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Abstract. Hydrological parameters should pass through a careful calibration procedure before aiding decision-making. 

However, great difficulties are encountered when applying calibration methods to regions where runoff data are inadequate. 

To fill the gap of hydrological calibration for the ungaged road network, we proposed a Bayesian updating framework to 

calibrate hydrological parameters based on taxi GPS data. Hydrological parameters are calibrated by adjusting their values 15 

such that the runoff generated by the acceptable parameter sets could yield the road disruption period during which no taxi 

points are observed. The method is validated through 10 flood-prone roads in Shenzhen, and the result reveals that the trends 

of runoff could be correctly predicted for 8 out of 10 roads. This study shows that integration of hydrological model and taxi 

GPS data suggests viable alternative measures for the model calibration, and provides actionable insights for flood hazard 

mitigation. 20 

1 Introduction 

Under the background of climate change and increased urbanization, flooding is posing far-reaching threats to the urban 

road network of coastal metropolis (Balistrocchi et al., 2020). In Australia, around 53% of flood-related drowning deaths 

were the result of driving into flooded waters. Indirect losses caused by flooding, such as cancelled commutes, mandatory 

detours, and travel time delays, even outweigh direct losses (Kasmalkar et al., 2020). Quantifying the impact of flooding 25 

exposure requires the prediction of surface runoff over the road and computation of road disruption induced by the runoff, 

which are critical to flooding mitigation, traffic resilience improvement, and risk early warning.  

Public concerns about road flooding hazards created the pressing need to develop fine-grained and accurate models for 

hydrological simulation. The hydrological modelling, as a quite well-established theory, provides an approximation of the 

real-world hydrological system, and has been widely used in many road-related studies (Versini et al., 2010; Yin et al., 2016; 30 

Safaei-Moghadam et al., 2022). As the hydrological modelling is subject to uncertainty, which arises from the false 
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reflection of the hydrological system, the initial and boundary conditions, and the lack of true knowledge, parameters of 

hydrologic models should be carefully calibrated before applying to solve practical problems, so that the model is capable of 

closely matching the historical evidences (Gupta et al., 1998). An uncalibrated model is indefensible and sterile, so few 

models documented in the literature have been applied without any calibrations (Beven, 2012).  35 

During the last four decades, numerous studies have been devoted to the development of calibration methods. 

Methodologies of model calibration range from the simple trial-and-error, which adjusts one parameter value each turn until 

the difference between predicted and observed value is satisfactory, to the Bayesian updating framework, which rejected the 

idea that there is single correct solution. No matter what kinds of methods, hydrological models are basically calibrated 

based on the runoff data alone (Dembélé et al., 2020), so the success of model calibration is, to a great extent, dominated by 40 

the availability of field-observed runoff data. However, runoff data are generally gathered at only few sites, and some cities 

even never measured runoff data in the built-up regions (Gebremedhin et al., 2020). Even though the runoff data could be 

effectively collected by administration departments, they had no motivations to share the data to the public. For example, 

among China’s top 10 largest cities1, only Shenzhen has shared runoff-related data on the open data platform. As for the 

model calibration for the road scale, the runoff data are even more difficult to acquire, because a road network is far denser 45 

than a river network and flood gauges are only located in a few flood-prone roads considering the high measurement cost, 

leaving most of roads ungaged. As pointed out by Beven (2012, p:55), “the ungauged catchment problem is one of the real 

challenges for hydrological modellers.”  

The lack of hydrological data prompted researchers to seek extra data sources to support flood-related decision-making. 

In response to this need, big data, owing to the advance of mobile telecommunication technologies, are emerging as 50 

alternative sources of information for coping with flood risks (Gebremedhin et al., 2020; Paul et al., 2018; Li et al., 2018). 

Citizens voluntarily or passively acting as human sensors generate georeferenced data to improve flood monitoring. Typical 

studies involve the use of crowdsourcing social media data (Brouwer and Eilander, 2017; Li et al., 2018), mobile phone data 

(Yabe et al., 2018; Balistrocchi et al., 2020), and taxi GPS data (She et al., 2019; Kong et al., 2022). However, most of 

previous works concentrated on using big data either for flood mapping or mining spatiotemporal patterns (Restrepo-Estrada 55 

et al., 2018), and it remains an open question of how to calibrate parameters based on big data for ungauged roads.  

This study differentiates from our previous study (Kong et al., 2022) by going one step further than simply recognizing 

the flooding roads. We propose a calibration method for road-related hydrological parameters using the taxi GPS data. Many 

studies have shown that vehicle-related information during the rainfall, such as vehicle volume, speed, and trajectory, is 

critical to flooding road detection (Qi et al., 2020; Yao et al., 2020; Zhang et al., 2019). When a road segment is inundated 60 

by the heavy rainfall, the vehicle volume may present a sharp or gradual drop, depending on the intensity of the rainfall 

event. Conversely, the abnormal drop of vehicle volume during the rainfall implies that the road may experience some 

rainfall-induced inundations. This motivated us to use a traffic-related data source to calibrate hydrological parameters. In 

                                                           

1 Rank by the resident population in 2021.  
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this study, we develop a transformation process which converts the rainfall time series to the time series of the probability 

that no taxis drive through the road for every hydrological parameter set, and then assign a probability to every parameter set 65 

by integrating the no-taxi-passing probability with the observed taxi GPS data. We not only outline a generalized taxi-data-

driven calibration framework but also realize the framework with specific hydrologic and transportation models.  

