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Abstract. Hydrological parameters should pass through a careful calibration procedure before aiding decision -making. 

However, great significant difficulties difficulty is are encountered when applying existing calibration methods to regions in 

whichwhere runoff data are inadequate. To achieve accurate fill the gap of hydrological calibration for the ungauged road 

networks, we proposed a Bayesian updating framework thatto calibrates hydrological parameters based on taxi GPS data. 15 

Hydrological parameters wereare calibrated by adjusting their values such that the runoff generated by the acceptable 

parameter sets corresponds to could yield the road disruption periods during which no taxi points are observed. The proposed 

method wasis validated on through 10 flood-prone roads in Shenzhen, and the results revealeds that the trends of runoff could 

be correctly predicted for 8 out of 10 roads. This study shows demonstrates that the integration of hydrological models and 

taxi GPS data can provide suggests viable alternative measures for the model calibration to derive, and provides actionable 20 

insights for flood hazard mitigation. 

1 Introduction 

In the context Under the background of climate change and increased urbanization, flooding poses is posing far-

reaching threats to the urban road networks of coastal metropolises metropolis (Balistrocchi et al., 2020). In Australia, 

around approximately 53% of flood-related drowning deaths were the result of vehicles driving into flooded waters. 25 

Additionally, iIndirect losses caused by flooding, such as cancelled commutes, mandatory detours, and travel time delays, 

even often outweigh direct losses (Kasmalkar et al., 2020). Quantifying the impact of flooding exposure requires the 

prediction of surface runoff over the roads and computation of road disruptions induced by the runoff, which are critical for 

the implementation of to flooding mitigation, traffic resilience improvement, and risk early warning systems.  

Public concerns about regarding road flooding hazards have created the pressing needpressure to develop fine-grained 30 

and accurate models for hydrological simulation. HThe hydrological modelling is , as a quite relatively well-established 
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theory that can, provides an approximations of the real-world hydrological system, and has been widely used in many road-

related studies (Versini et al., 2010; Yin et al., 2016; Safaei-Moghadam et al., 2022). As the Because hydrological modelling 

is subject to uncertainty, which  that arises from the over-simplifiedfalse reflection of the hydrological systems, the initial 

and boundary conditions, and the lack of true knowledge, parameters forof hydrological models should must be carefully 35 

calibrated be carefully calibrated prior to theirbefore applying application to solve practical problems, so that the models can 

is capable of closely matching the historical evidences trends (Gupta et al., 1998). Asn un-calibrated models areis 

indefensible and sterile, so very few models documented in the literature have been applied without any calibrationsa 

calibration procedure (Beven, 2012).  

During Over the last past four decades, numerous studies have been conducted on devoted to the development of 40 

calibration methods. Methodologies forof model calibration range from the simple trial-and-error methods , which that 

adjusts one parameter value in each turn iteration until the differences between predicted and observed values areis 

satisfactory, to the Bayesian updating framework, which  that rejected the concept of a idea that there is single correct 

solution. To a great extent, No matter what kinds of methods, hydrological models are basically calibrated based on the 

runoff data alone (Dembélé et al., 2020), so tthe success of model calibration is , to a great extent, dominated by the 45 

availability of field-observed runoff data. However, runoff data are generally only gathered at a only few sites, and some 

cities even never measured runoff data in the built-up regions (Gebremedhin et al., 2020). AlEven though the runoff data 

could can be effectively collected by administration departments in some cities, they haved no motivations to share these 

data to with the public. For example, among China’s top 10 largest cities1, only Shenzhen has shared runoff-related data on 

the an open data platform. FAs for the model calibration for at the road scale, the runoff data are even more difficult to 50 

acquire, because a road networks areis far denser than a river networks and flood gauges are only located installed in a few 

flood-prone roads considering based on their high measurement cost, leaving most of roads ungagedungauged. As pointed 

out by Beven (2012, p:55), “the ungauged catchment problem is one of the real challenges for hydrological modellers.”  

Thise lack of hydrological data has prompted researchers to seek extra additional data sources to support flood-related 

decision -making. In response to this need, big data, owing toBased on the advancement of mobile telecommunication 55 

technologies, big data are emerging as alternative sources of information for coping with flood risks (Paul et al., 2018; Li et 

al., 2018; Gebremedhin et al., 2020). Citizens can voluntarily or passively acting act as human sensors to generate 

georeferenced data to improve flood monitoring. Typical Many studies have leveragedinvolve the use of crowdsourceding 

social media data (Brouwer and Eilander, 2017; Li et al., 2018) (Brouwer and Eilander, 2017; Sadler et al., 2018; Zahura et 

al., 2020), mobile phone data (Yabe et al., 2018; Balistrocchi et al., 2020), and taxi GPS data (She et al., 2019; Kong et al., 60 

2022). However, most of previous works have concentrated on using big data either for flood mapping or mining 

spatiotemporal patterns (Restrepo-Estrada et al., 2018), and  parameter calibration for ungauged roads based on big data 

remains an open problemit remains an open question of how to calibrate parameters based on big data for ungauged roads.  

                                                           

1 Rank by the resident population in 2021.  
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This study differentiates extends from our previous study (Kong et al., 2022) by going one a step further than simply 

recognizing the floodeding roads. We propose a calibration method for road-related hydrological parameters using based on 65 

the taxi GPS data. Many studies have shown that vehicle-related information during the rainfall, such asincluding vehicle 

volume, speed, and trajectory information, is usefulcritical  forto floodeding road detection (Zhang et al., 2019; Qi et al., 

2020; Yao et al., 2020). When a road segment is inundated by the heavy rainfall, the vehicle volume may present exhibit a 

sharp or gradual drop, depending on the intensity of the rainfall event. Conversely, anthe abnormal drop inof vehicle volume 

during the rainfall may implyies that the a road may has experienced some rainfall-induced inundations. This motivatesd us 70 

to use a traffic-related data sources to calibrate hydrological parameters. In this study, we developed a transformation 

process which that converts the rainfall time series data into the a time series of the probabilitiesy that no taxis will drive 

through on the a road (no-taxi-passing probability hereafter) for every a given hydrological parameter set., and We then 

assigned a probability to every parameter set by integrating the no-taxi-passing probability with the observed taxi GPS data. 

We not only outlined a generalized taxi-data-driven calibration framework and but also realizeimplemented the a framework 75 

with specific hydrological and transportation models.  

2 Methodology 

2.1 A Bayesian updating procedure 

Observed data are not always as informative as expected and may be inconsistent with other data sources;, so 

hydrologists usually typically adopt the Bayesian framework to update hydrological parameters, which provides a 80 

generalized formalism that integrates prior probability representing the prior knowledge with the likelihood that reflects how 

well accurately the presumeda model can reproduce the observations to form the a posterior probability. Suppose we have 

several hydrological models, each with different sets of parameters. Then,, the purpose of the Bayesian updating procedure 

adopted in this study is to assign a posterior probability to every hydrological parameter set as new taxi data become 

available.  85 

Two components are critical for the this Bayesian updating procedure. One is the prior probability, and the other is the 

likelihood function. RegardingFor the prior probability, for their famous calibration model called generalized likelihood 

uncertainty estimation, Beven and Binley (1992) stated in their famous calibration model, generalized likelihood uncertainty 

estimation (GLUE), that all the parameter combinations are considered equally probable before extra additional information 

is introduced. After the first updateing, the prior probability of each updating run iteration could can be replaced by the 90 

posterior probability of the latest updating iterationrun. LThe likelihood, which isas a measurement of how well the a given 

model conforms to the observed taxi behaviour, is not as easy to compute as the prior probability, because the parameter set 

to be estimated is hydrology--related, whereasile the observed evidence is taxi-basedrelated. Therefore, question then arises 

as we must determine how to construct a taxi-based proxy whose probability equalsis equal to to that of the associated 
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hydrological parameter and construct a function enabling the transformation from the hydrological parameters to the taxi-95 

related proxiesy.  

