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Dear Professor Su, 

Thank you for handling our paper. 

We implemented the technical correction on the SEBS product provided by referee #1 as well as a short paragraph presenting 

results for the anomalies relative to the mean suggested by referee #3 (paragraph 3.4 and Appendix B). 

We also updated Fig.3 and Fig.4 to update the color scale and clarify that some values go beyond the lower end of the 5 

colorscale.  

We include the version of the manuscript with track changes below. 

Kind regards, 

Claire Michailovsky on behalf of the authors. 
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Abstract. Remote sensing (RS) data is becoming an increasingly important source of information for water resources 20 

management as it provides spatially distributed data on water availability and use. However, in order to guide appropriate use 

of the data, it is important to understand the impact of the uncertainties of RS data on water resources studies. Previous studies 

have shown that the degree of closure of the water balance from remote sensing data is highly variable across basins and that 

different RS products vary in their levels of accuracy depending on climatological and geographical conditions. 

In this paper we analyzed the water balance derived runoff from global RS products for 937 catchments across the globe. We 25 

compared time-series of runoff estimated through a simplified water balance equation using 3 precipitation (CHIRPS, GPM 

and TRMM), 5 evapotranspiration (MODIS, SSEBop, GLEAM, CMRSET and SEBS) and 3 water storage change (GRACE-

CSR, GRACE-JPL and GRACE-GFZ) RS datasets with monthly in situ discharge data for the period 2003-2016. Results were 

analyzed through the lens of 10 quantifiable catchment characteristics in order to investigate correlations between catchment 

characteristics and the quality of RS based water balance estimates of runoff, and whether specific products performed better 30 

than others in certain conditions.  
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The median Nash Sutcliffe Efficiency (NSE) for all gauges and all product combinations was -0.02, and only 44.9% of the 

time-series reached positive NSE.  A positive NSE could be obtained for 73.7% of stations with at least one product 

combination, while the overall best performing product combination was positive for 58.4% of stations. This confirms previous 

findings that the best performing products cannot be globally established. When investigating the results by catchment 35 

characteristic, all combinations tended to show similar correlations between catchment characteristics and quality of estimated 

runoff, with the exception of combinations using MODIS ET for which the correlation was frequently reversed. The 

combinations with the GPM precipitation product performed generally worse than the CHIRPS and TRMM data. However, 

this can be attributed to the fact that the GPM data is available at higher latitudes compared to the other products, where 

performance is generally poorer. When removing high latitude stations, this difference was eliminated and GPM and TRMM 40 

showed similar performance.  

The results show the highest positive correlation between highly seasonal rainfall and runoff NSE. On the other hand, 

increasing snow cover, altitude and latitude all decreased the ability of the RS products to close the water balance. The 

catchment’s dominant climate zone was also found to be correlated with time series performance with the tropical areas 

providing the highest (median NSE=.11) and arid areas the lowest (median NSE=-0.09) NSE values. No correlation was found 45 

between catchment area and runoff NSE. The results highlight the importance of further studies on the uncertainties of the 

different data products and how these interact when combining them, as well as new approaches to using the data rather than 

simple water balance type approaches. Efforts to improve specific satellite products can also be better targeted using the results 

of this study. 

1 Introduction 50 

With increasing global population and pressure on the available water resources, it is increasingly important to understand the 

spatial and temporal distribution of water resources availability and use. Quantifying the components of the water balance is a 

necessary first step in sustainably managing resources in a river basin or catchment. However, the data available in many river 

basins is insufficient to make informed water management decisions. Global monitoring of discharge, which is one of the key 

variables of interest to water managers, has been in decline since the 1980s (Vorosmarty et al., 2001). In addition, even where 55 

in situ data exists, accessibility of the data can be problematic. 

This data gap is increasingly being filled by remote sensing products which provides many advantages (see e.g. Sheffield et 

al., 2018 for a full review). For instance, remote sensing data can give valuable insights into the spatial variability of water 

availability and consumption which can be difficult or impossible to obtain through in situ data collection. Utilizing the 

hydrological variables currently derived from remote sensing, it is now theoretically possible to close the water balance and 60 

estimate runoff at the regional to global scale. However, due to uncertainties and errors in remote sensing data, this cannot 

currently be achieved at the scales and precision necessary for decision making (Sheffield et al., 2018). 
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Runoff estimation using remote sensing is typically done using some form of the following water balance equation (Eq.1) (see 

e.g. Syed et al., 2005): 

𝑅௢ = 𝑃 − 𝐸𝑇௔ −
ௗௌ

ௗ௧
 (1) 65 

where Ro is total runoff, P is the precipitation, ETa is the actual evapotranspiration and dS/dt is the total water storage change. 

Of the quantities in equation (1), all but the total runoff, which includes surface and subsurface components, can be derived 

from remote sensing at the global scale: remote sensing precipitation has been available for many years and is routinely used 

as input to hydrological models (see e.g. Stisen and Sandholt, 2010), ETa is not a direct RS measurement but many different 

algorithms have been developed to produce global scale ETa from RS data (Zhang et al., 2016), and total water storage change 70 

can be monitored using measurements of the variation of the Earth’s gravitational field by the Gravity Recovery and Climate 

Experiment (GRACE, Wahr et al., 2004). We note that given adequate auxiliary information (such as for example bathymetry 

or rating curves), discharge can be monitored using radar altimetry (see e.g. Kouraev et al., 2004; Michailovsky et al., 2012). 

However, currently (2023) neither the radar altimetry nor the auxiliary information is available consistently at the global scale 

and in situ or modeled data is therefore necessary in order to assess the closure of the water balance using Eq.1. 75 

A common approximation made when analyzing the terrestrial water budget using remote sensing over a hydrological basin 

or sub-catchment is to equate the total runoff with the discharge leaving the area of study. This is equivalent to the assumption 

that subsurface fluxes in and out of the basin are negligible. While this assumption is likely to have an impact, in particular for 

studies at small spatial scales (see e.g. Bouaziz et al., 2018; Fan and Schaller, 2009), it allows for the use of in situ discharge 

data to evaluate reliability of the remote sensing inputs to Eq. 1 which is then rewritten as Eq. (2): 80 

𝑄 = 𝑃 − 𝐸𝑇௔ −
ௗௌ

ௗ௧
    (2) 

For the components of the water cycle which are available through RS, various datasets are available and each product is 

subject to uncertainties and errors. These include the fact that most remote sensing measurements are indirect, therefore 

requiring interpretation and calibration, subject to interference (e.g. by cloud cover and topography) and limited in their spatial 

and temporal resolution relative to the phenomena measured. Each product uses its own algorithms, gap filling procedures 85 

parameterization and validation methods to produce the variable of interest. Studies have shown that there is a large variability 

between the different products for a single variable (e.g. Sahoo et al., 2011). 

Previous studies have analyzed the closure of the water balance with remote sensing and other global datasets from the regional 

to global scale. The first of such studies was performed by Syed et al. (2005) who used the land-atmosphere water balance to 

estimate discharge over the Amazon and Mississippi River Basins using data from the European Centre for Medium-Range 90 

Weather Forecasts (ECMWF) and GRACE data to measure water storage change. They found that the total basin outflow was 

well correlated with observed streamflow in spite of phase (in the Amazon) and amplitude (in the Mississippi) discrepancies. 