2 Methodology 

2.1 A Bayesian updating procedure 

Observed data are not always as informative as expected and may be inconsistent with other data sources, so 70 

hydrologists usually adopt the Bayesian framework to update hydrological parameters, which provides a generalized 

formalism that integrates prior probability representing the prior knowledge with the likelihood that reflects how well the 

presumed model can reproduce the observation to form the posterior probability. Suppose we have several hydrological 

models, each with different sets of parameters, the purpose of the Bayesian updating procedure in this study is to assign a 

posterior probability to every hydrological parameter set as new taxi data become available.  75 

Two components are critical for the Bayesian updating procedure. One is the prior probability, and the other is the 

likelihood function. For the prior probability, Beven and Binley (1992) stated in their famous calibration model, generalized 

likelihood uncertainty estimation (GLUE), that all the parameter combinations are considered equally probable before extra 

information is introduced. After the first updating, the prior probability of each updating run could be replaced by the 

posterior probability of the latest updating run. The likelihood, as a measurement of how well the given model conforms to 80 

the observed taxi behaviour, is not as easy to compute as the prior probability, because the parameter set to be estimated is 

hydrology-related while the observed evidence is taxi-based. The question then arises as how to construct a taxi-based proxy 

whose probability equals to that of the associated hydrological parameter and construct a function enabling the transform 

from the hydrological parameter to the taxi-related proxy.  

The selected proxy in this study is the time series of probability that no taxi drives through the road in a given time 85 

interval (short for no-taxi-passing probability). Figure 1 illustrates a generalized procedure of converting the precipitation 

process to the time series of no-taxi-passing probability for each hydrological parameter. The procedure consists of three 

steps. First, a hydrological model is used to convert the rainfall process to the hydrograph, which is a graph showing runoff 

with respect to time past a specific point. Second, a runoff-disruption function, which relates the runoff to the probability that 

the road is blocked, is used to transition the hydrograph to the time series of road disruption probability. Third, a taxi arriving 90 

rate is combined with the time series of road disruption probability to yield the time series of no-taxi-passing probability. 

Note that the hydrological model and the taxi arriving rate are considered unique for every road and invariable in a short 

period, while the runoff-disruption function is identical for all roads. 
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Figure 1 A generalized procedure of converting the rainfall time series to the time series of no-taxi-passing probability 95 

Integrating the three-step process with the Bayesian equation enables us to compute the posterior probability of the 

parameter set based on the taxi data. For a specific road, suppose there are N hydrological parameter sets to be estimated. As 

the runoff-disruption function and the taxi arriving rate are assumed to be invariant for the road, we can construct a 

composite function converting the ith parameter set, denoted as , to the time series of no-taxi-passing probability, denoted 

as . Therefore, the probability of  to be optimal equals to the probability of  to be true: 100 

  (1) 

where  and  are the prior probability of  and  respectively. As taxi observations become available, 

 (or ) can be updated using the Bayes Theorem:  

  (2) 

where X is the taxi observation,  and  are posterior probability of  and  under the condition of taxi 105 

observation, X. The  is the likelihood of X given . The optimal parameter set is the one that derives  that 

best fits the observed taxi data.  

The solution of Eq.(2) involves the calculation of  and . According to Eq.(1),  can be 

replaced with , which is the prior probability of parameter sets. Beven and Binley (1992) suggested that prior to the 

introduction of any quantitative and qualitative information, any parameter set combination should be considered equally 110 

likely. This implied that the parameter set is drawn from a uniform distribution:  

  (3) 

Next, , as a likelihood function, describes the joint probability of the observed taxi data, X, as a function of 

the chosen . Consider a rainfall event that is broken into T 5 min intervals. From the taxi data, we obtained a sequence of 

taxi-related observations, denoted as , where  if the road is observed with at least one taxi passing 115 

by in the tth 5 min, and  otherwise. The  is also a T-dimensional vector, where  is the no-

taxi-passing probability at the tth 5 min taking  as the parameter set. Note that  is only determined by the chosen 
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hydrological parameter and the rainfall process, and is not measured from the observed data. Considering that the arrival of 

taxis is independent with respect to time,  can be formulated as:   

  (4) 120 

By substituting Eq.(3) and Eq.(4) back into Eq.(2), the Eq.(5) is obtained:  

  (5) 

Equation (5) is the proposed Bayesian updating model to calibrate the hydrological parameter based on the taxi data, 

where X could be directly measured and  is calculated through the three-step process shown in Fig.1, which will be 

discussed in detail in the next section. Having chosen an updating model, the optimum parameter for one period of 125 

observations may not be optimal for another period. As the model may have a continuing input of new taxi observation, the 

posterior probability for  should be updated as new evidence becomes available. For the second update, the posterior from 

the first observation becomes the prior for the second observation, and the posterior probability for  is recursively updated 

as: 

  (6) 130 

where  and  are the first and the second taxi observations.  