The selected proxy selected in this study wasis the time series of probability that no taxi drives through the road in a 

given time interval (short for the no-taxi-passing probability). Figure 1 illustrates presents a generalized procedure forof 

converting the a precipitation rainfall process time series into the a time series of no-taxi-passing probabilitiesy for each 

hydrological parameter. Thise procedure consists of three steps. First, a hydrological model is used to convert the a rainfall 100 

time series inprocess to the a hydrograph, which is a graph showing runoff with respect to time past a specific point. Second, 

a runoff-disruption function that , which relates the runoff to the probability that the a road is blocked, is used to transition 

transform the hydrograph into the a time series of road disruption probabilitiesy. Third, thea taxi arriving arrival rate is 

combined with the time series of road disruption probabilitiesy to yield derive the a time series of no-taxi-passing 

probabilitiesy. Note that tThe hydrological model and the taxi arrivalarriving rate are considered to be unique for every road 105 

and are invariable within a short period, while whereas the runoff-disruption function is identical for all roads. 

 

 

Figure 1 A gGeneralized procedure forof converting the a rainfall time series into the a time series of no-taxi-passing 

probabilitiesy. 110 

Integrating thise three-step process with the Bayesian equation enables us to compute the posterior probability of the a 

parameter set based on the taxi data. For a specific road, suppose there are N hydrological parameter sets to be estimated. As 

Because the runoff-disruption function and the taxi arrivalarriving rate are assumed to be invariant fixed for the road, we can 

construct a composite function converting the ith parameter set, which is denoted as 𝜽(𝒊) 𝜃(𝐼), into the a time series of no-taxi-

passing probabilitiesy, which is denoted as 𝜴(𝒊) . Therefore, the probability of 𝜽(𝒊)  to bebeing optimal is equals to the 115 

probability of 𝜴(𝒊) beingto be true, which can be expressed as follows: 
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 𝑃(𝜽(𝒊)) = 𝑃(𝜴(𝒊)) (1) 

where 𝑃(𝜽(𝒊)) and 𝑃(𝜴(𝒊)) are the prior probabilitiesy of 𝜽(𝒊) and 𝜴(𝒊) respectively. As taxi observations become available, 

𝑃(𝜽(𝒊)) (or 𝑃(𝜴(𝒊))) can be updated using the Bayes Ttheorem as:  

  (2) 120 

𝑃(𝜽(𝒊)|𝑿) = 𝑃(𝜴(𝒊)|𝑿) ∝ 𝑃(𝜽(𝒊))ℒ(𝑿|𝜽(𝒊)) (2)  

where X is the taxi observation, and 𝑃(𝜽(𝒊)|𝑿) and 𝑃(𝜴(𝒊)|𝑿) are the posterior probabilitiesy of  𝜽(𝒊) and 𝜴(𝒊),  respectively 

under the conditional on theof taxi observation, X. The  ℒ(𝑿|𝜽(𝒊)) is the likelihood of X given  𝜽(𝒊). The optimal 

parameter set is the one that which derives yields the 𝛺(𝑖) that most closelybest fits the observed taxi data.  

The solution of Solving Eq. (2) involves the calculation of  𝑃(𝜽(𝒊)) and  ℒ(𝑿|𝜽(𝒊)). According to 125 

Eq.(1),  can be replaced with , which is the prior probability of parameter sets. The derivation of 𝑃(𝜽(𝒊)) 

depends on prior knowledge regarding the parameter distribution, which is typically obtained using traditional hydrological 

methods. However, this prerequisite knowledge may not always be readily accessible based on limited data availability. In 

such cases, Beven and Binley (1992) suggested that prior to the introduction of any quantitative and qualitative information, 

any parameter set combination should could be considered to be equally likely. This impliesed that the parameter set is 130 

drawn from a uniform distribution as follows:  

  (3) 

𝑃(𝜽(𝒊)) = 1/𝑁 (3) 

In this study, we compared the effects of two types of prior parameter distributions, namely a uniform distribution and a 

distribution derived from digital elevation model (DEM) data, on the resulting posterior distributions.  135 

Next, ℒ(𝑿|𝜽(𝒊)) , which isas a likelihood function, describes the joint probability of the observed taxi data, X, 

as a function of the chosen  𝜃(𝑖). Consider a rainfall event that is broken divided into T 5 min intervals. From the taxi 

data, we obtained can obtain a sequence of taxi-related observations, which are denoted as 𝑿 = {𝑥𝑋1, 𝑥𝑋2, … , 𝑥𝑋𝑇}, where 

𝑥𝑋𝑡 = 1 if the observed road hasis observed with  at least one taxi passing duringby in the tth 5 min interval, and 𝑥𝑋𝑡 = 0 

otherwise. The 𝜴(𝒊) = {𝜔1
(𝑖)

, 𝜔2
(𝑖)

, … , 𝜔𝑇
(𝑖)

} is also a T-dimensional vector, where 𝜔𝑡
(𝑖)

 is the no-taxi-passing probability at in 140 

the tth 5 mininterval taking with 𝜽(𝒊) as the parameter set. Note that 𝜴(𝒊) is only determined by the chosen hydrological 

parameter and the rainfall processtime series, and is not measured from the observed data. Considering that the arrival of 

taxis is independent of with respect to time, ℒ(𝑿|𝜽(𝒊))  can be formulated as:   

  (4) 
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ℒ(𝑿|𝜽(𝒊)) = ℒ(𝑿|𝛀(𝒊)) = ∏(1 − 𝜔𝑡
(𝑖)

)
𝑥𝑡

(𝜔𝑡
(𝑖)

)
1−𝑥𝑡

𝑇

𝑡=1

(4) 145 

By substituting Eq.(3) and Eq. (4) back into Eq. (2), the Eq.(5) is following equation can be obtained:  

  (5) 

𝑃(𝜽(𝒊)|𝑿) ∝ 𝑃(𝜽(𝒊)) ∏ (1 − 𝜔𝑡
(𝑖)

)
𝑥𝑡

(𝜔𝑡
(𝑖)

)
1−𝑥𝑡𝑇

𝑡=1 (5) 

 

Equation (5) is the proposed Bayesian updating model forto calibratinge the hydrological parameters based on the taxi 150 

data, where X could can be directly measured and 𝜔𝑡
(𝑖)

 is calculated through the three-step process shown illustrated in 

Fig. 1, which will be discussed in detail in the next following section. Having chosen selected an updating model, the 

optimalum parameter for one period of observations may not be optimal for another period. As Because the model may have 

a continuing inputs of new taxi observations, the posterior probability for 𝜽(𝒊) should be updated as new evidence becomes 

available. For the second update, the posterior probability from the first observation becomes the prior probability for the 155 

second observation, and the posterior probability for 𝜽(𝒊) is recursively updated as: 

𝑃(𝜽(𝒊)|𝑿𝟐) ∝ ℒ(𝑿𝟐|𝜽(𝒊))𝑃(𝜽(𝒊)|𝑿𝟏) (6) 

where 𝑿𝟏 and 𝑿𝟐 are the first and the second taxi observations.  

2.2 Instantiation Instantization of the three-step procedure 

Section 2.1 presenteds a generalized three-step procedure which for convertings the a rainfall time series into the a time 160 

series of no-taxi-passing probabilitiesy. In this section, we specialize thise process by integrating existing theories with our 

model. The tThree conceptualized steps shown illustrated in Fig. 1 are were replacedsubstituted  with three more concrete 

sub-models. Firstly, a Soil Conservation Service (SCS) unit hydrograph wasis used to turn convert the rainfall excess into the 

a hydrograph of the target road. Secondly, an empirical runoff-disruption function based on , whose data extracted from 

various experimental, observational, and modelling studies, is was applied to convert the hydrograph into the a time series of 165 

the road disruption probabilitiesy. Thirdly, a Poisson distribution, representing the distribution of taxi arrivalarriving rate, is 

was combined with the road disruption probability time series to yield derive the a no-taxi-passing probability time series.  