Sheffield et al. (2009) also analyzed the water budget closure for the Mississippi and found that the RS-estimated discharge 

was greatly overestimated. Sahoo et al. (2011) estimated the water budget from remote sensing and in situ discharge gauges 

over 10 global river basins and found errors in the runoff estimates of the order of 5 to 25% of the mean annual precipitation 95 
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values. Both Sheffield et al. (2009) and Sahoo et al. (2011) concluded that the largest contributor to the lack of closure of the 

water balance were errors and biases in the precipitation products used. 

At the global scale, one of the most comprehensive studies of the closure of the water balance from global products (including 

remote sensing products, products derived from gauges and models) was carried out by Lorenz et al. (2014).  They compared 

the ability of combinations of 5 precipitation products (4 derived from gauges and 1 including RS and gauge measurements), 100 

6 ET products (including MOD16 and GLEAM from RS) and 2 storage change solutions from GRACE (GFZ and CSR) over 

96 catchments spread around the world. No single product combination was found to consistently outperform the others across 

catchments but catchments with high seasonality tended to show better results.  

More recently, Lehmann et al. (2022) performed a similar analysis on 189 river basins covering 90% of the global land surface 

and analyzed combinations of 11 precipitation and 14 ET datasets and 11 runoff datasets (including data from land surface 105 

models, gauge products and reanalysis datasets) and compared the computed storage change to GRACE data. They found that 

95% of basins had a positive NSE for at least one product combination. They considered two catchment characteristics in 

analyzing their results and found that while no correlation between catchment area and closure of the water balance could be 

found, there was a correlation between climatic zone and performance for some of the datasets considered. 

Other studies compared runoff computations obtained from different remote sensing input datasets to assess the best product 110 

combinations in specific regions. For example, Moreira et al. (2019) computed runoff using eq. 2 over South America using 2 

precipitation products (TRMM and MSWEP), 2 ET products (MOD16 and GLEAM) and 3 storage change solutions from 

GRACE (CSR, JPL and GFZ) and found that using GLEAM for ET estimation and MSWEP for precipitation produced the 

best results. They also reported that greater biases were found in semi-arid basins with low runoff coefficients. 

Following the findings from previous studies that different catchment characteristics (e.g. climate and seasonality) and 115 

different product combinations produced different results, this study aims to investigate both the ability of different 

combinations of RS products to reproduce in situ measurements of discharge, and to identify catchment characteristics that 

affect how well the closure of the water balance can be achieved among a wider range of catchment characteristics than those 

considered in previous studies. This is important in order to help water practitioners choose between different remote sensing 

datasets as the use of RS becomes more widespread in water balance assessments as well as to better understand the sources 120 

of uncertainties present in the different products and identify areas of improvement. In order to do this, 45 combinations of RS 

products (3 precipitation products, 5 ET products and 3 water storage change products) were used as input to the water balance 

equation (Eq. 2) and the discharge values computed were compared to discharge data collected from the Global Runoff Data 

Center (GRDC, 2019) over approximately 591 catchments (the number of catchments analyzed for each product combination 

varied due to coverage extent differences between products). The results were then analyzed using 10 quantifiable catchment 125 

characteristics to identify potential drivers of the goodness of fit between computed and in situ values. 
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2 Methodology 

The ability of different remote sensing product combinations to correctly close the water balance was assessed by deriving 

runoff time-series for each combination of products using the water-balance equation of a river-basin (see Eq. 2) and comparing 

these RS-derived runoff values with monthly time step discharge measurements obtained from the Global Runoff Data Centre 130 

(GRDC) for a period of 14 years for which the RS products are consistently available. 

The main drivers for the goodness of fit between calculated and observed runoff were investigated by evaluating 10 

quantifiable basin characteristics. 

2.1 Remote Sensing data 

The data needed to solve the water balance for runoff are total water storage change, precipitation and actual evapotranspiration 135 

(see Eq. 2) over the study period. These time series were acquired from a variety of global remote-sensing products: three 

different precipitation products, five actual evapotranspiration products and three total water storage change products. An 

overview of these products is shown in Table 1 and details of the products are provided in the following sections. 

Data was collected for a period of 14 years between 2003 and 2016, which are the full years for which the storage change from 

the Gravity Recovery and Climate Experiment (GRACE) data is available. All the products used are available within this 140 

timeframe, except for CMRSET, which was discontinued at the end of 2012. 

The products cover most of the globe (see spatial coverage in Table 1). CHIRPS and TRMM do not cover areas north of 50° 

N and south of 50° S, meaning that Antarctica and the northern parts of Canada and Russia are excluded. The spatial extent of 

SSEBOP is also limited to areas between 80° N and 60° S. Furthermore, it is important to note that SEBS has many missing 

pixels, mainly over the larger deserts, such as the Sahara and the Arabian Desert, as well as the Taiga in Canada and Russia. 145 

All the products were re-sampled to a monthly time-scale and to a spatial resolution of 0.05° (specific methods are detailed in 

in the following sections) and pixel values were weighted by area before computing the time-series to account for the changing 

pixel areas at different distances from the equator. The analysis focused on spatial aggregates of runoff for catchments larger 

than 10,000 km2 and the spatial resampling was therefore not expected to have a large impact on the results. For studies which 

focus on smaller scales or at the pixel-level, the impact of spatial resampling would need to be carefully considered. The choice 150 

of a monthly time scale was motivated by the timescales of the available remote sensing, in particular the GRACE dataset. 

2.1.1 Precipitation 

Different sensors and algorithms are used to estimate global precipitation from remote sensing. Many of the available 

precipitation products combine measurements from sensors aboard multiple satellites in order to be able to achieve higher 

temporal resolutions and some products are merged with in situ gauge data to improve accuracy (Sheffield et al., 2018). In this 155 

study, the following three products were used: 
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 The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 product 

(Huffman et al., 2007). 

 The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) version 2 product (Funk et al., 2015). 

 The Global Precipitation Measurement (GPM) mission Integrated Multi-satellitE Retrievals for GPM (IMERG) Final 160 

Run (Huffman et al., 2019). 

The datasets had to be resampled from their native resolutions (see Table 1) to obtain monthly data at 0.05° spatial resolution: 

 The TRMM TMPA and GPM IMERG products were resampled to 0.05°using the nearest neighbor method. 

 The daily TRMM and CHIRPS daily data products were summed to obtain monthly values. 

It should be noted that the products used are in large part computed from the same source satellite measurements. In particular, 165 

while the core GPM satellite was launched in February 2014, the IMERG algorithm was used to extend the time series back 

to June 2000 using data from the TRMM satellite to produce a continuous long-term dataset. The TRMM satellite stopped 

operating in 2015 and, post 2015, the TMPA algorithm was applied to GPM data in order to continue producing data (Huffman, 

2020).  
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 170 
Table 1: Overview of the different remote-sensing products acquired 

Product (version) Availability Spatial 
Resolution 

Temporal 
Resolution 

Spatial 
Coverage 

Reference Obtained from: 

Precipitation    

CHIRPS (v2) 1981-present 0.050° Daily 50° S-50° N Funk et al. (2015) https://data.chc.ucsb.edu/products/CHIRPS-2.0/ 

TRMM TMPA 
(3b42 v7) 

1998-2020 0.25° Daily 50° S-50° N Huffman et al. (2007) https://disc2.gesdisc.eosdis.nasa.gov/opendap/TRMM_
L3/TRMM_3B42_Daily.7/ 

GPM 3IMERGDF 
(v06) 

2000*-present 0.10° Monthly 90° N-90° S Huffman et al. (2019) https://gpm1.gesdisc.eosdis.nasa.gov/opendap/GPM_L
3/GPM_3IMERGDF.06/ 

Evapotranspiration    

MOD16 A2 (v006) 2001-present 500m 8-Daily 90° N-90° S Mu et al. (2011) Google Earth Engine image collection: 
MODIS/006/MOD16A2 

SSEBOP (v4) 2003-present 0.010° Dekadal 80° N-60° S Senay et al. (2013) https://edcintl.cr.usgs.gov/downloads/sciweb1/shared

/fews/web/global/monthly/eta/downloads/  

GLEAM (v3.3b) 2003-2018 0.25° Daily 90° N-90° S Miralles et al. (2011) sftp://hydras.ugent.be (access instructions: 

https://www.gleam.eu/ - current version: v3.6b) 

CMRSET  2003-2012 0.050° Monthly 90° N-90° S Guerschman et al. 

