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Abstract. Many 3D hydrostratigraphic models of the subsurface are interpreted as deterministic models, where an experienced 

modeler combines relevant geophysical and geological information with background geological knowledge. Depending on the 

quality of the information from the input data, the interpretation phase will typically be accompanied by an estimated 

qualitative interpretation uncertainty. Given the qualitative nature of uncertainty, it is difficult to propagate the uncertainty to 

groundwater models. In this study, a stochastic simulation-based methodology to characterize interpretation uncertainty within 15 

a manual interpretation-based layer model is applied in a groundwater modeling setting. Three levels of interpretation 

uncertainty scenarios are generated and three locations in the models representing different geological structures are analyzed. 

The impact of interpretation uncertainty on predictions of capture zone area and median travel time is compared to the impact 

of parameter uncertainty in the groundwater model. The main result is that in areas with thick and large aquifers and low 

geological uncertainty, the impact of interpretation uncertainty is negligible compared to the hydrogeological parameterization, 20 

while it may introduce a significant contribution in areas with thinner and smaller aquifers with high geologic uncertainty. The 

influence of the interpretation uncertainties is thus dependent on the geological setting as well as the confidence of the 

interpreter. In areas with thick aquifers, this study confirms existing evidence that if the conceptual model is well-defined, 

interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.   
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1 Introduction 25 

Hydrostratigraphic models are the backbone of a groundwater model. They define the physical structure and the parameter 

zonation according to which movement of water, storage and solute transport takes place in the groundwater model. The 

hydrostratigraphic model is subject to uncertainty, and it is well known that it forms a large source of uncertainty in the 

groundwater model predictions (e.g. Huysmans and Dassargues, 2009; Moore and Doherty, 2005; Troldborg et al., 2007; 

Poeter and Anderson, 2005). Characterizing these uncertainties is important as it can provide decision-makers with information 30 

about the accuracy of model predictions and has been the subject of numerous studies (e.g. Barfod et al., 2018; Feyen and 

Caers, 2006; Li et al., 2016; Zhang et al., 2021). 

 

Generally, hydrostratigraphic modeling can be divided into two main groups, in which uncertainties are characterized 

differently: The interpretation-based approaches and the geostatistical approaches. In the interpretation-based approaches, a 35 

single deterministic geological or hydrostratigraphic model is constructed manually through the modeler’s co-interpretation of 

all available data (e.g. Høyer et al., 2015; Jørgensen et al., 2013; Royse, 2010). The resulting model is viewed as the “best 

possible” representation of the subsurface, given the available data and information. The main advantage is that they are 

directly based on expert knowledge, thereby ensuring geological realism. This has traditionally been the favored method for 

producing geological models. However, a common criticism is that both the final hydrostratigraphic model and the 40 

interpretation uncertainties are inherently subjective and biased in nature (Wellmann and Caumon, 2018). In contrast, it has 

also been argued that given a proper description of the subjective information, the subjective element becomes a strength rather 

than a weakness (Curtis, 2012). 

 

In geostatistical simulation approaches, multiple realizations are generated in order to represent a span of “equally possible” 45 

models of the subsurface (e.g. Høyer et al., 2017; Madsen et al., 2021a; Mariethoz and Caers, 2015; Stafleu et al., 2011) and 

hereby account for the inherent uncertainty of the geological model. Based on a set of assumptions, the equally possible models 

are generated automatically representing the unstructured uncertainty within the conceptual model. Geostatistical simulations 

have been used in a number of studies to analyze the effects of combined geological and parameter uncertainty in relation to 

groundwater modelling (e.g. He et al., 2013; Refsgaard et al., 2012), just like other studies focus on how the groundwater 50 

modelling can be optimized when simulating both hydrostratigraphic units and hydraulic conductivity uncertainty (e.g. Benoit 

et al., 2021). As the uncertainty modelling is already well-established and a more natural consequence of geostatistical 

modeling, this paper aims at addressing the issue that the interpretation models lack a clear way to characterize uncertainties 

quantitatively. 

 55 
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In the interpretation-based geological models, a qualitative measure of uncertainty may be assigned to each interpretation point 

by the modeler. These uncertainties are based on several factors related both to the geological interpretation and the data (data 

type, - resolution, - density and – quality) (Høyer et al., 2023; Sandersen et al., 2018). Due to the qualitative and subjective 

nature of the uncertainty measure related to the perceived uncertainty of the geologist while producing the deterministic 60 

interpretation model, this information has previously been lost and hence, not incorporated in subsequent modelling, as 

groundwater modelling. Thus, the uncertainties have only been discussed qualitatively when the purpose of the models required 

it, for instance in relation to landfill leachate risk assessment (Høyer et al., 2019) or groundwater vulnerability mapping 

(Hansen et al., 2016; Sandersen, 2008).  

 65 

One attempt to consider the uncertainties of the manual interpretation models focus on the uncertainties related to the difference 

in conceptual geological understanding between different modelers. To consider this, some studies have engaged multiple 

teams of geological modelers to interpret the same data with an unknown conceptual model to come up with what they believe 

is the most likely model (e.g. Harrar et al., 2003; Hills and Wierenga, 1994; Refsgaard et al., 2006; Seifert et al., 2012). This 

approach is not widely applied as it is labor-intensive, and it is difficult to analyze the resulting uncertainty captured through 70 

the multiple models. 

 

However, recently approaches have been developed that transform the qualitative uncertainties of an interpretation-based 

hydrostratigraphic model to an ensemble of different realizations of the subsurface configuration through geostatistical 

simulation. In Troldborg et al. (2021), borehole interpretations were perturbed by assuming a normal distribution with a 75 

standard deviation reflecting a predefined group-wise uncertainty. Different sequential gaussian simulation (SGS) realizations 

were generated by conditioning them on different perturbed borehole interpretations. The realizations were applied in an impact 

assessment of sheet piles on the water table. Further, Madsen et al. (2022)  presented the geology-driven modeling approach 

where a deterministic interpretation-based hydrostratigraphic model can be transformed into a set of hydrostratigraphic 

realizations through SGS and interpretation uncertainties defined by the interpreter. The underlying probability distributions 80 

used in the SGS are inferred using a likelihood function, as opposed to the variogram-based modelling of Troldborg et al. 

(2021), which enables correlated effects of the interpretation uncertainty to be considered.  

