
Response to Reviewer 1 

 

Summary 

This manuscript presented a framework for calibrating a hydrologic model based on taxi data.  

The concept is quite clever, in my opinion. There of course is a need to calibrate hydrologic 

models and, at the same time, a general lack of data needed to calibrate. Using taxi data for the 

calibration is a neat idea and I think the authors did a good job showing the reader the feasibility 

of this. Overall, I think the manuscript is clear, well written, and technically sound. There are a 

few items I think should be addressed before being accepted for publication. 

Response: 

We express our gratitude to the reviewer for the insightful comments and suggestions, which 

substantially improved the quality of our manuscript. Following careful consideration, we have 

amended the manuscript in accordance with your valuable comments. Our responses to your 

comments are provided below. 

 

Major comments 

 

1 - why are you calibrating time of concentration and catchment area? These are parameters 

that I would not typically see calibrated. It seems like you could estimate catchment area from a 

DEM. Similarly, there are many methods for estimating time of concentration from catchment 

characteristics. Because these two parameters are relatively reasonable to calculate/estimate, I’d 

like to understand the author’s reasoning for calibrating them. 

Response: 

Thanks for your question. Although numerous tools and theories have been developed for 

estimating catchment area and time of concentration, these two parameters are still prone to 

significant errors, particularly in urban areas, due to challenges in accurately delineating urban 

catchments. First, urban catchment delineation is more complex than natural catchment 

delineation. Urban catchments have spatially heterogeneous surface cover types, which change 

with city development and construction, and modify runoff parameters (Goodwin et al., 2009). 

Unlike natural catchment, it is also difficult to identify explicit urban drainage systems and road 

slope directly from the topographic relief of the urban region. Furthermore, high densities of 

residential and commercial buildings obstruct flow paths and alter flow directions of stormwater 

runoff, complicating rainfall-runoff and overland flow processes in urban areas (Ji & Qiuwen, 

2015). 

Second, accurate urban catchment delineation necessitates high-resolution Digital Elevation 

Model (DEM), which is not always available in many regions. Oksanen and Sarjakoski (2005) 

demonstrated that automatic catchment delineation is highly sensitive to DEM errors, and 

uncertainty in DEMs determines the lower bound for catchment size that can be computed with 

sufficient accuracy. In many Chinese cities, high-resolution DEMs are considered confidential 

data and are generally inaccessible to non-governmental organizations. Consequently, using a low-

resolution DEM may introduce substantial errors. 

Due to these challenges, deriving accurate catchment area and time of concentration in urban 

areas is difficult. This study thus aims to provide an alternative method based on taxi GPS data to 



calibrate these parameters. We have clarified this in the revised manuscript (Line 182).  

 

2 - why is a curve number of 85 used for every case? This seems pretty consequential since 

the CN could vary between catchments. Should this be a calibrated parameter? 

Response: 

Thank you for your suggestion. We acknowledge that fixing the curve number as 85 is not 

realistic as it is influenced by various factors in urban areas, such as impervious surface 

percentage and soil type. Therefore, we have revised the manuscript to include curve number as 

one of the parameters to be calibrated (Line 375). In total, we calibrate three parameters: 

catchment area, time of concentration, and curve number.   

Figure 1 presents the probability distributions of three parameters after calibration. Each row 

in Fig. 1 represents a different road, and each column represents a curve number. Each subplot 

presents the joint probability distribution of the catchment area and time of concentration for a 

given curve number. The color intensity in Fig. 1 represents the magnitude of the probabilities. 

Following two iterations of updating, the posterior probability distributions for both the catchment 

area and time of concentration converge around the optimal parameter sets for most flood-prone 

roads. This demonstrates that incorporating taxi observations significantly reduces the uncertainty 

associated with catchment area and time of concentration. The probability typically achieves its 

maximum value when the curve number is either 55 or 60. Furthermore, each subplot contains a 

salient cluster with higher probability than other regions, suggesting that there may be multiple 

acceptable parameter sets.  