(2009) 

Shared by Dr. Guerschman 

SEBS (5km Global 

Monthly Daily ET) 

2000-2017 0.050° Monthly 90° N-90° S (Chen et al., 2021) Obtained from: 

https://data.tpdc.ac.cn/en/data/df4005fb-9449-4760-

8e8a-09727df9fe36/ 
Water storage change    

GRACE CSR 
(TELLUS_GRAC_
L3_CSR_RL06_LN
D v6.0) 

2003-2017** 1.0° Monthly 90° N-90° S Landerer (2019a) Retired product – see: 
https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC

_L3_CSR_RL06_LND 

GRACE GFZ 

(TELLUS_GRAC_

L3_GFZ_RL06_LN

D v6.0) 

2003-2017** 1.0° Monthly 90° N-90° S Landerer (2019b) Retired product – see: 

https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC

_L3_GFZ_RL06_LND 

GRACE JPL 

(TELLUS_GRAC_

L3_JPL_RL06_LN

D v6.0) 

2003-2017** 1.0° Monthly 90° N-90° S Landerer (2019c) Retired product – see: 

https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC

_L3_JPL_RL06_LND 

*The TRMM mission ended in 2015, but the TMPA product continued to be produced using data from GPM, the GPM satellite was launched in 2015 but the IMERG 
product starts in 2000, using TRMM data. **The GRACE mission produced data until July 2017, the GRACE-FO satellite started producing data from June 2018. 
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2.1.2 Evapotranspiration 

Evapotranspiration (ET) obtained from RS data is not a direct measurement, and many different inputs are required for models 

to be able to represent the biophysical and environmental controls on ET (see e.g. Zhang et al., 2016). Five different 175 

evapotranspiration products have been used to solve the water balance for runoff in this study1. 

 The Operational Simplified Surface Energy Balance (SSEBop, Senay et al., 2013). 

 CSIRO MODIS Reflectance-based Evapotranspiration (CMRSET, Guerschman et al., 2009). 

 Global Land Evaporation Amsterdam Model (GLEAM, Miralles et al., 2011). 

 Surface Energy Balance System (SEBS, Chen et al., 2021). 180 

 MODIS Global Terrestrial Evapotranspiration Algorithm (MOD16, Mu et al., 2011). 

These products use different methods and data sources for estimating evapotranspiration rates. For example, the MOD16 

algorithm is based on the Penman-Monteith equation, CMRSET and GLEAM use modified versions of the Priestly–Taylor 

equation while SSEBop and SEBS use surface energy balance approaches. More detail can be found in the publications listed 

for each product. 185 

In order to obtain monthly data at 0.05° spatial resolution from the resolutions listed in Table 1 the following was done: 

 The daily and dekadal fluxes from SSEBOP and GLEAM were summed to obtain monthly values. 

 The 8-daily data from MOD16 were summed to monthly values (with reduced weights for images partially within a 

specific month). Missing data within a month was filled by setting the missing data to the monthly average of the 

available 8-day evapotranspiration in that month. 190 

 MOD16, SSEBop and GLEAM were resampled to 0.05° using the nearest neighbor method.  

2.1.3 Storage Change 

Total water storage (the sum of surface and subsurface water storage) cannot be directly measured from remote sensing. 

However, Total Water Storage Anomalies (TWSA), i.e. the deviation in total water storage relative to the long term mean, can 

be obtained from the Gravity Recovery And Climate Experiment (GRACE) satellites which maps the Earth’s gravity field 195 

approximately every 30 days (Biancamaria et al., 2019).  

The TELLUS GRACE Level-3 Monthly LAND Water-Equivalent-Thickness Surface-Mass Anomaly Release 6.0 products 

from three processing centers were used in this study (Landerer and Swenson, 2012): 

 the University of Texas – Center for Space Research (CSR, Landerer, 2019a) 

 Geo Forschungs Zentrum (GFZ, Landerer, 2019b) 200 

 Jet Propulsion Laboratory (JPL, Landerer, 2019c) 

                                                           
1 Two other products were considered before being excluded from the study: the WaPOR dataset as it does not yet have global 
coverage, and ALEXI as it was not available to the authors at the time of the study. 
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GRACE data is available between January 2003 and July 2017. The data is available in quasi-monthly time steps with variable 

windows of observation. However, most of the data is centered on the 16th of each month. The data was interpolated to the 16th 

day of every month and the central difference method was used to calculate the change in storage (see e.g. Biancamaria et al., 

2019). Finally, the data was resampled to 0.05° using the nearest neighbor method. 205 

2.2 In situ data: Global Runoff Data Centre 

The RS-derived runoff was validated using observed runoff from the Global Runoff Data Centre (GRDC), whose dataset 

comprises more than 9,900 gauging stations all over the world. By filtering to identify stations with an upstream catchment 

larger than 10,000 km2 and at least one record after January 1st 2003, an initial selection of 1,149 gauging stations was made. 

A large number of these stations are located in northern America, while the rest are spread out across the other continents (see 210 

Figure 1). Unfortunately, among the selected stations, there are very few stations located in some parts of the world, in 

particular Northern Africa, Central Asia and Southern Asia. 

 
Figure 1: Locations of the acquired GRDC stations with runoff data. 

Within the period 2003-2016, the selected stations have an average of 125 months of data, with just over half (515 stations) 215 

having more than 160 months of data out of a maximum possible of 168 months. For the first five years of this period nearly 

all the selected stations have data with an average of 1015 data points available each month. After 2008, the availability starts 

to decrease and by 2008, the average number of data points per month drops to 580. A total of 143,117 monthly runoff records 

were used for the analysis. 

Watershed boundaries were also obtained from the GRDC (GRDC, 2011). The largest catchment covers 4,680,000 km2 (the 220 

Amazon River), and most of the catchments (862) are between 10,000 and 93,600 km2. The mean catchment size is 141,259 

km2. Altitude was known for 764 of the stations, and mean station altitude is 298.4 m.a.s.l. with a large number (161) of 

stations being located at altitudes below 40 m.a.s.l. 
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Many river basins contain multiple GRDC stations, meaning that among the 1,149 selected stations some represent nested 

catchments. 225 

The monthly mean GRDC data is given in m3/s, and was converted to mm/month in order to be compared to the monthly 

runoff computed from remote sensing data. This was done by dividing by the catchment area. 

2.3 Runoff time-series from remote sensing 

Solving the water-balance for the different combinations of three precipitation, five actual evapotranspiration and three storage-

change products, results in a total of 45 solutions. Each of these solutions consists of a series of maps of the RS-derived runoff 230 

in mm/month. For each GRDC station, the RS derived runoff time series is obtained by averaging the pixels within the 

corresponding catchment. 

Extracting these time-series at the 1,149 locations of the selected GRDC stations from these 45 combinations gives, 51705 

time-series to analyze.  