2.2 Instantization of the three-step procedure 

Section 2.1 presents a generalized three-step procedure which converts the rainfall time series to the time series of no-

taxi-passing probability. In this section, we specialize the process by integrating existing theories with our model. Three 

conceptualized steps shown in Fig.1 are substituted with three more concrete submodels. Firstly, a SCS unit hydrograph is 135 

used to turn the rainfall excess to the hydrograph of the road. Secondly, an empirical runoff-disruption function, whose data 

extracted from various experimental, observational, and modelling studies, is applied to convert the hydrograph to the time 

series of the road disruption probability. Thirdly, a Poisson distribution, representing the distribution of taxi arriving rate, is 

combined with the road disruption probability to yield the no-taxi-passing probability.  

Step 1: Convert rainfall to runoff based on the SCS unit hydrograph 140 

Not all rainfall will produce runoff because storage from soils can absorb light shower. While in the urbanized area, 

only a small proportion of rainfall infiltrates into the soil or retained on the land surface, most of them flow across the urban 

surface and becomes the direct runoff. The rainfall that yields the direct runoff is termed rainfall excess. The Natural 
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Resources Conservation Service (NRCS)2 developed a method to estimate the rainfall excess based on the soil types and land 

use using the curve number equation: 145 

  (7) 

where  is the accumulated rainfall excess in cm,  is the accumulated rainfall in cm, and S is the potential retention after 

runoff begins, which is a function of the curve number: 

  (8) 

where CN is the curve number. For urban and residential land, the curve number varies from 65 to 85, depending on the 150 

impervious areas. For sake of brevity, the curve number will not be regarded as a parameter to be calibrated in this study but 

as a given parameter with the value of 85.   

Next, the rainfall excess derived by Eq.(7) is input to the unit hydrograph to produce the runoff. The unit hydrograph is 

a commonly used rainfall-runoff model that converts rainfall excess to direct runoff. First proposed by Sherman in 1932, the 

unit hydrograph is defined as the hydrograph resulting from one unit of rainfall excess distributed uniformly over a 155 

catchment. It assumes the rainfall is uniform over the catchment and that runoff increases linearly with the rainfall excess. 

Although under most conditions these assumptions cannot be perfectly satisfied, the results obtained from the unit 

hydrograph are generally acceptable for most practical uses. The model was originally designed for larger watersheds, but it 

has been found applicable to some catchments less than 5,000 m2 (Chow et al., 1988).   

The unit hydrograph applies only for the watershed where the runoff data were measured. The paucity of the runoff 160 

data sparkled the idea of the synthetic unit hydrograph (SUH) concept. The term “synthetic” in SUH denotes the unit 

hydrograph derived from watershed characteristics rather than empirical rainfall-runoff relationship. In this study, we 

utilized the SCS unit hydrograph, which is a dimensionless SUH proposed by the NRCS. For the dimensionless SUH, the 

discharge (i.e. y-axis) is expressed as the ratio of discharge q to the peak discharge  and the time (i.e. x-axis) as the ratio of 

time t to the peak time . Therefore, the SCS unit hydrograph, rigorously speaking, is not a SUH itself, but a useful tool for 165 

constructing a SUH. 

 The shape of SCS unit hydrograph is totally determined by the peak rate factor. A standard value of 2.08 for the peak 

rate factor is recommended and commonly used by the NRCS (Fig.2). To construct a SUH from the SCS unit hydrograph, 

the x-axis of the SCS unit hydrograph is multiplied by  and the y-axis by . The values of  and  are functions of the 

catchment area and the time of concentration: 170 

  (9) 

  (10) 

                                                           

2 The NRCS used to be called the US Soil Conservation Service (SCS). 
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where  is the time of concentration in hour, A is the catchment area in km2, D is the duration of unit rainfall excess in hour, 

which is 1/12 h (i.e. 5 min) in this study. As can be seen, the catchment area and time of concentration are required to 

construct a SUH, and they are the two hydrological parameters we would calibrate based on the taxi data. For sake of 175 

simplicity, the peak rate factor would not be calibrated and be fixed as 2.08, although some studies have showed that it has a 

much wider range from 0.43 for steep terrain to 2.58 for very flat terrain (Chow et al., 1988). After  and A are chosen, a 

SUH could be constructed, and then we use it to convert the rainfall excess to the runoff by applying the discrete convolution 

equation. The detailed computation process of the discrete convolution equation can be found in most hydrological textbooks 

(e.g., see Chow et al., (1988) pp: 211-213), and will not be discussed here. To be clear, a graphic workflow in Fig.3 shows 180 

how the rainfall time series is transformed to the hydrograph for every parameter set.  