Furthermore, the optimal catchment area under a given curve number decreases as the curve 

number increases, whereas the optimal time of concentration under a given curve number increases 

with the curve number. This is logical, because a higher curve number corresponds to increased 

rainfall excess under identical rainfall conditions, requiring a reduction in catchment area to 

maintain the runoff that best aligns with the taxi observations. Similarly, an increase in the time of 

concentration diminishes the peak runoff produced by the additional runoff generated by a higher 

curve number, thereby preserving the optimal runoff status. 



 

Figure 1 Posterior probability distributions of hydrological parameter sets for 10 flood-prone roads 

after calibration. The prior probability distributions were derived from the DEMs and additional prior 

knowledge. 

We also present the marginal distributions of the three parameters for 10 roads before and 

after calibration in Fig. 2. In Fig. 2, the marginal posterior distributions of the curve number 

appear relatively similar to the marginal prior distributions. It seems that the proposed method 

employing taxi data provides limited information regarding the distribution of curve numbers 

compared to the catchment area and time of concentration. This outcome may be a result of the 

range and discretization granularity of the parameter spaces. Catchment area and time of 

concentration encompass 20 and 30 possible values, respectively, whereas the curve number has 

only 8 potential values. The smaller parameter space of the curve number reduces the search 

space, and its impact on the no-taxi-passing probability is comparatively lower than that of the 

catchment area and time of concentration. 



 

Figure 2 Marginal prior and posterior probability distributions of the curve number for 10 

flood-prone roads. 

For example, for road ID = 6, the optimal parameter set consists of a catchment area of 0.19 

km², time of concentration of 0.9 h, and curve number of 55. To investigate the effects of these 

parameters on the hydrograph and time series of no-taxi-passing probabilities, we held two 

parameters constant at their optimal values and observed the impact of changing the third 

parameter. Our findings are presented in Fig. 3. One can see that when the catchment area varies 

from 0.04 to 0.23 km², the maximum no-taxi-passing probability increases from 20% to 100% and 

the duration for which the no-taxi-passing probability exceeds 0.5 increases from 0.0 to 1.3 h. 

Similarly, when the time of concentration fluctuates from 0.1 to 1.9 h, the peak time of the no-

taxi-passing probability varies from 0.5 to 1.8 h. In contrast, when the curve number varies from 

40 to 75, the maximum no-taxi-passing probability is fixed at 100%, the duration for which the 

no-taxi-passing probability exceeds 0.5 extends from 1.1 to 1.3 h, and the peak time of the no-taxi-

passing probability remains fixed at the 1.1 h. These small fluctuations in the time series of no-

taxi-passing probabilities are representative of why the distribution of curve numbers remains 

relatively stable after calibration compared to the catchment area and time of concentration. 



 

Figure 3 Impacts of three parameters on the variation of the time series of runoff and no-taxi-

passing probabilities: (a) catchment area conditional on runoff, (b) catchment area conditional on 

the no-taxi-passing probability, (c) time of concentration conditional on runoff, (d) time of 

concentration conditional on the no-taxi-passing probability, (e) curve number conditional on 

runoff, and (f) curve number conditional on the no-taxi-passing probability. 

 

3 - Assuming it is reasonable to calibrate the catchment area and time of concentration, I 

question whether it’s reasonable to have uniform priors for those parameters. Maybe you can’t 

exactly know what the area of a catchment is going to be, but would you have enough of a guess 

to make a reasonable prior distribution? I’m guessing you’d know if a road segment has a 

relatively large or small catchment. Knowing this, it doesn’t seem right to keep the prior 

distribution uniform. 