Step 1: Converting rainfall into runoff based on the SCS unit hydrograph 

Not all rainfall will produces runoff because storage from soils storage can absorb a certain amount of rainlight shower. 

While However, in the urbanized areas, only a small proportion of rainfall infiltrates into the soil or is retained on the land 170 

surface, leaving most of themrain to flow across the urban surfaces and becomes become the direct runoff. The rainfall that 

yields becomes the direct runoff is termed referred to as rainfall excess. The Natural Resources Conservation Service 
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(NRCS)2 developed a method to estimate the rainfall excess based on the soil types and land uses using the following curve 

number equation: 

𝑃𝑒 = {
(𝑃𝑎 − 0.2𝑆)/(𝑃𝑎 + 0.8𝑆)  𝑃𝑎 > 0.2𝑆
                   0                          𝑃𝑎 ≤ 0.2𝑆

(7) 175 

where 𝑃𝑒 is the accumulated rainfall excess in cm, 𝑃𝑎 is the accumulated rainfall in cm, and S is the potential retention after 

runoff begins, which is defined as a function of the curve number as follows: 

𝑆 = 2.54 × (1000/𝐶𝑁 − 10) (8) 

where CN is the curve number. For urban and residential land, the curve number varies from 65 40 to 8595, depending on 

the impervious areas (Natural Resources Conservation Service, 2010a). Because prior knowledge on the CN is unavailable, it 180 

was considered as a calibrated parameter in this study.For sake of brevity, the curve number will not be regarded as a 

parameter to be calibrated in this study but as a given parameter with the value of 85.   

Next, tThe rainfall excess derived usingby Eq. (7) wasis inputted into the unit hydrograph to produce derive the runoff. 

The unit hydrograph is a commonly used rainfall-runoff model that converts rainfall excess into a temporal distribution of 

direct runoffconverts rainfall excess to direct runoff. First proposed by Sherman in 1932, the unit hydrograph is defined as 185 

the hydrograph resulting from one unit of rainfall excess distributed uniformly over a catchment area. It assumes the that 

rainfall is uniform over the catchment area and that runoff increases linearly with the rainfall excess. Although under most 

conditions these assumptions cannot be perfectly satisfied under most conditions, the results obtained from the unit 

hydrograph are generally acceptable for most practical usescases. The model, was originally designed for larger watersheds, 

but it has been found to be applicable to some catchments areas less than 5,000 m2 in size (Chow et al., 1988). 190 

The unit hydrograph applies is only applicable tofor the  watershed areas where the runoff data arewere measured. The 

paucity of the runoff data motivatedsparkled the idea development of the synthetic unit hydrograph (SUH) concept. The term 

“synthetic” in SUH denotes the refers to a unit hydrograph derived from watershed characteristics, rather than empirical 

rainfall-runoff relationships. In this study, we utilized the SCS unit hydrograph, which is a dimensionless SUH proposed by 

the NRCS. For the dimensionless SUH, the discharge (i.e., y- axis) is expressed as the ratio of discharge q to the peak discharge 195 

𝑞𝑝 and the time (i.e., x- axis) is expressed as the ratio of time t to the peak time 𝑡𝑝. Therefore, the SCS unit hydrograph, 

rigorously speaking, is not exactly an SUH itself, but is a useful tool for constructing an SUH. 

 The shape of an SCS unit hydrograph is totally entirely determined by the peak rate factor. A standard value of 2.08 for 

the peak rate factor is recommended and commonly used by the NRCS (Fig. 2). To construct an SUH from the an SCS unit 

hydrograph, the x -axis of the SCS unit hydrograph is multiplied by 𝑡𝑝 and the y -axis is multiplied by 𝑞𝑝. The values of 𝑞𝑝 200 

and 𝑡𝑝 are functions of the catchment area and the time of concentration as follows: 

𝑡𝑝 = 0.6𝑡𝐶 + 𝐷/2 (9) 

𝑞𝑝 = 2.08𝐴/𝑡𝑝 (10) 

                                                           

2 The NRCS used to be was originally called the US Soil Conservation Service (SCS). 
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where 𝑡𝐶 is the time of concentration in hours, A is the catchment area in km2, and D is the duration of unit rainfall excess in 

hours, which iwas set to 1/12 h one-twelfth of an hour (i.e., 5 min) in this study. Notably As can be seen, the catchment area 205 

and time of concentration are required to construct an SUH, and they are the other two hydrological parameters we would 

that should be calibrated based on the taxi data. Although numerous tools and theories have been developed for estimating 

catchment area and time of concentration, these two parameters are still prone to significant errors, particularly in urban 

areas, because of challenges in accurately delineating urban catchments (Huang and Jin, 2019; Li et al., 2020). Urban 

catchment delineation is more complex than natural catchment delineation. Urban catchments have spatially heterogeneous 210 

surface cover types, which change with city development and construction, and modify runoff parameters (Goodwin et al., 

2009). High densities of residential and commercial buildings obstruct flow paths and alter flow directions of storm water 

runoff, complicating rainfall-runoff and overland flow processes in urban areas (Ji and Qiuwen, 2015). Additionally, 

accurate urban catchment delineation necessitates high-resolution DEMs, which are not always available. In many Chinese 

cities, high-resolution DEMs are considered confidential data and are generally inaccessible to non-governmental 215 

organizations. Based on these challenges, deriving accurate catchment area and time of concentration data in urban areas is 

difficult in Shenzhen. 

For the sake of simplicity, the peak rate factor would was not be calibrated and be was fixed as at 2.08, although some 

studies have showed indicated that it has a much wider range from 0.43 for steep terrain to 2.58 for very flat terrain (Chow et 

al., 1988). After  𝑡𝐶 and A wereare chosen, an SUH could can be constructed, and then we used it to convert the rainfall 220 

excess into the runoff by applying the discrete convolution equation. The detailed computation process of the discrete 

convolution equation can be found in most hydrological textbooks (e.g., see Chow et al., (1988) pp: 211-213), and will not 

be discussed here. To be clear, a The graphical workflow in Fig. 3 shows illustrates the transformation of how the rainfall 

time series is data transformed into the a hydrograph for every parameter set.  
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 225 

Figure 2 The sStandard SCS unit hydrograph. Data provided by the NRCS (2007).  

 

 

Figure 3 Workflow of the SCS unit hydrograph to for converting rainfall into runoff.  

Step 2: Derivatione of the road disruption probability using the runoff-disruption function 230 
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The goal of Step 2 is to convert the hydrograph generated in Step 1 into the a time series of road disruption 

probabilitiesy, or more specifically, the probability that a taxi driver chooses to turn their car when arriving at a flooded road. 

Most models in the literature assume that a road is either open or closed, which usually does not correspond to the empirical 

evidence that many drivers may take risks to drive on inundated roadsalong the rood even though it is inundated. In order 

tTo transition from a binary view of a flooded road being considered “open” or “closed,”, Pregnolato et al. (2017) proposed 235 

to the use of a curve that relates the depth of floodwater to a reduction in vehicle speed to show indicate the probability of 

road disruption., and such This idea wasis soon followed adopted by Contreras-Jara et al. (2018) and Nieto et al. (2021).  

A driver will turn around when he believes that the flow rate is too risky for their overcomes the vehicle configuration. 