 

In this study, the method of Madsen et al., (2022) is implemented in a groundwater modeling context for an area in central 

Denmark, where the interpretation-based hydrostratigraphic model is based on information from boreholes, airborne 85 

electromagnetic data and geoelectrical data (Enemark et al., 2022; Madsen et al., 2022). To our knowledge, the interpretation 

uncertainty for all layer boundaries in a manual, interpretation-based model has never been analyzed systematically in a 

groundwater model. Specifically, the influence of interpretation uncertainty on groundwater model predictions is evaluated in 

terms of the extent of the capture zones and the median travel times of water. The investigation is performed for three well 

fields in the study area that represent different geological structures and different levels of uncertainty. Three scenarios of 90 
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diverse levels of uncertainty are investigated ranging from the overconfident interpreter to the cautious one. Overconfident 

interpreters will generally assign low uncertainties to their interpretations while the opposite is the case for cautious 

interpreters. Because the resulting groundwater models are affected by uncertainties in both the hydrostratigraphic and 

hydrological domain, the overall effect and significance of propagating the interpretation uncertainties are compared to 

uncertainties in the parameters of the groundwater model, such as hydraulic conductivity. 95 

2  Study area 

2.1 Hydrological and geological setting  

The study area covers 127 km2 and is located just north of Horsens Fjord in Jutland, Denmark (Figure 1). The catchment is 

delineated by the topography that ranges from 170 m above sea level (a.s.l.) in the north to 0 m a.s.l. at the fjord. Approximately 

2.7 M m3/year of groundwater is abstracted for drinking water from 20 different well fields within the study area. The 100 

groundwater system is restricted to the geological succession above the Paleogene clay, which is assumed to be impermeable 

and has a large thickness apart from areas where deep buried valleys are eroded into the Paleogene clay. In parts of the model 

area, erosional remnants of Miocene sand, silt and clay exist on the plateaus, although the Paleogene clay is directly overlaid 

by Quaternary deposits in most of the area. The Quaternary succession is influenced by glacial erosion and both glaciotectonics 

and multiple cross-cutting buried valleys have previously been mapped (Figure 1; Jørgensen et al., 2010; Sandersen and 105 

Jørgensen, 2016). The Quaternary deposits consist of glacial and interglacial deposits of till, meltwater clay and sand, 

freshwater clay, sand and gyttja. 

 

A deterministic and manually interpreted hydrostratigraphic model has been constructed for the area (Andersen and Sandersen, 

2020) following the national guidelines described in Sandersen et al. (2018). The manual modelling is performed in the 110 

geological modelling software Geoscene3D (I-GIS, 2023) along a grid of fixed interpretation profiles placed such that they 

cross important geological structures and data. Three of these interpretation profiles are shown in Figure 2. The figure shows 

the interpretation points together with the gridded layer surfaces and borehole data within a buffer of 50 m of the profile. Each 

of the layers in the manual model is constituted by a top and a bottom 2D surface.  

 115 

Interpretation points were manually placed along the interpretation profiles. The aim was an even spacing of a few hundred 

meters between points, with a closer spacing in areas with marked variations. Subsequently, the layers are interpolated using 

kriging with adjusted semivariograms dedicated to each surface. To ensure that surfaces do not cross, they are adjusted using 

a dedicated tool in the modelling software, after the gridding. The modeler sets up rules of succession based on the erosional 

and depositional setting. Each interpretation point was attributed a qualitative uncertainty measure during the interpretation 120 

process, shown with color-coded horizontal ovals in Figure 2. The categories were defined as follows:  
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Category 1: Most certain interpretation points, typically related to high-quality borehole information.  

 

Category 2: Certain interpretation points, based on good quality geophysical data and/or close to borehole data.  125 

 

Category 3: Intermediate uncertainty, based on geophysical or borehole data of less good quality or ambiguous information. 

 

Category 4: Uncertain information, based on interpretation of data of poor quality, extrapolated data, or no data at all.  

 130 

In the rest of this paper, the deterministic, manually generated, interpretation-based layer hydrostratigraphic model (Andersen 

and Sandersen, 2020) will be referred to as the Manual Interpretation model.  

 

The Manual Interpretation model covers five pre-Quaternary layers and nine Quaternary layers. The pre-Quaternary layers 

consist of limestone, Paleogene clay, lower Miocene clay, Miocene sand, and upper Miocene clay. The Quaternary layers are 135 

divided into alternating clay and sand layers. The lowermost Quaternary layers are exclusively interpreted as valley infill 

deposits whereas the upper Quaternary layers exist throughout the model area. The hydrostratigraphic model was constructed 

to focus on the hydrological properties of the deposits and do not distinguish between lithologies deposited in different 

geological environments, such as meltwater clay and clay till deposits.  
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 140 

Figure 1: Location of the catchment, water abstraction wells, main rivers, glacial tectonics, buried valleys, profiles shown in Figures 

2, 4 and 5, areas and zoom extents used in Figure 9 and Figure 10, respectively. 

2.2 Selected investigation sites  

The study is concentrated around two well fields in the area, Højballegård and Hovedgård, and a synthetic well field (see 

Figure 1). The two real well fields (Højballegård and Hovedgård) were chosen because they represent different geological 145 

structures from which water is abstracted. The synthetic well field does not exist in the real world but was introduced in the 

analysis to represent an area with low data availability and thus a higher level of geological uncertainty. In the following, the 

geology and hydrostratigraphy of the three areas are summarized based on details described in previous studies (Andersen and 

Sandersen, 2020; Enemark et al., 2022; Madsen et al., 2022). 

2.2.1 Højballegård well field 150 

Højballegård well field with 17 abstraction wells is situated in the central part of the catchment (Figure 1) and is the largest 

well field in the area, responsible for 87 % of the groundwater abstraction The water is abstracted from a deep SW-NE oriented 
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buried valley structure that shows widths up to 2 km and depths up to 220 m. According to the borehole information, the valley 

infill deposits are relatively complex with varying deposits of glacial origin including meltwater sand, meltwater clay and clay 

till as well as thick occurrences of interglacial clay, sand and gyttja. In the Manual Interpretation model (Figure 2a), the valley 155 

infill is divided into Quaternary sand and clay. The groundwater at Højballegård is abstracted from two different Quaternary 

sand layers (see arrows in Figure 2), separated by a clayey aquitard. In the model, the upper abstraction layer groups the 

meltwater sand deposited as valley infill and the Quaternary sand on the plateaus and can therefore serve as a hydraulic 

connection between the plateaus and the valley. The layer is laterally extensive (Figure 2a, profile distance 2 – 8.5 km) and 

has a varying, but usually substantial thickness (around 30 m at the well field). The lower abstraction layer is dedicated valley 160 

infill sand and is thus solely present in the buried valleys with a thickness of about 40 m around the well field.  
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Figure 2: Interpretation profiles through the catchment showing the Manual Interpretation model with interpretation points and 

their uncertainty categories. Interpretation points and boreholes are shown within a buffer of 50 m from the profile. a) interpretation 

profile crossing the Højballegård well field, b) interpretation profile crossing Hovedgård well field, c) interpretation profile closest 165 
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to the synthetic borehole (placed 900 m from the profile). The interpolated position of the borehole is marked at the profile. The 

locations of the profiles are shown in Figure 1. Vertical exaggeration 10x.  