 

Figure 2 The standard SCS unit hydrograph. Data provided by the NRCS (2007)  

 

Figure 3 Workflow of the SCS unit hydrograph to convert rainfall to runoff.  185 
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Step 2: Derive the road disruption probability using the runoff-disruption function 

The goal of Step 2 is to convert the hydrograph generated in Step 1 to the time series of road disruption probability, or 

more specifically, the probability that a taxi driver chooses to turn the car when arriving at a flooded road. Most models in 

the literature assume a road is either open or closed, which usually does not correspond to the empirical evidence that many 

drivers take risk to drive along the rood even though it is inundated. In order to transition from a binary view of a flooded 190 

road being considered “open” or “closed”, Pregnolato et al. (2017) proposed to use a curve that relates the depth of 

floodwater to a reduction in vehicle speed to show the probability of road disruption, and such idea is soon followed by 

Contreras-Jara et al. (2018) and Nieto et al. (2021).  

A driver will turn around when he believes that the flow rate overcomes the vehicle configuration. From this 

perspective, the road disruption probability equals to the probability that the vehicle performance is lower than the flow rate 195 

perceived by a driver. However, it is a difficult task to quantify the common belief of what guide people’s willingness to 

drive through a flooded waterway, and is also difficult to obtain the precise knowledge of all taxi-flood intersections. 

Alternatively, to ensure the vehicle stability in flood flows, guidelines are usually recommended based on the limiting values 

of depth times velocity, and many studies have carried out laboratory testing on the stability of different kinds of vehicle 

models exposed to different combinations of depth and velocity (Merz and Thieken, 2009; Shah et al., 2018). Suggested by 200 

Pregnolato et al. (2017), we constructed the runoff-disruption function by integrating data from reviewed literatures and 

some authoritative guidelines. In this study, the road disruption probability is defined as the probability that the product of 

flow velocity and flow depth is higher than the stability limits extracting from existing studies, which are shown in Table 1 

and plotted in Fig.4. The expression of the fitting curve is: 

  (11) 205 

According to Eq.(11), a road has a disruption probability of 50% when the product of flow velocity and flow depth is 0.47 

m2 s-1, and is totally disrupted when the product is higher than 0.80 m2 s-1. Applying the fitting curve, we can easily convert 

the flood runoff to the disruption probability: 

  (12) 

where  and  are the road disruption probability and discharge at the tth 5 min derived by the hydrological 210 

model with parameter set , and W is the road width. 

Table 1 Guidelines recommended by existing literatures.  

Reference Vehicle type Feature 
Recommended limits for vehicle stability 

(m2 s-1) 

Shah et al. (2018) 
Volkswagen 

Scirocco 
Flow direction =0° velocity×depth<0.014 

Al‐Qadami et al. (2022) Perodua Viva 
Ground clearance =0.18 

m 
velocity×depth<0.39 

Calculated according to Kramer et al. 

(2016) 
VW Golf III / velocity×depth<0.42 
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Shand et al. (2016) Large passenger 
Ground clearance >0.12 

m 
velocity×depth<0.45 

Martínez-Gomariz et al. (2017) Mini Cooper 
Ground clearance =0.12 

m 
velocity×depth<0.49 

Martínez-Gomariz et al. (2017) BMW i3 
Ground clearance =0.10 

m 
velocity×depth<0.49 

Martínez-Gomariz et al. (2017) BMW 650 
Ground clearance =0.08 

m 
velocity×depth <0.50 

Martínez-Gomariz et al. (2017) Mercedes GLA 
Ground clearance =0.17 

m 
velocity×depth <0.59 

Moore and Power (2002) 
All but very small 

cars 
/ velocity×depth <0.60 

Calculated according to Xia et al. 

(2014) 
Honda Accord / velocity×depth <0.65 

 

 

Figure 4 Empirical runoff-disruption function derived from existing literatures  215 

Step 3: Derive the time series of no-taxi-passing probability  

A road has no taxis passing by in a fixed time step if the road has no taxis visiting or every taxi that arrives at the road 

turns around, so the no-taxi-passing probability can be inferred by the following equation: 

  (13) 
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where  is the no-taxi-passing probability in the tth 5 min, and  is the probability that n taxis arrives at 220 

the road segment in the tth 5 min. Equation (13) indicates that if every taxi arrives at the road segment makes a turn because 

of the flooded waterway, taxi volume of the road will be zero. In this study,  is assumed to follow the 

Poisson distribution: 

  (14) 

where  is the average number of taxis arriving at the road. Substitute Eq.(14) into Eq.(13), we derive: 225 

  (15) 

Applying , Eq.(15) can be further converted to: 

  (16) 

Equation (16) indicates that  is totally determined by  and . Since  is given through 

Step 2, what is left to determine is the value of . As the rain gets heavier, experienced taxi drivers will avoid flood-prone 230 

roads in advance, which means that , strictly speaking, is a decreasing function of rainfall intensity. However, fitting the 

rainfall-  curve requires substantial taxi GPS trajectories to inspect the route choices of taxi drivers under heavy rain, which 

is currently unfeasible in this study. We assume that  is a constant quantity which keeps unchanged with respect to rainfall. 