From this perspective, the road disruption probability is equals toequal to the probability that the vehicle performance is 

lower less than the flow rate perceived by a driver. However, it is a difficult task to quantify the factors that 240 

influencecommon belief of what guide people’s willingness of people to drive through a flooded waterwayroadway, and is 

also impossibledifficult  to obtain the precise knowledge of regarding all taxi-flood intersections. Alternatively, to ensure the 

vehicle stability in flood flows, guidelines are usually typically recommended based on the limiting values of depth times 

velocity., and mMany studies researchers have carried outconducted laboratory testing on the stability of different kinds 

types of vehicle models exposed to different combinations of depth and velocity (Merz and Thieken, 2009; Shah et al., 245 

2018). As sSuggested by Pregnolato et al. (2017), we constructed the our runoff-disruption function by integrating data from 

reviewed the literatures and some authoritative guidelines. In this study, the road disruption probability wasis defined as the 

probability that the product of flow velocity and flow depth is higher was greater than the stability limits extracteding from  

the literatureexisting studies, which are shown listed in Table 1 and plotted in Fig. 4. The expression of the fitting curve is: 

𝑦 = [1 + exp(−16.6(𝑥 − 0.48)2)]−1 (11) 250 

where x is the product of flow velocity and flow depth, and y is the disruption probability. According to Eq. (11), a road has 

a disruption probability of 50% when the product of flow velocity and flow depth is 0.47 m2 s−-1, and is totally disrupted 

when the product is higher greater than 0.80 m2 s−-1. By Aapplying the fitting curve, we can easily convert the flood runoff 

into the disruption probability as follows: 

𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

= [1 + exp (−16.6(𝑞𝑡
(𝑖)

/𝑊 − 0.48)
2

)]
−1

(12) 255 

where  𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

 and 𝑞𝑡
(𝑖)

 are the road disruption probability and discharge at in the tth interval5 min  derived by from 

the hydrological model with the parameter set 𝜃(𝑖), respectively, and W is the road width. 

Table 1 Guidelines recommended by in the existing literatures.  

Reference Vehicle type Feature 
Recommended limits for vehicle stability 

(m2 s−-1) 

Shah et al. (2018) 
Volkswagen 

Scirocco 
Flow direction =0° velocity×depth<0.014 

Al‐Qadami et al. (2022) Perodua Viva 
Ground clearance =0.18 

m 
velocity×depth<0.39 
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Calculated according to Kramer et 

al. (2016) 
VW Golf III Not mention/ velocity×depth<0.42 

Shand et al. (2016) Large passenger 
Ground clearance >0.12 

m 
velocity×depth<0.45 

Martínez-Gomariz et al. (2017) Mini Cooper 
Ground clearance =0.12 

m 
velocity×depth<0.49 

Martínez-Gomariz et al. (2017) BMW i3 
Ground clearance =0.10 

m 
velocity×depth<0.49 

Martínez-Gomariz et al. (2017) BMW 650 
Ground clearance =0.08 

m 
velocity×depth <0.50 

Martínez-Gomariz et al. (2017) Mercedes GLA 
Ground clearance =0.17 

m 
velocity×depth <0.59 

Moore and Power (2002) 
All but very small 

cars 
Not mention/ velocity×depth <0.60 

Calculated according to Xia et al. 

(2014) 
Honda Accord Not mention/ velocity×depth <0.65 

 

 260 

Figure 4 Empirical runoff-disruption function derived from the existing literature.s  

Step 3: Derivatione of the time series of no-taxi-passing probabilitiesy  

A road has is considered to have no taxis passing by in a fixed time step interval if the road has no taxis visiting 

arriving or if every taxi that arrives at the road turns around., so Therefore, the no-taxi-passing probability can be inferred 

calculated by using the following equation: 265 

  (13) 

𝜔𝑡
(𝑖)

= ∑ 𝑃(𝐴𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑎𝑥𝑖 = 𝑛)𝑡 × (𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

)
𝑛

∞

𝑛=0

(13) 
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where 𝜔𝑡
(𝑖)

 is the no-taxi-passing probability in the tth interval 5 min, and 𝑃(𝐴𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑎𝑥𝑖 =

𝑛)(𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑎𝑥𝑖 = 𝑛)𝑡 is the probability that n taxis arrives at the road segment duringin the tth 5 mininterval. Equation (13) 

indicates that if every taxi that arrives at the road segment makes a turn because of the flooded waterwayroadway, then the 270 

taxi volume of on the road will be zero. In this study, 𝑃(𝐴𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑎𝑥𝑖 = 𝑛)(𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑎𝑥𝑖 = 𝑛)𝑡  wasis 

assumed to follow the Poisson distribution: 

  (14) 

𝑃(𝐴𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑎𝑥𝑖 = 𝑛)𝑡 = e−𝜆𝑡𝜆𝑡
𝑛/𝑛! (14) 

where 𝜆𝑡 is the average number of taxis arriving at the road during the tth interval. By Ssubstitutinge Eq. (14) into Eq. (13), 275 

we deriveobtain: 

  (15) 

𝜔𝑡
(𝑖)

= ∑(e−𝜆𝑡𝜆𝑡
𝑛/𝑛!) ×

∞

𝑛=0

(𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

)𝑛 (15) 

By Aapplying 𝑒𝑥 = ∑ 𝑥𝑛/𝑛!∞
𝑛=0 , Eq. (15) can be further converted into: 

  (16) 280 

𝜔𝑡
(𝑖)

= e−𝜆𝑡 ∑(𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

𝜆𝑡)
𝑛

/𝑛! = exp

∞

𝑛=0

(𝜆𝑡(𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

− 1)) (16) 

Equation (16) indicates that 𝜔𝑡
(𝑖)

 is totally entirely determined by 𝜆𝑡 and 𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

. Since Because 𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

 

is given obtained through from Step 2, what is left to determine is the value of  𝜆𝑡. The value of 𝜆𝑡 fluctuates according to 

the time of day, indicating higher taxi volume during congested periods and lower volume during non-congested periods. 

Therefore, we calculate 𝜆𝑡 by averaging the taxi volume during the tth interval to account for time-of-day variations. It should 285 

be noted that Aas the intensity of rain increases gets heavier, experienced taxi drivers will avoid flood-prone roads in advance, 

which meanings that strictly speaking,  𝜆𝑡 , strictly speaking, is a decreasing function of rainfall intensity. However, fitting 

the rainfall- 𝜆𝑡 curve requires substantial many taxi GPS trajectories to inspect the route choices of taxi drivers under heavy 

rain, which is currently unfeasible inoutside the scope of this study. We assume that  is a constant quantity which keeps 

unchanged with respect to rainfall. The value of  can be calculated by averaging all 5 min taxi volume using the historical 290 

taxi GPS data. Therefore, we assumed that 𝜆𝑡 was independent of rainfall.  

Finally, Table 2 lists all the sub-models and parameters used inof the three-step process. The core principle of the three-

step process iwas to calculate the time series of no-taxi-passing probabilitiesy, 𝛺(𝑖), givenfor each parameter set, 𝜃(𝑖). 

AsBecause the best choice of a model is often data -specific, it is probable likely that the model combination proposed in this 

study is not optimal for other studiesscenarios. To apply the proposed calibration method in practiceal use, one must specify 295 
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the sub-models forin the three-step process must be specified according to the available data, prior knowledge, and accuracy 

requirements. 

Table 2 Specific sub-models and parameters used inof the three-step process.  

Purpose of the each step Specific model Parameter Source of parameters 

Step 1: Convert the rainfall data 

into the a hydrograph 

Curve number equation 1. Curve number 
Parameters to be calibrated 

Existing literature 

SCS unit hydrograph 

2. peak rate factor2. Catchment 

area 

3. Time of concentration 

Existing literatureParameters 

to be calibrated 

3. Catchment area 

4. Time of concentration4. Peak 

rate factor 

Parameters to be 

calibratedExisting literature 

Step 2: Convert the hydrograph 

into the a time series of disruption 

probabilitiesy 

Empirical runoff-disruption 

function 

5. Limit of product of flow velocity 

and depth 
Existing literatures 

Step 3: Convert the time series of 

disruption probabilitiesy into the a 

time series of no-taxi probabilitiesy 

Taxi arrival rate followings 

the Poisson distribution 

6. Average taxi volumes in 5 min 

periods 
Taxi GPS data 

3 A wWorking example  

The method outlined above was tested on an the intersection of located in Xinzhou Rroad and Hongli Rroad in 300 

Shenzhen, which is recognized as a waterlogging flood-prone point by the Water Authority of Shenzhen Municipality. 

