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Abstract. Remote sensing (RS) data is becoming an increasingly important source of information for water resources 10 

management as it provides spatially distributed data on water availability and use. However, in order to guide appropriate use 

of the data, it is important to understand the impact of the uncertainties of RS data on water resources studies. Previous studies 

have shown that the degree of closure of the water balance from remote sensing data is highly variable across basins and that 

different RS products vary in their levels of accuracy depending on climatological and geographical conditions. 

In this paper we analyzed the water balance derived runoff from global RS products for 591 937 catchments across the globe. 15 

We compared time-series of runoff estimated through a simplified water balance equation using 3 precipitation (CHIRPS, 

GPM and TRMM), 5 evapotranspiration (MODIS, SSEBop, GLEAM, CMRSET and SEBS) and 3 water storage change 

(GRACE-CSR, GRACE-JPL and GRACE-GFZ) RS datasets with monthly in situ discharge data for the period 2003-2016. 

Results were analyzed through the lens of 11 10 quantifiable catchment characteristics in order to investigate correlations 

between catchment characteristics and the quality of RS based water balance estimates of runoff, and whether specific products 20 

performed better than others in certain conditions.  

The median Nash Sutcliffe Efficiency (NSE) for all gauges and all product combinations was -0.0302, and only 43.344.9% of 

the time-series reached positive NSE.  A positive NSE could be obtained for 7273.75% of stations with at least one product 

combination, while the overall best performing product combination was positive for 53.858.4% of stations. This confirms 

previous findings that the best performing products cannot be globally established. When investigating the results by catchment 25 

characteristic, all combinations tended to show similar correlations between catchment characteristics and quality of estimated 

runoff, with the exception of combinations using MODIS ET for which the correlation was frequently reversed. The 

combinations with the GPM precipitation product performed generally worse than the CHIRPS and TRMM data. However, 

this can be attributed to the fact that the GPM data is available at higher latitudes compared to the other products, where 

performance is generally poorer. When removing high latitude stations, this difference was eliminated and GPM and TRMM 30 

showed similar performance.  
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The results show the highest positive correlation between highly seasonal rainfall and runoff NSE. On the other hand, 

increasing snow cover, altitude and latitude all decreased the ability of the RS products to close the water balance. The 

catchment’s dominant climate zone was also found to be correlated with time series performance with the tropical areas 

providing the highest (median NSE=.11) and arid areas the lowest (median NSE=-0.09) NSE values. No correlation was found 35 

between catchment area and runoff NSE. The results point tohighlight the importance of further detailed studies on the 

uncertainties of the different data products and how these interact when combining them, as well as new approaches to using 

the data rather than simple water balance type approaches. Efforts to improve specific satellite products can also be better 

targeted using the results of this study. 

1 Introduction 40 

With increasing global population and pressure on the available water resources, it is increasingly important to understand the 

spatial and temporal distribution of water resources availability and use. Quantifying the components of the water balance is a 

necessary first step in sustainably managing resources in a river basin or catchment. However, the data available in many river 

basins is insufficient to make informed water management decisions. Global monitoring of discharge, which is one of the key 

variables of interest to water managers, has been in decline since the 1980s (Vorosmarty et al., 2001). In addition, even where 45 

in situ data exists, accessibility of the data can be problematic. 

This data gap is increasingly being filled by remote sensing products which provides many advantages (see e.g. Sheffield et 

al., 2018 for a full review). For instance, remote sensing data can give valuable insights into the spatial variability of water 

availability and consumption which can be difficult or impossible to obtain through in situ data collection. Utilizing the 

hydrological variables currently derived from remote sensing, it is now theoretically possible to close the water balance and 50 

estimate runoff at the regional to global scale. However, due to uncertainties and errors in remote sensing data, this cannot 

currently be achieved at the scales and precision necessary for decision making (Sheffield et al., 2018). 

Runoff estimation using remote sensing is typically done using some form of the following water balance equation (Eq.1) (see 

e.g. Syed et al., 2005): 

𝑅௢ = 𝑃 − 𝐸𝑇௔ −
ௗௌ

ௗ௧
 (1) 55 

where Ro is total runoff, P is the precipitation, ETa is the actual evapotranspiration and dS/dt is the total water storage change. 

Of the quantities in equation (1), all but the total runoff, which includes surface and subsurface components, can be derived 

from remote sensing at the global scale: remote sensing precipitation has been available for many years and is routinely used 

as input to hydrological models (see e.g. Stisen and Sandholt, 2010), ETa is not a direct RS measurement but many different 

algorithms have been developed to produce global scale ETa from RS data (Zhang et al., 2016), and total water storage change 60 

can be monitored using measurements of the variation of the Earth’s gravitational field by the Gravity Recovery and Climate 

Experiment (GRACE, Wahr et al., 2004). We note that given adequate auxiliary information (such as for example bathymetry 

or rating curves), discharge can be monitored using radar altimetry (see e.g. Kouraev et al., 2004; Michailovsky et al., 2012). 
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However, currently (2023) neither the radar altimetry nor the auxiliary information is available consistently at the global scale 

and in situ or modeled data is therefore necessary in order to assess the closure of the water balance using Eq.1. 65 

A common approximation made when analyzing the terrestrial water budget using remote sensing over a hydrological basin 

or sub-catchment is to equate the total runoff with the discharge leaving the area of study. This is equivalent to the assumption 

that subsurface fluxes in and out of the basin are negligible. While this assumption is likely to have an impact, in particular  

onfor studies at small spatial scales (see e.g. Bouaziz et al., 2018; Fan and Schaller, 2009), it allows for the use of in situ 

discharge data to evaluate reliability of the remote sensing inputs to Eq. 1 which is then rewritten as Eq. (2): 70 

𝑄𝑅௢ = 𝑃 − 𝐸𝑇௔ −
ௗௌ

ௗ௧
    (2) 

For the components of the water cycle which are available through RS, various datasets are available and each product is 

subject to uncertainties and errors. These include the fact that most remote sensing measurements are indirect, therefore 

requiring interpretation and calibration, subject to interference (e.g. by cloud cover and topography) and limited in their spatial 

and temporal resolution relative to the phenomena measured. Each product uses its own algorithms, gap filling procedures 75 

parameterization and validation methods to produce the variable of interest. Studies have shown that there is a large variability 

between the different products for a single variable (e.g. Sahoo et al., 2011). 

Previous studies have analyzed the closure of the water balance with remote sensing and other global datasets from the regional 

to global scale. The first of such studies was performed by Syed et al. (2005) who used the land-atmosphere water balance to 

estimate discharge over the Amazon and Mississippi River Basins using data from the European Centre for Medium-Range 80 

Weather Forecasts (ECMWF) and GRACE data to measure water storage change. They found that the total basin outflow was 

well correlated with observed streamflow in spite of phase (in the Amazon) and amplitude (in the Mississippi) discrepancies. 

Sheffield et al. (2009) also analyzed the water budget closure for the Mississippi and found that the RS-estimated discharge 

was greatly overestimated. Sahoo et al. (2011) estimated the water budget from remote sensing and in situ discharge gauges 

over 10 global river basins and found errors in the runoff estimates of the order of 5 to 25% of the mean annual precipitation 85 

values. Both Sheffield et al. (2009) and Sahoo et al. (2011) concluded that the largest contributor to the lack of closure of the 

water balance were errors and biases in the precipitation products used. 

At the global scale, one of the most comprehensive studies of the closure of the water balance from global products (including 

remote sensing products, products derived from gauges and models) was carried out by Lorenz et al. (2014).  They compared 

the ability of combinations of 5 precipitation products (4 derived from gauges and 1 including RS and gauge measurements), 90 

6 ET products (including MOD16 and GLEAM from RS) and 2 storage change solutions from GRACE (GFZ and CSR) over 

96 catchments spread around the world. No single product combination was found to consistently outperform the others across 

catchments but catchments with high seasonality tended to show better results.  

More recently, Lehmann et al. (2022) performed a similar analysis on 189 river basins covering 90% of the global land surface 

and analyzed combinations of 11 precipitation and 14 ET datasets and 11 runoff datasets (including data from land surface 95 

models, gauge products and reanalysis datasets) and compared the computed storage change to GRACE data. They found that 
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95% of basins had a positive NSE for at least one product combination. They considered two catchment characteristics in 

analyzing their results and found that while no correlation between catchment area and closure of the water balance could be 

found, there was a correlation between climatic zone and performance for some of the datasets considered. 

Other studies compared runoff computations obtained from different remote sensing input datasets to assess the best product 100 

combinations in specific regions. For example, Moreira et al. (2019) computed runoff using eq. 2 over South America using 2 

precipitation products (TRMM and MSWEP), 2 ET products (MOD16 and GLEAM) and 3 storage change solutions from 

GRACE (CSR, JPL and GFZ) and found that using GLEAM for ET estimation and MSWEP for precipitation produced the 

best results. They also reported that greater biases were found in semi-arid basins with low runoff coefficients. 