The value of  can be calculated by averaging all 5 min taxi volume using the historical taxi GPS data.  

Finally, Table 2 lists all the submodels and parameters of the three-step process. The core principle of the three-step 235 

process is to calculate the time series of no-taxi-passing probability, , for each parameter set, . As the best choice of a 

model is often data-specific, it is probable that the model combination proposed in this study is not optimal for other studies. 

To apply the calibration method in practical use, one must specify the submodel in the three-step process according to the 

available data, prior knowledge, and accuracy requirement. 

Table 2 Specific submodels and parameters of the three-step process.  240 

Purpose of the step Specific model Parameter Source of parameters 

Step 1: Convert the rainfall to the 

hydrograph 

Curve number equation 1. Curve number Existing literature 

SCS unit hydrograph 

2. peak rate factor Existing literature 

3. Catchment area 

4. Time of concentration 
Parameters to be calibrated 

Step 2: Convert the hydrograph to 

the time series of disruption 

probability 

Empirical runoff-disruption 

function 

5. Limit of product of flow velocity 

and depth 
Existing literatures 

Step 3: Convert the time series of 

disruption probability to the time 

series of no-taxi probability 

Taxi arrival rate follows the 

Poisson distribution 
6. Average taxi volume in 5 min Taxi GPS data 
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3 A working example  

The method outlined above was tested on an intersection located in Xinzhou Road and Hongli Road in Shenzhen, 

which is recognized as a waterlogging point by the Water Authority of Shenzhen Municipality. Recall that parameters to be 

calibrated are catchment area, A, and time of concentration, . The range of parameters should be wide enough to 

encompass most possible values. After several rounds of testing, the maximum value for A is set as 0.5 km2, and the 245 

maximum value for  is 5 h. Optimal parameter sets for most roads would fall into the region enclosed by the maximum 

parameter sets. Table 3 shows the detail information of parameter sets to be calibrated, which totally form 3,000 possible 

combinations.  

Table 3 Detail information of parameter sets to be calibrated. 

Parameter Annotation Minimum Maximum Incremental 
Number of possible 

parameter values 

Catchment area A 0.01 km2 0.5 km2 0.01 km2 50 

Time of concentration  1/12 h 5 h 1/12 h 60 

The taxi GPS data collected during two storm events occurring on 9 May 2015 and 23 May 2015 were used to calibrate 250 

the parameter sets of the intersection. Rainfall time series and taxi observations under two storms are shown in Fig.5. Each 

taxi observation contains two time series. One is the time series of 5 min taxi volume, and the other is the 5 min road status, 

which is derived from the taxi volume, with the value to be 1 if the taxi volume is higher than 0 and 0 if the taxi volume is 0.   

 

Figure 5 Rainfall and taxi observations used to calibrate the hydrological parameters. (a) 5 min rainfall time series on 9 May 255 

2015. (b) 5 min rainfall time series on 23 May 2015. (c) Taxi observations on 9 May 2015. (d) Taxi observations on 23 May 

2015. 
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  Given the rainfall on 9 May 2015, we should calculate the time series of no-taxi-passing possibility for each parameter 

combination. According to the three-step process, the first step is to convert the original rainfall to the rainfall excess using 

the curve number method (Fig.6a). Then, for each combination of A and , we construct a SUH. As there are 3,000 260 

parameter sets, we can construct 3,000 different SUHs. For simplicity, we only chose the 1,170th parameter set, i.e. =0.2 

km2 and =2.75 h, as examples to show the calibration works. Using Eq.(9) and Eq.(10), the peak discharge  and peak 

time  can be calculated as: 

 

 265 

The SUH is derived by multiplied by  on the x-axis and by  on the y-axis of the standard SCS unit hydrograph (Fig.6b). 

Next, the rainfall excess shown in Fig.6a is combined with the derived SUH to yield the hydrograph through the convolution 

(Fig.6c).  

In the second step, the runoff is transformed to the time series of road disruption probability based on the runoff-

disruption function (Fig.6d). Note that the runoff-disruption function takes the production of water depth and velocity (in the 270 

unit of m2 s-1) as input. Therefore, the original runoff (in the unit of m3 s-1) produced by the first step should be divided by 

the road width before inputting to the runoff-disruption function.  

In the third step, the time series of road disruption probability (Fig.6e) is converted to that of no-taxi-passing 

probability using Eq.(16) (Fig.6f). According to the historical taxi GPS data, the average number of taxis arriving at the road, 

, is 10.0 taxi per 5 min. The derived time series of no-taxi-passing possibility is shown in Fig.6g.  275 
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Figure 6 An example of how the rainfall time series is transformed to the no-taxi-passing probability using the three-step 

procedure for the 1170th parameter set. (a) Time series of rainfall and rainfall excess. (b) SUH constructed using the 1170th 

parameter set. (c) Derived runoff. (d) Empirical runoff-disruption function. (e) Derived time series of disruption probability. 