2.2.2 Hovedgård well field  

Hovedgård well field is situated in the northeastern part of the catchment (Figure 1) and is a small well field with four wells, 

responsible for 3% of the water abstraction in the area. The well field is located on the western flank of an SSW-NNE oriented 170 

buried valley (Figure 2b). The valley is up to 3 km wide, but only 120 m deep. The valley infill at Hovedgård is less well-

described compared to the Højballegård well field, with many lithological descriptions only indicating lithology (sand or clay) 

rather than depositional environment. According to the Manual Interpretation model (Figure 2b), the valley infill is 

characterized by thin alternating layers of sand and clay. Water at Hovedgård well field is abstracted from deep sand layers 

(see arrows in Figure 2), modelled as valley infill. The abstraction layers are therefore restricted to the area of the buried valley 175 

and only locally present in the northern and southern parts of the valley.  

2.2.3 Synthetic well field 

To simulate the response of the models in an area with larger uncertainty, a synthetic well field was included in the southeastern 

part of the model area with an appropriate distance to the boundaries of the groundwater model (Figure 1). Here, the data is 

relatively sparse, and the interpretation points are generally assigned high uncertainties. In the groundwater model water is 180 

abstracted from the Miocene sand layer and is set to the same rate as for Hovedgård well field. At this location, the Miocene 

sand is interpreted to be relatively thin (10 m) (Figure 2c). The Miocene layers are interpreted to dip towards south due to the 

deep-seated fault structure in the southernmost part of the area.  

3 Methods 

The workflow of the paper is summarized in Figure 3. To evaluate the interpretation uncertainty of an initial interpreted 185 

hydrostratigraphic model, the hydrostratigraphic model is perturbed in three different uncertainty scenarios to produce 50 

realizations in each scenario. In a groundwater model using the original interpreted hydrostratigraphic model, 200 parameter 

realizations are selected in a GLUE approach. The 200 behavioral parameter sets are applied using the hydrostratigraphic 

realizations. In the following, a detailed description of the methodology is provided.  
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 190 

Figure 3: Summary of workflow in the current paper.  

3.1 Hydrostratigraphic modeling 

The geostatistical modeling described in Madsen et al. (2022; 2021b) is based on the qualitative uncertainties evaluated at each 

interpretation point during the manually interpreted hydrostratigraphic modeling (Andersen and Sandersen, 2020) (Section 

2.1). To apply the methodology, the interpreter must provide; 1) A quantitative estimate of the interpretation point uncertainty 195 

based on the qualitatively evaluated uncertainties, and 2) a factor to balance the small-scale variability and large-scale 

structures (see section 3.1.2). These preparational steps are described in the two following sections. 

3.1.1 Point uncertainty estimates 

In the applied methodology, each of the qualitative uncertainty categories is quantified using a Gaussian distribution, with the 

elevation of the interpretation points characterized by a mean and a standard deviation specified by the interpreter. The standard 200 

deviation for each uncertainty category is set to increase proportionally with depth and the resolution of the geoelectrical and 

electromagnetic inversion results. In layers with special properties, where depth cannot be used as a direct proxy for 

uncertainty, an interpreted value is provided manually based on other information. For instance, the deep-lying Paleogene clay 

is well-resolved with electromagnetic methods due to its low electrical resistivity, thus having low interpretation uncertainty 

in the Manual Interpretation model (see e.g. Danielsen et al. (2003)). However, it is essential to note that even with this 205 

comparatively low interpretation uncertainty at the well-resolved boundary, the chosen uncertainty level should still reflect the 

uncertainties related to the processing and inversion of the geophysical data, especially as resolution decreases with depth 

(Madsen et al., 2022; Viezzoli et al., 2013). Specifically for geoelectrical models, the Depth of Investigation (DOI) can be 

introduced to help assess the validity of the geophysical model at depth (Christiansen and Auken, 2012). Below the DOI, it is 
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appropriate to assign a high level of uncertainty even for an apparently well-resolved layer as the deep-lying Paleogene clay. 210 

Above the DOI, the quantification of standard deviations should factor in the resolution decrease of the inversion model with 

depth due to an increasing volume of the subsurface being averaged over and the chosen regularization (Vignoli et al., 2015). 

Ideally, the standard deviation should also account for the possibility of inversion equivalences related to different 

parameterization of the inversion scheme (Høyer et al., 2014). 

3.1.2 Balancing small-scale variability and large-scale structures 215 

The spatial variability between interpretation points is quantified by extracting 1) the large-scale structures of the interpretation 

points in a low-frequency (LF)-model and 2) capturing the small-scale variability of the residuals with a Gaussian distribution. 

As Gaussian simulation rarely leads to realistic geology (Journel and Zhang, 2006), this separation of the point information is 

introduced in order to improve geological realism in the stochastic hydrostratigraphy by keeping the main geological features 

intact. In the current setup, the LF-model is obtained by linear interpolation between interpretation points and then applying a 220 

smoothing kernel via a sliding window approach on the interpolated grid. To provide a balance between the small-scale 

variability and large-scale structures, the interpreter must provide a factor ε determining the width of a smoothing kernel used 

to construct the LF-model. Figure 4 illustrates the structural input provided in the LF-model. In one extreme, the interpretation 

model is used directly without applying any smoothing (Error! Reference source not found.a), giving all structural weight 

to the interpretation model. In the other extreme, the interpretation model is smoothed such that the LF-content merely becomes 225 

the average depth of the layers providing the maximal weight to the small-scale variability (Error! Reference source not 

found.c).  