Following the findings from previous studies that different catchment characteristics (e.g. climate and seasonality) and 105 

different product combinations produced different results, this study aims to investigate both the ability of different 

combinations of RS products to reproduce in situ measurements of discharge, and to identify catchment characteristics that 

affect how well the closure of the water balance can be achieved among a wider range of catchment characteristics than those 

considered in previous studies. This is important in order to help guide water practitioners to choose between different remote 

sensing datasets as the use of RS becomes more widespread in water balance assessments as well as to better understand the 110 

sources of uncertainties present in the different products and identify areas of improvement. In order to do this, 45 combinations 

of RS products (3 precipitation products, 5 ET products and 3 water storage change products) were used as input to the water 

balance equation (Eq. 2) and the discharge values computed were compared to discharge data collected from the Global Runoff 

Data Center (GRDC, 2019) over approximately 591 catchments (the number of catchments analyzed for each product 

combination varied due to coverage extent differences between products). The results were then analyzed using 101 115 

quantifiable catchment characteristics to identify potential drivers of the goodness of fit between computed and in situ values. 

2 Methodology 

The ability of different remote sensing product combinations to correctly close the water balance was assessed by deriving 

runoff time-series for each combination of products using the water-balance equation of a river-basin (see Eq. 2) and comparing 

these RS-derived runoff values with monthly time step discharge measurements obtained from the Global Runoff Data Centre 120 

(GRDC) for a period of 14 years for which the RS products are consistently available. 

The main drivers for the goodness of fit between calculated and observed runoff were investigated by evaluating 11 10 

quantifiable basin characteristics. 

2.1 Remote Sensing data 

The data needed to solve the water balance for runoff are total water storage change, precipitation and actual evapotranspiration 125 

(see Eq. 2) over the study period. These time series were acquired from a variety of global remote-sensing products: three 
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different precipitation products, five actual evapotranspiration products and three total water storage change products. An 

overview of these products is shown in Table 1 and details of the products are provided in the following sections. 

Data was collected for a period of 14 years between 2003 and 2016, which are the full years for which the storage change 
from the Gravity Recovery and Climate Experiment (GRACE) data is available. All the products used are available within 130 
this timeframe, except for CMRSET, which was discontinued at the end of 2012.
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The products cover most of the globe (see spatial coverage in Table 1). CHIRPS and TRMM do not cover areas north of 50° 

N and south of 50° S, meaning that Antarctica and the northern parts of Canada and Russia are excluded. The spatial extent of 

SSEBOP is also limited to areas between 80° N and 60° S. Furthermore, it is important to note that SEBS has many missing 135 

pixels, mainly over the larger deserts, such as the Sahara and the Arabian Desert, as well as the Taiga in Canada and Russia. 

All the products were re-sampled to a monthly time-scale and to a spatial resolution of 0.05° (specific methods are detailed in 

in the following sections) and pixel values were weighted by area before computing the time-series to account for the changing 

pixel areas at different distances from the equator. The analysis focused on spatial aggregates of runoff for catchments larger 

than 10,000 km2 and the spatial resampling was therefore not expected to have a large impact on the results. For studies which 140 

focus on smaller scales or at the pixel-level, the impact of spatial resampling would need to be carefully considered. The choice 

of a monthly time scale was motivated by the timescales of the available remote sensing, in particular the GRACE dataset. 

2.1.1 Precipitation 

Different sensors and algorithms are used to estimate global precipitation from remote sensing. Many of the available 

precipitation products combine measurements from sensors aboard multiple satellites in order to be able to achieve higher 145 

temporal resolutions and some products are merged with in situ gauge data to improve accuracy (Sheffield et al., 2018). In this 

study, the following three products were used: 

 The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 product 

(Huffman et al., 2007). 

 The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) version 2 product (Funk et al., 2015). 150 

 The Global Precipitation Measurement (GPM) mission Integrated Multi-satellitE Retrievals for GPM (IMERG) Final 

Run (Huffman et al., 2019). 

The datasets had to be resampled from their native resolutions (see Table 1) to obtain monthly data at 0.05° spatial resolution: 

 The TRMM TMPA and GPM IMERG products were resampled to 0.05°using the nearest neighbor method. 

 The daily TRMM and CHIRPS daily data products were summed to obtain monthly values. 155 

It should be noted that the products used are in large part computed from the same source satellite measurements. In particular, 

while the core GPM satellite was launched in February 2014, the IMERG algorithm was used to extend the time series back 

to June 2000 using data from the TRMM satellite to produce a continuous long-term dataset. The TRMM satellite stopped 

operating in 2015 and, post 2015, the TMPA algorithm was applied to GPM data in order to continue producing data (Huffman, 

2020).  160 
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Table 1: Overview of the different remote-sensing products acquired 

Product (version) Availability Spatial 
Resolution 

Temporal 
Resolution 

Spatial 
Coverage 

Reference Obtained from: 

Precipitation    

CHIRPS (v2) 1981-present 0.050° Daily 50° S-50° N Funk et al. (2015) https://data.chc.ucsb.edu/products/CHIRPS-2.0/ 

TRMM TMPA 
(3b42 v7) 

1998-2020 0.25° Daily 50° S-50° N Huffman et al. (2007) https://disc2.gesdisc.eosdis.nasa.gov/opendap/TRMM_
L3/TRMM_3B42_Daily.7/ 

GPM 3IMERGDF 
(v06) 

2000*-present 0.10° Monthly 90° N-90° S Huffman et al. (2019) https://gpm1.gesdisc.eosdis.nasa.gov/opendap/GPM_L
3/GPM_3IMERGDF.06/ 

Evapotranspiration    

MOD16 A2 (v006) 2001-present 500m 8-Daily 90° N-90° S Mu et al. (2011) Google Earth Engine image collection: 
MODIS/006/MOD16A2 

SSEBOP (v4) 2003-present 0.010° Dekadal 80° N-60° S Senay et al. (2013) https://edcintl.cr.usgs.gov/downloads/sciweb1/shared

/fews/web/global/monthly/eta/downloads/  

GLEAM (v3.3b) 2003-2018 0.25° Daily 90° N-90° S Miralles et al. (2011) sftp://hydras.ugent.be (access instructions: 

https://www.gleam.eu/ - current accessible version: 

v3.6b) 

CMRSET  2003-2012 0.050° Monthly 90° N-90° S Guerschman et al. 

(2009) 

Shared by Dr. Guerschman 

SEBS (5km Global 

Monthly ET) 

20032000-

20176 

0.050° Monthly 90° N-90° S Chen et al. 

(2013)(Chen et al., 

2021) 

Shared by Dr. ChenObtained from: 

https://data.tpdc.ac.cn/en/data/df4005fb-9449-4760-

8e8a-09727df9fe36/ 
Water storage change    

GRACE CSR 
(TELLUS_GRAC_
L3_CSR_RL06_LN
D v6.0) 

2003-2017** 1.0° Monthly 90° N-90° S Landerer (2019a) Retired product – see: 
https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC

_L3_CSR_RL06_LND 

GRACE GFZ 

(TELLUS_GRAC_

L3_GFZ_RL06_LN

D v6.0) 

2003-2017** 1.0° Monthly 90° N-90° S Landerer (2019b) Retired product – see: 

https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC

_L3_GFZ_RL06_LND 

GRACE JPL 

(TELLUS_GRAC_

L3_JPL_RL06_LN

D v6.0) 

2003-2017** 1.0° Monthly 90° N-90° S Landerer (2019c) Retired product – see: 

https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC

_L3_JPL_RL06_LND 

*The TRMM mission ended in 2015, but the TMPA product continued to be produced using data from GPM, the GPM satellite was launched in 2015 but the IMERG 
product starts in 2000, using TRMM data.  

Formatted: English (United States)

Formatted: English (United States)
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**The GRACE mission produced data until July 2017, the GRACE-FO satellite started producing data from June 2018. 
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2.1.2 Evapotranspiration 

Evapotranspiration (ET) obtained from RS data is not a direct measurement, and many different inputs are required for models 

to be able to represent the biophysical and environmental controls on ET (see e.g. Zhang et al., 2016). Five different 165 

evapotranspiration products have been used to solve the water balance for runoff in this study1. 

 The Operational Simplified Surface Energy Balance (SSEBop, Senay et al., 2013). 

 CSIRO MODIS Reflectance-based Evapotranspiration (CMRSET, Guerschman et al., 2009). 

 Global Land Evaporation Amsterdam Model (GLEAM, Miralles et al., 2011). 

 Surface Energy Balance System (SEBS, Chen et al., 2021)  (SEBS, Chen et al., 2013). 170 

 MODIS Global Terrestrial Evapotranspiration Algorithm (MOD16, Mu et al., 2011). 

These products use different methods and data sources for estimating evapotranspiration rates. For example, the MOD16 

algorithm is based on the Penman-Monteith equation, CMRSET and GLEAM use modified versions of the Priestly–Taylor 

equation while SSEBop and SEBS use surface energy balance approaches., Mmore detail can be found in the publications 

listed for each product. 175 

In order to obtain monthly data at 0.05° spatial resolution from the resolutions listed in Table 1 the following was done: 

 The daily and dekadal fluxes from SSEBOP and GLEAM were summed to obtain monthly values. 

 The 8-daily data from MOD16 were summed to monthly values (with reduced weights for images partially within a 

specific month). Missing data within a month was filled by setting the missing data to the monthly average of the 

available 8-day evapotranspiration in that month. 180 

 MOD16, SSEBop and GLEAM were resampled to 0.05° using the nearest neighbor method.  