In practice the number of time series analyzed was lower due to several issues. First of all, calculated time-series that have 235 

fewer than 30 matching data points with the GRDC data were omitted. Secondly, some of the selected stations (or their 

catchments) are (partially) located outside of the coverage area of some of the products (see Table 1). Finally, months for 

which more than 20% of the pixels in a catchment were missing have been excluded (no gap-filling has been done), 

occasionally leading to the loss of an entire times-series (for example, as mentioned previously, SEBS has many missing pixels 

in some parts of the world). This finally resulted in 937 locations with sufficient data and 31734 time series. 240 

2.4 Validation 

The computed monthly runoff time-series have been compared with the GRDC data through the Nash–Sutcliffe model 

efficiency coefficient (NSE). The NSE is defined as (Nash and Sutcliffe, 1970): 

𝑁𝑆𝐸 = 1 −
∑ ൫ோ௢೎

೟ିோ బ
೟ ൯

మ೅
೟సభ

∑ ൫ோ௢బ
೟ ିோ௢೚തതതതതത൯

మ೅
೟సభ

  (3) 

where 𝑅𝑜଴
തതതതത is the mean of the observed runoffs, 𝑅𝑜௖

௧ is the RS-derived runoff at time t and 𝑅𝑜଴
௧  is the observed runoff at time 245 

t. 

2.5 Catchment Characteristics 

We selected 10 RS derived catchment characteristics based on the findings of earlier studies to investigate correlations with 

quality of RS estimates of discharge. These are summarized in Table 2 and detailed below. 

Table 2: Catchment characteristics considered in this study 250 

Description (continuous/discrete) Abbreviation Unit Data Source 



11 
 

Size of the catchment (continuous) Area km2 GRDC (GRDC, 2019) 

Distance of the catchment outlet to the equator 

(continuous) 

|Latitude| DD GRDC (GRDC, 2019) 

Altitude of the catchment outlet (continuous) Altitude m.a.s.l GMTED10 

Total dam storage capacity in the catchment 

(continuous) 

Sdam 106m3 GRAND (Lehner et al., 2011) 

Seasonality: Standard deviation of the monthly 

precipitation in the catchment (continuous) 

SDP mm/month GPM (Huffman et al., 2019) 

Ratio between the mean annual runoff and the total 

dam storage capacity (continuous) 

𝑅𝑜௬௘௔௥௟௬
തതതതതതതതതതത: Sdam − 

 

GRAND, GRDC 

Mean ratio between the monthly runoff and 

precipitation (continuous) 

Ro : P − GRDC, GPM 

Mean of the temporal and spatial snow-cover 

(continuous) 

𝑁𝐷𝑆𝐼തതതതതതത % MOD10 (Hall et al., 2006) 

Dominant land cover class (discrete) LC - GlobCover2009 (ESA and UCLouvain, 2010) 

Dominant climate class (discrete) Climate - Köppen-Geiger Classification (Beck et al., 2018) 

 

Catchment area was chosen as a catchment parameter as it is expected that in larger catchments, the random errors may be 

compensated by averaging over large areas. Beyond this, the resolution of the GRACE product should also allow for better 

performance over larger catchments. While Biancamaria et al. (2019) found that GRACE could provide good estimates of 

storage change for catchments larger than 50,000 km2, most studies have considered only very large basins (>100,000 km2).  255 

Latitude of the outlet of the catchment (or the distance to the equator in degrees) and snow cover were both chosen because 

precipitation products are known to have higher uncertainties at high latitudes and in the estimation of snow than in that of 

liquid precipitation (Tian and Peters-Lidard, 2010). Snow storage also adds a storage and therefore lag to the runoff generated 

in the basin which, while it should be captured by the GRACE data, can add another layer of uncertainty. ET products, in 

particular those based on measurements of land surface temperature, may also face issues in computing sublimation (Xu et al., 260 

2019). 

The altitude of the catchment outlet is evaluated to see any difference in accuracy between river catchments with an outlet at 

sea level and sub-catchments with an outlet at a higher altitude. Altitude of catchment outlet is also used as a proxy for 

topography and precipitation products are known to have higher uncertainty over areas of rough topography (Tian and Peters-

Lidard, 2010). 265 

Dam storage capacity was also considered due to the smoothing effect on the runoff. While the dam storage should be captured 

by the GRACE data, it has been shown that GRACE solutions do not always correctly locate the relatively punctual changes 
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in storage due to signal leakage which could impact the results (Wang et al., 2019). Dam storage capacity relative to mean 

annual runoff was also considered both as a measure of the level of modification of the basin, and as normalization for total 

dam storage capacity. 270 

The seasonality of rainfall varies greatly around the world. Some regions have a clear dry and wet season, while others receive 

rainfall throughout the entire year. In order to make a distinction between these different rainfall patterns, the standard deviation 

of the monthly rainfall was chosen as a parameter. A catchment with a clear wet and dry season will have a higher standard 

deviation than a catchment with precipitation throughout the year. 

Finally, the ratio between runoff and precipitation is considered. Catchments with a low runoff to precipitation ratio will 275 

typically have a high evapotranspiration rate relative to precipitation, while a higher ratio indicates a low evapotranspiration 

rate. Catchments with ratios above 1 indicate discharge originating from either storage depletion in the basin, or inter-basin 

transfers.  

Besides the above characteristics which can be described by continuous variables, the following two discrete characteristics 

were considered: 280 

The dominant climate class according to the Köppen-Geiger climate classification was computed for each catchment based on 

data from Beck et al. (2018). This was considered as previous water balance closure studies have shown variable performance 

under different climate conditions (e.g. Lorenz et al., 2014), 

The final catchment characteristic considered was dominant land cover class in the catchment (computed from GlobCover2009 

(ESA and UCLouvain, 2010)). This was considered due to the variable performance of ET products in over different land 285 

cover types (e.g. Senay et al., 2013). 

For each of the continuous catchment characteristics, the Spearman Rank correlation coefficient, which is the Pearson 

correlation coefficient between the ranks of the variables, was computed to assess the correlation between each catchment 

characteristic and the NSE values of the discharge time series. The significance of the correlations (p < 0.05) was tested using 

a two-sided student t-test.   290 

For the two non-continuous characteristics (LULC and Climate class), the influence of the characteristic on the performance 

was analyzed by comparing the NSE values obtained per class. 

3 Results and Discussion 

3.1 Results per GRDC station 

NSE values were computed for the 45 possible product combinations, for all GRDC stations possible for each combination. 295 

Figure 2FIG shows a histogram of the NSE values for all 31734 time-series computed and Figure 3 shows the median NSE 

value for all possible product combinations at each of the 937 GRDC stations for which at least one NSE value could be 

computed. 
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For all combinations of products at all available GRDC stations, 44.9% of the generated discharge time series achieve a positive 

NSE value, with only 3.4% obtained a medianobtaining an NSE > 0.5. When split by GRDC station, 36.9% of the stations 300 

achieve a positive median NSE value and 2.5% a median NSE of  > 0.5. A positive NSE indicates a model performs better 

than the long-term mean of the observed time series as a predictor. Hydrological models are often considered to be of good 

quality when reaching NSE values of > 0.5, although many studies use different thresholds (Moriasi et al., 2007). 

 

Figure 2: Distribution of NSE values for all time-series. 891 time series with NSE<-3 not shown (2.8% of timeseries) 305 
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Figure 3: Median NSE for different product combinations at each GRDC station. 125 stations have a median NSE below -1, the color 
scale was cropped to -1 for legibility. 

