2
 

where R is a non-dimensional retardation factor: 

𝑅 = 1 + 𝐾𝑑

𝜌𝑏

𝜃
 

The non-dimensionalized version of ADRE will be: 



𝑅
𝜕�̃�

𝜕�̃�
=  − �̃�

𝜕�̃�

𝜕�̃�
+

1

𝑃𝑒

𝜕2�̃�

𝜕�̃�2
 

In case of a minor transport-reaction interaction that leads to minor conductivity changes, 
as reported in the manuscript, the deviations in the velocity field can be assumed minor 
as well, thus �̃� = 𝑢/𝑈 ≈ 1. Therefore, we obtain:  

𝑅
𝜕�̃�

𝜕�̃�
=  − 

𝜕�̃�

𝜕�̃�
+

1

𝑃𝑒

𝜕2�̃�

𝜕�̃�2
 

and �̃� = 𝑓(�̃�, �̃�, 𝑃𝑒). Thus, also in the reactive case a non-dimensionalized solution �̃� =
𝑓(�̃�, �̃�, 𝑃𝑒) is possible. See [Berkowitz et al] for further details. The amount of reaction in 
this case is proportional to the concentration, thus the expression for the normalized 

reaction rate (equivalent to the adsorption rate in this case) 
𝜕�̃�

𝜕�̃�
 can be obtained as follows: 

𝜕𝑆

𝜕�̃�
= 1/𝑆𝑟𝑒𝑓

𝜕𝑆

𝜕�̃�
=  𝐾𝑑𝐶𝑟𝑒𝑓/𝑆𝑟𝑒𝑓

𝜕�̃�

𝜕�̃�
=

𝐾𝑑𝐶𝑟𝑒𝑓

𝑅 𝑆𝑟𝑒𝑓
(− 

𝜕�̃�

𝜕�̃�
+

1

𝑃𝑒

𝜕2�̃�

𝜕�̃�2
) 

Here, 𝑆𝑟𝑒𝑓 is the reference value for the adsorption term. To compare this parameter with 

the Global reaction rate in the field �̇�, we integrate 
𝜕�̃�

𝜕�̃�
 over the 1D domain to obtain: 

�̇�(�̃�)𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∫
𝜕𝑆

𝜕�̃�

𝐿

0

𝑑𝑥 =
𝐾𝑑𝐶𝑟𝑒𝑓

𝑅 𝑆𝑟𝑒𝑓
(− ∫

𝜕�̃�

𝜕�̃�

𝐿

0

𝑑𝑥 +
1

𝑃𝑒
∫

𝜕2�̃�

𝜕�̃�2

𝐿

0

𝑑𝑥) 

(recall that 
𝜕�̃�

𝜕�̃�
< 0 for injection at x=0). For − 

𝜕�̃�

𝜕�̃�
≪

1

𝑃𝑒

𝜕2�̃�

𝜕�̃�2
 (the advective contribution is small 

w.r.t the diffusive one), this result may hint at: 

(a) The global reaction rate scalability with the reciprocal of Peclet. 
(b) The reason why at higher Peclet numbers the Peclet dependency diminishes, and 

the global reaction rate approaches an approximately constant (independent of Pe) 
non-zero value. 

Indeed, as follows from Figure 1a, the ratio between the global reaction rate for Pe=12 
and Pe=0.38 is about 4, which may hint at the fact that the advective contribution to 
reaction rate is small compared to the diffusive contribution for the Peclet range in the 
current study, where the field alteration due to dissolution\precipitation reaction is small 
making it comparable to the linear Freundlich isotherm model. Since the appearance of 
heterogeneity, as well as deviations in the mean conductivity value, are directly connected 
to the amount of reaction that took place in the field, we can accept that their dependency 
on Peclet should be of a similar form. This summarizes the discussion on Peclet scalability 
findings presented in Figure 1, related to the simulations presented in the proposed 
manuscript. 