2.1.3 Storage Change 

Total water storage (the sum of surface and subsurface water storage) cannot be directly measured from remote sensing. 

However, Total Water Storage Anomalies (TWSA), i.e. the deviation in total water storage relative to the long term mean, can 

be obtained from the Gravity Recovery And Climate Experiment (GRACE) satellites which maps the Earth’s gravity field 185 

approximately every 30 days (Biancamaria et al., 2019).  

The TELLUS GRACE Level-3 Monthly LAND Water-Equivalent-Thickness Surface-Mass Anomaly Release 6.0 products 

from three processing centers were used in this study (Landerer and Swenson, 2012): 

 the University of Texas – Center for Space Research (CSR, Landerer, 2019a) 

 Geo Forschungs Zentrum (GFZ, Landerer, 2019b) 190 

 Jet Propulsion Laboratory (JPL, Landerer, 2019c) 

                                                             
1 Two other products were considered before being excluded from the study: the WaPOR dataset as it does not yet have global 
coverage, and ALEXI as it was not available to the authors at the time of the study. 
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GRACE data is available between January 2003 and July 2017. The data is available in quasi-monthly time steps with variable 

windows of observation. However, most of the data is centered on the 16th of each month. The data was interpolated to the 16th 

day of every month and the central difference method was used to calculate the change in storage (see e.g. Biancamaria et al., 

2019). Finally, the data was resampled to 0.05° using the nearest neighbor method. 195 

2.2 In situ data: Global Runoff Data Centre 

The RS-derived runoff was validated using observed runoff from the Global Runoff Data Centre (GRDC), whose dataset 

comprises more than 9,900 gauging stations all over the world. By filtering to identify stations with an upstream catchment 

larger than 10,000 km2 and at least one record after January 1st 2003, an initial selection of 1,149 gauging stations was made. 

A large number of these stations are located in northern America, while the rest are spread out across the other continents (see 200 

Figure 1Figure 1). Unfortunately, among the selected stations, there are very few stations located in some parts of the world, 

in particular Northern Africa, Central Asia and Southern Asia. 

 
Figure 1: Locations of the acquired GRDC stations with runoff data. 

Within the period 2003-2016, the selected stations have an average of 125 months of data, with just over half (515 stations) 205 

having more than 160 months of data out of a maximum possible of 168 months. For the first five years of this period nearly 

all the selected stations have data with an average of 1015 data points available each month. After 2008, the availability starts 

to decrease and by 2008, the average number of data points per month drops to 580. A total of 143,117 monthly runoff records 

were used for the analysis. 

Watershed boundaries were also obtained from the GRDC (GRDC, 2011). The largest catchment covers 4,680,000 km2 (the 210 

Amazon River), and most of the catchments (862) are between 10,000 and 93,600 km2. The mean catchment size is 141,259 

km2. Altitude was known for 764 of the stations, and mean station altitude is 298.4 m.a.s.l. with a large number (161) of 

stations being located at altitudes below 40 m.a.s.l. 
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Many river basins contain multiple GRDC stations, meaning that among the 1,149 selected stations some represent nested 

catchments. 215 

The monthly mean GRDC data is given in m3/s, and was converted to mm/month in order to be compared to the monthly 

runoff computed from remote sensing data. This was done by dividing by the catchment area. 

2.3 Runoff time-series from remote sensing 

Solving the water-balance for the different combinations of three precipitation, five actual evapotranspiration and three storage-

change products, results in a total of 45 solutions. Each of these solutions consists of a series of maps of the RS-derived runoff 220 

in mm/month. For each GRDC station, the RS derived runoff time series is obtained by averaging the pixels within the 

corresponding catchment. 

Extracting these time-series at the 1,149 locations of the selected GRDC stations from these 45 combinations gives, 51,705 

time-series to analyze.  

In practice the number of time series analyzed was lower due to several issues. First of all, calculated time-series that have 225 

fewer than 30 matching data points with the GRDC data were omitted. Secondly, some of the selected stations (or their 

catchments) are (partially) located outside of the coverage area of some of the products (see Table 1). Finally, months for 

which more than 20% of the pixels in a catchment were missing have been excluded (no gap-filling has been done), 

occasionally leading to the loss of an entire times-series (for example, as mentioned previously, SEBS has many missing pixels 

in some parts of the world). This finally resulted in 937 locations with sufficient data and 31 734 time series. 230 

2.4 Validation 

The computed monthly runoff time-series have been compared with the GRDC data through the Nash–Sutcliffe model 

efficiency coefficient (NSE). The NSE is defined as (Nash and Sutcliffe, 1970): 

𝑁𝑆𝐸 = 1 −
∑ ൫ோ௢೎

೟ିோ௢బ
೟ ൯

మ೅
೟సభ

∑ ൫ோ௢బ
೟ ିோ௢೚തതതതതത൯

మ೅
೟సభ

  (3) 

where 𝑅𝑜଴
തതതതത is the mean of the observed runoffs, 𝑅𝑜௖

௧ is the RS-derived runoff at time t and 𝑅𝑜଴
௧  is the observed runoff at time 235 

t. 

2.5 Catchment Characteristics 

We selected 11 10 RS derived catchment characteristics based on the findings of earlier studies to investigate correlations with 

quality of RS estimates of discharge. These are summarized in Table 2Table 2 and detailed below. 

Table 2: Catchment characteristics considered in this study 240 

Description (continuous/discrete) Abbreviation Unit Data Source 

Formatted: English (United Kingdom)
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Size of the catchment (continuous) Area km2 GRDC (GRDC, 2019) 

Distance of the catchment outlet to the equator 

(continuous) 

|Latitude| DD GRDC (GRDC, 2019) 

Altitude of the catchment outlet (continuous) Altitude m.a.s.l GMTED10 

Total dam storage capacity in the catchment 

(continuous) 

Sdam 106m3 GRAND (Lehner et al., 2011) 

Seasonality: Standard deviation of the monthly 

precipitation in the catchment (continuous) 

SDP mm/month GPM (Huffman et al., 2019) 

Ratio between the mean annual runoff and the total 

dam storage capacity (continuous) 

𝑅𝑜௬௘௔௥௟௬
തതതതതതതതതതത: Sdam − 

 

GRAND, GRDC 

Mean ratio between the monthly runoff and 

precipitation (continuous) 

Ro : P − GRDC, GPM 

Mean of the temporal and spatial snow-cover 

(continuous) 

𝑁𝐷𝑆𝐼തതതതതതത % MOD10 (Hall et al., 2006) 

Dominant land cover class (discrete) LC - GlobCover2009 (ESA and UCLouvain, 2010) 

Dominant climate class (discrete) Climate - Köppen-Geiger Classification (Beck et al., 2018) 

 

Catchment area was chosen as a catchment parameter as it is expected that in larger catchments, the random errors may be 

compensated by averaging over large areas. Beyond this, the resolution of the GRACE product should also allow for better 

performance over larger catchments. While Biancamaria et al. (2019) found that GRACE could provide good estimates of 

storage change for catchments larger than 50,000 km2, most studies have considered only very large basins (>100,000 km2).  245 

Latitude of the outlet of the catchment (or the distance to the equator in degrees) and snow cover were both chosen because 

precipitation products are known to have higher uncertainties at high latitudes and in the estimation of snow than in that of 

liquid precipitation (Tian and Peters-Lidard, 2010). Snow storage also adds a storage and therefore lag to the runoff generated 

in the basin which, while it should be captured by the GRACE data, can add another layer of uncertainty. ET products, in 

particular those based on measurements of land surface temperature, may also face issues in computing sublimation (Xu et al., 250 

2019). 

The altitude of the catchment outlet is evaluated to see any difference in accuracy between river catchments with an outlet at 

sea level and sub-catchments with an outlet at a higher altitude. Altitude of catchment outlet is also used as a proxy for 

topography and precipitation products are known to have higher uncertainty over areas of rough topography (Tian and Peters-

Lidard, 2010). 255 

Dam storage capacity was also considered due to the smoothing effect on the runoff. While the dam storage should be captured 

by the GRACE data, it has been shown that GRACE solutions do not always correctly locate the relatively punctual changes 
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in storage due to signal leakage which could impact the results (Wang et al., 2019). Dam storage capacity relative to mean 

annual runoff was also considered both as a measure of the level of modification of the basin, and as normalization for total 

dam storage capacity. 260 

The seasonality of rainfall varies greatly around the world. Some regions have a clear dry and wet season, while others receive 

rainfall throughout the entire year. In order to make a distinction between these different rainfall patterns, the standard deviation 

of the monthly rainfall was chosen as a parameter. A catchment with a clear wet and dry season will have a higher standard 

deviation than a catchment with precipitation throughout the year. 

Finally, the ratio between runoff and precipitation is considered. Catchments with a low runoff to precipitation ratio will 265 

typically have a high evapotranspiration rate relative to precipitation, while a higher ratio indicates a low evapotranspiration 

rate. Catchments with ratios above 1 indicate discharge originating from either storage depletion in the basin, or inter-basin 

transfers.  