 

As the significance of geological features vary across the modeling domain, the kernel width ε, and hence level of smoothing, 

also varies at different locations. The modeler only provides the base level ε and the kernel width is then scaled following a 230 

principle of locally assessing the changes in surface elevations. In a layer-based model, significant geological characteristics 

can correspond to sudden shifts in elevation in the interpretation points. These shifts will not arise through interpolation unless 

specific interpretation points are strategically positioned to guide the surface behavior accordingly. Thus, sudden shifts in 

interpretation point elevations are a good proxy for geological features worth extracting in the LF-model. The variance amongst 

the interpretation points within the sliding window is calculated for the entire surface. If the variance is high, then the modeler 235 

has tried to convey large changes in the elevation and the smoothing becomes low to allow the LF-model to follow these 

structures. In the other case, a low variance of elevation amongst the points within the sliding window leads to more smoothing 

of the LF-model. In many places with low variance in elevation, high uncertainty is attributed to the interpretation points by 

the modeler. We attribute this apparent correlation to the fact that a modeler would likely not be willing to make bold structural 

interpretations in areas where there are no data to support such claims. Thus, the LF-model will indirectly carry less information 240 
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in areas with high uncertainty, which is desirable, although the LF-model is based on the spatial structure of the interpretation 

points and not the uncertainty attributed to them. 

 

 

 245 

 

 

Figure 4: Schematic overview of effect of applying smoothing to a three-layer interpretation model based on interpretation points 

to obtain the overall structures in a LF model. a) The interpretation model has no smoothing (𝜺 = 0), b) the interpretation model is 

smoothed (0 < 𝜺 < ∞) and c) the interpretation model is smoothed to a degree that only represents expected average depth of each 250 

layer (𝜺 → ∞). The resulting residuals for each scenario are shown underneath in d)-f). 

 

Once a LF-model is established, a statistical model for the small-scale variability is inferred from the residuals, such that a set 

of realizations of each boundary can be simulated using the quantified spatial variability instead of being interpolated as done 

in traditional modeling. Ultimately, it is up to the modeler to choose a suitable smoothing that keeps important structural input 255 

in the LF-model but allows for the desired spatial variability to be mapped in the residuals (Error! Reference source not 

found.b and Error! Reference source not found.e).  
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3.1.3 Uncertainty scenarios 

In this study, three uncertainty scenarios are developed with different point uncertainty quantifications, each consisting of 50 

realizations of the subsurface. Furthermore, the Manual Interpretation model does not serve as the ground truth but can be 260 

thought of as one possible representation of the subsurface. Thus, the trust in the large-scale structures of the interpretation 

model is also changed between the three scenarios by varying the applied smoothing factor ε. 

First, the uncertainty configuration of Madsen et al. (2022) is adopted as the “Medium” uncertainty scenario where ε = 700 

m. Second, a “Low” uncertainty scenario representing an overconfident interpreter is introduced. To emulate this, all 

interpretation uncertainties at point scale are reduced by a factor of 3 (compared to Medium scenario) and subsequently the 265 

smoothing factor ε is decreased by 500 m to ε = 200 m, thus making the LF-model very similar to the interpretation model. 

Finally, an insecure interpreter that estimates a “High” degree of uncertainty to his/her interpretations is introduced. The 

standard deviations at point scale of the High scenario are scaled up with a factor of three, while the smoothing factor ε is 

increased with 500 m to ε = 1200 m to make sure that layers can deviate substantially from the Manual Interpretation model. 

The standard variation assigned to the different uncertainty scenarios are illustrated in supplementary material S3. 270 

3.2 Groundwater modeling 

Applying the same setup as in Enemark et al. (2022), steady-state MODFLOW-NWT (Niswonger et al., 2011) models are 

developed using the Flopy platform (Bakker et al., 2016). Two outputs of the groundwater model are evaluated: the extent of 

the capture zones and the median travel times of water particles from the water table to the well screen. These predictions are 

chosen, as they are not part of the calibration but will be affected by the calibrated parameter zonation. The discretization, 275 

boundary conditions and parameterization of the groundwater are described in the following. 

3.2.1 Discretization 

The horizontal discretization is specified to 100 m by 100 m while the vertical discretization is based on the vertical extent of 

the hydrostratigraphic units from 165 m a.s.l. to -250 m a.s.l., i.e., each hydrostratigraphic realization has a distinct model grid. 

By grouping together three plateau sand units, two plateau clay units, two sand units in the buried valleys and two clay units 280 

in the buried valleys, the number of hydrostratigraphic units in the groundwater model is eight. The grouped units share the 

same or similar lithological description in the Manual Interpretation model but differ in their position in the geological 

sequence. The hydrostratigraphic units are parameterized by horizontal hydraulic conductivity, vertical anisotropy, and 

porosity. 

3.2.2 Boundary conditions 285 

The recharge to the water table is represented as a diffusive source with MODFLOW’s recharge (RCH) package as a specified 

flux distributed over the top of the model. The well abstraction in the model is represented by the specified flux well (WEL) 
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package. In all models regardless of the geometry of the model grid, the wells are set in the same layer to ensure model 

predictions can be compared i.e., the depth of the 210 abstraction wells may vary between realizations, but the layer and 

thereby the lithology will be the same in all models. The lakes and fjord in the southern part of the model area, is represented 290 

by the head dependent flux boundary General Head Boundary (GHB) package. To simulate both inflows to streams as well as 

subsurface tile drains and smaller ditches, the head-dependent flux boundary Drain (DRN) package is applied. The flux to the 

river cells is used as a calibration target. 

3.2.3 Parameterization 

Realizations of the parameterization to be used for the individual hydrostratigraphic realizations are generated by Latin 295 

Hypercube sampling of parameter values within specified ranges. Five parameters and their prior parameter ranges, which are 

sampled, are presented in Table 1. A differentiation between buried valley sand and clay and plateau sand and clay is 

introduced, as the buried valley and plateau sediments may have different hydrogeological properties. Uniform distributions 

described by a minimum and maximum value are applied, representing prior information on the parameter values. As the 

sampled parameters are ranging over several orders of magnitude, the sampling was performed from log-uniform distributions. 300 

The remaining parameters are not subject to sampling and thus have fixed values as they were shown to be insensitive in initial 

model runs in the Manual Interpretation model. 

To obtain a range of posterior parameter sets, a generalized likelihood uncertainty estimation (GLUE) approach (Beven and 

Binley, 1992) is applied. Applying this approach, a subset of parameter sets that satisfy a set of predefined constraints 

simultaneously is obtained. Using the Manual Interpretation model, 10,000 realizations are run based on the prior parameter 305 

ranges presented in Table 1. Of these simulations, 200 parameter sets are retained according to the criteria below. Initial model 

runs in the Manual Interpretation model showed that the predictions of interest, capture zone area and travel time, do not 

change significantly after 200 model runs (supplementary material S1). Threshold on selected performance metrics is applied 

based on values in the Danish groundwater modeling guideline (Henriksen et al., 2017). The following thresholds are applied: 

0.9 m on the mean error of hydraulic heads, 5 % on the river observation error and 9 m on the root mean square error of 310 

hydraulic heads. Initial model runs showed that the same parameter values in different uncertainty scenarios attained similar 

performance. Therefore, these parameter sets have then been applied to the other uncertainty scenarios. The posterior parameter 

distributions are presented in supplementary material S2. 