Recall that the parameters to be calibrated are the curve number CN, catchment area, A, and time of concentration, 𝑡𝐶. The 

parameter spaces for CN, A, and 𝑡𝐶. are determined by DEMs and other prior knowledge, which will be discussed in Section 

4. The range of parameters should be wide enough to encompass most possible values. After several rounds of testing, the 

maximum value for A is set as 0.5 km2, and the maximum value for  is 5 h. Optimal parameter sets for most roads would 305 

fall into the region enclosed by the maximum parameter sets. Table 3 shows presents the details information of the parameter 

sets to be calibrated, which totally form 3,0008 × 20 × 30 = 4,800 possible combinations. For ease of exposition, we assume 

that all parameters are uniformly distributed. 

Table 3 Detailed information of on parameter sets to be calibrated. 

Parameter Annotation Minimum Maximum Incremental 
Number of possible 

parameter values 

Curve number CN 40 75 5 8 

Catchment area A 0.1 km20.01 km2 0.29 km20.5 km2 0.01 km2 2050 

Time of concentration 𝑡𝐶  0.75 h1/12 h 3.2 h5 h 1/12 h 3060 

The tTaxi GPS data collected during two storm events that occurreding on  9 May 9, 2015 and 23 May 23, 2015 were 310 

are used to calibrate the parameter sets of for the target intersection. Rainfall time series data and taxi observations under 

during two these two storms are shown presented in Fig. 5. Each taxi observation contains two time series:. One is the time 
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series of 5 min taxi volumes at 5 min intervals, and the other is the 5 min time series of road statuses at 5 min intervals., 

which isThese were derived from the taxi volumes, with the a value of oneto be 1  if the taxi volume wasis higher greater 

than 0 zero and a value of zero0 if the taxi volume is was 0zero.   315 

 

Figure 5 Rainfall and taxi observations used to calibrate the hydrological parameters:. (a) 5 min rRainfall time series in 5 

min intervalson  on May 9, 2015,9 May 2015. (b) 5 min rrainfall time series in 5 min intervals on 23 May 23, 2015,. (c) 

Ttaxi observations on 9 May 9, 2015,. and (d) Ttaxi observations on 23 May 23, 2015. 

    Given the rainfall on 9 May 9, 2015, we should must calculate the time series of no-taxi-passing probabilities possibility 320 

for each parameter combination. Because there are 4,800 parameter sets, we can derive 4,800 possible time series of no-taxi-

passing probabilities. For simplicity, we only present the 3,120th parameter set (i.e., CN = 65, A = 0.2 km2, and 𝑡𝐶 = 2.75 h) 

as an example to demonstrate the working of the proposed method. According to the three-step process, the first step is to 

convert the original rainfall into the rainfall excess using the curve number method given CN = 65 (Fig. 6(a)). Then, for each 

combination of A and , we construct a SUH. As there are 3,000 parameter sets, we can construct 3,000 different SUHs. For 325 

simplicity, we only chose the 1,170th parameter set, i.e. =0.2 km2 and =2.75 h, as examples to show the calibration 

works. Using Eq.(9) and Eq.(10), the we calculated the peak discharge 𝑞𝑝 and peak time 𝑡𝑝 using Eqs. (9) and (10)can be 

calculated as: 

𝑡𝑝 = 0.6 × 2.75 +
1

2 × 12
≈ 1.69 ℎ 

𝑞𝑝 = 2.08 ×
0.2

1.69
≈ 0.24 m3s-1 330 

The SUH iwas derived by through multiplicationmultiplied  by 𝑡𝑝 on the x- axis and by 𝑞𝑝 on the y- axis of the standard SCS 

unit hydrograph (Fig. 6(b)). Next, the rainfall excess shown presented in Fig. 6(a) iwas combined with the derived SUH to 

yield obtain the a hydrograph through the convolution (Fig. 6(c)).  
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In the second step, the runoff iwas transformed into the a time series of road disruption probabilitiesy based on the 

runoff-disruption function (Fig. 6(d)).  Note that tThe runoff-disruption function takes the production of water depth and 335 

velocity (in the units of m2 s−-1) as inputs. Therefore, the original runoff (in the units of m3 s−-1) produced byderived in the 

first step should be divided by the road width before inputting it into the runoff-disruption function.  

In the third step, the time series of road disruption probabilitiesy (Fig.6(e)) iwas converted to that of no-taxi-passing 

probabilitiesy using Eq. (16) (Fig. 6(f)). According to the historical taxi GPS data, the average number of taxis arriving at the 

road, , is 10.0 taxi per 5 min. The average number of taxis during the flooding period is presented in Fig. (6f), and tThe 340 

derived time series of no-taxi-passing probabilitiespossibility  is shown presented in Fig. 6(g).  
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Figure 6 An eExample transformation of how the a rainfall time series is transformed into the no-taxi-passing probabilitiesy 

using the three-step procedure for the 1170th 3,120th parameter set:. (a) Ttime series of rainfall and rainfall excess,. (b) SUH 345 

constructed using the 3,120th1170th parameter set,. (c) Dderived runoff,. (d) Eempirical runoff-disruption function,. (e) 

Dderived time series of disruption probabilitiesy., (f) Disruption-no-taxi-passing probability function average taxi volume in 

5 min intervals,. and (g) Dderived no-taxi-passing probabilitiesy.   

After the time series of no-taxi-passing probabilitiesy for every parameter set wereis derived, we can calculate the 

degree of belief that a given parameter set is optimal was calculated by integrating it with the taxi observations on 9 May 9, 350 

2015. According to Eq. (5), the posterior probability of the 1,1703,120th parameter set is calculated as:    

 

𝑃(𝜽(𝟑𝟏𝟐𝟎)|𝑿) ∝ 𝐿(𝑿|𝜽(𝟑𝟏𝟐𝟎))𝑃(𝜽(𝟑𝟏𝟐𝟎)) = 1/4800 × ∏(1 − 𝜔𝑡
(3120)

)
𝑥𝑡

(𝜔𝑡
(3120)

)
1−𝑥𝑡

𝑇

𝑡=1
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where  ℒ(𝜽(𝟑𝟏𝟐𝟎)|𝑿) is the likelihood posterior distribution of probabilities that the 1,1703,120th parameter set 

is optimal conditioning conditional on X, which representsis the taxi observations on 9 May 9, 2015 shown presented in Fig. 355 

5(c). The  𝑃(𝜽(𝟑𝟏𝟐𝟎)) is the prior probability of the 1,1703,120th parameter set to being optimal, and its values is 

1/30001 / 4,800 because there are 3,0004,800 possible combinations.  

By Ffollowing the abovethis process, we can calculate the posterior probabilitiesy for every parameter set. 

FurthermoreAdditionally, the posterior probability distribution of a parameter set could can be updated using the taxi 

observations and rainfall data on 23 May 23, 2015 as: 360 

𝑃(𝜽(𝒊)|𝑿𝟐) ∝ ℒ(𝑿𝟐|𝜽(𝒊))𝑃(𝜽(𝒊)|𝑿𝟏)  

where 𝑃(𝜽(𝒊)|𝑿𝟏) is the original posterior probability distribution calculated calibrated based on the storm on 9 May 9, 2015, 

and 𝑃(𝜽(𝒊)|𝑿𝟐) is the updated posterior distribution after the data of storm fromon 23  May 23, 2015 are added. Fig. 7 

illustratesd the evolution of the probability distribution with the availability of more additional taxi data. The first row in Fig. 