Response: 

In the original manuscript, we utilized only uniform priors for all parameters, leading to the 

inadequate use of prior knowledge, such as topography. In the revised manuscript (Line 351), we 

introduced two types of prior distributions to demonstrate the effects of prior distributions on 

calibrated parameters. The first prior distribution was determined based on prior knowledge and 

DEMs from Shenzhen, which were obtained from ASTER GDEM V3, which is a product of 

NASA and Japan’s Ministry of Economy, Trade, and Industry (METI) (ASTER Global Digital 

Elevation Map, 2023). This global DEM covers the entire land surface of the earth with a 30 m 

resolution, exhibiting notable improvements in horizontal and vertical accuracy while reducing 

anomalies compared to previous versions. We inputted the DEMs from Shenzhen into the 



hydrological software PCSWMM to delineate catchments and calculate the catchment area. 

Subsequently, we computed the time of concentration using the watershed lag method (Natural 

Resources Conservation Service, 2010b). As suggested by Zhang and Huang (2018), we used the 

average curve number for Shenzhen in 2015, which was assessed to be 60, as the estimated curve 

number for each road under validation. 

We then constructed a discretized parameter space for the three parameters for each road as 

follows. For the curve number, we examined eight possible values centered on 60 with steps of 

five. For the catchment area, we considered 20 possible values centered on the estimated value 

with steps of 0.01 km2. For the time of concentration, we considered 30 possible values centered 

on the estimated value with steps of 5 min. After constructing the parameter space for the 

parameters, we assigned a triangular prior distribution to each, which assumed the maximum 

probability at the estimated value and linearly decreased to zero at the parameter space 

boundaries, as depicted in Fig. 4.

 

Figure 4 Prior probability distributions of hydrological parameter sets based on DEMs and other 

prior knowledge for 10 flood-prone roads. 

The second prior distribution assumed that the three parameters all follow uniform 

distributions. The parameter spaces for the second prior distribution were the same as those for the 

first. As a result, the joint probability of each parameter set was equal to (1 / 20) × (1 / 30) × (1 / 

8). Figure 5 presents the posterior distributions calibrated based on the uniform prior distribution. 

By comparing two posterior distributions derived from two prior distributions, it is evident that the 

posterior distributions of catchment area and time of concentration are close to each other, 



indicating that the impact of prior distributions on these parameters rapidly diminishes after taxi-

related knowledge is added. As stated by Beven and Binley (1992 pp: 286), “as soon as 

information is added in terms of comparisons between observed and predicted responses then, if 

this information has value, the distribution of calculated likelihood values should dominate the 

uniform prior distribution when uncertainty estimates are recalculated.”   

 

Figure 5 Posterior probability distributions of hydrological parameter sets for 10 flood-prone roads 

after calibration. The prior probability distributions are derived from the uniform distribution. 

 

4 - It may be that I didn’t understand correctly, but how did you account for time of day/ day 

of week when considering whether or not a taxi would be passing? Or did you? For example, let’s 

say that at a given roadway segment, there is a day and time of the week that there are hardly any 

taxis. Can you take that into account in your calibration scheme so that a lack of taxis then does 

not suggest to the model that the roadway is flooded? 

Response: 

We appreciate your valuable suggestion. In the previous version of our manuscript, we did 

not account for variations in taxi volume concerning the time-of-day or day-of-week. We assumed 

that the average number of taxis arriving on the road was constant, and the no-taxi-passing 

probability is given by: 

𝜔𝑡
(𝑖)

= e−𝜆𝑡 ∑ (𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

𝜆)
𝑛

/𝑛! = exp

∞

𝑛=0

(𝜆 (𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

− 1)) (1) 



 

where 𝜆 is the average taxi volume in 5 min interval, calculated by averaging all 5 min taxi 

volumes using historical taxi GPS data for a specific road.  

However, the value of 𝜆 fluctuates according to the time of day, indicating higher taxi 

volume during congested periods and lower volume during non-congested periods. In the revised 

version (Line 245), we incorporated the time-of-day variation in taxi volume when computing the 

no-taxi-passing probability:  

𝜔𝑡
(𝑖)

= e−𝜆𝑡 ∑ (𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

𝜆𝑡)
𝑛

/𝑛! = exp

∞

𝑛=0

(𝜆𝑡 (𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
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− 1)) (2) 

where 𝜆𝑡 is the average number of taxis arriving at the road during the tth interval. Compared 

with 𝜆, 𝜆𝑡 has smaller deviance because it excludes more non-flooding factors. 