The above results should be treated as qualitative only, since the underlying assumption 
of ADE/ADRE is complete mixing of reactants and Fickian transport. This is not 
necessarily the case in our paper, where the solute transport is modeled using Lagrangian 
particle tracking. To establish a formal theoretical basis for the model in the current study, 
tools from statistical mechanics need to be employed. Given the relative complexity of the 



chemical reaction in question (dissolution/precipitation of calcite), it is well beyond the 
scope of this study. 

 

3. Figure 3 
 
3.1 Aspect ratio of 1 would be nice as well. 

 

Figure 3. Evolution of the transport self-organization in the field for Pe = 0.38, as 
represented by the decimal logarithm of the relative non-reactive tracer concentration �̃�, 
based on data obtained from the non-reactive tracer tests performed on the snapshots of 
the field over time: (a) �̃� = 0.25, (b) �̃� = 0.5, (c) �̃� = 0.75 and (d) �̃� = 1.0. 

We thank the reviewer for suggesting ways to improve presentation of our figures. Aspect 
ratio has been updated. Please find attached the updated Figure 3. The snapshots of the 
relative non-reactive tracer concentration in the hyd. conductivity field have been taken at 
normalized times �̃� = 0.25, 0.5, 0.75, 1.0 (as opposed to the original manuscript draft where 
snapshots at �̃� = 0.24, 0.51, 0.76, 0.96 were used). 

3.2 Does the stripe feature correspond to the conductivity K(Y) when averaged over 
the X direction? 

We thank the reviewer for suggesting further verification of the presented results. Please 
find presented above the plot of X-averaged hyd. conductivity (natural logarithm of K) 
versus Y coordinate for normalized times �̃� = 0.25, 0.5, 0.75, 1.1. The plot shows 
conductivity fluctuations, whose amplitude grows with time. Also, with time we observe 
that some of the inlet cells exhibit larger peaks in hyd. conductivity, this tendency growing 
with time (notice peaks at 7.2cm, 8.2cm and 9cm).  



This can be explained by observing the mechanism responsible for transport self-
organization in the field. The particles injected at the inlet of the field are being flux-
weighted, meaning that the number of particles injected in each of the inlet cells is 
proportional to Darcy flux in that cell. Diffusion, treated as a stochastic agent in our model, 
leads to appearance of hyd. conductivity fluctuations in the initially homogeneous field. 
Thus, the more conductive paths receive more Darcy flux, which in turn attracts more 
reactive H+ particles to them, making these paths even more conductive. This 
autocatalytic process leads to intensification of this phenomenon, as observed in the plot 
above. As shown earlier, these paths are linear in shape, with negligible tortuosity, due to 
the hydraulic conductivity deviations from the initial value, as well as their correlation 
length, being minor. This autocatalytic process leads to an increase in self-organization of 
the transport in the field, that is manifested by a decrease in the Shannon entropy of the 
transport. This further stresses the importance of entropy as a means to quantify transport 
self-organization due to reactive process in the field. 

The conductivity fluctuations that correspond to �̃� = 1.0 have been adjoined with the Non-

reactive solute concentration plot for �̃� = 1.0 in an attempt to find correlation between the 
X-averaged hyd. conductivity fluctuations and the stripe feature of the solute transport 
self-organization in the field (see plot below).  

 

 

 

 

 

 

 

 



 

 

A correlation is observed between the X-averaged hyd. conductivity fluctuations and the 
relative solute concentration, as higher peaks in conductivity generally correspond to 
higher non-reactive particle concentration (notice peaks at 7.2cm, 8.2cm and 9cm). It 
should be noted that such a correlation is possible only in the case of horizontal flowpaths 
in the field, as in the present study. 

 

4. Figure 4: S_norm 
 
4.1 Caption: Snorm= (S-Smax)/Smax. Please correct parenthesis. 

We sincerely thank the reviewer for noticing this error on our part. The caption for Figure 
5 was corrected. Also, the Figure 4a was updated to include the Normalized Shannon 
entropy of the transport in the field vs. normalized X coordinate for normalized times �̃� =
0.25, 0.5, 0.75, 1.0 (as opposed to the original manuscript draft where curves for �̃� =
0.24, 0.48, 0.72, 0.96). Please find the updated Figure 4 attached below. 

