
   
 

  1 
 

Flood risk assessment for Indian sub-continental river basins 1 

Urmin Vegad1, Yadu Pokhrel2, and Vimal Mishra1,3* 2 

 3 

1Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar 4 
2Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA 5 
3Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar 6 

*Corresponding author: vmishra@iitgn.ac.in 7 

Abstract 8 

Floods are among India's most frequently occurring natural disasters, which disrupt all aspects of socio-economic 9 
well-being. A large population is affected by floods during almost every summer monsoon season in India, leaving 10 
its footprint through human mortality, migration, and damage to agriculture and infrastructure. Despite the 11 
massive imprints of floods, sub-basin level flood risk assessment is still in its infancy and requires advancements. 12 
Using hydrological and hydrodynamical models, we reconstructed sub-basin level observed floods for the 1901-13 
2020 period. Our modelling framework includes the influence of 51 major reservoirs that affect flow variability 14 
and flood inundation. Sub-basins in the Ganga and Brahmaputra River basins witnessed substantial flood 15 
inundation extent during the worst flood in the observational record. Major floods in the sub-basins of the Ganga 16 
and Brahmaputra occur during the late summer monsoon season (August-September). Beas, Brahmani, upper 17 
Satluj, Upper Godavari, Middle and Lower Krishna, and Vashishti sub-basins are among the most influenced by 18 
the dams, while Beas, Brahmani, Ravi, and Lower Satluj are among the most impacted by floods and the presence 19 
of dams. Bhagirathi, Gandak, Kosi, lower Brahmaputra, and Ghaghara are India's sub-basins with the highest 20 
flood risk. Our findings have implications for flood risk assessment and mitigation in India. 21 

1. Introduction 22 

Flood risk to both natural and human systems is projected to increase due to climate change (IPCC, 2014, 2022). 23 
Extreme weather and climate extremes have increased under warming climate, leading to an increased frequency 24 
of natural hazards like floods, droughts, heat waves, cyclones, and heavy rains. Hydroclimatic extremes affect 25 
humans and infrastructure (Eidsvig et al., 2017; Peduzzi et al., 2009). Due to high vulnerability and lower adaptive 26 
capacity, developing countries are often the most impacted by extreme weather events. Further, developing 27 
countries usually take longer to recover from the hazards due to low climate resilience. Globally, floods are among 28 
the most devastating natural hazards (Ghosh & Kar, 2018). Among all flood types, riverine floods occur most 29 
frequently (Kimuli et al., 2021) and often cause substantial damage to agriculture and infrastructure. A 30 
considerable fraction of the population and infrastructure are exposed to flooding, which will also increase due to 31 
the projected increase in the magnitude and frequency of floods (Winsemius et al., 2018).  32 

The increase in flood magnitude due to the warming climate has resulted in considerable economic losses (C. M. 33 
R. Mateo et al., 2014; Willner et al., 2018). The total financial loss will likely increase by 17% in the next 20 years 34 
due to climate change (Willner et al., 2018). Besides agriculture, floods significantly affect the built environment 35 
and transportation infrastructure (Kalantari et al., 2014). For instance, more than 7% of road and railway assets 36 
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globally are exposed to a 100-year return period flood (Koks et al., 2019). In Asia, about 75% of the population 41 
is exposed to riverine floods (Varis et al., 2022). India falls among the top ten most flood-affected countries in 42 
Asia and the Pacific (Kimuli et al., 2021). In addition, India is also among the top-ten countries that experienced 43 
the highest human mortality due to floods. Considerable population exposure, climate change, and rapid growth 44 
and development in flood-prone areas contribute to increased losses from floods. 45 

In India, state administration takes decisions to mitigate floods while the central government provides financial 46 
aid under severe conditions (Jain et al., 2017). The state authorities develop action plans to minimize flood 47 
damage. Therefore, identifying the regions with higher flood risk is essential for planning and mitigation. Flood 48 
impacts can be quantified according to the affected population, gross domestic product (GDP), and agricultural 49 
practices (Ward et al., 2013). The flood risk assessment framework suggested by the Intergovernmental Panel on 50 
Climate Change (IPCC) has been extensively applied at the regional and global scales (Allen et al., 2016; IPCC, 51 
2014; Roy et al., 2021). The risk can be quantified as a function of vulnerability, hazard, and exposure (IPCC, 52 
2014). To control the risk, reducing vulnerability is considered a short to the mid-term goal (V. Mishra et al., 53 
2022), while reducing hazards and exposure are long-term goals (Birkmann & Welle, 2015). Flood risk 54 
assessment can assist in identifying the regions at high risk due to higher vulnerability, hazard, and exposure, 55 
which can be used for developing a framework, methodology, and guidelines for flood mitigation and damage 56 
assessment.  57 

A flood risk assessment performed on a global scale may not help in identifying the flood risk-prone regions at a 58 
country scale due to the coarser spatial resolution (Bernhofen et al., 2022). Due to complex geomorphological 59 
characteristics and diverse climatic conditions, India is considered a relatively high flood-risk region (Hochrainer-60 
Stigler et al., 2021). Therefore, estimating flood risk on a finer scale (e.g. sub-basin level) is essential for reliable 61 
flood risk assessment. There have been studies on regional or river basin scales (Allen et al., 2016; Ghosh & 62 