When considering the maximum NSE reached at each station, it was determined that a positive NSE was reached for at least 310 

one product combination for 73.7% of the stations, and an NSE of more than 0.5 was reached for 7.3% of the stations. The 

geographical distribution of maximum NSE values is shown in Figure 4.  
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 315 

Figure 4: Max NSE achieved at each GRDC station. 43 stations have a maximum NSE below -1, the color scale was cropped to -1 
for legibility. 

In the studies performed by Lorenz et al. (2014), positive NSE values were reached in 29 of the 96 (30%) basin considered 

while in the study by Lehmann et al. (2022) this was achieved in 180 of 189 (95%) of the basins. These results are however 

difficult to compare directly due to the different products chosen and the different basins considered. In terms of the datasets 320 

considered, we chose to limit our study to remote sensing products, excluding land surface models, station based gridded 

products as well as reanalysis products. This differs from the two aforementioned studies as our goal is to specifically 

investigate the remote sensing products and work with independent datasets.  
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Our study, while it considers the largest number of catchments, was limited to those with GRDC station data available over 

our time period of interest which excluded some large basins. On the other hand, many smaller catchments were considered, 325 

including nested catchments where multiple stations were available. Areas with more dense gauging networks are therefore 

overrepresented in our study and these correlate with particular catchment characteristics (for instance climate zone) which 

can influence the ability of remote sensing to close the water balance as will be seen in Sect 3.3.  

3.2 Results per product and product combination 

For the product combinations based on the GPM rainfall product, an average of 925 time series NSE values could be calculated 330 

per combination, while for the combinations based on the TRMM and CHIRPS products, an average of 599 NSE values per 

combination could be calculated (due to the smaller spatial coverage of these TRMM and CHIRPS).  

The median NSE values for all GRDC stations available for the 45 possible product combinations are presented in the 

Appendix 1A. The best performing combination was CHIRPS – SEBS – JPL which yielded 58% of positive NSE values while 

GPM – GLEAM – CSR/GFZ/JPL, yielded 35% of positive NSE values. Only 3.4% of the discharge time series generated 335 

reached the threshold of 0.5, with the best combination (CHIRPS - CMRSET – GFZ) reaching this value for 5.9% of stations. 

The worst performing combination (GPM - GLEAM – GFZ) reached NSE>0.5 for only 1.3% of stations. 

In order to make the product combinations more comparable, the same results are presented for 1) all possible time series 

(columns A in Appendix 1A) and 2) for only those stations for which all products could be used (columns B in Appendix 1A). 

The main consequence of this is that the high latitude stations which are only covered by GPM are removed from the analysis 340 

which narrows the performance gap between GPM and other precipitation products.  

Table 3 shows that the NSE of the computed discharge is most sensitive to the choice of ET product. With median NSE values 

ranging from -0.02 to 0.01. The ET product with the highest median NSE and number of NSE series with values above 0 is 

MOD16. The product with the highest number of series producing NSE values above 0.5 is SEBS (followed closely by SSEBop 

and CMRSET). For precipitation, the impact of different products on the overall median NSE is negligible when not 345 

considering high latitude stations where only GPM is available. GPM produces the highest number of series with NSE values 

above 0, while CHIRPS produce the highest number of series with NSE values above .5. The computed NSE was not found 

to be sensitive to the choice of GRACE solution used.  

Table 3: Median NSE for time series containing specific products as well as percentage of time series with positive NSE, NSE above 
0.5 (n. NSE>0.5) and total number of time series using the product (n. series). Series have been limited to those covered by all product 350 
combinations (591 GRDC stations). 

Variable Product Median NSE %NSE>0 %NSE>0.5 n. Series 

P TRMM -0.00 49 3.2 8850 

 
GPM -0.00 50 3.9 8850 

 CHIRPS -0.00 49 4.7 8850 

ET SSEBOP -0.00 48 4.9 5310 
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MOD16 0.01 52 3.2 5310 

 
SEBS 0.01 54 4.9 5310 

 
GLEAM -0.02 43 2.0 5310 

 CMRSET -0.01 49 4.8 5310 

GRACE JPL -0.00 50 3.9 8850 

 
CSR -0.00 49 4.0 8850 

 
GFZ -0.00 49 4.0 8850 

 

The precipitation and ET products used in the best performing combination for each station are shown in Figure 5 and Figure 

6. Because of the low sensitivity of NSE to storage change solution, no map was generated for the different storage change 

products. 355 

 

Figure 5: Precipitation product used in combination with highest NSE at station. Note that GPM is the only product available for 
latitudes >50°. 
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Figure 6: ET product used in combination with highest NSE at station 360 

These results show that no single product or combination consistently outperformed others when it comes to the closure of the 

water balance. This is consistent with findings of previous studies (Lehmann et al., 2022; Lorenz et al., 2014). Some geographic 

patterns in the better performing products appear in Figure 5 and Figure 6 and will be discussed in the context of the catchment 

characteristics in the following section. 

3.3 Results per catchment characteristic 365 

For each of the continuous catchment characteristics listed in Table 2, correlations between the characteristic and the NSE at 

the GRDC station were computed. Figure 7 shows a summary of the correlations found for all product combinations and the 

catchment characteristics. 

Presence or absence of correlation as well as whether the correlation strength and sign are consistent across most product 

combinations. 370 
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Figure 7: Spearman correlations for different product combinations between the NSEs of catchments and characteristics of those 
catchments. See Table 2  for an overview of the catchment characteristics. White dots were added to the negative correlations for 375 
monochromatic legibility. 



20 
 

 

Of the catchment characteristics described by a continuous variable, seasonality (SDp) shows the strongest correlation with 

the NSE of the discharge. All product combinations, showed a significant correlation with the standard deviation of 

precipitation. It should be noted that precipitation from GPM was used to compute seasonality, meaning that errors and 380 

uncertainties in GPM data could affect catchment classification. The influence of seasonality is in agreement with the findings 

of Lorenz et al. (2014) who found that the closure of the water balance can be better achieved in basins with a strong seasonal 

precipitation signal. Lorenz et al. (2014) observed that in catchments with low seasonal runoff variability, the biases in the 

different input datasets prevented the accurate computation of runoff. 

Snow cover has the strongest negative correlation with NSE. NDSI shows a significant negative correlation for 39 of the 45 385 

product combinations. Combinations including MODIS ET and CHIRPS or TRMM precipitation are the only ones for which 

no correlation or a positive correlation was found. Altitude at the gauging station, which is correlated to snow cover for smaller 

basins, shows a weaker negative correlation with NSE. The strong negative correlation with snow could be due to multiple 

factors. For instance, snow retrievals have lower accuracies as compared to liquid precipitation retrievals from satellite and 

precipitation retrievals are less accurate over frozen ground (Tang et al., 2020; Tian et al., 2014; Tian and Peters-Lidard, 2010), 390 

ET products may not capture the process of sublimation as well as other types of ET (see e.g. Xu et al., 2019), and the snow 

storage variations which drive discharge timing in some catchments may not be adequately captured by GRACE. Analysis of 

runoff versus discharge totals over hydrological years, rather than monthly could mitigate the snow storage issue. A similar 

analysis with more recent data should also be carried out to check if better results for catchments further from the equator 

(>50°N and >50°S) can be obtained, as the GPM data from the TRMM era (pre-2014) for higher latitudes is considered partial 395 

coverage. The GPM core observatory also has higher sensitivity to snowfall than earlier sensors (Behrangi et al., 2018) and 

was only launched in 2014. 