 

Figure 4. Self-organization of the transport in the field via normalized Shannon entropy 
𝑆𝑛𝑜𝑟𝑚 = (𝑆 − 𝑆𝑚𝑎𝑥)/𝑆𝑚𝑎𝑥: (a) 𝑆𝑛𝑜𝑟𝑚 vs. normalized distance from inlet �̃� = 𝑥/𝐿 at different 
dimensionless times �̃� for Pe = 0.38, (b) Mean value of the normalized entropy over the 

field 𝑆𝑛𝑜𝑟𝑚 vs. dimensionless time �̃� for different values of Pe. Inset shows Peclet-scaled 
curves, obtained by assuming a power-law Peclet dependency. 

 

4.2 The quantities presented are novel: please see further comments for figure 5. 

Please see detailed comments for Figure 5 below. 



 
5. Figure 5: S_norm BTC 

 
5.1 Please nondimensionalize breakthrough time.  

 
We thank the reviewer for suggesting ways to improve clarity of the figures in 
the manuscript. Please find below the updated Figure 5. The breakthrough 
times 𝑇𝐵𝑇 in the X axis of the breakthrough time histogram in Figure 5a were 

normalized by the pore volume time 𝑇𝑃𝑉. Also, for the sake of uniformity, the 
histogram was presented for the normalized times �̃� = 0.25, 0.5, 0.75, 1.0 (as 
opposed to the original manuscript draft where histograms for �̃� =
0.24, 0.48, 0.72, 0.96 were used). The Normalized breakthrough curve entropy 

𝑆𝑛𝑜𝑟𝑚
𝐵𝑇𝐶  in Figure 5b was recalculated based on histogram division of 1000 bins 

instead of 5000 bins as in the original manuscript draft. This allowed for the 
normalized BTC entropy to begin at -1, as expected (see detailed comments 
further in the document). For Figure 5c, a time direction was signified by an 
arrow. 

 

Figure 5. Breakthrough curve self-organization: (a) Histogram of the non-reactive particle 
arrival times in snapshots of the reacting field at different dimensionless times �̃� for Pe = 

0.38, (b) Normalized breakthrough curve entropy 𝑆𝑛𝑜𝑟𝑚
𝐵𝑇𝐶  vs. dimensionless time �̃� for 

different values of Peclet number (the inset shows Peclet-scaled curves) and (c) 



Normalized field transport entropy 𝑆𝑛𝑜𝑟𝑚 vs. Normalized breakthrough curve entropy 𝑆𝑛𝑜𝑟𝑚
𝐵𝑇𝐶  

for different values of Peclet number. 

 

5.2 What is the tilde version of Sbtc_norm (unspecified in text)?  

We thank the reviewer for capturing this error on our part. There is no tilde version 
of 𝑆𝑛𝑜𝑟𝑚

𝐵𝑇𝐶 . The normalized Shannon entropy of the breakthrough curve is defined as 

𝑆𝑛𝑜𝑟𝑚
𝐵𝑇𝐶 = (𝑆𝐵𝑇𝐶 − 𝑆𝑚𝑎𝑥)/𝑆𝑚𝑎𝑥, and is the only BTC entropy-related parameter used 

in the manuscript. The manuscript will be amended accordingly.  

 

5.3 How come they do not start at -1, but all at -0.875? At t*=0, S = 0 and Sbtc = (0-
Smax)/Smax = -1. 

We sincerely thank the reviewer for capturing this error on our part. The reason 
that 𝑆𝑛𝑜𝑟𝑚

𝐵𝑇𝐶  in Figure 5b began from -0.875 and not from -1.0 at �̃� = 0 was due to 
numerical discretization errors that occurred because the number of histogram bins 
Nbins used in BTC entropy calculation was taken to be too large (Nbins = 5000). 
Due to negligible deviations in BT times at �̃� = 0 that appeared due to numerical 
round-off errors, some of the BT times fell in adjacent bins. This was fixed by using 
smaller Nbins = 1000. All subfigures in Figure 5 were replaced (notice that BTC 
histogram relative occurrences and BTC entropy are sensitive to Nbins. For 
example, changing Nbins means shifting the BTC entropy curve up/down along 
the Y axis). 