Table 1: Parameter value ranges and distributions used in the Manual Interpretation groundwater models. Kh refers to horizontal 

hydraulic conductivity, while cond refers to conductance.  315 

Parameter Alias 
Sampling/

Fixed 
Minimum Maximum Unit 

Kh Quaternary Plateau sand Kh QPS Sampling 1 100 m/d 
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Kh Quaternary Plateau clay  Kh QPC Sampling 0.01 2 m/d 

Kh Quaternary Valley sand Kh QVS Sampling 1 100 m/d 

Kh Quaternary Valley clay  Kh QVC Sampling 0.01 2 m/d 

Kh Miocene sand Kh MS Sampling 1 100 m/d 

Kh Miocene clay - Fixed 0.01 m/d 

Kh Paleogene clay - Fixed 0.01 m/d 

Kh Limestone - Fixed 1 m/d 

Drain cond - Fixed 0.05 m2/d 

General Head Boundary cond - Fixed 0.05 m2/d 

River cond - Fixed 5 m2/d 

Vertical anisotropy - Fixed 3 - 

Porosity - Fixed 0.3 - 

 

3.2.4 Particle tracking 

Particle tracking simulations are performed using MODPATH 6 (Pollock 2012). In each topmost active cells, 10 particles are 

tracked forward to discharge points and the particles discharging to the well fields of interest (Section 2.2) are extracted. Initial 

simulations in Enemark et al. (2022) showed that the capture zone area stabilizes when around 10 particles are inserted in the 320 

upper cells of the layer model in a layer grid. Only particles with a travel time of less than 200 years are retained, as 200 years 

is the typical value for determining capture zone areas in Denmark (Iversen et al., 2009).  

4 Results 

4.1 Hydrostratigraphic model 

The quantified boundary uncertainties are illustrated in four cross sections around the three well fields (Figure 5 and Figure 325 

6). The topmost profiles (Figure 5a,e and Figure 6a,e) show the cross sections through the Manual Interpretation model. The 

three profiles below illustrate the boundary uncertainties in the Low, Medium and High uncertainty scenario in terms of mode 

and entropy. The mode represents the most probable value, while entropy is a measure of the uncertainty associated with the 

mode. In Figure 5 and Figure 6, the mode is represented by the boundaries where the color changes and the entropy is 

superimposed such that the colors become increasingly transparent when the entropy is high (i.e., uncertainty is high) and 330 

conversely has the true color when the entropy is zero. The large difference in the interpretation uncertainty in the three 
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uncertainty scenarios is overall manifested as increasingly thicker zones of uncertainty around the boundaries going from the 

Low over the Medium to the High uncertainty scenario (e.g., black ellipsis Figure 6b-d). The overall conceptual model consists 

of a thick base of impermeable Paleogene clay and alternating layers of Quaternary clay and sand situated on top and is 

preserved in all scenarios. If either of these mode models were presented as a sole model to be used for groundwater modeling, 335 

it would be hard to dismiss to be any less true or useful than the Manual Interpretation model. Thus, the important overall 

structures carried over from the LF-model are considered a fair representation of the overall geology, while the interpretation 

uncertainty at the boundaries is showcased by entropy.  

 

 340 
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Figure 5: Two intersecting cross sections of summary statistics for the hydrostratigraphic model realizations; Højballegård A (a-d) 

and Højballegård B (e-h). Location of the cross sections can be seen in Figure 1. The intersection between the cross sections is marked 

with dotted lines. Abstraction boreholes from the well field are marked with a black line and the inlet filters marked with a black 

rectangle. The colors become increasingly transparent when the entropy is high. b,f) summary statistics from the Low uncertainty 

scenario, c,g) summary statistics from the Medium uncertainty scenario and d,h) summary statistics from the High uncertainty 345 

scenario. The black ellipses are examples for comparison of the boundary uncertainty in the three scenarios and the white ellipse 

shows an example of how borehole information lowers the uncertainty at the boundaries.  

 

Figure 6: Two cross sections of summary statistics for the hydrostratigraphic model realizations at Hovedgård (a-d) and the synthetic 

(e-h) well field. Location of the profiles can be seen in Figure 1. Abstraction boreholes from the well fields are marked with a black 350 

line and the inlet filters marked with black rectangles. Note that the filter is missing on the cross sections at the synthetic borehole 
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as it is not fixed in space but is placed in the Miocene sand during groundwater modeling. The colors become increasingly transparent 

when the entropy is high. b,f) summary statistics from the Low uncertainty scenario, c,g) summary statistics from the Medium 

uncertainty scenario and d,h) summary statistics from the High uncertainty scenario. The black ellipses are examples for comparison 

of the boundary uncertainty in the three scenarios. 355 

In the real well fields (Højballegård and Hovedgård) (Figure 5 and Figure 6a-d), where the abundance of data and interpretation 

points is high, the difference in entropy is larger between the Low and Medium scenario than between the Medium and High 

scenario. This can be attributed to the lack of spatial freedom of the layer boundaries, being naturally constrained by the sheer 

number of interpretation points. In contrast, when the number of interpretation points is small, as is the case around the 

synthetic well field (Figure 6d-f), both increasing and decreasing the uncertainty level has a significant impact on the resulting 360 

hydrostratigraphic realizations. 

A slight change in mode can be observed between the three uncertainty scenarios (Figure 5 and Figure 6), which is a result of 

changing the smoothing in the LF-model, reflecting a lower information level. This difference is illustrated in regions with a 

low density of interpretation points, where the model may deviate significantly from the Manual Interpretation model. E.g., in 

Figure 6h the average depiction of Quaternary sand deposits (red colors) is higher compared to Figure 6f-g. However, in areas 365 

with high interpretation point density, as seen around the well in Figure 5b-h, each uncertainty level has a similar mode model. 

In general, borehole information, where the uncertainty is rather low in all three scenarios, are easily identified for all three 

scenarios as vertical parts of the probabilistic model associated with low uncertainties near the layer boundaries of the model 

(e.g., white ellipse in Figure 5b-d). Despite the lowered uncertainty in these vertical sections, the trend of varying uncertainty 

between the scenarios can also be spotted at these locations. All the above-mentioned observations are in accordance with 370 

expectations of the behavior of the model for the three uncertainty scenarios.  