Besides the above characteristics which can be described by continuous variables, the following two discrete characteristics 

were considered: 270 

The dominant climate class according to the Köppen-Geiger climate classification was computed for each catchment based on 

data from Beck et al. (2018). This was considered as previous water balance closure studies have shown variable performance 

under different climate conditions (e.g. Lorenz et al., 2014), 

The final catchment characteristic considered was dominant land cover class in the catchment (computed from GlobCover2009 

(ESA and UCLouvain, 2010)). This was considered due to the variable performance of ET products in over different land 275 

cover types (e.g. Senay et al., 2013). 

For each of the continuous catchment characteristics, the Spearman Rank correlation coefficient, which is the Pearson 

correlation coefficient (r)between the ranks of the variables, was computed to assess the correlation between the each 

catchment characteristic and the NSE values of the discharge time series. The significance of the correlations (p < 0.05) was 

tested using a two-sided student t-test. r is defined as: 280 

𝑟 =
∑ ൫(௫೔ି௫̅)(௬೔ି௬ത)൯೙

೔షభ

ට∑ (௫೔ି௫̅)మ೙
೔సభ ×ට∑ (௬೔ି௬ത)మ೙

೔సభ

   (4) 

Where 𝑥௜  is the NSE for catchment i, 𝑦௜  is the catchment characteristic value for catchment i, and 𝑥̅ and 𝑦ത are the mean NSE 

and catchment characteristic value. 

For the two non-continuous characteristics (LULC and Climate class), the influence of the characteristic on the performance 

was analyzed by comparing the NSE values obtained per class. 285 
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3 Results and Discussion 

3.1 Results per GRDC station 

NSE values were computed for the 45 possible product combinations, for all GRDC stations possible for each combination. 

FIG shows a histogram of the NSE values for all 31734 time series computed and Figure 3Figure 2 shows the median NSE 

value for all possible product combinations at each of the 937 GRDC stations for which at least one NSE value could be 290 

computed. 

On average, fFor all combinations of products at all available GRDC stations, 4344.94% of the generated discharge time series 

achieve a positive median NSE value, with only 3.24% of the discharge stations obtained a median NSE > 0.5. When split by 

GRDC station, 36.9% of the stations achieve a positive median NSE value and 2.5% of >0.5. A positive NSE indicates a model 

performs better than the long-term mean of the observed time series as a predictor. Hydrological models are often considered 295 

to be of good quality when reaching NSE values of > 0.5, although many studies use different thresholds (Moriasi et al., 2007). 

 

Figure 2: Distribution of NSE values for all time-series. 891 time series with NSE<-3 not shown (2.8% of timeseries) 
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 300 

Figure 32: Median NSE for different product combinations at each GRDC station 

When considering the maximum NSE reached at each station, it was determined that a positive NSE was reached for at least 

one product combination for 72.573.7% of the stations, and an NSE of more than 0.5 was reached for only 7.3% of the stations. 

The geographical distribution of maximum NSE values is shown in Figure 4Figure 3.  
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 305 

 

Figure 43: Max NSE achieved at each GRDC station 

In the studies performed by Lorenz et al. (2014), positive NSE values were reached in 29 of the 96 (30%) basin considered 

while in the study by Lehmann et al. (2022) this was achieved in 180 of 189 (95%) of the basins. These results are however 

difficult to compare directly due to the different products chosen and the different basins considered. In terms of the datasets 310 

considered, we chose to limit our study to remote sensing products, excluding land surface models, station based gridded 

products as well as reanalysis products. This differs from the two aforementioned studies as our goal is to specifically 

investigate the remote sensing products and work with independent datasets.  

Our study, while it considers the largest number of catchments, was limited to those with GRDC station data available over 

our time period of interest which excluded some large basins. On the other hand, many smaller catchments were considered, 315 

including nested catchments where multiple stations were available. Areas with more dense gauging networks are therefore 
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overrepresented in our study and these correlate with particular catchment characteristics (for instance climate zone) which 

can influence the ability of remote sensing to close the water balance as will be seen in Sect 3.3.  

3.2 Results per product and product combination 

For the product combinations based on the GPM rainfall product, an average of 925 time series NSE values could be calculated 320 

per combination, while for the combinations based on the TRMM and CHIRPS products, an average of 599 NSE values per 

combination could be calculated (due to the smaller spatial coverage of these TRMM and CHIRPS).  

The median NSE values for all GRDC stations available for the 45 possible product combinations are presented in the 

Appendix 1. On average, for all combinations of products and all available GRDC stations, 43.4% of the generated discharge 

time series achieved a positive NSE value. The best performing combination was CHIRPS – SEBS MOD16 – JPL which 325 

yielded 53.858% of positive NSE values while the worst, GPM – SEBS GLEAM – CSR/GFZ/JPL, yielded 34.735% of positive 

NSE values. Only an average of 3.2% 3.4% of the discharge time series generated reached the threshold of 0.5, with the best 

combination (CHIRPS - CMRSET – GFZ) reaching this value for 5.9% of stations. The worst performing combination (GPM 

- GLEAM – GFZ) reached NSE>0.5 for only 1.3% of stations. 

In order to make the product combinations more comparable, the same results are presented for 1) all possible time series 330 

(columns A in Appendix 1) and 2) for only those stations for which all products could be used (columns B in Appendix 1). 

The main consequence of this is that the high latitude stations which are only covered by GPM are removed from the analysis 

which narrows the performance gap between GPM and other precipitation products. When selecting only stations covered by 

all products, the combination with the highest number of positive NSE values was GPM - CMRSET - JPL with 56% of stations 

reaching positive median NSE values.  335 

Table 3Table 3 shows that the NSE of the computed discharge is most sensitive to the choice of ET product. With median NSE 

values ranging from -0.07 02 to 0.01. The ET product with the highest median NSE and number of NSE series with values 

above 0 is MOD16. The product with the highest number of series producing NSE values above 0.5 is SSEBOP SEBS 

(followed closely by SSEBop and CMRSET). For pPrecipitation, the impact of different products on the overall median NSE 

is negligible when not considering high latitude stations where only GPM is available has the second largest impact on NSE, 340 

with median values between -.01 and -.02. GPM has produces the highest number of series with NSE values above 0, while 

CHIRPS produce the highest number of series with NSE values above .5. The computed NSE was not found to be sensitive to 

the choice of GRACE solution used.  

Table 3: Median NSE for time series containing specific products as well as number percentage of time series with positive (n. 
NSE>0)NSE, NSE above 0.5 (n. NSE>0.5) and total number of time series using the product (n. series). Series have been limited to 345 
those covered by all product combinations (591 GRDC stations). 

Variable Product Median NSE n. NSE> 0 n. NSE > .5 n. series 

P TRMM -0.01 4177 (46%) 247 (3%) 9000 

 
GPM -0.01 4291 (31%) 307 (2%) 13872 
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  CHIRPS -0.02 3997 (45%) 392 (4%) 8961 

ET SSEBOP 0 2574 (40%) 259 (4%) 6399 

 
MOD16 0.01 2798 (44%) 170 (3%) 6321 

 
SEBS -0.07 2219 (35%) 158 (2%) 6342 

 
GLEAM -0.02 2281 (36%) 107 (2%) 6381 

  CMRSET -0.01 2593 (41%) 252 (4%) 6390 

GRACE JPL -0.01 4179 (39%) 311 (3%) 10611 

 
CSR -0.01 4142 (39%) 316 (3%) 10611 

 
GFZ -0.01 4144 (39%) 319 (3%) 10611 

 

Variable Product Median NSE %NSE>0 %NSE>0.5 n. Series 

P TRMM -0.00 49 3.2 8850 

 
GPM -0.00 50 3.9 8850 

 CHIRPS -0.00 49 4.7 8850 

ET SSEBOP -0.00 48 4.9 5310 

 
MOD16 0.01 52 3.2 5310 

 
SEBS 0.01 54 4.9 5310 

 
GLEAM -0.02 43 2.0 5310 

 CMRSET -0.01 49 4.8 5310 

GRACE JPL -0.00 50 3.9 8850 

 
CSR -0.00 49 4.0 8850 

 
GFZ -0.00 49 4.0 8850 

 

 

The precipitation and ET products used in the best performing combination for each station are shown in Figure 5Figure 4 and 350 

Figure 6Figure 5. Because of the low sensitivity of NSE to storage change solution, no map was generated for the different 

storage change products. 
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Figure 54: Precipitation product used in combination with highest NSE at station. Note that GPM is the only product available for 355 
latitudes >50°. 
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Figure 65: ET product used in combination with highest NSE at station 

These results show that no single product or combination consistently outperformed others when it comes to the closure of the 360 

water balance. This is consistent with findings of previous studies (Lehmann et al., 2022; Lorenz et al., 2014). Some geographic 

patterns in the better performing products appear in Figure 5Figure 4 and Figure 6Figure 5 and will be discussed in the context 

of the catchment characteristics in the following section. 

3.3 Results per catchment characteristic 

For each of the continuous catchment characteristics listed in Table 2Table 2, correlations between the characteristic and the 365 

NSE at the GRDC station were computed. Figure 7Figure 6 shows a summary of the correlations found for all product 

combinations and the catchment characteristics. 
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Presence or absence of correlation as well as whether the correlation strength and sign is positive or negative tends to be 

consistent across most product combinations., except for some combinations containing ET from MODIS, specifically when 

combined with CHIRPS or TRMM. 370 
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Figure 76: Pearson Spearman correlations for different product combinations between the NSEs of catchments and characteristics 
of those catchments. See Table 2Table 2  for an overview of the catchment characteristics. White dots were added to the negative 375 
correlations for monochromatic legibility. 