 

5.4 Hydro comparison: (also for previous figure 4 concerning Snorm). Compared to the 
previous plots, this quantity is very novel: could you plot it for a reference HYDRO 
situation for which the reader would have an intuition? For instance, a plug flow 
turning progressively into a Poiseuille flow: at t=0, the flow field is homogeneous, 
at t=0.5, the flow field is a Poiseuille flow from x=0 to x=0.5 x L and still 
homogeneous for x=0.5 x L to L, at t=1, the Poiseuille flow is fully developed along 
the X direction. (should have an analytical expression). 

We sincerely thank the reviewer for suggesting ways to clarify the concepts 
proposed in the manuscript. The hydrological analogy suggested by the reviewer 
is undoubtedly interesting and worthwhile pursuing, however it is beyond the scope 
of our study as it is dedicated to further developing the application of 
thermodynamic framework concepts in the context of evolving porous medium.  
Moreover, to our best understanding, attempts to describe the concept of self-
organization by using an analogy from the field of hydrology can be somewhat 
misleading, as this concept is firmly grounded in the field of thermodynamics and 
should be considered within that field. 

To our best knowledge, to clarify the proposed thermodynamic framework it would 
be best to employ analogies from the world of thermodynamics, since the scenario 
presented in the manuscript corresponds to that of an open thermodynamic system 
that interacts with its surroundings due to exchange of matter and energy and 



arrives at a lower-than-equilibrium entropy state (higher degree of self-
organization) due to influx of power from outside (see our answer to next question 
for details).  

In order to improve understanding of the proposed concepts by a reader, the 
manuscript will be amended accordingly (see our answer to the next question for 
details).  

 

5.5 Thermodynamic comparison: (also for previous figure concerning Snorm).This 
figure (and also the former) would also be a good place to link your results for this 
quantity to other entropic evolution of THERMODYNAMIC transformations of 
reference: a Joule expansion of a perfect/real gas maybe? If not this, what 
thermodynamic transformation is analogous to your problem? 
 
We sincerely thank the reviewer for suggesting ways to clarify the concepts 
proposed in the manuscript. The scenario presented in the manuscript corresponds 
to that of an open thermodynamic system that interacts with its surroundings due 
to exchange of matter and energy. Due to influx of power from outside, this system 
is kept in a non-equilibrium state that corresponds to a certain degree of internal 
self-organization and, thus, to a decreased entropy state. Since, according to the 
2nd law of Thermodynamics, the overall entropy of the system and its surroundings 
cannot decrease, this decrease in entropy of a system corresponds to an increase 
in entropy of the surroundings by means of exporting entropy from the system to 
the surroundings. The export of entropy from the system to surroundings requires 
that work is performed on the system in order to maintain its level of self-
organization. Thus, such a system exhibits a pattern characterized by the interplay 
between the three thermodynamic properties: entropy of the system, entropy of the 
surroundings and influx of power required to maintain the current level of the 
system’s entropy. In such a system, an increase in self-organization, represented 
by the reduction in system’s entropy, leads to an increase in the entropy of the 
surroundings, while requiring an increase in the influx of power into the system. In 
our system, these three properties are represented by the entropy of transport self-
organization within the field, the entropy of the BTC and the hydraulic power, 
dissipated by the flow as it passes within the field.     
 