4.2 Groundwater model 

In each of the three hydrostratigraphic uncertainty scenarios, the 50 hydrostratigraphic realizations are run with the same 200 

groundwater parameter realizations in the groundwater model. In the following, the results of the groundwater models are 

presented. In the Low, Medium and High uncertainty scenario, respectively, 7 %, 4 % and 3 % of the realizations did not 375 

converge and are therefore not included in the analysis. In section 4.1 it was observed that the realizations of the Low 

uncertainty scenario are not necessarily more like that of the original Manual Interpretation model than the realizations of High 

uncertainty scenario, which may explain the difference in the convergence rates. The convergence rate is likely influenced by 

the model grids that are unique for each realization as it follows the layer elevations. The model grid is thereby influenced by 

the smoothing of the hydrostratigraphic model (Figure 3). The low smoothing of the Low uncertainty scenario allows larger 380 

changes in layer elevations than the high smoothing in the High uncertainty scenario. In areas where the layers are thin this 

may result in lack of lateral continuity between adjacent cells, which causes an inability to simulate flow between cells in the 

same layer.  Further, at the synthetic well field, the water table falls below the screen top in 46 %, 6 % and 1 % of the 
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realizations respectively in the Low, Medium and High uncertainty scenario, which we will elaborate on in section 4.2.5. These 

realizations are excluded from further analyses. 385 

4.2.1 Ensemble performance 

The performance of the model realizations in the three uncertainty scenarios is shown in Figure 7. The evaluated performance 

metrics consist of root mean square error (RMS) and mean error (ME) of hydraulic head and river flow error. The grey area 

illustrates ranges for the performance metrics outside the threshold values. In the Manual Interpretation model, thresholds have 

been applied directly on the performance metrics. In the other uncertainty scenarios, the same parameters retained from the 390 

Manual Interpretation model have been applied. The range for the performance metrics covered by the Manual Interpretation 

model is therefore lowest, while it increases with uncertainty introduced in the uncertainty scenarios. It is shown that almost 

90 % of the realizations (between the 5th and 95th percentile) are within the threshold values for the Low and Medium scenario 

while it is a bit less for the High uncertainty scenario. The uncertainty of assuming that the same parameter sets are applicable 

for the other hydrostratigraphic realizations is thereby illustrated. The simulations from the High uncertainty scenario have 395 

larger ranges of variation for all performance criteria while the simulations from the Low uncertainty scenario have smaller 

variations.  

 

Figure 7: Performance in terms of Root Mean Square error (RMS) and Mean Error (ME) of hydraulic head and River error at the 

discharge station of the realizations within the three uncertainty scenarios Low, Medium and High and in the Manual Interpretation 400 

(Manual Interp) model. The boxes show the interquartile range between the 25th and 75th percentiles, while the whiskers mark the 

5th and 95th percentiles. The median is indicated by the orange line. The Manual Interpretation scenario consists of 200 parameter 

realizations, while the remaining scenarios consist of the same 200 parameter realizations combined with 50 hydrostratigraphic 

realizations.  

4.2.2 Predictions 405 

A summary of the uncertainties of the groundwater model predictions is presented in Figure 8. The mean normalized standard 

deviation of the median travel time and the mean normalized standard deviation of the capture zone area are shown on the x 

and y axis, respectively. The mean standard deviation is a measure of the uncertainty within the predictions, which is 
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normalized to the predictions to enable a comparison between them. To obtain the normalized standard deviation, the standard 

deviation of a parameter or a hydrostratigraphic realization (comprised of 50 different hydrostratigraphic realizations or 200 410 

different parameter realizations, respectively) is divided by the ensemble mean prediction. The mean of the normalized 

standard deviation of the parameter or hydrostratigraphic ensembles is then calculated. The predictions are marginalized on 

the hydrostratigraphic realizations shown in orange or parameter realizations shown in blue. Further, the three well fields are 

shown with different marker types and the three uncertainty scenarios are shown with different sizes of the markers in Figure 

8. 415 

  

Figure 8: Mean normalized standard deviation of capture zone area and median travel time for all uncertainty scenarios (Low, 

Medium and High) and all well fields (Højballegård, Hovedgård and the Synthetic). The predictions have been marginalized on 

either parameter realizations (orange) or hydrostratigraphic realizations (blue). For the Synthetic well field in the low uncertainty 

scenario half of the hydrostratigraphic realizations had to be discarded and the predictions are therefore placed in a parenthesis.  420 

At least three effects can be observed in Figure 8. First, by comparing the parameter and hydrostratigraphic realizations 

(different marker colors), the parameter uncertainty is shown to introduce a higher mean normalized standard deviation than 

the hydrostratigraphic interpretation uncertainty. This is except for the synthetic well field, where the uncertainty introduced 

from parameter and hydrostratigraphy to predictions becomes comparable. Second, by comparing results across well fields 

(different marker types), the mean normalized standard deviation of Højballegård well field is lower than that of Hovedgård 425 

well field which is again lower than that of the synthetic well field. Also, by comparing the results within the different 

uncertainty scenarios, the higher uncertainty scenarios generally introduce a higher mean normalized standard deviation for 
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the predictions. Third, when comparing the results of the synthetic well field (square marker) to the other two well fields (circle 

and triangle marker), the difference in results of the hydrostratigraphic realizations between the uncertainty scenarios is larger 

in the synthetic well field. Further, the travel time variance does not increase from Medium to High uncertainty scenario, which 430 

is the case in the other two well fields. In the following, these three observations will be elaborated. 

4.2.3 Hydrostratigraphic vs parameter realizations  

To illustrate the influence of the hydrostratigraphic realizations on the capture zones, the capture zones to Højballegård and 

the synthetic well fields for randomly selected realizations are presented in Figure 9 and Figure 10. The capture zone areas are 

shown as probability maps where a value of 100 % signifies that particles placed in that cell are captured by the extraction 435 

well for all selected realizations. For each parameter realization (Figure 9b-e and Figure 10b-e), the results are based on 50 

hydrostratigraphic realizations, while for each hydrostratigraphic realization (Figure 9g-j and Figure 10g-j), the results are 

based on 200 parameter realizations. As references, the capture zone area for the Manual Interpretation model (Figure 9f and 

Figure 10f) and for all realizations (Figure 9a and Figure 10a) are shown.  