7 represents the prior joint distribution of hydrological parameter sets, and the second and third rows represent the posterior 365 

distribution after each round of updating. The posterior distribution dominates the uniform prior distribution after the first 

updateing, and the distribution is refined slightly a little bit after the second updateing.  
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Figure 7 Evolution of the posterior probability distribution of hydrological parameter sets:. (a) Prior distribution before 370 

updating,. (b) Posterior distribution after the first updating,. and (c) Posterior distribution after the second updating. 

4 Method Vvalidation and result 

4.1 Method validationData description 

The proposed method iwas validated upon on flood-prone roads located in Shenzhen, China, which is a coastal city 

frequently hit by extreme storms in during summer. Another reason that Shenzhen is chosen is that only Shenzhen, as far as 375 

we known, To the best of our knowledge, Shenzhen is the only city that has shared the runoff-related data to with the public 

in China. Three data sources, which namely are taxi GPS data, rainfall data, and authoritative water level data, were 

are used to validate the our parameter calibration method. Hydrological parameters are were calibrated using the first two 

data sources, and the water level data acteds as the ground truth to validate the proposed method. Taxi GPS data wereare 

anonymized and aggregated to in the road every 5 min intervals. The rRainfall data, which are were also collected every in 5 380 

min intervals, are were measured at 115 gauging stations citywide, and are mapped to the road network throughout Shenzhen 

using the Oordinary Kriging spatial interpolation algorithm. The water level data are were only measured at some certain 

waterlogging flood-prone points, with a dynamic sampling interval ranging from 5 min when the weather was rainy to 1 h 

when the weather was clearrainless. The proposed calibration method was validated by checking analyzing the hydrographs 

derived from the calibrated hydrological models and against the authoritative water levels for 10 selected roads. Detailed 385 

information of on the three data sources is providedare listed  in Table 4.  

Table 4 Detailed information of on the three data sources. 

Item Taxi GPS data1 Rainfall data1 Water level data2 

Source 
Transport Commission of 

Shenzhen Municipality 

Meteorological Bureau of 

Shenzhen Municipality 

Shenzhen Municipal 

Government Data Open 

Platform1 

Record Taxi volume of each road 5 min accumulative rainfall Water level 

Data collection period May 2015 2015 and 2019 2019 

Data collection interval 5 min 5 min 5 min -1 h 

Location Citywide 115 rainfall gaging stations 171 flooding gaging sites 

1 The complete taxi GPS data and rainfall data are not openly accessible due owing to the requirements of data policy. To validate the our 

research findings, we have uploaded the necessary data in to Zenodo (Kong, 2022). 

2 Openly available at the site: https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_01403147. 390 

The Ttwo storm events, occurred on 9 May 9, 2015 and 23 May 23, 2015 are were treated as calibration events and the a 

storm occurred on 11 June 11, 2019, wasis retained for testing. ObviouslyClearly, there is a four4 year span gap between the 

calibration data and validation data due tobased on the data availability. The hydrological environments of flood-prone roads 

may have changed during these years, which could render the parameters calibrated based on data from 2015 inaccurate for 
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analysis in 2019. To reduce the validation error caused by thisthe time differencegap, the roads to be validated should have 395 

been vulnerable to flooding on in both 2015 and 2019 so that the hydrological parameters of these roads would have a higher 

chance to of remaining unchanged. Therefore, in a total of 10 flood-prone roads, which that were labelled as flood-prone 

roadssuch in on both the List of 2015 Flood-prone Roads in Shenzhen (Water Authority of Shenzhen Municipality, 2015) and 

the List of 2019 Flood-prone Roads in Shenzhen (Water Authority of Shenzhen Municipality, 2019), were carefully selected 

(Fig. 8).  400 

 

Figure 8 Spatial distribution of 10 flood-prone roads in Shenzhen.  

Next, the posterior probability of parameter sets after calibration for the 10 roads are illustrated in Fig.9. As shown in 

Fig.9, the posterior probability distribution of parameter sets for most flood-prone roads are clustered around the optimal 

parameter set after two runs of updating, indicating that the uncertainty of parameter sets is refined to a much smaller area 405 

when taxi observations are added. It should also be noted that the posterior probability of parameter set for the Jinlian Road 

(Road ID=10) is evenly distributed on a triangular region (Fig.9j). By examining the taxi data of the road, we found that the 

taxi volume was greater than 0 for most 5 min intervals during two storms, indicating that the road was not disrupted during 

two storms. As hydrological parameters are calibrated by adjusting their values such that the runoff generated by the acceptable 

parameter sets could yield the disruption period during which no taxi points are observed, the lack of no-taxi-passing period 410 

would provide less information for calibration compared with when no-taxi-passing period is observed. This explains why the 

posterior probability is not refined to a small-area domain. However, we can still get some valuable information from Fig.9j. 

First, the catchment area for the Jinlian Road should not be too large to generate the runoff which may cause the road disruption. 
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Second, the catchment area is highly intercorrelated with time of concentration. As the catchment area gets larger, the time of 

concentration is more likely to increase so that the high runoff volume could not converge in a short time. 415 

 

Figure 9 Posterior probability distribution of hydrological parameter sets after the first updating for 10 flood-prone roads. 

Subplots (a)-(j) represent the probability distribution for Road 1-10.  

4.2 Prior distributions of calibrated parameters  

We introduced two types of prior distributions to demonstrate the effects of prior distributions on calibrated parameters. 420 

The first prior distribution was determined based on prior knowledge and DEMs from Shenzhen, which were obtained from 

ASTER GDEM V3, which is a product of NASA and Japan’s Ministry of Economy, Trade, and Industry (METI) (ASTER 

Global Digital Elevation Map, 2023). This global DEM covers the entire land surface of the earth with a 30 m resolution, 

exhibiting notable improvements in horizontal and vertical accuracy while reducing anomalies compared to previous 

versions. We inputted the DEMs from Shenzhen into the hydrological software PCSWMM to delineate catchments and 425 

calculate the catchment area. Subsequently, we computed the time of concentration using the watershed lag method (Natural 

Resources Conservation Service, 2010b). As suggested by Zhang and Huang (2018), we used the average curve number for 

Shenzhen in 2015, which was assessed to be 60, as the estimated curve number for each road under validation. 

We then constructed a discretized parameter space for the three parameters for each road as follows. For the curve 

number, we examined eight possible values centered on 60 with steps of five. For the catchment area, we considered 20 430 

possible values centered on the estimated value with steps of 0.01 km2. For the time of concentration, we considered 30 

possible values centered on the estimated value with steps of 5 min. After constructing the parameter space for the 

parameters, we assigned a triangular prior distribution to each, which assumed the maximum probability at the estimated 

value and linearly decreased to zero at the parameter space boundaries, as depicted in Fig. 9. 



21 

 

 435 

Figure 9 Prior probability distributions of hydrological parameter sets based on DEMs and other prior knowledge for 

10 flood-prone roads. 

The second prior distribution assumed that the three parameters all follow uniform distributions. The parameter spaces 

for the second prior distribution were the same as those for the first. As a result, the joint probability of each parameter set was 

equal to (1 / 20) × (1 / 30) × (1 / 8). To facilitate comparisons, we present the detailed information on the two types of prior 440 

distributions in Table 4.  

Table 4 Detailed information of the two types of prior distributions. 

Item 

Prior probability distributions based on DEM and other prior 

knowledge  
Uniform distributions 

Number of 

possible 

values 

Parameter 

interval 
Prior marginal distribution 

Number of 

possible 

values 

Parameter 

interval 

Prior marginal 

distribution 
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Curve number 8 5 

Maximum probability at 60 and 

linearly reduces to zero at the 

parameter space boundaries 

8 5 
1/8 for each 

possible value 

Catchment 

area 
20 0.01 

Maximum probability at the 

estimated value and linearly reduces 

to zero at the parameter space 

boundaries 

20 0.01 
1/20 for each 

possible value 

Time of 

concentration 
30 1/12 30 1/12 

1/30 for each 

possible value 

4.3 Posterior distributions after calibration 

We first calibrated the parameters based on the prior distributions calculated according to the DEMs and other prior 

knowledge. The resulting posterior distributions are presented in Fig. 10. Each row in Fig. 10 represents a different road, and 445 

each column represents a curve number. Each subplot presents the joint probability distribution of the catchment area and 

time of concentration for a given curve number. The color intensity in Fig. 10 represents the magnitude of the probabilities. 