  

Minor comments 

 

- Figure 5 - does it make sense to have intermittent “have taxis” and "no taxi" times after a 

large rain event? I guess I’m just wondering at graph (C) in particular where it looks like there is 

just one taxi between 16:15-16:20. Does that mean that one taxi is just really willing to risk it and 

drive through the water? If it’s just one taxi, should it really be counted as "have taxi"? 

Response: 

This is a valid point. We also noticed that some drivers may take risks by driving through 

inundated roads, potentially resulting in intermittent “have-taxis” and “no-taxi” periods. We 

examined the taxi volume between 16:15-16:20 and confirmed that one taxi drove through the 

water. Although the road appeared to be inundated and obstructed during this period, we would 

not categorize it as a theoretical “no-taxi” period. This is because our method determines the 

road’s status (“have-taxis” or “no-taxi”) based on the taxi volume, and the disruption period is 

inferred from the road’s status. In other words, we predict the flood period according to the road’s 

status, rather than vice versa. Furthermore, establishing an explicit rule to define “no-taxi” periods 

may cause confusion, as it implies that we have already observed the field data of flooding and 

constructed the rule based on it. 

 

- Table 4 - if you had 171 flood gaging sites, why did you only pick 10 to test the model on? 

Why not test it on all 171? 

Response: 

The data used for parameter calibration were collected in 2015, while the data for method 

validation were collected in 2019, resulting in a four-year gap between the two datasets due to data 

availability. Furthermore, Shenzhen, as a coastal city, frequently experienced extreme storm events 

during summers. To mitigate flooding risks, the Shenzhen Municipal Government annually 

amends some flood-prone roads. As a result, the hydrological environments of flood-prone roads 

may have changed during these years, which could render the parameters calibrated based on data 

from 2015 inaccurate for analysis in 2019. To reduce the validation error caused by this time gap, 

the roads to be validated should have been vulnerable to flooding in both 2015 and 2019 so that 

the hydrological parameters of these roads would have a higher chance of remaining unchanged. 

Approximately 10 roads met this criterion. We have clarified this point in the revised manuscript 



(Line 340). 

 

- l355 - how did you make a rating curve for each road? How did you get the flow data to 

relate the stage data to? 

Response: 

The rating curve is usually determined by conducting field measurements and establish the 

relationship between the observed water level and the corresponding observed flow rate at a 

measuring point. In this study, however, we had no knowledge of empirical flow data for each 

road, thus we could not build a real rating curve. Instead, we establish a “rating curve” by plotting 

the water level which is field measured and the corresponding runoff which is predicted based on 

the proposed calibration method. If the derived “rating curve” is linearly related, indicating that 

the predicted runoff has the similar evolution trend of the observed water level, we thus assume 

that trends of runoff could be correctly predicted. To avoid confusion, we will not use the term 

“rating curve” to represent the relationship between the predicted runoff and the observed water 

level in the revised manuscript (Line 440).   

 

- Section 4.2 - I personally don’t think you need this section. While it’s interesting to see how 

you applied the framework, I don’t think it is needed. I think it is enough to have described 

(section 2), illustrated (section 3), and validated (section 4) the method. 

Response: 

Thank you for your insightful suggestion regarding the section in question. After careful 

consideration, we agree that the mentioned section may not be necessary for our paper. As you 

pointed out, the method has been sufficiently described in Section 2, illustrated in Section 3, and 

validated in Section 4. In response to your suggestion, we will remove the section to streamline 

the manuscript and maintain focus on the key aspects of our research. We believe this revision will 

enhance the overall clarity and concision of our paper. 

 

- L54: You might consider citing the following since they are related to this topic (full 

disclosure: I am an author on both): 

    - Sadler, J. M., Goodall, J. L., Morsy, M. M., & Spencer, K. (2018). Modeling urban 

coastal flood severity from crowd-sourced flood reports using Poisson regression and Random 

Forest. Journal of hydrology, 559, 43-55. 