The results for Højballegård shown in Figure 9 represent the Low uncertainty scenario. The simulated capture zone areas for 440 

the parameter realizations are dominated by high probability values implying that the responses from the hydrostratigraphic 

realizations are similar. Correspondingly, the capture zone areas of the four hydrostratigraphic realizations are similar in extent 

and shape. On the other hand, the extent covered by the four parameter realizations is more diverse, illustrating a higher degree 

of disagreement between the parameter realizations. This is also illustrated in the four hydrostratigraphic realizations, where 

large parts of the capture zone area are dominated by low probabilities. The capture zone area of the synthetic well field in the 445 

High uncertainty scenario (Figure 10) is at the other end of the spectrum. Here, large parts of the capture zone area both in the 

hydrostratigraphic and parameter realizations have low probabilities. Correspondingly, the extent of the selected realizations 

covers different areas for both hydrostratigraphic and parameter realizations, indicating that both have a noticeable impact on 

the extent of the capture zone area. 

 450 
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Figure 9: Capture zone area of the Højballegård well field in percentage of the realizations in the Low uncertainty scenario. The 

location of the plot is seen in Figure 1. Four parameter realizations (param real, b-e) and hydrostratigraphic realizations (h-strat 

real, g-j) have been randomly selected. In the hydrostratigraphic realizations as well as the Manual Interpretation model (f), the 

ensemble consists of 200 parameter realizations, while the ensemble consists of 50 hydrostratigraphic realizations in the parameter 455 

realizations. In the “All real” scenario, the ensemble consists of 50 hydrostratigraphic realizations and 200 parameter realizations. 
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Figure 10: Capture zone area of the synthetic well field in percentage of the realizations in the High uncertainty scenario. The 

location of the plot is seen in Figure 1. Four parameter realizations (param real, b-e) and hydrostratigraphic realizations (h-strat 

real, g-j) have been randomly selected. In the hydrostratigraphic realizations as well as the Manual Interpretation model (f), the 460 

ensemble consists of 200 parameter realizations, while the ensemble consists of 50 hydrostratigraphic realizations in the parameter 

realizations. In the “All real” scenario, the ensemble consists of 50 hydrostratigraphic realizations and 200 parameter realizations. 

4.2.4 Well fields 

All capture zone areas in the High uncertainty scenario are illustrated in Figure 11. The results for the individual parameter 

realizations are shown in the columns of the matrices while the hydrostratigraphic realizations are shown in the rows. In the 465 

legend, two endmembers of the expected variation for a dominating parameter uncertainty and a dominating hydrostratigraphic 

uncertainty are shown. Red realization numbers correspond to the randomly selected realizations in Figure 10. The selected 

realization of Figure 9 is not marked here, as it was selected in the Low uncertainty scenario. For the Højballegård well field, 

the matrix has a dominating vertical structure, suggesting that the uncertainty is dominated by parameter uncertainty. In 

contrast, for the synthetic well field, the hydrostratigraphic realizations exert a stronger influence on the capture zone area, 470 

with no visually dominating row or column directions. The results for Hovedgård well field are in between the other two well 

fields.  
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Figure 2 illustrates the density of interpretation point categories at the three well fields. At Højballegård a high density of high 

certainty (category 1) interpretation points is placed around the well field. The density of interpretation points is lower in 

Hovedgård and lower still at the synthetic well field. However, as also evident in Figure 2, the hydrostratigraphy between the 475 

three well fields are different, i.e., Højballegård well field is characterized by large aquifers, while Hovedgård and the synthetic 

well field has thinner aquifers. We can therefore not isolate the effect that contributes to the highest impact of interpretation 

uncertainty at the synthetic well field and the lowest at Højballegård. We can only conclude that both the hydrostratigraphic 

structure and the certainty with which it has been described impacts the impact of interpretation uncertainty. 
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Figure 11: Simulated capture zone area to Højballegård, Hovedgård and the synthetic wellfields in the parameter realizations 

(columns) and hydrostratigraphic realizations (rows) in the High uncertainty scenario. 

4.2.5 Synthetic well field 

Figure 6d-f illustrates the impact of the uncertainty scenarios on the hydrostratigraphic models, where the yellow layer marks 485 

the Miocene sand from where the synthetic well is pumping. In the Low uncertainty scenario (Figure 6d), the Miocene layer 
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has a relatively high elevation compared to the Manual Interpretation model (Figure 6e) and other uncertainty scenarios. This 

is explained by a lack of interpretation points in the area to constrain the hydrostratigraphic model realizations. In half of the 

realizations, the elevation of the Miocene layer is above the water table (not shown), which means that predictions based on 

particle tracking cannot be calculated. The impact from the hydrostratigraphic realizations on the predictions in the Low 490 

uncertainty scenario is therefore underestimated. This explains the large difference in results between the uncertainty scenarios 

in the synthetic well field (Figure 8). 

Also, from Figure 6 it can be observed that a red Quaternary sand layer appears in the Medium uncertainty scenario and 

becomes even more prominent in the High uncertainty scenario. Because of the relatively few interpretation points in this area 

(Figure 2), the stratigraphy changes between the uncertainty scenarios as the smoothing factor is changed. This may explain 495 

why the mean normalized standard deviation does not react the same way in response to the uncertainty scenarios in the 

synthetic well field as they do in the two real well fields (Figure 8). 

5 Discussion 

This study demonstrates a methodology to characterize interpretation uncertainty quickly and systematically of a manual 

interpretation model and to propagate the characterized interpretation uncertainty to a groundwater model. In the following, 500 

the results of the hydrostratigraphic and groundwater modelling will be discussed and will be translated into practical lessons. 

5.1 Assessment of the hydrostratigraphic model  

Expectations of the relative impact of the interpretation uncertainty were met in the results, i.e., interpretation uncertainty in 

areas of high certainty in the hydrostratigraphic model (Højballegård well field) was shown to have a relatively small impact 

on predictions, while the impact was more pronounced in areas of less geological certainty (synthetic well field). The result 505 

showed that scenarios with higher geological uncertainty generate higher variation of predictions. The results support the 

expected applicability of the method for incorporating geological interpretation uncertainty in groundwater models.  

Nevertheless, the results from the synthetic well field were not as expected. The synthetic well field was shown to give rise to 

the largest predictive variance. As opposed to the real well fields, no borehole information from the well informs the geology 

in this well field. The modelled uncertainty in this area is therefore higher than what would be expected in most real-case well 510 

fields. It was shown that the layer sequence in the synthetic well field area is different from the original Manual Interpretation 

model in the hydrostratigraphic realizations (Figure 6), while the layer sequence remained at the other well fields. Thus, the 

characterized uncertainty within the hydrostratigraphic realizations at the synthetic well field had a different character than at 

the other well fields. To limit the risk of changes to the stratigraphy in areas with low density of interpretation points, the 

applied methodology could be extended with the following: 1) An expert knowledge filter could be applied to the resulting 515 

hydrostratigraphic realizations to ensure that realizations complied with a set of stratigraphic rules in specific areas, or 2) non-

stationarity could be introduced such that the expected small-scale variability in the model could vary across the study area. 
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This would likely add more uncertainty in areas of high interpretation uncertainty, thus making synthetic wells behave more 

predictably. 