Following two iterations of updating, the posterior probability distributions for both the catchment area and time of 

concentration converge around the optimal parameter sets for most flood-prone roads. This demonstrates that incorporating 

taxi observations significantly reduces the uncertainty associated with catchment area and time of concentration. The 450 

probability typically achieves its maximum value when the curve number is either 55 or 60. Furthermore, each subplot 

contains a salient cluster with higher probability than other regions, suggesting that there may be multiple acceptable 

parameter sets.  

Furthermore, the optimal catchment area under a given curve number decreases as the curve number increases, whereas 

the optimal time of concentration under a given curve number increases with the curve number. This is logical, because a 455 

higher curve number corresponds to increased rainfall excess under identical rainfall conditions, requiring a reduction in 

catchment area to maintain the runoff that best aligns with the taxi observations. Similarly, an increase in the time of 

concentration diminishes the peak runoff produced by the additional runoff generated by a higher curve number, thereby 

preserving the optimal runoff status. 
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 460 

Figure 10 Posterior probability distributions of hydrological parameter sets for 10 flood-prone roads after calibration. The 

prior probability distributions were derived from the DEMs and additional prior knowledge. 

We also present the marginal distributions of the three parameters for 10 roads before and after calibration in Fig. 11. In 

Fig. 11, the marginal posterior distributions of the curve number appear relatively similar to the marginal prior distributions. 

It seems that the proposed method employing taxi data provides limited information regarding the distribution of curve 465 

numbers compared to the catchment area and time of concentration. This outcome may be a result of the range and 

discretization granularity of the parameter spaces. Catchment area and time of concentration encompass 20 and 30 possible 

values, respectively, whereas the curve number has only 8 potential values. The smaller parameter space of the curve number 

reduces the search space, and its impact on the no-taxi-passing probability is comparatively lower than that of the catchment 

area and time of concentration. 470 
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Figure 11 Marginal prior and posterior probability distributions of the curve number for 10 flood-prone roads. 

For example, for road ID = 6, the optimal parameter set consists of a catchment area of 0.19 km², time of concentration 

of 0.9 h, and curve number of 55. To investigate the effects of these parameters on the hydrograph and time series of no-taxi-

passing probabilities, we held two parameters constant at their optimal values and observed the impact of changing the third 475 

parameter. Our findings are presented in Fig. 12. One can see that when the catchment area varies from 0.04 to 0.23 km², the 

maximum no-taxi-passing probability increases from 20% to 100% and the duration for which the no-taxi-passing 

probability exceeds 0.5 increases from 0.0 to 1.3 h. Similarly, when the time of concentration fluctuates from 0.1 to 1.9 h, 

the peak time of the no-taxi-passing probability varies from 0.5 to 1.8 h. In contrast, when the curve number varies from 40 

to 75, the maximum no-taxi-passing probability is fixed at 100%, the duration for which the no-taxi-passing probability 480 

exceeds 0.5 extends from 1.1 to 1.3 h, and the peak time of the no-taxi-passing probability remains fixed at the 1.1 h. These 
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small fluctuations in the time series of no-taxi-passing probabilities are representative of why the distribution of curve 

numbers remains relatively stable after calibration compared to the catchment area and time of concentration. 

 

Figure 12 Impacts of three parameters on the variation of the time series of runoff and no-taxi-passing probabilities: (a) 485 

catchment area conditional on runoff, (b) catchment area conditional on the no-taxi-passing probability, (c) time of 

concentration conditional on runoff, (d) time of concentration conditional on the no-taxi-passing probability, (e) curve 

number conditional on runoff, and (f) curve number conditional on the no-taxi-passing probability. 

The posterior distributions calibrated based on the uniform prior distribution are presented in Fig. 13. When comparing 

two posterior distributions derived from two prior distributions, it is clear that the posterior distributions of the catchment 490 

area and time of concentration are very similar, indicating that the impact of prior distributions on these parameters rapidly 

diminishes after taxi-related knowledge is added. As stated by Beven and Binley (1992 pp: 286), “as soon as information is 

added in terms of comparisons between observed and predicted responses then, if this information has value, the distribution 

of calculated likelihood values should dominate the uniform prior distribution when uncertainty estimates are recalculated.”   
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 495 

Figure 13 Posterior probability distributions of hydrological parameter sets for 10 flood-prone roads after calibration. The 

prior probability distributions were derived from a uniform distribution. 

4.4 Validation results 

After the parameter sets were calibrated, they were combined with the an SCS unit hydrograph to construct the an SUH, 

which were was further combined with the rainfall data occurring from on 11 June 11, 2019 to produce the predicted 500 

hydrograph. As Because the posterior probability associated with each parameter set can be regarded as a fuzzy measure 

reflecting the degree of belief that the parameter set is true, the weighted runoffs values for each parameter set were summed 

to produce calculate the final predicted runoff: 

𝑄 = ∑ 𝑃(𝜃(𝑖)|𝑋)𝑄(𝑖)

𝑁

𝑖=1

(17) 
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where Here, Q is the final predicted runoff, 𝑄(𝑖) is the simulated runoff derived from the ith parameter set, and 𝑃(𝜃(𝑖)|𝑋) is 505 

the posterior probability of the ith parameter set, which acting acts as the a weight.    

The output of the calibrated hydrological model is runoff (with the units of m3 s−-1), whereas the validation data areis 

water level data (with the units of m). BecauseAs the calibration data and validation data arise came from multiple sources 

and have different units, conventional error-based statistics such as the mean absolute error (MAE)wereare not suitable forin 

this study. Most often, tThe discharge of a stream is rarely measured directly. Instead, streamflow is typically determined by 510 

converting measured water depth (i.e., water stage) into discharge through a rating curve, which provides a functional 

relationship between the water stage and discharge at a specified point (Le Coz et al., 2014). Inspired by the application of 

the rating curve, we validated the our method by developing the rating curve for every road, and then estimate estimating the 

goodness -of -fit between the water level which was measured in the field and the corresponding runoff which was predicted 

based on the proposed calibration method.of those rating curves.  A higher goodness of fit indicates synchronous trends 515 

between the runoff and water level, which indirectly demonstrates the feasibility of the proposed method.  

Because the posterior distributions derived from the two types of prior distributions were very similar, we only 

considered the posterior distribution calibrated based on prior distributions derived from DEMs and other prior knowledge 

for validation. Comparisons between the observed water depth and the simulated runoff for 10 selected roads are shown 

presented in Fig. 140, and rating corresponding curvesscatter plots constructed by fitting the runoff-stage scatter plot are 520 

shown presented in Fig. 151. We use the Pearson correlation coefficient, which measures the linear correlation between two 

variables, as the a goodness -of -fit indicator. The result showsOne can see that 8 of 10 roads have rating curves with are 

characterized by significant positive Pearson coefficients, indicating that the runoff and water have similar and consistent 

variation processtrends.  

 525 
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Figure 10 14 Comparisons between the observed water depth and the simulated runoff for rRoads 1 to-10. The maximum 

value is 30 m3 s-1 of on the left y -axis (i.e., runoff) and 0.6 m of on the right y -axis (i.e., stage) for every each subplot.  

 

 530 

Figure 11 15 Scatter plots (a-j) of the observed water depth and the simulated runoff for rRoads 1-10.  
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It is worth noteworthying that goodness -of -fit solely simply describes the degree of correlation between the observed 

and simulated data, and may contain validation bias. As suggested by Legates and McCabe (1999), correlation-based statistics 

areis insensitive to additive and proportional differences between the simulations and observations. Therefore, the fitting of a 

rating curve is only a partialreveals part of the  validation truth, and the usefulness of the proposed calibration method needs 535 

requires further inspectionanalysis.   