A multitude of examples of such thermodynamic systems exists (consider for 

example an example of a biological life in [Schroedinger 1944] or an example of a 

gas laser in [Haken 1983]). One of the simplest examples of such a system from 

our everyday life is a refrigerator: this system is evidently in a non-equilibrium state 

since the temperature within the cooling chamber is much lower than that of the 

surroundings. This is achieved by investing external power in the system to pump 

the heat outside in terms of electricity required to drive the heat pump. As a result, 

temperature outside the refrigerator is elevated, which corresponds to an increase 

in the entropy of the surroundings. Consider an example of a refrigerator, 

previously unconnected to power: the temperature inside the cooling chamber 

equals that outside, and the refrigerator is therefore in equilibrium with its 

surroundings, its entropy at maximum. Now, plug the socket and the heat pump 

will begin working, removing heat from the cooling chamber to the surroundings. 

Thus, the entropy in the chamber will decrease, accompanied by an increase of 



entropy of the surroundings. The decrease of temperature in the cooling chamber 

is made possible by investing electrical power to drive the heat pump. 

To draw analogy with the dynamic development of our reactive scenario, the 
initially homogeneous field correspond to the cooling chamber at equilibrium with 
its surroundings: due to its homogeneity, the solute transport through the field is 
uniform, thus its entropy is at maximum (no transport self-organization). Also due 
the field's homogeneity, the solute injected in the field reaches outlet at the same 
time, therefore the BTC exhibits maximal self-organization (all solute arrives at the 
same time), or minimal entropy.  

Following the evolution of the reactive process, heterogeneity appears in the field. 
This heterogeneity contributes to emergence of preferential flowpaths in the field, 
which can be interpreted in terms of self-organization of solute transport. The 
increase in heterogeneity leads to an increase in self-organization of solute 
transport, or a decrease in its entropy. Alongside that, a greater scatter in 
breakthrough times is obtained, which can be interpreted as a decrease in self-
organization of the BTC, or an increase in its' entropy. Here, the entropy of the 
transport and the entropy of the BTC correspond to the entropy of the system and 
its surroundings (recall that, due to the 2nd law of Thermodynamics, a decrease in 
the former leads to an increase in the latter for an irreversible process). To maintain 
an increase in the transport self-organization in the field, made possible by the 
reactive process which increases the field's heterogeneity and thus creates 
conditions for transport self-organization, an increased hydraulic power must be 
supplied to the flow through the field (this increasing power is required for the flow 
to overcome the hydraulic resistance of the field that grows with an increase in 
heterogeneity). This increase in power is maintained by the applied boundary 
condition (b.c.) of a constant pressure drop along the field in our model, which is 
analogous to a perfect hydraulic pump. 

Considering the classical example of Joule expansion of perfect gas, suggested by 

the reviewer, we note that this example considers an isolated system, so no 

interaction with surroundings exists in this case. Therefore, this example cannot 

serve as a complete analogy to our system. Since this system is isolated, its 

entropy can only increase, as happens when the gas expands, therefore the 

thermodynamic process in the system during Joule expansion follows in the 

opposite direction to the process described in the current study. 

For further reading, please see following links [Kondepudi & Prigogine, 2014], 

[Haken, 1983], [Schroedinger, 1944]. For the direct application of the 

thermodynamic framework to flow in heterogeneous porous medium, see [Zehe et 

al., 2021]. See also Appendix A in the manuscript for a brief exposition of an open 

thermodynamic system maintained in a stationary nonequilibrium state.  

 
 

5.6 Without intuition on either the X axis and the Y axis, it is hard for me to comment. 
Indicate the time direction on the line plots with arrows please. 
 
We sincerely thank the reviewer for suggesting ways to clarify the concepts 
manifested by the figures in the manuscript. In Figure 5c the Normalized field 

transport entropy 𝑆𝑛𝑜𝑟𝑚 vs. Normalized breakthrough curve entropy 𝑆𝑛𝑜𝑟𝑚
𝐵𝑇𝐶  is 

presented for different values of Peclet number. To build an intuition regarding this 



plot, the reviewer is advised to recall that in our study the former represents the 
entropy of the system, while the latter represents the entropy of its surroundings. 
As a result of the reactive process that occurs in the field, with the passage of time 
the entropy of the transport decreases, while the BTC entropy increases. Thus, the 
direction of time corresponds to a decrease in the transport entropy and an 
increase in the BTC entropy. 
 