 

Of the catchment characteristics described by a continuous variable, seasonality (SDp) shows the strongest correlation with 

the NSE of the discharge. Out of the 45All product combinations, 39 showed a significant correlation with the standard 

deviation of precipitation. The 6 combinations not showing a correlation all use MODIS as the ET product. It should be noted 380 

that precipitation from GPM was used to compute seasonality, meaning that errors and uncertainties in GPM data could affect 

catchment classification. The influence of seasonality is in agreement with the findings of Lorenz et al. (2014) who found that 

the closure of the water balance can be better achieved in basins with a strong seasonal precipitation signal. Lorenz et al. (2014) 

observed that in catchments with low seasonal runoff variability, the biases in the different input datasets prevented the accurate 

computation of runoff. 385 

Snow cover has the strongest negative correlation with NSE. NDSI shows a significant negative correlation for 39 of the 45 

product combinations. Combinations including MODIS ET and TRMM or CHIRPS or TRMM precipitation are the only ones 

for which no correlation or a positive correlation was found. Altitude at the gauging station, which is correlated to snow cover 

for smaller basins, shows a weaker negative correlation with NSE. The strong negative correlation with snow could be due to 

multiple factors. For instance, snow retrievals have lower accuracies as compared to liquid precipitation retrievals from satellite 390 

and precipitation retrievals are less accurate over frozen ground (Tang et al., 2020; Tian et al., 2014; Tian and Peters-Lidard, 

2010), ET products may not capture the process of sublimation as well as other types of ET (see e.g. Xu et al., 2019), and the 

snow storage variations which drive discharge timing in some catchments may not be adequately captured by GRACE. 

Analysis of runoff versus discharge totals over hydrological years, rather than monthly could mitigate the snow storage issue. 

A similar analysis with more recent data should also be carried out to check if better results for catchments further from the 395 

equator (>50°N and >50°S) can be obtained, as the GPM data from the TRMM era (pre-2014) for higher latitudes is considered 

partial coverage. The GPM core observatory also has higher sensitivity to snowfall than earlier sensors (Behrangi et al., 2018) 

and was only launched in 2014. 

Latitude also shows a correlation with NSE for 39 of 45all product combinations while the remaining 6 show the same pattern 

as for snow cover. This correlation is negative for the same 39 product combinations as snow cover, with the remaining 6 400 

combinations showing a positive correlation. GPM shows a stronger negative correlation with latitude and snow cover than 

the other products in Figure 6. This effect however disappears when limiting the analysis to catchments located between 50°S 

and 50°N where the other precipitation products are available, with the average Pearson correlation coefficient going from -

0.28 to -0.16 (the average values for the TRMM and CHIRPS combinations are -0.16 and -0.12 respectively). This negative 

correlation was expected based on the more extensive snow cover and frozen ground found further from the equator which 405 

negatively impacts performance for both P and ET products as explained above. GRACE measurements are also subject to the 

effects of the Glacial Isostatic Adjustment (GIA), the redistribution of mass within the Earth resulting from the end of the last 
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ice age (Wahr et al., 1998). While the GIA signal is removed from GRACE TWSA data products, any errors in the GIA models 

used in this process will result in higher errors in TWSA where the GIA signal is strongest which correlates with higher 

latitudes.   410 

Dam storage capacity shows a negative correlation with NSE only for product combinations using GPM as a precipitation 

product and for the TRMM-MOD16 combination. This is also the case for dam storage relative to total runoff. For other 

combinations, no significant correlations were found. Total runoff relative to dam storage capacity shows a negative correlation 

for most product combination except for CHIRPS-GLEAM (positive) and TRMM-GLEAM (no significant correlation). 

Runoff ratio shows a negative correlation with NSE for 18 12 of the 45 combinations, and a positive correlation for only 124 415 

of the 45. Runoff ratio is computed as the ratio of discharge from GRDC and precipitation from GPM, and the maximum value 

found was 42, indicating potentially erroneous data or a strong proportion of discharge originating from storage depletion or 

inter-basin transfers. Inter-basin transfers in particular would not be represented in our computation of runoff. The runoff ratio 

was found to be above 1 for 103 stations (out of 937). When excluding those stations, the correlation becomes positive for 15 

of the combinations and negative for 27. 420 

No strongA weak negative correlation was found between drainage area and NSE of the RS-derived runoff. Only 6 of the 45 

product combinations, all using MOD16 as ET, show a correlation which is negative for 28 of the combinations. This was 

unexpected as the GRACE data in particular is expected to perform better for larger catchments. The lack of a strong correlation 

between NSE and catchment area is surprising as the storage change component from GRACE is expected to perform better 

over larger catchments, particularly because we limited the catchment size here to catchments larger than 10,000 km2 while 425 

GRACE has an inherent spatial resolution of ~300km (90 000 km2) and has been foundis expected to produce reliable estimates 

of storage change for catchments with areas of more than 50,000 km2 (Biancamaria et al., 2019). Smaller catchments will also 

be more susceptible to signal leakage from outside the catchment (Dutt Vishwakarma et al., 2016). Catchment size is also 

expected to influence the applicability the hypothesis of negligible subsurface fluxes necessary for the application of Eq. 2 as 

this hypothesis has been shown to be incorrect for smaller catchments (Bouaziz et al., 2018; Fan and Schaller, 2009). Sahoo 430 

et al. (2011) and Lehmann et al. (2022) similarly found no correlation between basin area and water balance closure though 

their studies were limited to 10 very large basins and basins with areas larger than 65 000 km2 respectively. 

Results for the two discrete variables (dominant land cover type and dominant climate class) are shown in Table 4Table 4, 

Table 5Table 5, Table 6Table 6 and Table 7Table 7. 

Variability was found between the results for different land cover types. Results for basins with dominant LU codes 40 and 50 435 

(both types of broadleaved forests, see Table 4Table 4) perform better than other land cover types, they are the only categories 

for which median NSE is positivewith median NSE values of 0.21 and 0.14 respectively. 

Some land cover classes, for example Open (15-40%) needleleaved deciduous or evergreen forest (>5m) (class 90), perform 

particularly poorly, which can be expected as these have a near complete overlap with higher latitude areas. MOD16 performs 

better than other products in this LC class with a median NSE value of -0.1 while combinations using the other ET products 440 

produces median NSE values between -0.33 and -0.96 (Table 5Table 5). 
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Variability is also observed between climate zones, with tropical (median NSE=.11, and median NSE for tropical monsoon 

.28, see Table 6Table 6 and Appendix 1 for the detailed results per climate zone) and temperate zones (median NSE=.08) 

performing better than arid (median NSE=-.04) and continental zones (median NSE= -.08). The SSEBop and CMRSET 

products produce the highest NSE values in tropical climates, with median NSE values of 0.17, followed by SEBS at 0.13 15 445 

(Table 7Table 7). In temperate zones, using GPM produces the highest median NSE values of 0.11. Lehmann et al. (2022) also 

analyzed the water balance closure by climate zone and found that errors were relatively consistent within zones with some 

exceptions. As in this study, the best performance was observed in the “equatorial rain forest/monsoon” zone. This result is 

also in agreement with the influence of seasonality of rainfall discussed above and observed by Lorenz et al. (2014). Sahoo et 

al. (2011) on the other hand did not find consistent behavior based on climate zone. 450 

 

 

 

 

 455 

Table 4: NSE values for basins classified by dominant land cover class (LCC) and percentage of time series with positive NSE, 
percentage NSE above 0.5, total number of time series with the corresponding land cover (n. series) and corresponding number of 
catchments (n. catchments) 

LCC Land Cover description 

GlobCover 

Median 

NSE 

n. NSE 

>0 

n. NSE 

>0.5 

n. 

series 

n. 

catchments 

14 Rainfed croplands -0.02 867 (45%) 14 (1%) 1920 65 

20 Mosaic cropland (50-70%) / vegetation 

(grassland/shrubland/forest) (20-50%) 

-0.07 445 (41%) 13 (1%) 1080 33 

30 Mosaic vegetation (grassland/shrubland/forest) (50-

70%) / cropland (20-50%) 

0.00 1088 (49%) 4 (0%) 2220 56 

40 Closed to open (>15%) broadleaved evergreen or 

semi-deciduous forest (>5m) 

0.19 2602 (72%) 619 (17%) 3603 83 

50 Closed (>40%) broadleaved deciduous forest (>5m) 0.16 4347 (72%) 218 (4%) 6054 162 

60 Open (15-40%) broadleaved deciduous 

forest/woodland (>5m) 

-0.09 165 (40%) 0 (0%) 417 19 

70 Closed (>40%) needleleaved evergreen forest (>5m) -0.17 658 (25%) 12 (0%) 2631 62 

90 Open (15-40%) needleleaved deciduous or 

evergreen forest (>5m) 

-0.85 358 (14%) 20 (1%) 2619 173 

100 Closed to open (>15%) mixed broadleaved and 

needleleaved forest (>5m) 

-0.70 23 (6%) 0 (0%) 393 17 
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110 Mosaic forest or shrubland (50-70%) / grassland 