(f) Disruption-no-taxi-passing probability function. (g) Derived no-taxi-passing probability.   280 

After the time series of no-taxi-passing probability for every parameter set is derived, we can calculate the degree of 

belief that a given parameter set is optimal by integrating it with the taxi observations on 9 May 2015. According to Eq.(5), 

the posterior probability of the 1,170th parameter set is calculated as:    
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where  is the likelihood that the 1,170th parameter set is optimal conditioning on X, which is the taxi 285 

observation on 9 May 2015 shown in Fig.5c. The  is the prior probability of the 1,170th parameter to be optimal, 

and its values is 1/3000 because there are 3,000 possible combinations.  

Following the above process, we can calculate the posterior probability for every parameter set. Furthermore, the 

posterior probability distribution of parameter set could be updated using the taxi observation and rainfall data on 23 May 

2015: 290 

 

where  is the original posterior probability distribution calculated based on the storm on 9 May 2015, and 

 is the updated posterior distribution after the data of storm on 23 May 2015 are added. Fig.7 illustrated the 

evolution of the probability distribution with the availability of more taxi data. The posterior distribution dominates the 

uniform prior distribution after the first updating, and the distribution is refined a little bit after the second updating.  295 

 

Figure 7 Evolution of the posterior probability distribution of hydrological parameter sets. (a) Prior distribution before 

updating. (b) Posterior distribution after the first updating. (c) Posterior distribution after the second updating. 

4 Validation and result 

4.1 Method validation 300 

The proposed method is validated upon flood-prone roads located in Shenzhen, China, which is a coastal city frequently 

hit by extreme storms in summer. Another reason that Shenzhen is chosen is that only Shenzhen, as far as we known, has 

shared the runoff-related data to the public in China. Three data sources, which are taxi GPS data, rainfall data, and 

authoritative water level data, are used to validate the calibration method. Hydrological parameters are calibrated using the 

first two data sources, and the water level data acts as the ground truth to validate the method. Taxi GPS data are 305 

anonymized and aggregated to the road every 5 min. The rainfall data, which are also collected every 5 min, are measured at 

115 gaging stations citywide, and are mapped to the road network throughout Shenzhen using the Ordinary Kriging spatial 
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interpolation algorithm. The water level data are only measured at some waterlogging points, with a dynamic sampling 

interval ranging from 5 min when rainy to 1 h when rainless. The calibration method was validated by checking the 

hydrograph derived from the calibrated hydrological model and authoritative water level for 10 selected roads. Detailed 310 

information of three data sources are listed in Table 4.  

Table 4 Detailed information of three data sources. 

Item Taxi GPS data1 Rainfall data1 Water level data2 

Source 
Transport Commission of 

Shenzhen Municipality 

Meteorological Bureau of 

Shenzhen Municipality 

Shenzhen Municipal 

Government Data Open 

Platform1 

Record Taxi volume of each road 5 min accumulative rainfall Water level 

Data collection period May 2015 2015 and 2019 2019 

Data collection interval 5 min 5 min 5 min -1 h 

Location Citywide 115 rainfall gaging stations 171 flooding gaging sites 

1 The complete taxi GPS data and rainfall data are not openly accessible due to the requirement of data policy. To validate the research 

findings, we uploaded necessary data in Zenodo (Kong, 2022). 

2 Openly available at the site: https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_01403147 315 

Two storm events, occurred on 9 May 2015 and 23 May 2015 are treated as calibration events and the storm occurred 

on 11 June 2019, is retained for testing. Obviously, there is a 4 year span between the calibration data and validation data 

due to the data availability. To reduce the validation error caused by the time difference, roads to be validated should be 

vulnerable to flooding on both 2015 and 2019 so that hydrological parameters of these roads have higher chance to remain 

unchanged. Therefore, in total of 10 flood-prone roads, which were labelled as flood-prone roads on both the List of 2015 320 

Flood-prone Roads in Shenzhen (Water Authority of Shenzhen Municipality, 2015) and the List of 2019 Flood-prone Roads 

in Shenzhen (Water Authority of Shenzhen Municipality, 2019), were carefully selected (Fig.8).  
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Figure 8 Spatial distribution of 10 flood-prone roads in Shenzhen.  