    - Zahura, F. T., Goodall, J. L., Sadler, J. M., Shen, Y., Morsy, M. M., & Behl, M. (2020). 

Training machine learning surrogate models from a high-fidelity physics-based model: 

Application for real-time street-scale flood prediction in an urban coastal community. Water 

Resources Research, 56, e2019WR027038. https://doi.org/10.1029/2019WR027038 

Response: 

Thank you for your suggestion. We cited this literature in the introduction section to enhance 

our review of theoretical background (Line 50).   

Citizens can voluntarily or passively act as human sensors to generate georeferenced data to 

improve flood monitoring. Many studies have leveraged crowdsourced social media data 

(Brouwer & Eilander, 2017; Sadler et al., 2018; Zahura et al., 2020), mobile phone data (Yabe et 

al., 2018; Balistrocchi et al., 2020), and taxi GPS data (She et al., 2019; Kong et al., 2022).  

 

https://doi.org/10.1029/2019WR027038


- Figure 10: Could you explain why for some runoff values there is more than one level 

value? For empirically derived rating curves, each runoff value corresponds to only one water 

level. 

Response: 

As previously mentioned, the rating curve developed in our study relies on predicted runoff 

rather than observed runoff. Consequently, the temporal trends of the predicted results may not 

consistently align with those of the observed water levels. This discrepancy can result in one water 

level having two distinct runoff values. For instance, consider the road with ID=1 illustrated in 

Fig.6. When the water level reaches 0.27 m, the corresponding times are 1.1 hour and 1.2 hour. 

Due to the incongruity between the predicted runoff and observed water level, the runoff values at 

these two time points are 5.8 m³/s (Point A in Fig. 6) and 12 m³/s (Point B in Fig. 6), which 

accounts for the presence of two runoff values for a single water level. 

 

Figure 6 An example to show why some runoff values correspond to two level values. 

 

Editorial comments 

 

- l23 - suggest changing "metropolis" to plural "metropolises" 

Response: 

Modified as suggested (Line 23). 

 

- l31 - suggest changing "false" to "incomplete" or "over-simplified" 

Response: 

Modified to “incomplete” as suggested (Line 31). 

 

- l60 - suggest changing "critical" to "useful" 

Response: 

Modified as suggested (Line 59). 

 

- l87 - I do not think you need to define a hydrograph. I think you can safely assume HESS readers 

will know what a hydrograph is. 

Response: 

The definition of hydrograph is removed (Line 88).  



 

- l141 - "can absorb *a* light shower" (add "a") 

Response: 

Modified to “a certain amount of water” (Line 146). 

 

- l154 - I suggest changing "converts rainfall excess to direct runoff" to "converts rainfall excess to 

a temporal distribution of direct runoff" or something like that to communicate that it is a 

distribution of runoff over time. 

Response: 

Modified as suggested (Line 159). 

 

- l160 - "the paucity of runoff" instead of "the paucity of the runoff" 

Response: 

Modified as suggested (Line 159). 

 

- l161 - "sparkled" is probably not the right word here. Maybe "sparked" or "motivated" 

Response: 

Modified to “motivated” as suggested (Line 167). 

 

- l191 - "road" instead of "rood" 

Response: 

Modified as suggested (Line 207). 

 

- l195 - "equals the probability" instead of "equals to the probability" 

Response: 

Modified as suggested (Line 212). 

 

- l197 - suggest "impossible" instead of "difficult" because I think it is actually impossible to 

"obtain precise knowledge of all taxi-flooded intersections" 

Response: 

Modified as suggested (Line 214). 

 

- Table 1: Is it correct to have the "/"s for Feature in several of the rows? If so, maybe you should 

define that means. 

Response: 

Modified the “/” to “Not mention” in Table 1 (Table 1).  