4.2 Application of the method to plot flooding maps in Shenzhen 

Based on the proposed calibration method, we simulated how the road network experiences flooding for different rainfall 

return periods. Three storm events of different return periods (T = 2, 10, and 50 years) were designed according to the Rainfall 

Intensity Formula of Shenzhen (Meteorological Bureau of Shenzhen Municipality, 2015). Each storm lasts 3 hours, with an 540 

accumulative rainfall amount of 159 mm, 230 mm, and 283 mm for the 2, 10, and 50 year return period. Hydrological 

parameters of high-level flood-prone roads, including expressway, main road, and secondary road, are calibrated using the taxi 

data on 9 May 2015 and 23 May 2015. The flood-prone roads are identified based on the algorithm proposed in our previous 

studies (Kong et al., 2022). The road discharges under different rainfall return periods are simulated by inputting the designed 

rainfall to the calibrated hydrologic models. As an example, Fig.12 shows the spatio-temporal evolution of simulated discharge 545 

of parts of the road network, which locate in Baoan District, Shenzhen, for different return periods. With the return periods 

rising from 2 year to 50 year, the average peak discharge for flood-prone roads increases by 80.6%, with the value from 13.9 

m3 s-1 to 25.1 m3 s-1. Inputting the simulated runoff to the empirical runoff-disruption function, expressed in Eq.(12), the time 

series of disruption probability for every road could be derived3. To facilitate discussion, we temporarily define the disruption 

period as the time when disruption probability is higher than 0.5. The average disruption period for flood-prone roads increases 550 

from 1.67 h to 3.15 h as the return period increases from 2 year to 50 year.  

                                                           

3 Original runoff should be divided by the road width before inputting to the empirical runoff-disruption function.  
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Figure 12 Spatio-temporal evolution of simulated runoff for different return periods in Baoan District, Shenzhen. 

5 Discussion 

Three main points are worth discussing about the proposed calibration method are worthy of further discussion. The 555 

first is that, although the presented validation results support the use of taxi GPS data to calibrate hydrological parameters for 

poorly gauged road networks, the proposed method is more applicable to the roads which that areis frequently visited by 

taxis. Uncertainty increases as the taxi volume of on a road decreases. A road is considered to be passable when at least one 

taxi GPS points isare  observed during the a time interval, while but we cannot assert that the a road is disrupted when the 

taxi volume is zero. When a road with frequent taxis trafficfrequently passing by is observed with no taxi GPS points during 560 

the a storm, it is highly probable that the road is disrupted by the flooding, which provides relatively reliable information for 

parameter calibration. Conversely, when a road with few little taxis visiting traffic has no taxi points during the a storm, 

there is a great relatively chance high likelihood that the road remains passable and is simply exhibiting its typical trend 

ofjust has no taxis as usual. Therefore, Thethe proposed calibration method thus becomes relatively unreliable considering 

that when the a “no-taxi-passing period” is no longer a good proxy forof the “disruption period” for the taxi-data-sparse road 565 

on a road with sparse taxi data. To compensate for the a shortage of the taxi GPS data, extra additional data sources, such as 

ride-hailing data and bus data, should be incorporated in the future work.  
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Secondly, the disruption of one road may cause cascading failures, so thatwhere the disruption ismay be  rapidly 

propagateding from the inundated road to the adjacent non-inundated roads under the constraints of the road connectivity. For 

a road which that is disrupted, but not inundated by the a storm, the implementation of the proposed calibration method may 570 

be subject to structural errors. Assume Consider there are two connected roads called, namely Road 1 and Road 2, which that 

are both disrupted during a storm, and have taxi volumes of two roads are therefore of zero (Fig.13 16). The difference lies in 

that In this case, Road 1 is disrupted by the flooding, while whereas Road 2 is only disrupted due to because it is connecteding 

to the disrupted road, i.e. Road 1. If taxi data areis the only data source used for calibration, then the posterior distributions of 

the hydrological parameters for Road 1 and Road 2 should will be identical after calibration, because the sequences of taxi 575 

volume are identical for both roads. ClearlyHowever, we know that the hydrological parameters for of these two roads could 

are not be the  same, because only one road is floodedotherwise Road 1 and Road 2 should be both flooded. Just like we cannot 

simply treat the “no-taxi-passing period” as the “disruption period”, we cannot confuse the “disruption period” with the 

“flooded period.” In the future work, an algorithm that facilitates enabling to distinguishing the flooding-induced disruption 

and thefrom connectivity-induced disruption should be developed.  580 

 

Figure 13 16 A gGraphical representation to showhighlighting the difference between the “disruption period” and flooded 

periodthe “no-taxi-passing period.” 

Thirdly, the specific proposed three-step process, which consists of the an SCS unit hydrograph, the empirical runoff-

disruption function, and the Poisson distribution, isperforms as  a realization of the generalized framework shown presented 585 

in Fig. 1. The sSub-models used inof the three-step process are not deterministic, and can be flexibly substituted replaced with 

by other sub-models according to the needed complexity requirements and data availability. For example, an alternative to the 

SCS unit hydrograph is the distributed hydrological model. UnlikeCompared with  the SCS unit hydrograph, the distributed 

hydrological model partitions a watershed into physically homogeneous units and captures the complex spatial variation 

induced by human activity in high resolution, which may be more applicable to the urbanized environments, such as the road 590 

networks. However, considering that some critical data such as including the road drainage data and land use data are missing, 

as well as the calibration procedure will become extremely computationally intensive cost associated with the distributed 

hydrological model, we did not use the distributed hydrological model adopt this model in this study. Another assumption we 

made in this study is that the number of taxis arriving at a road follows a Poisson distribution. By conducting the Chi-square 

goodness of fit test, we found that the frequency distribution of taxi volumes adheres to a Poisson distribution for more than 595 

50% of 5 min intervals for 7 of the 10 roads presented in Fig. 8, indicating that the Poisson model appears to be a suitable 
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assumption. However, this hypothesis may not be universally applicable, particularly in different urban contexts, where 

alternate distributions such as the Weibull distribution may provide a more accurate representation. 

6 Conclusion  

An urban flooding model requires various types of data for calibration. In this study, we proposed a Bayesian calibration 600 

framework for the hydrological parameters of the a road network based on the taxi GPS data. A three-step procedure, consisting 

of a rainfall-runoff model, a runoff-disruption modelfunction, and a disruption-no-taxi-passing probability model, enables 

enabled us to transform the a given rainfall time series into the a time series of no-taxi-passing probabilitiesy for each parameter 

set, which is key to the taxi-data-driven model calibration. The calculated no-taxi-passing probabilitiesy, which acting acted 

as a proxy forof the associated hydrological parameter sets, is further were compared with theto observed taxi data through 605 

based on the Bayes equation to assess the posterior probability distributions of the hydrological parameter sets. Three 

parameters, namely the curve number, catchment area, and time of concentration, were calibrated. The proposed calibration 

method wasis instantiated by combining some classical hydrological models and with traffic flow models, and is was validated 

on 10 flood-prone roads in Shenzhen. The validation results show indicate that the trends of runoff could be correctly predicted 

for eight8 roads, which demonstrates the potential of calibrating hydrological parameters based on taxi GPS data indicating a 610 

good performance for hydrological parameter calibration.   

This study illustrates highlights the great potential of integrating transportation-related data with hydrological theory for 

thein transportation resilience improvement and flood risk management for of the road networks. We hope that our study can 

provides a flexible calibration framework for countries which that are short ofhave little runoff data, but rich of taxi data. We 

accept acknowledge that the application of the proposed method is currently limited by the heterogeneous spatial distributions 615 

of taxis citywide and the cascading effects of road inundation, but expect this to change with the increasing availability of 

vehicle data and continuously optimization of modelling approaches. 
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