Latitude also shows a correlation with NSE for 39 of 45 product combinations while the remaining 6 show the same pattern 

as for snow cover. This negative correlation was expected based on the more extensive snow cover and frozen ground found 

further from the equator which negatively impacts performance for both P and ET products as explained above. GRACE 400 

measurements are also subject to the effects of the Glacial Isostatic Adjustment (GIA), the redistribution of mass within the 

Earth resulting from the end of the last ice age (Wahr et al., 1998). While the GIA signal is removed from GRACE TWSA 

data products, any errors in the GIA models used in this process will result in higher errors in TWSA where the GIA signal is 

strongest which correlates with higher latitudes.   

Dam storage capacity shows a negative correlation with NSE only for product combinations using GPM as a precipitation 405 

product and for the TRMM-MOD16 combination. For other combinations, no significant correlations were found. Total runoff 

relative to dam storage capacity shows a negative correlation for most product combination except for CHIRPS-GLEAM 

(positive) and TRMM-GLEAM (no significant correlation). 

Runoff ratio shows a negative correlation with NSE for 12 of the 45 combinations, and a positive correlation for 24 of the 45. 

Runoff ratio is computed as the ratio of discharge from GRDC and precipitation from GPM, and the maximum value found 410 
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was 42, indicating potentially erroneous data or a strong proportion of discharge originating from storage depletion or inter-

basin transfers. Inter-basin transfers in particular would not be represented in our computation of runoff. The runoff ratio was 

found to be above 1 for 103 stations (out of 937).  

A weak negative correlation was found between drainage area and NSE of the RS-derived runoff for 28 of the combinations. 

The lack of a strong correlation between NSE and catchment area is surprising as the storage change component from GRACE 415 

is expected to perform better over larger catchments, particularly because we limited the catchment size here to catchments 

larger than 10,000 km2 while GRACE has an inherent spatial resolution of ~300km (90 000 km2) and has been found to 

produce reliable estimates of storage change for catchments with areas of more than 50,000 km2 (Biancamaria et al., 2019). 

Smaller catchments will also be more susceptible to signal leakage from outside the catchment (Dutt Vishwakarma et al., 

2016). Catchment size is also expected to influence the applicability of the hypothesis of negligible subsurface fluxes necessary 420 

for the application of Eq. 2 as this hypothesis has been shown to be incorrect for smaller catchments (Bouaziz et al., 2018; Fan 

and Schaller, 2009). Sahoo et al. (2011) and Lehmann et al. (2022) similarly found no correlation between basin area and water 

balance closure though their studies were limited to 10 very large basins and basins with areas larger than 65 000 km2 

respectively. 

Results for the two discrete variables (dominant land cover type and dominant climate class) are shown in Table 4, Table 5, 425 

Table 6 and Table 7. 

Variability was found between the results for different land cover types. Results for basins with dominant LU codes 40 and 50 

(both types of broadleaved forests, see Table 4) perform better than other land cover types, with median NSE values of 0.21 

and 0.14 respectively. 

Some land cover classes, for example Open (15-40%) needleleaved deciduous or evergreen forest (>5m) (class 90), perform 430 

particularly poorly, which can be expected as these have a near complete overlap with higher latitude areas. MOD16 performs 

better than other products in this LC class with a median NSE value of -0.1 while combinations using the other ET products 

produces median NSE values between -0.33 and -0.96 (Table 5). 

Variability is also observed between climate zones, with tropical (median NSE=.11, and median NSE for tropical monsoon 

.28, see Table 6 and Appendix 1 A for the detailed results per climate zone) and temperate zones (median NSE=.08) performing 435 

better than arid (median NSE=-.04) and continental zones (median NSE= -.08). The SSEBop and CMRSET products produce 

the highest NSE values in tropical climates, with median NSE values of 0.17, followed by SEBS at 0.15 (Table 7). In temperate 

zones, using GPM produces the highest median NSE values of 0.11. Lehmann et al. (2022) also analyzed the water balance 

closure by climate zone and found that errors were relatively consistent within zones with some exceptions. As in this study, 

the best performance was observed in the “equatorial rain forest/monsoon” zone. This result is also in agreement with the 440 

influence of seasonality of rainfall discussed above and observed by Lorenz et al. (2014). Sahoo et al. (2011) on the other hand 

did not find consistent behavior based on climate zone. 

Table 4: NSE values for basins classified by dominant land cover class (LCC) and percentage of time series with positive NSE, 
percentage NSE above 0.5, total number of time series with the corresponding land cover (n. series) and corresponding number of 
catchments (n. catchments) 445 
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LCC Land Cover description 

GlobCover 

Median 

NSE 

% 

NSE 

>0 

% 

NSE 

>0.5 

n. 

series 

n. 

catchments 

14 Rainfed croplands -0.01 45 1 1920 65 

20 Mosaic cropland (50-70%) / vegetation 

(grassland/shrubland/forest) (20-50%) 

-0.03 44 1 1080 33 

30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / 

cropland (20-50%) 

0.01 55 0 2220 56 

40 Closed to open (>15%) broadleaved evergreen or semi-

deciduous forest (>5m) 

0.21 75 19 3612 83 

50 Closed (>40%) broadleaved deciduous forest (>5m) 0.14 68 4 6045 162 

60 Open (15-40%) broadleaved deciduous forest/woodland 

(>5m) 

-0.12 36 0 417 19 

70 Closed (>40%) needleleaved evergreen forest (>5m) -0.21 25 1 2619 62 

90 Open (15-40%) needleleaved deciduous or evergreen forest 

(>5m) 

-0.61 16 1 2547 173 

100 Closed to open (>15%) mixed broadleaved and 

needleleaved forest (>5m) 

-0.53 5 0 390 17 

110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) -2.51 0 0 30 2 

120 Mosaic grassland (50-70%) / forest or shrubland (20-50%) -0.04 28 0 297 8 

130 Closed to open (>15%) (broadleaved or needleleaved, 

evergreen or deciduous) shrubland (<5m) 

-0.02 39 2 4086 95 

140 Closed to open (>15%) herbaceous vegetation (grassland, 

savannas or lichens/mosses) 

-0.03 34 0 4557 116 

150 Sparse (<15%) vegetation -0.72 23 0 1521 75 

180 Closed to open (>15%) grassland or woody vegetation on 

regularly flooded or waterlogged soil - Fresh, brackish or 

saline water 

-0.07 17 0 36 1 

200 Bare areas -0.33 11 0 297 7 

210 Water bodies -0.48 0 0 60 4 

 

Table 5: Median NSE values per product and per dominant LU class. Cells in italic bold have median values>0, and cells in bold 
>0.1. Empty cells represent a category where a specific product is not available. 