(20-50%) 

-2.91 0 (0%) 0 (0%) 30 2 

120 Mosaic grassland (50-70%) / forest or shrubland 

(20-50%) 

-0.27 51 (17%) 0 (0%) 300 8 

130 Closed to open (>15%) (broadleaved or 

needleleaved, evergreen or deciduous) shrubland 

(<5m) 

-0.05 1364 (33%) 66 (2%) 4080 95 

140 Closed to open (>15%) herbaceous vegetation 

(grassland, savannas or lichens/mosses) 

-0.05 1263 (28%) 0 (0%) 4554 116 

150 Sparse (<15%) vegetation -0.75 312 (20%) 0 (0%) 1542 75 

180 Closed to open (>15%) grassland or woody 

vegetation on regularly flooded or waterlogged soil - 

Fresh, brackish or saline water 

-0.07 6 (17%) 0 (0%) 36 1 

200 Bare areas -0.35 21 (7%) 0 (0%) 288 7 

210 Water bodies -0.50 0 (0%) 0 (0%) 66 4 

 

LCC Land Cover description 

GlobCover 

Median 

NSE 

% 

NSE 

>0 

% 

NSE 

>0.5 

n. 

series 

n. 

catchments 

14 Rainfed croplands -0.01 45 1 1920 65 

20 Mosaic cropland (50-70%) / vegetation 

(grassland/shrubland/forest) (20-50%) 

-0.03 44 1 1080 33 

30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / 

cropland (20-50%) 

0.01 55 0 2220 56 

40 Closed to open (>15%) broadleaved evergreen or semi-

deciduous forest (>5m) 

0.21 75 19 3612 83 

50 Closed (>40%) broadleaved deciduous forest (>5m) 0.14 68 4 6045 162 

60 Open (15-40%) broadleaved deciduous forest/woodland 

(>5m) 

-0.12 36 0 417 19 

70 Closed (>40%) needleleaved evergreen forest (>5m) -0.21 25 1 2619 62 

90 Open (15-40%) needleleaved deciduous or evergreen forest 

(>5m) 

-0.61 16 1 2547 173 

100 Closed to open (>15%) mixed broadleaved and 

needleleaved forest (>5m) 

-0.53 5 0 390 17 

110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) -2.51 0 0 30 2 
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120 Mosaic grassland (50-70%) / forest or shrubland (20-50%) -0.04 28 0 297 8 

130 Closed to open (>15%) (broadleaved or needleleaved, 

evergreen or deciduous) shrubland (<5m) 

-0.02 39 2 4086 95 

140 Closed to open (>15%) herbaceous vegetation (grassland, 

savannas or lichens/mosses) 

-0.03 34 0 4557 116 

150 Sparse (<15%) vegetation -0.72 23 0 1521 75 

180 Closed to open (>15%) grassland or woody vegetation on 

regularly flooded or waterlogged soil - Fresh, brackish or 

saline water 

-0.07 17 0 36 1 

200 Bare areas -0.33 11 0 297 7 

210 Water bodies -0.48 0 0 60 4 

 460 

 

Table 5: Median NSE values per product and per dominant LU class. Cells in italic bold have median values>0, and cells in bold 
>0.1. Empty cells represent a category where a specific product is not available. 

 
 

TRMM GPM CHIRPS SSEBOP MOD16 SEBS GLEAM CMRSET JPL CSR GFZ 

 

 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

D
om

in
an

t 
L

an
d 

C
ov

er
 C

la
ss

 

14 0.00 -0.01 -0.03 -0.14 -0.03 -0.02 0.00 0.01 -0.02 -0.01 -0.02 

20 -0.01 -0.12 -0.07 0.04 -0.32 -0.03 -0.11 -0.06 -0.07 -0.06 -0.07 

30 -0.01 0.00 0.00 -0.01 0.00 -0.28 0.03 0.02 0.00 0.00 0.00 

40 0.20 0.18 0.20 0.21 0.21 0.21 0.07 0.27 0.19 0.19 0.20 

50 0.16 0.18 0.13 0.19 0.19 0.19 0.05 0.10 0.16 0.16 0.15 

60 -0.07 -0.13 -0.07 0.07 -0.46 -0.04 -0.13 0.01 -0.10 -0.09 -0.09 

70 -0.19 -0.15 -0.16 -0.12 0.02 -0.16 -0.17 -1.43 -0.16 -0.17 -0.16 

90 -0.35 -0.87 -0.40 -0.59 -0.11 -1.55 -1.12 -0.96 -0.88 -0.83 -0.85 

100 -0.77 -0.55 -0.98 -0.41 -0.21 -0.81 -0.79 -1.10 -0.70 -0.71 -0.68 

110   -2.91   -3.72 -7.15 -5.56 -4.11 -2.41 -2.90 -2.99 -3.08 

120 -0.14 -0.35 -0.12 -0.29 -0.50 -1.10 -0.04 -0.03 -0.28 -0.28 -0.23 

130 -0.03 -0.06 -0.04 -0.03 -0.01 -0.32 -0.01 -0.09 -0.05 -0.05 -0.05 

140 -0.04 -0.06 -0.04 -0.04 -0.05 -0.35 -0.02 -0.02 -0.05 -0.05 -0.05 

150 -0.20 -0.98 -0.33 -0.84 -0.27 -0.79 -1.32 -0.79 -0.75 -0.77 -0.74 

180 -0.09 -0.08 0.00 -0.02 -0.66   -0.10 -0.06 -0.06 -0.07 -0.07 

200 -0.35 -0.41 -0.32 -0.06 -0.27 -0.33 -0.33 -2.01 -0.36 -0.34 -0.34 

210 -0.67 -0.50 -0.80 -0.22 -0.26 -0.61 -0.70 -1.24 -0.52 -0.51 -0.49 
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TRMM GPM CHIRPS SSEBOP MOD16 SEBS GLEAM CMRSET JPL CSR GFZ 

 

 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

D
om
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an

t 
L

an
d 

C
ov

er
 C
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ss

 

14 0.01 -0.04 -0.02 -0.14 -0.03 -0.01 -0.0 0.01 -0.01 -0.01 -0.02 

20 0.02 -0.11 -0.03 0.04 -0.32 0.04 -0.11 -0.06 -0.03 -0.03 -0.03 

30 0.01 0.02 0.01 -0.01 -0.0 0.04 0.03 0.02 0.01 0.01 0.01 

40 0.21 0.18 0.24 0.21 0.21 0.25 0.07 0.27 0.2 0.2 0.21 

50 0.14 0.17 0.12 0.19 0.19 0.12 0.05 0.1 0.14 0.15 0.14 

60 -0.07 -0.13 -0.12 0.07 -0.46 -0.13 -0.13 0.01 -0.13 -0.11 -0.12 

70 -0.25 -0.17 -0.2 -0.12 0.02 -0.34 -0.17 -1.43 -0.22 -0.22 -0.2 

90 -0.42 -0.62 -0.41 -0.58 -0.1 -0.33 -1.12 -0.96 -0.61 -0.6 -0.62 

100 -0.53 -0.47 -0.78 -0.41 -0.21 -0.52 -0.79 -1.1 -0.53 -0.55 -0.5 

110 - -2.51 - -3.72 -7.14 -2.66 -4.11 -2.41 -2.45 -2.6 -2.7 

120 -0.03 -0.08 -0.02 -0.29 -0.5 0.0 -0.04 -0.03 -0.04 -0.04 -0.04 

130 -0.02 -0.03 -0.02 -0.03 -0.01 -0.0 -0.01 -0.09 -0.02 -0.02 -0.02 

140 -0.03 -0.04 -0.01 -0.04 -0.05 -0.0 -0.02 -0.02 -0.02 -0.03 -0.03 

150 -0.18 -0.88 -0.32 -0.84 -0.27 -0.44 -1.33 -0.79 -0.72 -0.72 -0.69 

180 -0.09 -0.08 0.0 -0.02 -0.66 - -0.1 -0.06 -0.06 -0.07 -0.07 

200 -0.29 -0.35 -0.32 -0.06 -0.27 -0.19 -0.33 -2.01 -0.34 -0.32 -0.32 

210 -0.66 -0.48 -0.8 -0.22 -0.25 - -0.7 -1.24 -0.5 -0.49 -0.47 
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Table 6: NSE values for basins classified by climate class 

Climate class 

Median 

NSE 

n. NSE 

>0 

n. NSE 

>0.5 

n. 

series 

n. catchments 

A Tropical 0.11 3392 (64%) 584 (11%) 5283 127 

B Arid -0.09 1464 (23%) 53 (1%) 6474 153 

C Temperate 0.06 3623 (60%) 181 (3%) 6054 162 

D Continental -0.08 4883 (36%) 148 (1%) 13620 526 

E Polar 0.02 208 (52%) 0 (0%) 402 11 

 

Climate class 

Median 

NSE 

% NSE 

>0 

% NSE 

>0.5 

n. series n. 

catchments 

A Tropical 0.11 67 12 5301 127 

B Arid -0.04 30 1 6483 153 

C Temperate 0.08 63 3 6039 162 
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D Continental -0.08 35 1 13509 526 

E Polar 0.02 52 0 402 11 
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Table 7: Median NSE values per product and dominant climate class. Cells in italic bold have median values>0, and cells in bold 
>0.1.  