Next, the posterior probability of parameter sets after calibration for the 10 roads are illustrated in Fig.9. As shown in 325 

Fig.9, the posterior probability distribution of parameter sets for most flood-prone roads are clustered around the optimal 

parameter set after two runs of updating, indicating that the uncertainty of parameter sets is refined to a much smaller area 

when taxi observations are added. It should also be noted that the posterior probability of parameter set for the Jinlian Road 

(Road ID=10) is evenly distributed on a triangular region (Fig.9j). By examining the taxi data of the road, we found that the 

taxi volume was greater than 0 for most 5 min intervals during two storms, indicating that the road was not disrupted during 330 

two storms. As hydrological parameters are calibrated by adjusting their values such that the runoff generated by the 

acceptable parameter sets could yield the disruption period during which no taxi points are observed, the lack of no-taxi-

passing period would provide less information for calibration compared with when no-taxi-passing period is observed. This 

explains why the posterior probability is not refined to a small-area domain. However, we can still get some valuable 

information from Fig.9j. First, the catchment area for the Jinlian Road should not be too large to generate the runoff which 335 

may cause the road disruption. Second, the catchment area is highly intercorrelated with time of concentration. As the 

catchment area gets larger, the time of concentration is more likely to increase so that the high runoff volume could not 

converge in a short time. 
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Figure 9 Posterior probability distribution of hydrological parameter sets after the first updating for 10 flood-prone roads. 340 

Subplots (a)-(j) represent the probability distribution for Road 1-10.  

After the parameter sets were calibrated, they were combined with the SCS unit hydrograph to construct the SUH, 

which were further combined with the rainfall data occurring on 11 June 2019 to produce the predicted hydrograph. As the 

posterior probability associated with each parameter set can be regarded as a fuzzy measure reflecting the degree of belief 

that the parameter set is true, the weighted runoffs for each parameter set were summed to produce the final predicted runoff: 345 

  (17) 

where Q is the final predicted runoff,  is the simulated runoff derived from the ith parameter set, and  is the 

posterior probability of the ith parameter set, acting as the weight.    

The output of the calibrated hydrological model is runoff (with the unit of m3 s-1), whereas the validation data is water 

level (with the unit of m). As the calibration data and validation data arise from multiple sources and have different units, 350 

conventional error-based statistics such as the mean absolute error (MAE) are not suitable in this study. Most often, the 

discharge of stream is rarely measured directly. Instead, streamflow is typically determined by converting measured water 

depth (i.e. stage) into discharge through a rating curve, which provides a functional relationship between stage and discharge 

at a specified point (Le Coz et al., 2014). Inspired by the application of the rating curve, we validate the method by 

developing the rating curve for every road, and then estimate the goodness-of-fit of those rating curves. Comparisons 355 

between the observed water depth and the simulated runoff for 10 selected roads are shown in Fig.10, and rating curves 

constructed by fitting the runoff-stage scatter plot are shown in Fig.11. We use the Pearson correlation coefficient, which 

measures the linear correlation between two variables, as the goodness-of-fit indicator. The result shows that 8 of 10 roads 

have rating curves with significant positive Pearson coefficient, indicating that the runoff and water have similar and 

consistent variation process.  360 
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Figure 10 Comparisons between the observed water depth and the simulated runoff for Road 1-10. The maximum value is 

30 m3 s-1 of the left y-axis (i.e. runoff) and 0.6 m of the right y-axis (i.e. stage) for every subplot.  

 

Figure 11 Scatter plots (a-j) of the observed water depth and the simulated runoff for Road 1-10.  365 

It is worth noting that goodness-of-fit solely describe the degree of correlation between the observed and simulated data 

and may contain validation bias. As suggested by Legates and McCabe (1999), correlation-based statistic is insensitive to 

additive and proportional differences between the simulations and observations. Therefore, fitting of rating curve only 

reveals part of the validation truth, and the usefulness of the calibration method needs further inspection.   

4.2 Application of the method to plot flooding maps in Shenzhen 370 

Based on the proposed calibration method, we simulated how the road network experiences flooding for different 

rainfall return periods. Three storm events of different return periods (T = 2, 10, and 50 years) were designed according to 

the Rainfall Intensity Formula of Shenzhen (Meteorological Bureau of Shenzhen Municipality, 2015). Each storm lasts 3 

hours, with an accumulative rainfall amount of 159 mm, 230 mm, and 283 mm for the 2, 10, and 50 year return period. 
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Hydrological parameters of high-level flood-prone roads, including expressway, main road, and secondary road, are 375 

calibrated using the taxi data on 9 May 2015 and 23 May 2015. The flood-prone roads are identified based on the algorithm 

proposed in our previous studies (Kong et al., 2022). The road discharges under different rainfall return periods are 

simulated by inputting the designed rainfall to the calibrated hydrologic models. As an example, Fig.12 shows the spatio-

temporal evolution of simulated discharge of parts of the road network, which locate in Baoan District, Shenzhen, for 

different return periods. With the return periods rising from 2 year to 50 year, the average peak discharge for flood-prone 380 

roads increases by 80.6%, with the value from 13.9 m3 s-1 to 25.1 m3 s-1. Inputting the simulated runoff to the empirical 

runoff-disruption function, expressed in Eq.(12), the time series of disruption probability for every road could be derived3. 