 
 

TRMM GPM CHIRPS SSEBOP MOD16 SEBS GLEAM CMRSET JPL CSR GFZ 
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Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

D
om

in
an

t 
L

an
d 

C
ov

er
 C

la
ss

 
14 0.01 -0.04 -0.02 -0.14 -0.03 -0.01 -0.0 0.01 -0.01 -0.01 -0.02 

20 0.02 -0.11 -0.03 0.04 -0.32 0.04 -0.11 -0.06 -0.03 -0.03 -0.03 

30 0.01 0.02 0.01 -0.01 -0.0 0.04 0.03 0.02 0.01 0.01 0.01 

40 0.21 0.18 0.24 0.21 0.21 0.25 0.07 0.27 0.2 0.2 0.21 

50 0.14 0.17 0.12 0.19 0.19 0.12 0.05 0.1 0.14 0.15 0.14 

60 -0.07 -0.13 -0.12 0.07 -0.46 -0.13 -0.13 0.01 -0.13 -0.11 -0.12 

70 -0.25 -0.17 -0.2 -0.12 0.02 -0.34 -0.17 -1.43 -0.22 -0.22 -0.2 

90 -0.42 -0.62 -0.41 -0.58 -0.1 -0.33 -1.12 -0.96 -0.61 -0.6 -0.62 

100 -0.53 -0.47 -0.78 -0.41 -0.21 -0.52 -0.79 -1.1 -0.53 -0.55 -0.5 

110 - -2.51 - -3.72 -7.14 -2.66 -4.11 -2.41 -2.45 -2.6 -2.7 

120 -0.03 -0.08 -0.02 -0.29 -0.5 0.0 -0.04 -0.03 -0.04 -0.04 -0.04 

130 -0.02 -0.03 -0.02 -0.03 -0.01 -0.0 -0.01 -0.09 -0.02 -0.02 -0.02 

140 -0.03 -0.04 -0.01 -0.04 -0.05 -0.0 -0.02 -0.02 -0.02 -0.03 -0.03 

150 -0.18 -0.88 -0.32 -0.84 -0.27 -0.44 -1.33 -0.79 -0.72 -0.72 -0.69 

180 -0.09 -0.08 0.0 -0.02 -0.66 - -0.1 -0.06 -0.06 -0.07 -0.07 

200 -0.29 -0.35 -0.32 -0.06 -0.27 -0.19 -0.33 -2.01 -0.34 -0.32 -0.32 

210 -0.66 -0.48 -0.8 -0.22 -0.25 - -0.7 -1.24 -0.5 -0.49 -0.47 

 

Table 6: NSE values for basins classified by climate class 450 

Climate class 

Median 

NSE 

% NSE 

>0 

% NSE 

>0.5 

n. series n. 

catchments 

A Tropical 0.11 67 12 5301 127 

B Arid -0.04 30 1 6483 153 

C Temperate 0.08 63 3 6039 162 

D Continental -0.08 35 1 13509 526 

E Polar 0.02 52 0 402 11 

 

Table 7: Median NSE values per product and dominant climate class. Cells in italic bold have median values>0, and cells in bold 
>0.1.  

 TRMM GPM CHIRPS SSEBOP MOD16 SEBS GLEAM CMRSET JPL CSR GFZ 

 
Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

Med. 

NSE 

A Tropical 0.12 0.11 0.12 0.17 0.03 0.15 0.02 0.17 0.11 0.12 0.12 

B Arid -0.03 -0.05 -0.04 -0.05 -0.07 -0.01 -0.03 -0.12 -0.04 -0.04 -0.04 
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C Temperate 0.05 0.11 0.08 0.07 0.08 0.1 0.06 0.07 0.08 0.08 0.08 

D Continental -0.03 -0.15 -0.04 -0.09 0.02 -0.11 -0.12 -0.19 -0.08 -0.08 -0.08 

E Polar 0.16 -0.0 -0.03 0.34 0.13 0.28 -0.32 -0.28 0.01 0.01 0.02 

3.4 Results considering anomalies 

Remote sensing products are known to be subject to biases and in the results presented so far, no bias correction was considered. 455 

In order to investigate how biases may impact the results, we computed the NSE using the anomalies from the mean of the 

computed runoff and GRDC data. The anomalies from the mean were computed by subtracting the mean of each time series 

from the time series values. 

Considering anomalies rather than absolute values produces a shift in the distribution of the computed NSE values towards 

higher values (Figure 8) with the percentage of timeseries reaching NSE>0 going from 44.9% to 72.1%, and the percentage of 460 

timeseries reaching NSE>0.5 from 3.4% to 4.8%. 

 

Figure 8: Distribution of NSE values for all time-series for the standard and anomaly time-series. (Time series with NSE<-3 not 
shown: 2.8% of timeseries for standard and 0.7% for the anomaly time-series) 

Increases in NSE for the anomaly time series are most pronounced in the areas which had very low NSE values (see Figure 3 465 

and Figure 10), but many of these retain low NSE values as can be seen for example in the north-western Americas in Figure 

9Figure 9. 
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Figure 9: Median NSE for the anomaly time-series for different product combinations at each GRDC station. 49 stations have a 470 
median NSE of below -1, the color scale was cropped for legibility. 

 

Figure 10: Difference in median NSE values between anomaly and original timeseries. Positive values denote an increase in NSE for 
anomaly time series – all stations saw an increase in median NSE by moving to the anomaly. 26 stations see an increase of more than 
2, the color scale was cropped for legibility.  475 

Results in terms of correlation of NSE with catchment characteristics show some differences in the magnitude of the 

correlations but very few in the sign of the correlation with the notable exception of the correlations between runoff to 

precipitation ratio for GPM products. We therefore expect that while using NSE for the anomalies from the mean may show 
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some differences, the general conclusions would be similar to those presented for the standard time-series. The table of 

correlations for the anomaly time-series is shown in Appendix B.  480 

4 Conclusions and perspectives 

In this study, we analyzed the closure of the water balance at the monthly time-scale for catchments of more than 10 000km2 

by using remote sensing to compute runoff and comparing the computed runoff to in-situ measurements of discharge from the 

GRDC using the Nash-Sutcliffe Efficiency as the performance metric. We computed the results for 45 different remote sensing 

product combinations at between 595 to 931 gauging stations depending on the product combinations and analyzed the results 485 

through the lens of both the remote sensing products and of 10 catchment characteristics which we computed globally.  

Overall, a positive NSE could be reached for at least one product combination for 73.7% of the stations considered. While 

some product combinations showed better results than others, no one combination or product stood out as systematically 

performing better than the others. Correlations were found between the NSE values obtained and the ability of remote sensing 

to close the water balance between areas with different precipitation patterns, in areas with large snow-cover, in different 490 

climatic zones and in areas with different dominant land cover classes. This highlights the importance of validating RS products 

widely. In particular, our results point to the necessity of the improvement of products in continental and arid climate zones 

and some land covers. 

While a number of catchments characteristics were analyzed, these are not exhaustive and for those chosen could have also 

been computed differently. For example, for larger basins, selecting only one land use category as representative can obscure 495 

some differences, and using percentages of area under different types of vegetation may help to further refine results. The same 

may be considered for climate class. Some additional characteristics which could be interesting to investigate are percentage 

of area under irrigation in particular for potentially differentiating the different ET products and as a measure of the degree of 

alteration. One limitation for such an analysis would be the accuracy of global irrigation maps. Some examples of other 

catchment characteristics which suffer from similar limitations in terms of global data availability or quality but would be of 500 

interest are soil type and hydrogeology. 

Many satellite products are also calibrated in specific areas though it is not always straightforward to obtain this information 

consistently. It would be very interesting to assess how different the performance is in areas where calibration activities are 

carried out versus others and how this impacts the choice of product. These areas could also be correlated with areas with a 

high density of GRDC stations. Efforts to collect discharge data in underrepresented areas should be undertaken to be included 505 

in future studies. 
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Appendix 1A: Full result tables for all combinations and by climate zone 

Table A1 - Median NSE values for the 45 product combinations. n. NSE>x is the number of time series for which NSE>x and n. 
catchments is the number of series considered for the specific combination (1 per catchment). The results are presented both for all 
GRDC stations available for each combination (A.) and for the GRDC stations common to all product combinations (B.) 

Product Combination 

median 

NSE 

n. 