To improve clarity, the direction of time direction in Figure 5c was signified by an 
arrow.  
 
 

5.7 Corresponding text: Correct line 630: interpretation of values 0 and values -1 are 
the other way around concerning the arrival time of particles, (I think!). 
 
We express our gratitude to the reviewer for providing valuable assistance in 
locating errors in the manuscript. However, in this case, to the best of our 
knowledge, the interpretation of the limiting values of the normalized breakthrough 
curve entropy is correct: 
 
The normalized breakthrough curve entropy is defined as 𝑆𝑛𝑜𝑟𝑚

𝐵𝑇𝐶 = (𝑆𝐵𝑇𝐶 −
𝑆𝑚𝑎𝑥)/𝑆𝑚𝑎𝑥, where 𝑆𝐵𝑇𝐶 is the breakthrough curve entropy, calculated from as 
explained in the manuscript and 𝑆𝑚𝑎𝑥 is the maximal possible entropy value, 
obtained in the case of a perfectly uniform distribution of arrival times (similarly to 
the discussion of 𝑆𝑚𝑎𝑥 estimation for the field transport entropy held in Section 3.2, 
in the case of division of the arrival times span into 5000 bins, this value will be 
log2 5000). Thus, 𝑆𝑛𝑜𝑟𝑚

𝐵𝑇𝐶  obtains values from 0 (𝑆𝐵𝑇𝐶 = 𝑆𝑚𝑎𝑥, no self-organization) 

to −1 (𝑆𝐵𝑇𝐶 = 0, maximum self-organization, corresponding to the case when all 
particles arrive at the outlet at the same time). Thus, the definition of the normalized 
entropy in the manuscript is correct. 
 
 

6. Figure 6: Hydraulic power 
 
6.1 The quantity is also very novel: could you compare it to reference situation? You 

do it in the text, which is great: but it would really help to see it on the plots. 
 

We thank the reviewer again for suggesting ways to clarify the concepts proposed 
in the manuscript. Qualitative examples have been given in the comments to the 
previous figure, and we shall incorporate them in the revised manuscript.  

 
  

6.2 Without intuition on either the X axis or the Y axis, it is hard for me to comment. 
Indicate the time direction on the line plots with arrows please. 
 
We sincerely thank the reviewer for indicating the flaws in our figure presentation 
which hinders the understanding of the concepts proposed in the manuscript. In 
Figure 6b the Normalized mean field transport entropy 𝑆𝑛𝑜𝑟𝑚

𝐵𝑇𝐶  vs. Normalized Net 
hydraulic power, for different values of Peclet number is presented. To build an 
intuition regarding this plot, the reviewer is advised to recall that in our study the 
former represents the entropy of the system, while the latter represents the power, 
invested in the system to maintain its level of self-organization, characterized by 
the reduced entropy.  



 
As a result of the reactive process that occurs in the field, with the passage of time 
the self-organization of the transport increases, which is signified by a decrease in 
the entropy of the transport. This requires an increase in the hydraulic power 
invested in the system (recall the refrigerator example). Thus, the direction of time 
corresponds to a decrease in the transport entropy and an increase in the hydraulic 
power. 
 
To show the magnitude of the deviations from the initially homogeneous state, the 
power in Figure 6a and 6b was normalized by its initial value. To improve clarity, 
the direction of time direction in Figure 6b was signified by an arrow.  
 
 

 

Figure 6. Hydraulic power in the field and its relation to entropy: (a) Net hydraulic power 
vs. dimensionless time �̃� and (b) Normalized mean field transport entropy 𝑆𝑛𝑜𝑟𝑚

  vs. Net 
hydraulic power, for different values of Peclet number. 

 
6.3 Also: adjust P vs Sigma2 relation employing hyd. resistances connected in 

parallel! 