 

- l295 - suggest changing "a little bit" to "slightly" or something similar. "a little bit" is imprecise 

and colloquial 

Response: 

Modified to “slightly” as suggested (Line 317). 

 

- l308 - "waterlogging" is not a term I typically hear. Do you mean something like "flood-prone?" 

Response: 



Modified to “flood-prone” to enhance clarity (Line 263).  

 

- Figure 9 - is the x-axis "Time of Concentration?" If so, please change. I didn't know what "Time" 

meant. 

Response: 

Modified to “Time of Concentration” to enhance clarity (Figure 9).  

 

- l396 - suggest replace "great" with "good" 

Response: 

Modified as suggested (Line 474). 

 

- l434 - suggest remove "great" to read "This study illustrates the potential ... " 

Response: 

Modified as suggested (Line 513). 
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Response to Reviewer 2 

 

Summary 

The paper presents a novel approach for calibrating an urban rainfall-runoff model using taxi 

GPS data. This is an original idea that seems to have potential as demonstrated in this study. I also 

commend the authors for making available their data and code. 

Response: 

We thank the reviewer for the constructive comments to help us improve the manuscript. We 

are pleased that the manuscript aroused the reviewer’s interest and are thankful for the positive 

feedback. Our responses to your comments are provided below. The data and code used to validate 

the method are available at Zenodo (https://doi.org/10.5281/zenodo.7894921).  

 

Major comments 

 

-What's the reason for modeling the taxi data as pass/no pass instead of directly modeling the 

number of taxis passing? The latter somehow seems more obvious since the original data are taxi 

counts, while your approach first requires converting taxi counts to 0/1 values, which introduces a 

potential loss of information. Please better justify this modeling choice. 

Response: 

We attempted to utilize taxi counts as an indicator of road status. However, establishing a 

relationship between precipitation or runoff and taxi count proved to be challenging. In situations 

where the road is not entirely disrupted by runoff, a stable quantitative relationship between taxi 

count and precipitation or runoff is hard to capture, as most taxis do not alter their travel routes 

when the water level is not too high. Consequently, estimating ℒ(𝑿|𝛀(𝒊)) becomes difficult when 

X represents taxi volume. In contrast, when the road is disrupted, the taxi volume should be zero 

by the definition of disruption, and typically greater than zero when the road is open, simplifying 

the estimation of ℒ(𝑿|𝛀(𝒊)). Overall, if the method calibrates parameters based on the taxi count, 

it may select the optimal parameter that best corresponds to the observed taxi count rather than the 

road disruption status, thereby introducing unnecessary errors. 

 

-An alternative approach would be to use the Poisson distribution to directly model the 

number of taxis passing (rather than arriving). Have you considered this? This would be more like 

a Poisson regression model, but perhaps leveraging your road disruption function to model lambda 

instead of the usual Poisson link function. 

Response: 

We appreciate your suggestion. As stated in our previous response, this approach requires 

establishing a numerical relationship between the road disruption function and lambda, which 

denotes the mean of the 5 min taxi volume. Since most taxis do not modify their travel routes 

during less intense runoff, the effect of rainfall on taxi volume becomes difficult to capture.  

 

-Did you check whether the Poisson model for the number of taxis arriving at a road is a 

good assumption for your data? 

Response: 

https://doi.org/10.5281/zenodo.7894921


In the revised manuscript (Line 496), a Chi-square goodness of fit test is conducted to check 

whether the frequency distribution adheres to a Poisson distribution. The squared differences 

between the observed and expected 5 min taxi frequencies, as predicted by the Poisson 

distribution, are computed to construct the Chi-square statistic. This statistic is then compared to 

the critical value corresponding to a significance level of 0.05. If the Chi-square statistic exceeds 

the critical value, the null hypothesis—that the probability distribution follows a Poisson 

distribution—is rejected; otherwise, the null hypothesis is accepted, suggesting the distribution 

may conform to a Poisson distribution. 