Kar, 2018; Roy et al., 2021); however, those do not provide flood risk at a sub-basin scale in India. In addition, 63 
the impact assessment of floods on transport infrastructure (rail and road infrastructure) still needs to be improved 64 
in the country (Pathak et al., 2020; P. Singh et al., 2018). In addition, the role of dams and reservoirs in the flood 65 
risk assessment should be addressed (Hirabayashi et al., 2013; Yamazaki et al., 2018). Dams and reservoirs 66 
considerably influence streamflow variability and can attenuate flood peaks (Dang et al., 2019; Vu et al., 2022; 67 
Zajac et al., 2017). In contrast, dam operations and decisions can also worsen the flood situation in the downstream 68 
regions. For instance, recent flooding in Kerala and Chennai was partly attributed to reservoir operations (V. 69 

Mishra & Shah, 2018). India has more than 5300 large dams regulating river flow (National Register of Large 70 
Dams (NRLD), 2019), affecting ecosystems, natural resources, and livelihoods (Acreman, 2000). Reservoirs 71 
impact flow regulation, magnitude, timing, and extent of flooding in the downstream regions. Therefore, flood 72 
risk assessment without considering the role of reservoirs can be inappropriate in the basins that are highly affected 73 
by the presence of dams.  74 

We use the H08 (Hanasaki et al., 2018) global hydrological model combined with the CaMa-Flood (Yamazaki et 75 
al., 2011) model for the sub-basin level flood risk assessment in India considering the role of reservoirs. The 76 
CaMa-Flood model combined with the H08 model has been used for several river basins globally (Boulange et 77 
al., 2021; C. M. R. Mateo et al., 2013). The CaMa-Flood model performs well in simulating flood dynamics 78 
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(Chaudhari and Pokhrel, 2022; H. Dang et al., 2022; Gaur & Gaur, 2018; Hirabayashi et al., 2013, 2021; 82 

Yamazaki et al., 2018; Yang et al., 2019). The CaMa-Flood model takes runoff as input simulated from any 83 
hydrological model and can simulate flood depth and inundation. In India, almost all the major rivers are 84 
influenced by reservoirs (Lehner et al., 2011). Therefore, the major scientific questions that we address are: 1) 85 
How does the flood risk vary at the sub-basin scale in India for the observed worst floods that occurred during the 86 
1901-2020 period? 2) Which are the sub-basins where the presence of reservoirs considerably influences the flood 87 
risk? To address these questions, we use long-term observations (1901-2020) from India Meteorological 88 
Department (IMD) along with a hydrological modelling framework. 89 

2. Data and Methods 90 

2.1 Datasets 91 

We used observed gridded precipitation (Pai et al., 2014) and daily maximum and minimum temperatures 92 
(Srivastava et al., 2009) from India Meteorological Department (IMD). We obtained gridded daily precipitation 93 
at 0.25° from IMD for the 1901-2020 period that was developed using station-based rainfall observations from 94 
more than 6900 gauge stations (Pai et al., 2014). The gridded rainfall product has been widely used for 95 
hydrological studies (Kushwaha et al., 2021; Shah & Mishra, 2016) and it captures the key features of the 96 
summer monsoon variability and orographic rainfall over the western Ghats and foothills of the Himalayas. We 97 
obtained daily 1° gridded maximum and minimum temperatures from IMD (Srivastava et al., 2009). The gridded 98 
temperature dataset is developed using observations from 395 stations located across India. Bilinear interpolation 99 
was used to convert the 1° gridded temperature to 0.25° resolution to make it consistent with the gridded 100 
precipitation. For the regions outside India, we obtained observational meteorological datasets (rainfall and 101 
temperature) at 0.25 degrees from Princeton University (Sheffield et al., 2006). Gridded datasets from Sheffield 102 
et al. (2006) compare well against the IMD observations and have been used in hydrological applications in India 103 
(Shah & Mishra, 2016).  104 

Observed daily streamflow at gauge stations and reservoir live storage were obtained from India Water Resources 105 
Information System (India-WRIS). We considered the influence of 51 major reservoirs located in different river 106 
basins to examine the impact of reservoirs on floods using the CaMa-Flood model (Figure S1). The information 107 
of dams was obtained from the National Register of Large Dams (NRLD) [Table S1]. We used the Global Surface 108 
Water (GSW) extent to estimate flood occurrences at a monthly timescale (Pekel et al., 2016). Simulated flood 109 
occurrences during the period of the GSW database (1985-2020) were used to validate the performance of the 110 
hydrological model in simulating flood extent (Pekel et al., 2016). In addition, we obtained reported flood details 111 
from the Emergency Events Database (EM-DAT, http://www.emdat.be/) and Dartmouth Flood Observatory 112 
(DFO, http://floodobservatory.colorado.edu/). EM-DAT is developed by the Centre for Research on the 113 
Epidemiology of Disasters (CRED), while the University of Colorado manages DFO. We used population data 114 
from Global Human Settlement Layers (GHLS) to estimate flood exposure. Finally, we used roadway and railway 115 
network data to assess the impact of floods on the infrastructure. 116 