We thank the reviewer for suggesting ways to further improve validity of the 
concepts proposed in the manuscript. This request led to a significant revision of 
chapters 3.3 and 4.4, where the theoretical framework for the relation of the 
hydraulic power to the heterogeneity and the entropy of the system is laid, and 
then confirmed based on the conducted numerical simulations. 

Due to the approximately linear nature of the flow paths in the field, it is reasonable 
to view the field as a number of hyd. conductivity elements connected in parallel. 
Each conductivity element represents a horizontal row of field cells (following 
observation from results that show the approximate linearity of the flowpaths). The 
constant pressure drop b.c. is applied to this system, as shown: 



 

Schematics of the reactive field as a system of parallel channels 

The equivalent hyd. conductivity of a single channel (elements connected in 
series): 

𝐾𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖
𝐸𝑄 = 𝐿𝑥  / ∑ 𝑑𝑥 ⋅ 𝐾𝑖𝑗

   −1
𝑗  (1) 

The equivalent hyd. conductivity of the whole field (channels connected in parallel): 

𝐾𝑓𝑖𝑒𝑙𝑑
𝐸𝑄 = ∑ 𝐾𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖

𝐸𝑄 ⋅
𝑑𝑦

𝐿𝑦
𝑖 = (

𝑑𝑦

𝐿𝑦
) ⋅ ∑

𝐿𝑥

∑ 𝑑𝑥⋅𝐾𝑖𝑗
   −1

𝑗
𝑖  (2) 

where dx, dy are the cell dimensions and 𝐿𝑥 , 𝐿𝑦 are the field dimensions in the x- 

and y-directions, respectively. Under the assumption of parallel channels with no 
interaction taking place between them transversally, the total hydraulic power 
dissipated in the field is given by: 

𝑃𝐸𝑄
𝑇𝑂𝑇 = −𝜌𝑔∆ℎ𝐵𝐶 ⋅ 𝑄𝑇𝑂𝑇 =  𝜌𝑔 (

∆ℎ𝐵𝐶

𝐿𝑥
)

2

𝐿𝑥  𝐿𝑦  ⋅ 𝐾𝑓𝑖𝑒𝑙𝑑
𝐸𝑄

 (3) 

where ∆ℎ𝐵𝐶 is the hydraulic head drop between the inlet and the outlet of the field 
and 𝑄𝑇𝑂𝑇 is the total flow through the field. The validity of the parallel channel 
assumption was investigated by comparing the calculated equivalent total 

hydraulic power 𝑃𝐸𝑄
𝑇𝑂𝑇 (obtained under this assumption) to the power calculated 

element-wise (without this assumption): 

𝑃𝑇𝑂𝑇 = −𝜌𝑔 ∑ ∆ℎ𝑖𝑗 ⋅ 𝑄𝑖𝑗𝑖,𝑗  (4) 

where i,j are indices that run in x- and y-directions, respectively. Here, for both 
approaches, the whole field was taken into account, including the area in the 
immediate vicinity of the inlet where a significant dissolution event occurs. The plot 
below compares the Normalized hydraulic power calculated using both 
approaches: 



 

From the comparative plot presented above, we observe that the parallel channel 
assumption is valid as a rule in the initial part of the reactive process, however, as 
the normalized time �̃� grows, the deviations from this assumption increase. This 

can be explained by the fact that 𝑃𝐸𝑄
𝑇𝑂𝑇, calculated under the assumption of parallel 

channels, takes into account only the power produced by the horizontal Darcy flux 
component, while 𝑃 

𝑇𝑂𝑇, calculated in a cell-wise fashion, accounts also for the 
transverse (vertical) flux component. With the passage of time, due to an increase 
in the heterogeneity of the initially homogeneous field, flux in the transverse 
direction appears. With time, its contribution grows as it appears more significant.   

We observe that until about �̃� = 0.4, the parallel channel assumption appears 
adequate for all Peclet values. Beginning from �̃� = 0.4, deviations from this 
assumption are visible. The magnitude of these deviations is in direct correlation 
with the Peclet number and increases with the decrease in Peclet. This can be 
explained again by virtue of heterogeneity, which increases with the decrease in 
Peclet (see Figure 1d), as well as with �̃�.    