5.2 Assessment of the groundwater model 520 

The predictions by the groundwater models were calculated with a suite of parameters, which allowed the original 

interpretation model to replicate measured system behavior. To obtain the suite of parameters, the GLUE approach was applied, 

which is an informal Bayesian approach. According to Vrugt et al. (2009), the resulting parameter uncertainty from a GLUE 

approach is larger than that of a formal Bayesian approach. The parameter uncertainty may therefore be inflated compared to 

if a formal Bayesian approach had been applied. However, only a few parameters were involved in the analysis of the parameter 525 

uncertainty. The inclusion of more parameters in the uncertainty analysis would likely lead to an increase in estimated 

parameter uncertainty. 

When applying the parameters from the original Manual Interpretation model, the replication of system behavior was shown 

to deteriorate slightly as more interpretation uncertainty was introduced in the uncertainty scenarios (Figure 7). This in turn 

gave rise to an increase in predictive variance between geological uncertainty scenarios (Figure 8). Thus, some inaccuracies 530 

must be anticipated assuming that the posterior parameter range from the interpretation model is applicable to other 

hydrostratigraphic realizations. However, this assumption was deemed necessary to make the problem computationally 

tractable, as the alternative is to make a calibration of all hydrostratigraphic realizations. Another alternative is simulation-

based learning to obtain the posterior distribution for the different scenarios (Hermans et al., 2023; Thibaut et al., 2021). 

As only one out of many possible parameter uncertainty estimation methods were applied and the uniqueness of the study area 535 

in terms of geology and data density considered, no general conclusions will be made about the relative importance of 

geological interpretation uncertainty and parameter uncertainty. However, in this study a limited influence of the interpretation 

uncertainty compared to parameter uncertainty for predictions of capture zone area and median travel time was found in a 

geologically well-defined area with thick aquifers. In a geologically poorly defined area with thin aquifers, the influence of 

interpretation uncertainty and parameter uncertainty became comparable. Other studies testing the uncertainty of the 540 

hydrostratigraphic model have concluded that the model structure is dominating compared to parameter uncertainty (e.g. 

Højberg and Refsgaard, 2005). The difference is that in this study, only the interpretation uncertainty within a given conceptual 

model has been characterized and not the conceptual uncertainty itself. Given that the presented level of uncertainty is a fair 

representation, our results thereby confirm existing evidence (e.g. Neuman and Wierenga, 2003; Rojas et al., 2010) that the 

choice of the conceptual model imposes a far greater impact on to the groundwater model predictions than the interpretation 545 

uncertainty within the manually interpreted model. 
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5.3 Lessons of practical nature 

This study's generalizability is restricted by the specific characteristics of the study area. Egebjerg is geologically very complex 

with several generations of buried valleys crossing each other, glaciotectonic disturbed layers and a deep fault zone disturbing 

the layers. So even though the area is relatively data dense, and a well-defined conceptual model has been developed, the 550 

hydrostratigraphic connections between the layers are uncertain due to the geological complexity of the area. It has therefore 

been questioned whether the area could be accurately represented by a simple layer model (Enemark et al., 2022). This 

geological complexity of the area also results in relatively poor performance of the groundwater model with the best root mean 

square error around 7 m, indicating potential flaws in the conceptual understanding. 

For practical purposes, at least in Denmark, a buffer-zone is often added to the capture zone area simulated by a groundwater 555 

model based on a single hydrostratigraphic model to take account of unspecified uncertainty (Iversen et al., 2009). Two 

problems relate to the application of the buffer-zone approach: 1) The necessary width of the buffer-zone is based on a 

subjective assessment of the uncertainty in the area, and 2) A simple buffer-zone cannot capture spatial trends in the capture 

zone area that are not radially expanding. From a management point of view, this is not ideal as areas not part of the real 

capture zone may be included, while other relevant areas may be excluded. However, in a case where the impact of 560 

interpretation uncertainty is low (Figure 9a), the buffer approach with e.g. a 200 m buffer around the Manual Interpretation 

model from Figure 9f appears to be sufficient in order to capture the uncertainty in the capture zone area The approach 

presented in this study, offers an alternative to the buffer-zone approach at the expense of an increase in computational time, 

but with the benefit of higher certainty that a more realistic capture zone area has been obtained. 

From an interpretation point of view, our results indicate limited difference between the Low, Medium and High uncertainty 565 

scenario. This suggests that the geological interpreter can feel more at ease during interpretation as to whether the exact location 

of the layer boundary has been identified correctly. The impact of interpretation uncertainty within a conceptual model would 

be highly dependent on the geological structures and complexity implying that precise interpretations are more needed in areas 

with thin aquifers (such as the area around the synthetic well field) than in areas with thick and laterally extensive aquifers as 

around Højballegård well field. The scale of the influence is also dependent on the data density and quality in the area. As the 570 

Egebjerg study area is a data dense area, future work should include areas closer to the average and even low data availability, 

where the influence of interpretation uncertainty will likely be higher.  

6 Conclusion 

While the interpretation uncertainty of a deterministic hydrostratigraphic model is a known accessory, it has until recently 

been difficult to propagate these uncertainties from the hydrostratigraphic model to a groundwater model. This study has shown 575 

an approach to systematically characterize the impact of hydrostratigraphic model interpretation uncertainties in groundwater 

modeling. The applied groundwater model was a full 3D model in which the vertical discretization follows the 
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hydrostratigraphic units. Results showed that it is possible to represent the interpretation uncertainty in areas with low 

geological uncertainty containing thick, large aquifers with a buffer zone, but in areas of high geological uncertainty and 

thinner, smaller aquifers, the interpretation uncertainty could be just as significant as parameter uncertainty. This study 580 

confirms that if the uncertainty of the conceptual model is small, the small-scale variability within the conceptual model is of 

less importance. This suggests that, in a geological modeling exercise, it is more worthwhile to invest time in developing a 

clearly defined conceptual model or even better, multiple conceptual models. The actual interpretation of data using the 

conceptual model(s) is of less importance for the groundwater model predictions.  
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