2.2 H08-CaMa-Flood combined model 117 
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We used the H08 (Hanasaki et al., 2018) global hydrological model to simulate hydrological variables. The H08 121 
is a distributed global water resources model comprising six sub-models: land surface hydrology, river routing, 122 
reservoir operation, crop growth, environmental flow, and water abstraction. The model estimates baseflow using 123 
a leaky bucket method, while runoff is calculated based on saturation excess non-linear flow (Hanasaki et al., 124 
2008). The H08 model can be run separately or combined with any hydrodynamic model to perform flow routing. 125 
The H08 model uses precipitation, air temperature, short and longwave radiations, wind speed, surface pressure, 126 
and specific humidity as input meteorological forcing. Soil parameters for the H08 model were obtained from 127 
Harmonized World Soil Database (HWSD). We forced the H08 model with the input meteorological forcing at 128 
0.25° spatial and daily temporal resolution. We combined the H08 land surface model with the CaMa-Flood 129 
model. The CaMa-Flood model has been previously combined with the H08 model to obtain flood inundation 130 
estimates (C. M. Mateo et al., 2014).  131 

The CaMa-Flood (version 4.1) is a hydrodynamic model (Yamazaki et al., 2011), which simulates river-floodplain 132 
dynamics (Yamazaki et al., 2013). The CaMa-Flood model has been extensively used for better performance in 133 
simulating discharge and flood peaks (Zhao et al., 2017). The CaMa-Flood model considers the role of dams and 134 
reservoirs for streamflow and flood inundation simulations (Chaudhari & Pokhrel, 2022; C. M. Mateo et al., 135 

2014; Pokhrel et al., 2018). We ran the CaMa-Flood model at a finer spatial resolution (0.1°) using the H08-136 
simulated runoff (0.25°) as input. We calibrated the combined model (H08 and CaMa-Flood) for India's eighteen 137 
major river basins for at least one gauge station each, considering the influence of 51 major dams. The gauge 138 
stations were selected in the farthest downstream of the river basin based on the availability of observed 139 
streamflow. The influence of reservoir operations was simulated using the CaMa-Flood model and evaluated 140 
against the observed daily live reservoir storage.  141 

We manually calibrated the H08 model by adjusting four parameters for each river basin, which include single-142 
layer soil depth, gamma, bulk transfer coefficient, and tau (Hanasaki et al., 2008). We evaluated the model 143 
performance using the coefficient of determination (R2) and Nash-Sutcliffe Efficiency (NSE) for daily streamflow 144 
and reservoir live storage. In addition, we compared the simulated and satellite-based observed flood occurrences. 145 
The satellite-based flood occurrence is calculated using the Global Surface Water (GSW) dataset (Pekel et al., 146 
2016), available for the 1984-2020 period. We forced the well-calibrated combined (H08 and CaMa-Flood) 147 
models with observed meteorological forcing from India Meteorological Department (IMD) at 0.25° spatial 148 
resolution to conduct simulations from 1901 to 2020. The H08 model simulated runoff is used in CaMa-Flood to 149 
rout flood dynamics at six arc-minutes (0.1 degrees). We generated the flood depth maps for the historical worst 150 
flood at the sub-basin level. The worst flood is based on the highest magnitude of river flow observed at the 151 
subbasin outlet. The generated flood depths at 6 arc-minutes (0.1°) were further downscaled to 1 arc-minute 152 
(~0.185 km) resolution using the downscaling module available within the CaMa-Flood.  153 

We used C-ratio (Nilsson et al., 2005; Zajac et al., 2017) to assess the potential impact of dams along a river. The 154 
C-ratio is an identifier calculated as the ratio of total maximum storage capacity of the upstream reservoirs to the 155 
mean annual discharge at a gauge station in the downstream region (Nilsson et al., 2005; Zajac et al., 2017). We 156 
calculated the C-ratio at the outlets of each sub-basins that are influenced by the presence of dams. A C-ratio of 157 
less than 0.5 indicates that the sub-basin is minimally affected by the presence of dams. Further, to identify sub-158 
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basins susceptible to flood inundation resulting from dam operations, we multiplied the percentage of flooded 168 
area in each sub-basin by its corresponding C-ratio. This enabled us to identify the sub-basins that experience 169 
substantial flood inundation and are considerably impacted by the presence of reservoirs. Finally, we estimated 170 
the exposed rail and road infrastructure affected by floods. The flooded area overlapped over the road and railway 171 
network to estimate the network length affected by floods in a sub-basin. We considered the flooded area of the 172 
observed worst flood. The subbasins with the highest rail and road infrastructure exposure to floods were 173 
identified.  174 

2.3 Risk assessment 175 

We estimated flood risk using hazard, exposure, and vulnerability based on the common framework adopted by 176 
the United Nations in the Global Assessment Reports of the United Nations Office for Disaster Risk Reduction 177 
(UNISDR, 2011, 2013). A similar framework was used in previous studies for flood risk assessments (C. M. R. 178 
Mateo et al., 2014; Tanoue, 2020; Winsemius et al., 2013). We multiplied the normalized values of hazard, 179 
exposure, and vulnerability to estimate the risk as: 180 

𝑅𝑖𝑠𝑘 = 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∗ 𝐻𝑎𝑧𝑎𝑟𝑑    … … (1) 181 