To facilitate discussion, we temporarily define the disruption period as the time when disruption probability is higher than 

0.5. The average disruption period for flood-prone roads increases from 1.67 h to 3.15 h as the return period increases from 2 

year to 50 year.  385 

 

Figure 12 Spatio-temporal evolution of simulated runoff for different return periods in Baoan District, Shenzhen. 

                                                           

3 Original runoff should be divided by the road width before inputting to the empirical runoff-disruption function.  
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5 Discussion 

Three points are worth discussing about the proposed calibration method. The first is that, although the validation 

results support the use of taxi GPS data to calibrate hydrological parameters for poorly gauged road networks, the method is 390 

more applicable to the road which is frequently visited by taxis. Uncertainty increases as the taxi volume of a road decreases. 

A road is passable when at least one taxi GPS points are observed during the time interval, while we cannot assert that the 

road is disrupted when the taxi volume is zero. When a road with taxis frequently passing by is observed with no taxi GPS 

points during the storm, it is highly probable that the road is disrupted by the flooding, which provides relatively reliable 

information for parameter calibration. Conversely, when a road with few taxis visiting has no taxi points during the storm, 395 

there is a great chance that the road remains passable and just has no taxis as usual. The calibration method thus becomes 

relatively unreliable considering that the “no-taxi-passing period” is no longer a good proxy of the “disruption period” for 

the taxi-data-sparse road. To compensate for the shortage of the taxi GPS data, extra data sources, such as ride-hailing data 

and bus data, should be incorporated in the future work.  

Secondly, the disruption of one road may cause cascading failure so that the disruption may be rapidly propagating 400 

from the inundated road to the adjacent non-inundated roads under the constraint of the road connectivity. For a road which 

is disrupted but not inundated by the storm, the implementation of calibration method may be subject to structural errors. 

Assume there are two connected roads, namely Road 1 and Road 2, which are both disrupted during a storm, and taxi 

volume of two roads are therefore zero (Fig.13). The difference lies in that Road 1 is disrupted by the flooding, while Road 2 

is disrupted due to connecting to the disrupted road, i.e. Road 1. If taxi data is the only data source used for calibration, 405 

posterior distributions of hydrological parameters for Road 1 and Road 2 should be identical after calibration, because 

sequences of taxi volume are identical for both roads. Clearly, we know that hydrological parameters for two roads could not 

be the same, otherwise Road 1 and Road 2 should be both flooded. Just like we cannot simply treat the “no-taxi-passing 

period” as the “disruption period”, we cannot confuse the “disruption period” with the “flooded period.” In the future work, 

an algorithm enabling to distinguish the flooding-induced disruption and the connectivity-induced disruption should be 410 

developed.  

 
Figure 13 A graphic representation to show the difference between the “disruption period” and the “no-taxi-passing period.” 

Thirdly, the specific three-step process, which consists of the SCS unit hydrograph, the empirical runoff-disruption 

function, and the Poisson distribution, performs as a realization of the generalized framework shown in Fig.1. Submodels of 415 

the three-step process are not deterministic, and can be flexibly substituted by other submodels according to the needed 

complexity and data availability. For example, an alternative to the SCS unit hydrograph is the distributed hydrological 
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model. Compared with the SCS unit hydrograph, the distributed hydrological model partitions a watershed into physically 

homogeneous units and captures the complex spatial variation induced by human activity in high resolution, which may be 

more applicable to the urbanized environment, such as the road network. However, considering that some critical data 420 

including the road drainage data and land use data are missing, as well as the calibration procedure will become extremely 

computationally intensive, we did not use the distributed hydrological model in this study.  

6 Conclusion  

An urban flooding model requires various types of data for calibration. In this study, we proposed a Bayesian 

calibration framework for the hydrological parameters of the road network based on the taxi GPS data. A three-step 425 

procedure, consisting of a rainfall-runoff model, a runoff-disruption model, and a disruption-no-taxi-passing probability 

model, enables us to transform the given rainfall time series to the time series of no-taxi-passing probability for each 

parameter set, which is key to the taxi-data-driven model calibration. The calculated no-taxi-passing probability, acting as a 

proxy of the associated hydrological parameter set, is further compared with the observed taxi data through the Bayes 

equation to assess the posterior probability of the hydrological parameter set. The calibration method is instantiated by 430 

combing some classical hydrological and traffic flow models, and is validated on 10 flood-prone roads in Shenzhen. The 

validation results show that trends of runoff could be correctly predicted for 8 roads, indicating a good performance for 

hydrological parameter calibration.   

This study illustrates the great potential of integrating transportation-related data with hydrological theory in 

transportation resilience improvement and flood risk management for the road network. We hope that our study provides a 435 

flexible calibration framework for countries which are short of runoff data but rich of taxi data. We accept that the 

application of the method is currently limited by the heterogeneous spatial distribution of taxis citywide and the cascading 

effect of road inundation, but expect this to change with the increasing availability of vehicle data and continuously 

optimization of modelling. 

Code and data availability 440 

The data and code used to validate the method are available at Zenodo (https://doi.org/10.5281/zenodo.7294849).  
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