 TRMM GPM CHIRPS SSEBOP MOD16 SEBS GLEAM CMRSET JPL CSR GFZ 

 
Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

A Tropical 0.12 0.11 0.12 0.17 0.03 0.15 0.02 0.17 0.11 0.12 0.12 

B Arid -0.03 -0.05 -0.04 -0.05 -0.07 -0.01 -0.03 -0.12 -0.04 -0.04 -0.04 

C Temperate 0.05 0.11 0.08 0.07 0.08 0.1 0.06 0.07 0.08 0.08 0.08 

D Continental -0.03 -0.15 -0.04 -0.09 0.02 -0.11 -0.12 -0.19 -0.08 -0.08 -0.08 

E Polar 0.16 -0.0 -0.03 0.34 0.13 0.28 -0.32 -0.28 0.01 0.01 0.02 

 

 

             

 

TRMM GPM CHIRPS SSEBOP MOD16 SEBS GLEAM CMRSET JPL CSR GFZ 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

A Tropical 0.11 0.10 0.10 0.17 0.03 0.13 0.02 0.17 0.10 0.11 0.11 

B Arid -0.07 -0.09 -0.09 -0.05 -0.07 -0.43 -0.03 -0.12 -0.09 -0.09 -0.09 

C Temperate 0.04 0.11 0.05 0.07 0.08 0.05 0.06 0.07 0.06 0.06 0.06 

D Continental -0.02 -0.18 -0.04 -0.09 0.02 -0.15 -0.12 -0.19 -0.08 -0.08 -0.09 

E Polar 0.16 0.00 -0.03 0.34 0.13 0.35 -0.32 -0.28 0.01 0.01 0.02 

 475 

4 Conclusions and perspectives 

In this study, we analyzed the closure of the water balance at the monthly time-scale for catchments of more than 100 000km2 

by using remote sensing to compute runoff and comparing the computed runoff to in-situ measurements of discharge from the 

GRDC using the Nash-Sutcliffe Efficiency as the performance metric. We computed the results for 45 different remote sensing 

product combinations at between591 595 to 937 931 gauging stations depending on the product combinations and analyzed 480 

the results through the lens of both the remote sensing products and of 11 10 catchment characteristics which we computed 

globally.  
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Overall, a positive NSE could be reached for at least one product combination for 72.573.7% of the stations considered. While 

some product combinations showed better results than others, no one combination or product stood out as systematically 

performing better than the others. Correlations were found between the NSE values obtained and the ability of remote sensing 485 

to close the water balance between areas with different precipitation patterns, in areas with large snow-cover, in different 

climatic zones and in areas with different dominant land cover classes. This highlights the importance of validating RS products 

widely. In particular, our results point to the necessity of the improvement of products in continental and arid climate zones 

and some land covers. 

While a number of catchments characteristics were analyzed, these are not exhaustive and for those chosen could have also 490 

been computed differently. For example, for larger basins, selecting only one land use category as representative can obscure 

some differences, and using percentages of area under different types of vegetation may help to further refine results. The same 

may be considered for climate class. Some additional characteristics which could be interesting to investigate are percentage 

of area under irrigation in particular for potentially differentiating the different ET products and as a measure of the degree of 

alteration. One limitation for such an analysis would be the accuracy of global irrigation maps. Some examples of other 495 

catchment characteristics which suffer from similar limitations in terms of global data availability or quality but would be of 

interest are soil type and hydrogeology..  

Many satellite products are also calibrated in specific areas though it is not always straightforward to obtain this information 

consistently. It would be very interesting to assess how different the performance is in areas where calibration activities are 

carried out versus others and how this impacts the choice of product. These areas could also be correlated with areas with a 500 

high density of GRDC stations. Efforts to collect discharge data in underrepresented areas should be undertaken to be included 

in future studies. 
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Appendix 1: Full result tables for all combinations and by climate zone 

Table A1 - Median NSE values for the 45 product combinations. n. NSE>x is the number of time series for which NSE>x and n. 
catchments is the number of series considered for the specific combination (1 per catchment). The results are presented both for all 
GRDC stations available for each combination (A.) and for the GRDC stations common to all product combinations (B.) 620 

Product Combination 

median 

NSE 

n. 

NSE>0.5 

n. 

NSE>0 

n. 

catchmts 
 

median 

NSE 

n. 

NSE>0.5 

n. 

NSE>0 

n. 

catchmts 

 
A: For all possible series 

 
B: For series common to all products 

TRMM - SSEBOP - JPL 0.00 24 295 601 
 

0.00 24 295 591 

TRMM - SSEBOP - GFZ -0.01 24 285 601 
 

0.00 24 285 591 

TRMM - SSEBOP - CSR 0.00 25 292 601 
 

0.00 25 292 591 

TRMM - CMRSET - JPL -0.01 21 291 604 
 

-0.01 21 288 591 

TRMM - CMRSET - GFZ -0.01 22 288 604 
 

-0.01 22 285 591 

TRMM - CMRSET - CSR -0.01 21 291 604 
 

0.00 21 288 591 

TRMM - GLEAM - JPL -0.01 10 257 599 
 

-0.01 10 255 591 

TRMM - GLEAM - GFZ -0.02 10 253 599 
 

-0.02 10 251 591 

TRMM - GLEAM - CSR -0.02 10 256 599 
 

-0.01 10 253 591 

TRMM - SEBS - JPL -0.05 12 256 601 
 

-0.05 12 254 591 

TRMM - SEBS - GFZ -0.06 14 253 601 
 

-0.06 14 251 591 

TRMM - SEBS - CSR -0.06 12 256 601 
 

-0.06 12 252 591 

TRMM - MOD16 - JPL 0.01 14 309 595 
 

0.01 14 309 591 

TRMM - MOD16 - GFZ 0.01 14 311 595 
 

0.01 14 311 591 

TRMM - MOD16 - CSR 0.01 14 308 595 
 

0.01 14 308 591 

CHIRPS - SSEBOP - JPL -0.01 35 288 601 
 

-0.01 35 286 591 

CHIRPS - SSEBOP - GFZ 0.00 35 289 601 
 

0.00 35 287 591 

CHIRPS - SSEBOP - CSR -0.01 35 289 601 
 

0.00 35 287 591 

CHIRPS - CMRSET - JPL -0.04 33 249 598 
 

-0.04 33 248 591 

CHIRPS - CMRSET - GFZ -0.05 35 248 598 
 

-0.04 35 247 591 

CHIRPS - CMRSET - CSR -0.04 33 249 598 
 

-0.04 33 248 591 

CHIRPS - GLEAM - JPL -0.01 11 257 599 
 

-0.01 11 255 591 

CHIRPS - GLEAM - GFZ -0.02 13 252 599 
 

-0.02 13 250 591 

CHIRPS - GLEAM - CSR -0.02 12 246 599 
 

-0.02 12 245 591 

CHIRPS - SEBS - JPL -0.08 24 235 594 
 

-0.08 24 235 591 

CHIRPS - SEBS - GFZ -0.09 23 229 594 
 

-0.09 23 229 591 

CHIRPS - SEBS - CSR -0.09 24 234 594 
 

-0.09 24 234 591 

CHIRPS - MOD16 - JPL 0.01 26 320 595 
 

0.01 26 319 591 

CHIRPS - MOD16 - GFZ 0.01 27 315 595 
 

0.01 27 314 591 

CHIRPS - MOD16 - CSR 0.01 26 314 595 
 

0.01 26 313 591 
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GPM - SSEBOP - JPL -0.06 27 339 931 
 

-0.01 27 284 591 

GPM - SSEBOP - GFZ -0.06 27 339 931 
 

-0.01 26 282 591 

GPM - SSEBOP - CSR -0.06 29 331 931 
 

-0.01 28 276 591 

GPM - CMRSET - JPL -0.07 28 379 928 
 

0.03 28 331 591 

GPM - CMRSET - GFZ -0.07 31 377 928 
 

0.02 31 329 591 

GPM - CMRSET - CSR -0.08 28 378 928 
 

0.03 28 329 591 

GPM - GLEAM - JPL -0.06 14 327 929 
 

-0.01 14 258 591 

GPM - GLEAM - GFZ -0.06 12 325 929 
 

-0.02 12 258 591 

GPM - GLEAM - CSR -0.06 15 327 929 
 

-0.02 15 256 591 

GPM - SEBS - JPL -0.22 16 319 919 
 

-0.07 16 253 591 

GPM - SEBS - GFZ -0.23 17 319 919 
 

-0.07 17 256 591 

GPM - SEBS - CSR -0.22 16 320 919 
 

-0.07 16 255 591 

GPM - MOD16 - JPL -0.02 23 425 917 
 

0.02 16 309 591 

GPM - MOD16 - GFZ -0.02 20 423 917 
 

0.01 16 309 591 

GPM - MOD16 - CSR -0.02 24 427 917 
 

0.01 17 306 591 
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Product Combination 

median 

NSE 

n. 

NSE>0.5 

n. 

NSE>0 

n. 

catchmts 
 

median 

NSE 

n. 

NSE>0.5 

n. 