The flood risk assessment can help identify the hotspots and prioritize climate adaptation (de Moel et al., 2015). 182 
Among the three components, vulnerability is a degree of damage to a particular object at flood risk with a 183 
specified amount and present on a scale from 0 to 1. We obtained the vulnerability index for each district from 184 
the “Climate Vulnerability Assessment for Adaptation Planning in India Using a Common Framework”, a report 185 
developed by the Department of Science and Technology 186 
(https://dst.gov.in/sites/default/files/Full%20Report%20%281%29.pdf). The vulnerability of each district is 187 
calculated using 14 indicators, each with equal weights. The indicators capture both sensitivity and adaptive 188 
capacity. We estimated the vulnerability index of each sub-basin by taking the spatial mean of the vulnerability 189 
of the districts falling into the sub-basins. Exposure is termed as assets and population in a flood-exposed area 190 
resulting in flood damage (Marchand et al., 2022). The population dataset is a critical component in performing 191 
exposure estimation. The exposure is defined as the fraction of the population exposed to the flood extent (Smith 192 
et al., 2019). We completed the flood exposure estimate using the Global Human Settlement Layers (GHSL) 193 
population dataset (Joint Research Centre (JRC) et al., 2021), which is available at a resolution of 30 arc-seconds 194 
for 1975, 1990, 2000, 2014 and 2015. We used the population data for the year 2015 throughout this study. We 195 
rescaled the population data to 6 arc-minutes to make it consistent with the flooded area simulated from the 196 
combined model. We estimated the hazard as the exceedance probability of a flooded area exceeding half of the 197 
historical maximum flooded area in the last 50 years. We used normalized vulnerability, exposure, and hazard to 198 
estimate the risk.  199 

3. Results  200 

3.1 Calibration and evaluation of hydrological models 201 

We calibrated and evaluated the performance of the H08 and CaMa-Flood combined models against the observed 202 
daily streamflow (Figure 1). Due to the unavailability of daily observed streamflow for the three transboundary 203 
river basins (Indus, Ganga and Brahmaputra), we used observed monthly streamflow to calibrate the model. In 204 
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addition, we evaluated the model performance for daily live storage of the 51 reservoirs after the calibration 213 
against the observed flow (Figure 1). The model exhibited good skills (R2 > 0.6 and NSE > 0.6) for almost all the 214 
river basins except Cauvery, East Coast, Northeast Coast, and Sabarmati. The model also performed well with 215 
NSE greater than 0.6 for more than 80% of the selected reservoirs in simulating daily live storage for the selected 216 
reservoirs. We estimated the bias and timing error in simulating peak discharge at all the selected gauge stations 217 
(Figure S2). We calculated the bias in the model simulated annual maximum streamflow against the observed 218 
annual maximum streamflow for the time periods for which observations are available. We excluded the 219 
transboundary rivers (Ganga, Brahmaputra and Indus) as timing error (in days) could not  be estimated due to the 220 
unavailability of daily observed flow. While other gauge stations exhibited moderate bias, gauge stations in 221 
Cauvery, Sabarmati, and Mahi rivers basins show a considerable dry bias. Contrary to several other stations where 222 
the mean timing error was below two days, the Sabarmati river basin displayed a comparatively higher mean 223 
timing error. The relatively poor performance of the model in these river basins can be attributed to the lack of 224 
long-term observations as well as substantial human interventions that can affect the observed flow.  225 

We compared model-simulated, and satellite-based observed flood occurrence for the 1984-2020 period (Figure 226 
2). In addition, we compared the model-simulated flood events against Sentinel-1 SAR and MODIS satellite-227 
based imagery for a few flood events based on the satellite data availability (Figures. 3, S3, S4). We found that 228 
the model simulated flood extent captures the satellite based flood extent. However, we note that the model 229 
overestimated the flood extent in Ganga river basin and underestimated in Brahmaputra river basin, therefore, 230 
showing a non-systematic bias. Moreover, a considerable difference in the flood extent based on the two satellite 231 
datasets was observed, which highlights the observational uncertainty in the estimation of flood extent. In general, 232 
the model exhibits satisfactory performance in simulating flood extent against the satellite-based observations. 233 
However, the model overestimates flood extent in the Ganga basin, which could be attributed to the influence of 234 
cloud contamination and dense vegetation cover on satellite-based flood estimates (Chaudhari & Pokhrel, 235 

2022). On the other hand, the model underestimates the flood occurrence in the upstream region of the 236 
Brahmaputra River. This could be due to limitations in model parameterization, as observed flow is limited in the 237 
transboundary river basins. Despite the good performance against the observed streamflow, the simulated flood 238 
extent has a considerable bias, which can be attributed to satellite-based flood extent mapping limitations and the 239 
model's ability to capture the flood extent accurately. The model-simulated flood extent shows a good agreement 240 
against the reported flood from EM-DAT and DFO databases (Figure S5). In addition, the simulated flood extent 241 
also showed a good agreement with the reported flood in cities in the Brahmaputra and Ganga River basins. Given 242 
the limitation in the streamflow and flood extent observations, the hydrological models perform satisfactorily and 243 
can be used for the sub-basin level risk assessment. 244 
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 259 

Figure 1: Calibration and evaluation of the combined model for daily river flow and reservoir storage at 260 
gauge stations and daily live storage of reservoirs 261 
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 263 

Figure 2: Simulated flood occurrences compared with satellite-based flood occurrence for different 264 
regions in Ganga, Narmada and Brahmaputra River basin. 265 
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 268 

Figure 3: Simulated flood extent compared with Sentinel-1 SAR and MODIS satellite-based flood extent 269 
for the 2016 flood event in the Brahmaputra river 270 