NSE>0.5 

n. 

NSE>0 

n. 

catchmts 
 

median 

NSE 

n. 

NSE>0.5 

n. 

NSE>0 

n. 

catchmts 

 
A: For all possible catchments 

 

B: For catchments common to all 

products 

TRMM - SSEBOP - JPL 0.0 24 296 601 
 

0.0 24 295 590 

TRMM - SSEBOP - GFZ 0.0 24 286 601 
 

0.0 24 285 590 

TRMM - SSEBOP - CSR 0.0 25 292 601 
 

0.0 25 290 590 

TRMM - CMRSET - JPL 0.0 21 291 604 
 

0.0 21 288 590 

TRMM - CMRSET - GFZ 0.0 22 290 604 
 

0.0 22 287 590 

TRMM - CMRSET - CSR 0.0 21 292 604 
 

0.0 21 289 590 

TRMM - GLEAM - JPL -0.01 10 259 599 
 

-0.01 10 256 590 

TRMM - GLEAM - GFZ -0.01 10 253 599 
 

-0.01 10 250 590 

TRMM - GLEAM - CSR -0.01 10 256 599 
 

-0.01 10 253 590 

TRMM - SEBS - JPL 0.01 25 324 602 
 

0.01 25 320 590 

TRMM - SEBS - GFZ 0.01 26 326 602 
 

0.01 26 321 590 

TRMM - SEBS - CSR 0.01 25 322 602 
 

0.01 25 317 590 

TRMM - MOD16 - JPL 0.0 14 310 595 
 

0.0 14 309 590 

TRMM - MOD16 - GFZ 0.0 14 311 595 
 

0.0 14 310 590 

TRMM - MOD16 - CSR 0.0 14 308 595 
 

0.01 14 307 590 

CHIRPS - SSEBOP - JPL 0.0 35 289 601 
 

0.0 35 286 590 

CHIRPS - SSEBOP - GFZ 0.0 35 290 601 
 

0.0 35 287 590 

CHIRPS - SSEBOP - CSR 0.0 35 289 601 
 

0.0 35 286 590 

CHIRPS - CMRSET - JPL -0.04 33 251 598 
 

-0.03 33 250 590 

CHIRPS - CMRSET - GFZ -0.04 35 247 598 
 

-0.03 35 246 590 

CHIRPS - CMRSET - CSR -0.03 33 251 598 
 

-0.03 33 250 590 

CHIRPS - GLEAM - JPL -0.01 11 257 599 
 

-0.01 11 254 590 

CHIRPS - GLEAM - GFZ -0.01 13 252 599 
 

-0.01 13 249 590 

CHIRPS - GLEAM - CSR -0.01 12 247 599 
 

-0.01 12 245 590 

CHIRPS - SEBS - JPL 0.01 34 348 596 
 

0.01 34 345 590 

CHIRPS - SEBS - GFZ 0.01 31 340 596 
 

0.01 31 337 590 

CHIRPS - SEBS - CSR 0.01 32 342 596 
 

0.01 32 339 590 

CHIRPS - MOD16 - JPL 0.01 26 320 595 
 

0.01 26 318 590 

CHIRPS - MOD16 - GFZ 0.0 27 314 595 
 

0.0 27 312 590 
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CHIRPS - MOD16 - CSR 0.01 26 315 595 
 

0.01 26 313 590 

GPM - SSEBOP - JPL -0.06 26 337 931 
 

0.0 26 282 590 

GPM - SSEBOP - GFZ -0.05 27 336 931 
 

0.0 26 280 590 

GPM - SSEBOP - CSR -0.05 29 330 931 
 

0.0 28 275 590 

GPM - CMRSET - JPL -0.07 28 379 928 
 

0.02 28 331 590 

GPM - CMRSET - GFZ -0.07 31 377 928 
 

0.02 31 326 590 

GPM - CMRSET - CSR -0.08 28 378 928 
 

0.02 29 328 590 

GPM - GLEAM - JPL -0.06 14 327 929 
 

-0.01 14 257 590 

GPM - GLEAM - GFZ -0.06 12 325 929 
 

-0.02 12 257 590 

GPM - GLEAM - CSR -0.06 15 327 929 
 

-0.01 15 256 590 

GPM - SEBS - JPL -0.22 16 319 919 
 

0.0 29 306 590 

GPM - SEBS - GFZ -0.23 17 319 919 
 

0.0 30 296 590 

GPM - SEBS - CSR -0.22 16 320 919 
 

0.0 30 299 590 

GPM - MOD16 - JPL -0.02 23 425 917 
 

0.01 16 307 590 

GPM - MOD16 - GFZ -0.02 20 423 917 
 

0.01 17 307 590 

GPM - MOD16 - CSR -0.02 24 427 917 
 

0.01 18 304 590 

          

 625 
Table A2: Full results by climate zone. % NSE>x is the percentage of time series for which NSE>x and n.series the number of time-
series produced for each climate class and n.catchments is the number of catchments located in the different climate classes.  

Climate class  
Median 

NSE 

% 

NSE>0 

% 

NSE>0.5 

n. 

series 

n. 

catchments 

1 Af Tropical rainforest climate 0.14 68 11 450 10 

2 Am Tropical monsoon climate 0.28 69 34 945 21 

3 Aw/As Tropical wet and dry or savanna  0.09 66 7 3906 96 

4 BWh Hot desert climate -0.06 31 0 579 14 

5 BWk Cold desert climate -0.2 10 0 315 7 

6 BSh Hot semi-arid climate -0.01 46 6 1137 28 

7 BSk Cold semi-arid climate -0.04 27 0 4452 104 

8 Csa Hot-summer Mediterranean climate -0.04 37 0 90 2 

9 Csb Warm-summer Mediterranean climate -0.0 49 10 441 10 

11 Cwa 
Monsoon-influenced humid 

subtropical climate 

0.05 55 15 396 21 

12 Cwb 
Monsoon-influenced temperate 

oceanic climate 

-0.05 41 0 225 5 

14 Cfa Humid subtropical climate 0.12 68 3 3594 89 

15 Cfb Temperate oceanic climate 0.06 61 1 1293 35 
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18 Dsb 
Mediterranean-influenced warm-

summer humid continental climate 

-0.81 21 0 345 9 

19 Dsc 
Mediterranean-influenced subarctic 

climate 

-0.07 27 6 135 7 

21 Dwa 
Monsoon-influenced hot-summer 

humid continental climate 

0.74 100 100 45 3 

22 Dwb 
Monsoon-influenced warm-summer 

humid continental climate 

-0.06 16 0 105 3 

23 Dwc 
Monsoon-influenced subarctic 

climate 

-0.66 18 0 120 8 

24 Dwd 
Monsoon-influenced extremely cold 

subarctic climate 

-0.7 20 0 30 3 

25 Dfa 
Hot-summer humid continental 

climate 

0.13 74 3 2295 51 

26 Dfb Warm-summer humid continental  -0.08 32 0 7491 248 

27 Dfc Subarctic climate -0.71 16 1 2871 189 

28 Dfd Extremely cold subarctic climate -1.25 4 0 72 5 

29 ET Tundra climate 0.06 55 0 312 9 

31 EF Ice cap climate -0.09 40 0 90 2 
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Appendix B: Correlation table for anomaly time series 630 

 

Figure B1: Spearman correlations for different product combinations between the NSEs of anomaly time series for catchments and 
characteristics of those catchments. See Table 2  for an overview of the catchment characteristics. White dots were added to the 
negative correlations for monochromatic legibility. 