NSE>0 

n. 

catchmts 

 
A: For all possible catchments 

 

B: For catchments common to all 

products 

TRMM - SSEBOP - JPL 0.0 24 296 601 
 

0.0 24 295 590 

TRMM - SSEBOP - GFZ 0.0 24 286 601 
 

0.0 24 285 590 

TRMM - SSEBOP - CSR 0.0 25 292 601 
 

0.0 25 290 590 

TRMM - CMRSET - JPL 0.0 21 291 604 
 

0.0 21 288 590 

TRMM - CMRSET - GFZ 0.0 22 290 604 
 

0.0 22 287 590 

TRMM - CMRSET - CSR 0.0 21 292 604 
 

0.0 21 289 590 

TRMM - GLEAM - JPL -0.01 10 259 599 
 

-0.01 10 256 590 

TRMM - GLEAM - GFZ -0.01 10 253 599 
 

-0.01 10 250 590 

TRMM - GLEAM - CSR -0.01 10 256 599 
 

-0.01 10 253 590 

TRMM - SEBS - JPL 0.01 25 324 602 
 

0.01 25 320 590 

TRMM - SEBS - GFZ 0.01 26 326 602 
 

0.01 26 321 590 

TRMM - SEBS - CSR 0.01 25 322 602 
 

0.01 25 317 590 

TRMM - MOD16 - JPL 0.0 14 310 595 
 

0.0 14 309 590 

TRMM - MOD16 - GFZ 0.0 14 311 595 
 

0.0 14 310 590 

TRMM - MOD16 - CSR 0.0 14 308 595 
 

0.01 14 307 590 

CHIRPS - SSEBOP - JPL 0.0 35 289 601 
 

0.0 35 286 590 

CHIRPS - SSEBOP - GFZ 0.0 35 290 601 
 

0.0 35 287 590 

CHIRPS - SSEBOP - CSR 0.0 35 289 601 
 

0.0 35 286 590 

CHIRPS - CMRSET - JPL -0.04 33 251 598 
 

-0.03 33 250 590 

CHIRPS - CMRSET - GFZ -0.04 35 247 598 
 

-0.03 35 246 590 

CHIRPS - CMRSET - CSR -0.03 33 251 598 
 

-0.03 33 250 590 

CHIRPS - GLEAM - JPL -0.01 11 257 599 
 

-0.01 11 254 590 

CHIRPS - GLEAM - GFZ -0.01 13 252 599 
 

-0.01 13 249 590 

CHIRPS - GLEAM - CSR -0.01 12 247 599 
 

-0.01 12 245 590 

CHIRPS - SEBS - JPL 0.01 34 348 596 
 

0.01 34 345 590 

CHIRPS - SEBS - GFZ 0.01 31 340 596 
 

0.01 31 337 590 

CHIRPS - SEBS - CSR 0.01 32 342 596 
 

0.01 32 339 590 

CHIRPS - MOD16 - JPL 0.01 26 320 595 
 

0.01 26 318 590 

CHIRPS - MOD16 - GFZ 0.0 27 314 595 
 

0.0 27 312 590 

CHIRPS - MOD16 - CSR 0.01 26 315 595 
 

0.01 26 313 590 

GPM - SSEBOP - JPL -0.06 26 337 931 
 

0.0 26 282 590 

GPM - SSEBOP - GFZ -0.05 27 336 931 
 

0.0 26 280 590 

GPM - SSEBOP - CSR -0.05 29 330 931 
 

0.0 28 275 590 
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GPM - CMRSET - JPL -0.07 28 379 928 
 

0.02 28 331 590 

GPM - CMRSET - GFZ -0.07 31 377 928 
 

0.02 31 326 590 

GPM - CMRSET - CSR -0.08 28 378 928 
 

0.02 29 328 590 

GPM - GLEAM - JPL -0.06 14 327 929 
 

-0.01 14 257 590 

GPM - GLEAM - GFZ -0.06 12 325 929 
 

-0.02 12 257 590 

GPM - GLEAM - CSR -0.06 15 327 929 
 

-0.01 15 256 590 

GPM - SEBS - JPL -0.22 16 319 919 
 

0.0 29 306 590 

GPM - SEBS - GFZ -0.23 17 319 919 
 

0.0 30 296 590 

GPM - SEBS - CSR -0.22 16 320 919 
 

0.0 30 299 590 

GPM - MOD16 - JPL -0.02 23 425 917 
 

0.01 16 307 590 

GPM - MOD16 - GFZ -0.02 20 423 917 
 

0.01 17 307 590 

GPM - MOD16 - CSR -0.02 24 427 917 
 

0.01 18 304 590 

          

 
Table A2: Full results by climate zone. % NSE>x is the number percentage of time series for which NSE>x and n.series the number 
of time-series produced for each climate class and n.catchments is the number of catchments located in the different climate classes.  

Climate class  
Median 

NSE 
n.NSE>0 n.NSE>0.5 

n. 

series 

n. 

catchments 

1 Af Tropical rainforest climate 0.15 300 52 450 10 

2 Am Tropical monsoon climate 0.28 642 284 936 21 

3 Aw/As Tropical wet and dry or savanna  0.08 2450 248 3897 96 

4 BWh Hot desert climate -0.11 126 0 579 14 

5 BWk Cold desert climate -0.20 27 0 315 7 

6 BSh Hot semi-arid climate -0.04 448 53 1137 28 

7 BSk Cold semi-arid climate -0.09 863 0 4443 104 

8 Csa Hot-summer Mediterranean climate -0.04 33 0 90 2 

9 Csb Warm-summer Mediterranean climate -0.12 166 30 450 10 

11 Cwa 
Monsoon-influenced humid 

subtropical climate 
0.05 218 51 396 21 

12 Cwb 
Monsoon-influenced temperate 

oceanic climate 
-0.06 85 0 225 5 

14 Cfa Humid subtropical climate 0.11 2347 90 3591 89 

15 Cfb Temperate oceanic climate 0.06 774 10 1302 35 

18 Dsb 
Mediterranean-influenced warm-

summer humid continental climate 
-0.85 54 0 345 9 

19 Dsc 
Mediterranean-influenced subarctic 

climate 
-0.09 30 4 135 7 
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21 Dwa 
Monsoon-influenced hot-summer 

humid continental climate 
0.74 45 45 45 3 

22 Dwb 
Monsoon-influenced warm-summer 

humid continental climate 
-0.04 26 0 105 3 

23 Dwc Monsoon-influenced subarctic climate -0.86 16 0 120 8 

24 Dwd 
Monsoon-influenced extremely cold 

subarctic climate 
-0.72 5 0 30 3 

25 Dfa Hot-summer humid continental climate 0.13 1650 58 2295 51 

26 Dfb Warm-summer humid continental  -0.07 2630 29 7503 248 

27 Dfc Subarctic climate -0.89 424 12 2970 189 

28 Dfd Extremely cold subarctic climate -1.51 3 0 72 5 

29 ET Tundra climate 0.06 172 0 312 9 

31 EF Ice cap climate -0.13 36 0 90 2 

 625 

 

Climate class  
Median 

NSE 

% 

NSE>0 

% 

NSE>0.5 

n. 

series 

n. 

catchments 

1 Af Tropical rainforest climate 0.14 68 11 450 10 

2 Am Tropical monsoon climate 0.28 69 34 945 21 

3 Aw/As Tropical wet and dry or savanna  0.09 66 7 3906 96 

4 BWh Hot desert climate -0.06 31 0 579 14 

5 BWk Cold desert climate -0.2 10 0 315 7 

6 BSh Hot semi-arid climate -0.01 46 6 1137 28 

7 BSk Cold semi-arid climate -0.04 27 0 4452 104 

8 Csa Hot-summer Mediterranean climate -0.04 37 0 90 2 

9 Csb Warm-summer Mediterranean climate -0.0 49 10 441 10 

11 Cwa 
Monsoon-influenced humid 

subtropical climate 

0.05 55 15 396 21 

12 Cwb 
Monsoon-influenced temperate 

oceanic climate 

-0.05 41 0 225 5 

14 Cfa Humid subtropical climate 0.12 68 3 3594 89 

15 Cfb Temperate oceanic climate 0.06 61 1 1293 35 

18 Dsb 
Mediterranean-influenced warm-

summer humid continental climate 

-0.81 21 0 345 9 

19 Dsc 
Mediterranean-influenced subarctic 

climate 

-0.07 27 6 135 7 

21 Dwa Monsoon-influenced hot-summer 0.74 100 100 45 3 
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humid continental climate 

22 Dwb 
Monsoon-influenced warm-summer 

humid continental climate 

-0.06 16 0 105 3 

23 Dwc 
Monsoon-influenced subarctic 

climate 

-0.66 18 0 120 8 

24 Dwd 
Monsoon-influenced extremely cold 

subarctic climate 

-0.7 20 0 30 3 

25 Dfa 
Hot-summer humid continental 

climate 

0.13 74 3 2295 51 

26 Dfb Warm-summer humid continental  -0.08 32 0 7491 248 

27 Dfc Subarctic climate -0.71 16 1 2871 189 

28 Dfd Extremely cold subarctic climate -1.25 4 0 72 5 

29 ET Tundra climate 0.06 55 0 312 9 

31 EF Ice cap climate -0.09 40 0 90 2 

 