3.2 Estimation of the observed flood extent 271 

Next, we reconstructed the flood inundation for the observed worst flood for each sub-basin for the 1901-2020 272 
period in India. The inundation extent for the worst flood can help us identify the sub-basin with higher flood risk. 273 
We estimated flood depth and inundated area for each sub-basin for the worst flood during the last 120 years 274 
(Figure 4). In addition, we identified the occurrence of the worst flood at the sub-basin level during the 1901-2020 275 
period. We highlighted ten sub-basins that experienced the highest fractional area affected by the worst flood. 276 
Sub-basins in the Ganga and Brahmaputra rivers are among the most highly influenced by the worst flood. For 277 
instance, Ghaghra, Kosi, Bhagirathi, Gandak, Gomti, lower Sabarmati, upper Yamuna, Ramganga, and Baitarani 278 
sub-basins had the highest fractional area affected by the worst flood during 1901-2020 (Figure 4). The fractional 279 
area of sub-basins in the semi-arid western India is less affected compared to those located in the Ganga basin. 280 
For example, the lower Sabarmati sub-basin of the Sabarmati River basin is among the sub-basins that are highly 281 
influenced by the observed worst flood. We also find that the worst flood in the same year did not affect all the 282 
sub-basins within a river basin (Figure S6). For instance, all the highly influenced sub-basins experienced the 283 
worst flood in different years in the Ganga basin (Figure 4). Most of the top flood-affected sub-basins experienced 284 
floods during August-September in the summer monsoon season. Overall, the flood extent due to the worst flood 285 
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is substantially greater in the sub-basins of the Ganga and Brahmaputra river basins compared to other basins in 290 
India (Figure 4). Ganga river basin also has the highest population density among all the basins in the Indian sub-291 
continent, which makes it vulnerable for the flood risk. 292 
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Figure 4: Flood depth map for the observed worst flood for each sub-basins, highlighting the sub-basins 298 
with maximum flood inundated area (%) (a) Ghaghara – Ganga River basin (b) Kosi – Ganga River basin 299 
(c) Bhagirathi and others – Ganga River basin (d) Gandak and others – Ganga River basin (e) Upstream 300 
of Gomti confluence to Muzaffarnagar – Ganga River basin (f) Gomti – Ganga River basin (g) Lower 301 
Sabarmati – Sabarmati River basin (h) Upper Yamuna  – Ganga River basin (i) Ramganga – Ganga River 302 
basin (j) Baitarani – Brahmani River basin 303 

Next, we examined the precipitation, streamflow, and flood-affected area (%) for the ten sub-basins that had the 304 
highest fractional flood affected area for the worst flood during 1901-2020 (Figure 5). As floods mostly occur 305 
during the summer monsoon season in India (V. Mishra et al., 2022; Nanditha & Mishra, 2021), we examined 306 
the temporal variability of precipitation, and streamflow during the monsoon season of the worst flood year. 307 
Nanditha and Mishra (2022) reported that multi-day precipitation is India's most robust driver of floods. Moreover, 308 
extreme precipitation and wet-antecedent conditions trigger floods in India (Nanditha & Mishra, 2022). We 309 
find that the Ghaghara sub-basin of the Ganga river experienced the worst flood in September 1915, affecting 310 
more than 10,000 km2 area of the sub-basin. A multi-day rainfall in late August and early September (1915) caused 311 
the worst flood in the basin. The Kosi sub-basin of the Ganga river experienced the worst flood in August 1914, 312 
which affected more than 5000 km2 of the basin (Figure 5). Similarly, Bhagirathi and other sub-basins in the 313 
Ganga river basin were affected by the worst flood in late September 1924, which inundated more than 12000 314 
km2 of the sub-basin. Similarly, Gandak and Gomti river basins experienced the worst floods in 1948 and 1915, 315 
respectively. Our results agree with the information presented in previous studies (Agarwal & Narain, 1991; 316 

Fredrick, 2017; Joshi, 2014; D. K. Mishra, 2015; A. Singh et al., 2021). We find that most of the sub-basins 317 
of the Ganga river basin are prone to large extents of flood inundation. Moreover, the worst floods in most sub-318 
basins were caused by multi-day precipitation, a prominent driver of floods in the Indian sub-continental river 319 
basins (Figure 5).   320 
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 327 

Figure 5: Daily upstream precipitation (mm, blue), the H08 model simulated streamflow (red) at the sub-328 
basin outlet (m3/s), and flooded area (km2, green) for the summer monsoon (June-September) period of 329 
the corresponding worst flood year. (a) Ghaghara - Ganga River basin (b) Kosi - Ganga River basin (c) 330 
Bhagirathi and others - Ganga River basin (d) Gandak and others - Ganga River basin (e) Upstream of 331 
Gomti confluence to Muzaffarnagar - Ganga River basin (f) Gomti - Ganga River basin (g) Lower 332 
Sabarmati – Sabarmati River basin (h) Upper Yamuna – Ganga River basin (i) Ramganga – Ganga River 333 
basin (j) Baitarani – Brahmani River basin 334 