To explain the increase in hydraulic power with �̃� and to relate it to the growing 
heterogeneity of the field, consider again the relations (2) and (3) given above. The 
total hydraulic power in the field, using the parallel channel assumption, is related 
to the hydraulic conductivity field by virtue of the equivalent hydraulic conductivity 
of the field (2), which can be rewritten as 

𝐾𝑓𝑖𝑒𝑙𝑑
𝐸𝑄 = (

𝑑𝑦

𝐿𝑦
) ⋅ ∑

1

𝑅𝑖
𝑖  (4) 

where 𝑅𝑖 = (𝑑𝑥/𝐿𝑥) ∑ 𝐾𝑖𝑗
   −1

𝑗  is the reciprocal of the equivalent hydraulic 

conductivity of channel i, or the hydraulic resistivity of the i-th channel. Recall the 
well-known feature of the harmonic mean of some population: if the population is 
subjected to a mean-preserving spread (that is, its variance is increased while the 



mean is kept at a constant value) – then the harmonic mean always decreases 
[Douglas, 2004]. Since (4) can be viewed as a reciprocal of harmonic mean of 𝑅𝑖, 

we expect that 𝐾𝑓𝑖𝑒𝑙𝑑
𝐸𝑄

 will increase with an increase in the variance of 𝑅𝑖, assuming 

the mean conductivity changes are minor. This is confirmed by the plot of the 
Variance of 𝑅𝑖 vs. dimensionless time �̃� given below. 

 

 

 

 

 

 

 

 

 

 

Moreover. since 𝑅𝑖 depends directly on the hyd. conductivity field 𝐾𝑖𝑗, it is 

reasonable to expect that 𝐾𝑓𝑖𝑒𝑙𝑑
𝐸𝑄

 will increase with an increase in the variance of 

𝐾𝑖𝑗, which signifies the emergence of heterogeneity in the initially homogeneous 

field. This concludes the updated model of the hydraulic conductivity field that 
allows to establish the relation between the hydraulic power, dissipated in the field 
and the degree of the field’s heterogeneity.  

To conclude, the increase in the hydraulic power, dissipated in the field, as well as 
the emergence of transport self-organization, are both the result of an increase in 
the heterogeneity of the field. The latter, in turn, can be viewed as a consequence 
of the energy invested in the field by the dissolution / precipitation reactive process. 

  

7. At the end of the article, I am still left wondering why entropy was chosen to 
characterize this interesting heterogeneity of conductivity.  

We thank the reviewer for pointing out topics in the manuscript that require further 
clarification. 

The proposed manuscript investigates the dynamic coupling between the transport and 
the reactive process in an initially homogeneous porous medium that leads to the 
emergence of preferential flow paths in the medium. Following an approached suggested 
by [Berkowitz and Zehe, 2020], we view this phenomenon as a manifestation of transport 
self-organization in the field, as the spatial concentration gradients, created within the 



system, distance the system from the state of perfect mixing, thus allowing for a faster and 
more efficient fluid transport (see Sections 1.1, 1.2 in the manuscript and references 
therein). As a scientific term, self-organization refers to a broad range of pattern-formation 
processes, occurring through interactions internal to the system, without intervention by 
external directing influences. This term firmly belongs to the framework of modern 
thermodynamics and is often given a quantitative meaning by virtue of entropy (see 
Section 1.2 and references therein, as well as the references at the end of this document).  

Following this broadly accepted trait, the proposed manuscript employs Shannon entropy 
to quantify the dynamics of self-organization of the transport in the field, as well as that of 
the breakthrough times, resulting from the coupled transport-reactive process. For specific 
examples in the field of hydrology we suggest [Zehe et al. 2021], where self-organization 
in preferential flow paths in porous media of various degrees of spatial heterogeneity was 
studied and quantified in terms of Shannon entropy. 
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