To further examine the flood-affected area at the sub-basin level, we estimated the mean annual maximum flooded 335 
area (Figure 6a) and historical maximum flooded area using the H08-CaMa flood models (Figure 6b). Most of the 336 
highly flooded sub-basins are in the Ganga River basin. While the mean annual maximum flooded area for the 337 
top flood-affected sub-basins ranged between 10 to 15%, their maximum flooded area varied between 30 to 40%. 338 
Other than sub-basins from the Ganga river basin, Baitarani, lower Tapi, lower Godavari, Brahmani, and lower 339 
Mahanadi also showed a considerable mean flooded area during the 1901-1920 period. In the case of the maximum 340 
flooded area, Gandak, Kosi, and Ghaghara confluence to Gomti confluence sub-basins exhibited more than 20% 341 
flooded area. Sub-basins from the other river basins, such as lower Tapi, lower Narmada, Baitarani, and lower 342 
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Satluj, are in the top fifteen sub-basins with the highest flooded area. The sub-basins in the Ganga and 347 
Brahmaputra rivers are the most flood-affected. Moreover, the Ganga and Brahmaputra rivers experience the 348 
highest floods among all the river basins (Mohanty et al., 2020; Mohapatra & Singh, 2003). 349 

 350 

Figure 6: (a) Mean of annual maximum flooded area (percentage) between 1901-2020 and the overall 351 
distribution (b) highlighting the top fifteen sub-basin. (c) Historical maximum flooded area (percentage) 352 
and the overall distribution (d) highlighting the top fifteen sub-basin. 353 

3.3 Influence of reservoirs on flood extent  354 

We selected and considered 51 major reservoirs to examine their influence on flood risk based on the availability 355 
of the observed storage data. We estimated C-ratio for each sub-basin considering the river flow at the outlet to 356 
investigate the impact of reservoirs on streamflow. C-ratio can vary between zero to infinity, and higher values 357 
indicate the prominent effect of dams on river flow. We identified sub-basins with a greater influence on dams 358 
based on the C-ratio. We find that Beas, Brahmani, upper Satluj, Upper Godavari, Middle and Lower Krishna, 359 
and Vashishti are among the most influenced by the dams. Beas sub-basin has the highest C-ratio (4.16) among 360 
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all the sub-basin in the Indian sub-continent (Figure 7a). Out of the 80 sub-basins, only eleven have C-ratio greater 363 
than 0.5. 64 out of 80 sub-basins have a C-ratio between zero to 0.42 (Figure 7a). We considered only 51 major 364 
reservoirs in our analysis. However, there are several major and minor dams for which observed data is 365 
unavailable. Therefore, the influence of reservoirs based on the C-ratio might need to be considered. However, 366 
our analysis indicates that dams in a few sub-basins can significantly alter the river flow and flood risk. For 367 
instance, dams effectively alter extreme flow's timing, duration, and frequency (Mittal et al., 2016). C-ratio alone 368 
may not effectively capture the influence of dams on floods; therefore, we multiplied the fractional area affected 369 
by floods and the C-ratio for each sub-basins. For instance, if a sub-basin is considerably affected by dams and 370 
has a large flood extent, the value of the multiplied ratio will be higher. The multiplier ratio can effectively identify 371 
the sub-basins with high flood-affected areas and flow regulated by the reservoirs. We find that Beas, Brahmani, 372 
Ravi, and Lower Satluj are among the highly influenced by floods and the presence of reservoirs. Overall, the 373 
sub-basins with higher C ratio and the highest flood-affected area are across the Indian subcontinent. Central India 374 
has sub-basins that are relatively less affected by floods and the presence of dams. 375 
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Figure 7: (a) Sub-basin wise C-ratio, top fifteen sub-basins and distribution of sub-basins based on C-ratio 381 
values (b) Mean of annual maximum flooded area (percentage) multiplied with C-ratio (d) highlighting top 382 
15 sub-basins (c) Historical maximum flooded area (percentage) multiplied with C-ratio (e) highlighting 383 
top 15 sub-basins. 384 

3.4 Sub-basin level flood risk assessment 385 

Next, we identified the roads (national highways) and railway exposure to riverine floods for each subbasin. 386 
Climate change will adversely affect rail and road networks (Hooper & Chapman, 2012; Padhra, 2022). A 387 
considerable length of roads is affected due to surface flooding resulting from high-intensity rain (Koks et al., 388 
2019). Therefore, we examined the impact of floods on rail and road infrastructure in India. We estimated the 389 
length of the road and railway network potentially affected by the worst flood that occurred during 1901-2020. 390 
We overlapped the road and rail network over the flooded area and estimated the network length exposed to floods 391 
(Figures 8a-b). The estimated length for each sub-basin was normalized between zero and one (Figures 8c-d). We 392 
find that the road network can be the most affected by the floods in the Gandak, Kosi and Ghaghara confluence 393 
to Gomti confluence in the Ganga river basin. On the other hand, a considerable part of the rail network can be 394 
affected by floods in Son, Kosi, and Upper Yamuna subbasins. Moreover, in Bhagirathi and Gandak river basins, 395 
more than 50 km of road network falls in the flood-prone regions (Figure 8e). There are ten sub-basins in which 396 
more than 20 km of road network falls in flood-prone areas of India. Similarly, over 20 km of the rail network is 397 
in the flood-affected areas of the six sub-basins (Upper Yamuna, Son, Kosi, Brahmani) [Figure 8f]. 398 

Deleted: 6399 

Formatted: Font: 11 pt

Deleted: Figure 7a400 
Deleted: Figure 7c401 

Deleted: 7e402 

Deleted: 7f403 



   
 

  18 
 

 404 

Deleted: ¶405 



   
 

  19 
 

Figure 8: Flood impacts on roads and railways infrastructure. (a-b) National Highways network and 406 
Railway network overlapped over the flooded area in worst flood cases, (c-d) subbasin wise normalised 407 
flood affected road and railway network (percentage), (e-f) top 15 subbasins with most affected national 408 
highways and railway length (km). 409 

Finally, we estimated sub-basin level flood risk using normalized vulnerability, hazard, and exposure (Figure 9). 410 
Vulnerability for each sub-basin in India was assessed using the national vulnerability assessment data available 411 
at the district level. We estimated hazard probability considering 50% of the inundated area for the worst flood as 412 
a benchmark. The likelihood of flood inundated areas in a sub-basin exceeding the benchmark was used in the 413 
risk assessment. Similarly, we used the worst flood extent and gridded population data to estimate flood exposure. 414 
The sub-basins in north-central India have a relatively higher vulnerability calculated using the socio-economic 415 
indicators. The vulnerability is relatively lower in north India and the Western Ghats. Kosi, Gandak, and Damodar 416 
sub-basins have the highest vulnerability. We find that hazard probability is higher in the sub-basins of 417 
Brahmaputra, rivers in the western Ghats, and a few sub-basins of the Indus river basin (Figure 9b). For instance, 418 
upper Satluj, Chenab, and Jhelum sub-basins of the Indus river have higher hazard probability. Other than the 419 
Western Ghats, most sub-basins in Peninsular India have relatively lesser hazard probability. Exposure, which 420 
represents the fraction of the population affected by flood under the worst flood scenario, is higher in the Indo-421 
Gangetic Plain. Apart from the sub-basins of the Ganga River basin, the lower Brahmaputra, lower Godavari, and 422 
Baitarani sub-basin show higher exposure. Therefore, Ganga and Brahmaputra Rivers basins are the highest flood-423 
prone river basins and have high flood exposure. Rentschler et al. (2022) also reported that the highest population 424 
exposure due to floods is in Uttar Pradesh, Bihar, and West Bengal, which is part of the Ganga river basin. 425 
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 429 

Figure 9: Sub-basin level (a) Normalized vulnerability index (b) Normalized hazard (c) Normalized 430 
exposure (d) Normalized risk. The top 10 sub-basins are highlighted as bars in panels inside the figures. 431 

We estimated the flood risk for each sub-basin, a collective representation of vulnerability, hazard, and exposure. 432 
As expected, the flood risk is higher in the Ganga and Brahmaputra river basins compared to other parts of the 433 
country. The higher flood risk in these basins can be attributed to higher vulnerability, hazard probability, and 434 
exposure. For instance, Bhagirathi, Gandak, Kosi, lower Brahmaputra, and Ghaghra are the sub-basins with the 435 
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highest flood risk in India (Figure 9d). Despite the higher hazard probability in the sub-basins of the Indus and 438 
west coast river basins, the overall flood-risk is considerably lower than the sub-basins of the Ganga and 439 
Brahmaputra river basins primarily due to less vulnerability and exposure. Our results show that flood risk in 440 
some of the sub-basins of the Ganga and Brahmaputra river basins can be reduced by reducing the vulnerability. 441 

4. Discussion and conclusions 442 

Flood risk mapping is essential for risk reduction and developing mitigation measures. The flood risk will likely 443 
increase due to increased hazard probability and exposure (Ali et al., 2019). Hirabayashi et al. (2013) showed that 444 
a warmer climate would increase the risk of floods on a global scale. In India also, floods are expected to become 445 
more likely under warming climate. For instance, Ali et al. (2019) reported that multi-day floods are projected to 446 
rise faster than single-day flood events. The projected rise in the flood frequency in India can be attributed to 447 
increased extreme precipitation under warming climate (Mukherjee et al., 2018). Observational studies have also 448 
concluded that there has been a considerable rise in extreme precipitation in India during the summer monsoon 449 
season (Roxy et al., 2017), which is linked to warming climate. While the warming climate is directly linked to 450 
the increased frequency of extreme precipitation, its association with riverine floods is not straightforward. For 451 
instance, Nanditha & Mishra (2021, 2022) reported that multi-day precipitation on the wet antecedent condition 452 
is the most favourable conditions for riverine floods in India. 453 

While mapping the flood risk at appropriate spatial resolution is complex and challenging, it is vital for disaster 454 
risk reduction. Flood inundation mapping that provides the spatial extent of flooding is crucial as the first 455 
responders use it during a flood emergency (Apel et al., 2009). There are several approaches to mapping flood 456 
inundation (Teng et al., 2017). We used hydrodynamic modelling to develop long-term flood inundation maps for 457 
the Indian sub-basins. Creating high-resolution flood inundation maps based on hydrodynamic modelling is 458 
computationally expensive (Dottori et al., 2016) for a large domain like India. In addition, higher-resolution flood 459 
risk mapping that can be used at the local scale for decision-making requires accurate terrain information and river 460 
cross-section datasets that are not available. For instance, freely available digital elevation models (DEM) can be 461 
too coarse to resolve the flood inundation and depth variability at a local scale (Cook & Merwade, 2009; Dey 462 

et al., 2022). The uncertainties within hydrologic outputs can primarily arise due to inaccuracies in both input 463 
data and model parameterization (Poulin et al., 2011). Inaccuracies in input meteorological data may stem from 464 
disparate sources, leading to errors in spatial and temporal interpolation (Brown & Heuvelink, 2005). Similarly, 465 
model parameterization errors, which involve assigning values to parameters governing diverse hydrological 466 
processes, can emerge during the calibration process (Laiolo et al., 2015). Moreover, there are uncertainties 467 
originating from utilizing long-term flood occurrence data to assess flood mapping capabilities. Our modelling 468 
framework that considers the influence of reservoirs provides sub-basin scale flood inundation extent as our aim 469 
was to provide a long-term assessment of flood extent in at the country scale. Additionally, downscaling of flood 470 
depths introduces biases as coarse-scale information is translated to the local scale (He et al., 2021), which might 471 
have considerable deviations from the actual observed flood extent. Given these limitations, our findings provide 472 
valuable information based on the long-term record developed using model simulations that can be used for the 473 
regional scale policy development for flood mitigation. Cloud cover during the summer monsoon, when most 474 
floods occur in India (Nanditha et al., 2022), hinders the utility of satellite data for flood inundation mapping. We 475 
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calibrated and evaluated our H08-CaMa flood modelling framework using the observed flow, reservoir storage, 482 
and satellite-based inundation. However, all these datasets available from the in-situ network or satellites are 483 
prone to errors and uncertainty (Di Baldassarre & Montanari, 2009; Stephens et al., 2012; Teng et al., 484 

2017). We used C-ratio as an indicator to quantify the influence of dams on streamflow. However, C-ratio may 485 
not fully capture the complexities and variations in the impacts of reservoir operations. Furthermore, in case of 486 
run-of-the-river (RoR) dams, the C-ratio may over-estimate the downstream hydrological impacts. Therefore, C-487 
ratio may not solely capture the downstream hydrological effects resulting from dams. Nevertheless, it provides 488 
preliminary information on the potential dam influence on the downstream flow. 489 

India has implemented several flood risk mitigation measures at multiple government levels. The construction of 490 
embankments along rivers is a common flood risk mitigation measure in India. These embankments help contain 491 
the floodwaters within the river channels and protect nearby areas from inundation (NDMA, 2016). The CWC in 492 
India operates a network of flood forecasting stations that collect real-time data on rainfall and water levels to 493 
forecast floods and issue warnings to vulnerable communities. Notwithstanding the considerable investments and 494 
flood-control measures, India has witnessed substantial mortality, human migration, and economic loss. Flood 495 
mortality has increased mainly because of increased frequency, not necessarily due to increased flood intensity 496 
(Hu et al., 2018). About 3% of the total geographical area of India is affected by floods every year that cause 497 
damage to agriculture and infrastructure. The top ten floods that occurred during 1985-2015 caused the mortality 498 
of more than 1000 people while more than 35 million people were displaced due to floods between 2000-2004 499 
(Dartmouth Flood Observatory). The recent riverine floods in Uttarakhand and Kerala highlighted the growing 500 
flood risk in India, which warrants the need for flood mitigation. The recent flood in August 2022 in Pakistan 501 
caused an estimated loss of $30 billion. Both structural and non-structural measures are required for flood 502 
mitigation (Nanditha & Mishra, 2021). Our risk assessment provides policy implications towards reducing 503 
vulnerability to reduce the flood risk. Moreover, a sub-basin level ensemble forecast is needed to be used for early 504 
flood warnings in the sub-basins with higher flood risk. 505 

Based on our findings, the following conclusions can be made: 506 

• The coupled hydrological and hydrodynamic modelling framework based on the H08-CaMa Flood model 507 
was used to estimate the flood risk assessment in India. The hydrological modelling framework 508 
performed well against the observed flow, reservoir storage, and satellite-based flood inundation. The 509 
role of 51 major reservoirs was considered in flood risk assessment based on the long-term simulations 510 
for the 1901-2020 period. 511 

• The sub-basins in the Ganga and Brahmaputra river basins experienced the most significant flood extent 512 
during the worst flood in 1901-2020. Similarly, the mean annual maximum flood extent is higher for the 513 
sub-basins in the two major transboundary river basins (e.g., Ganga and Brahmaputra). The worst flood 514 
affected different sub-basins on the two main flood-affected river basins in different years. Major floods 515 
in the flood-prone sub-basins of the Ganga and Brahmaputra basins occur during the summer monsoon 516 
season, especially during the August-September period. 517 

• The sub-basins with a more prominent influence of dams based on the C-ratio were identified. Beas, 518 
Brahmani, upper Satluj, Upper Godavari, Middle and Lower Krishna, and Vashishti sub-basins are 519 
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among the most influenced by the dams. Moreover, Beas, Brahmani, Ravi, and Lower Satluj are among 520 
the most affected by floods and the presence of reservoirs.  521 

• Flood risk is higher in the Ganga and Brahmaputra river basins compared to other parts of the country. 522 
The higher flood risk in the two transboundary river basins can be attributed to higher vulnerability, 523 
hazard probability, and exposure. Bhagirathi, Gandak, Kosi, lower Brahmaputra, and Ghaghra are India's 524 
sub-basins with the highest flood risk.   525 
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