Ten roads illustrated in Figure 8 of the manuscript were selected, and the frequency 

distribution of 5 min taxi volume for each period on each road was derived. Each frequency 

distribution consists of 31 samples, representing the taxi volume during a specific 5 min period 

collected from May 1, 2015, to May 31, 2015, for a specific road. The Chi-square goodness of fit 

test was applied to each frequency distribution, and the proportion of periods following a Poisson 

distribution for each road was calculated. The test results are presented in Table 1. According to 

these results, the frequency distribution of the 5 min taxi volume during a specific period adheres 

to the Poisson distribution for more than 50% of the periods in 7 of the 10 roads. Consequently, 

the Poisson model appears to be a suitable assumption in this study. 

Table 1 Chi-square goodness of fit test of Poisson distribution for 10 roads. 

Road ID 1 2 3 4 5 6 7 8 9 10 

Proportion of periods that follow 

Poisson distribution % 
12.5 95.8 79.2 97.5 85.8 27.5 96.7 48.3 73.3 95.8 

 

-A limitation is that all variables are treated as discrete random variables whereas the 

hydrological model parameters are continuous. Why discretize the parameters? 

Response: 

The reason to discretize parameters stems from the challenges associated with solving 

optimal problems. While continuous parameters may yield more accurate estimations, it is often 

arduous to obtain an analytical or numerical solution for 𝜽(𝒊) that maximizes 𝑃(𝜽(𝒊))ℒ(𝑿|𝜽(𝒊)) 

from a continuous parameter space. For instance, finding the analytical solution which maximizes 

𝑃(𝜽(𝒊))ℒ(𝑿|𝜽(𝒊)) necessitates differentiating ℒ(𝑿|𝜽(𝒊)), which may not always be feasible. 

Given a catchment area and a time of concentration, constructing a synthetic unit hydrograph 

(SUH) based on the SCS unit hydrograph is straightforward. However, determining these two 

parameters from a given SUH poses a significant challenge. Similarly, generating runoff by 

combining rainfall with the SUH through a convolution formula is easy, but deriving the SUH 

from rainfall and runoff is difficult. Chow et al. (1988) demonstrated deconvolution methods such 

as matrix calculations or linear programming to derive the SUH, but these approaches are complex 

and cannot provide explicit functions that input runoff and output SUH. To circumvent the 

backward parameter-solving process, we discretize continuous parameters and calculate 

𝑃(𝜽(𝒊))ℒ(𝑿|𝜽(𝒊)) for each parameter set using a forward calculation process, which is more 

convenient in this study. It is important to note that the exclusion of continuous parameters in this 

study is due to the complexity of differentiating the proposed three-step procedure, not an 

indication that they are inapplicable to other procedures. 

 

-Does the model account for other (non-flooding) factors that may affect the number of taxis 



in a road, e.g. time of day (rush hour)? 

Response: 

The time-of-day variation may affect the taxi volume in a road. In the previous version of our 

manuscript, we did not account for variations in taxi volume concerning the time-of-day or day-

of-week. We assumed that the average number of taxis arriving on the road was constant, and the 

no-taxi-passing probability is given by: 

𝜔𝑡
(𝑖)

= e−𝜆𝑡 ∑ (𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

𝜆)
𝑛

/𝑛! = exp

∞

𝑛=0

(𝜆 (𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

− 1)) (1) 

where 𝜆 is the average taxi volume per 5 min interval, calculated by averaging all 5 min taxi 

volumes using historical taxi GPS data for a specific road.  

However, the value of 𝜆 fluctuates according to the time of day, indicating higher taxi 

volume during congested periods and lower volume during non-congested periods. In the revised 

manuscript (Line 245), we incorporated the time-of-day variation in taxi volume when computing 

the no-taxi-passing probability:  

𝜔𝑡
(𝑖)

= e−𝜆𝑡 ∑ (𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

𝜆𝑡)
𝑛

/𝑛! = exp

∞

𝑛=0

(𝜆𝑡 (𝑃(𝐷𝑖𝑠𝑟𝑢𝑝𝑡)𝑡
(𝑖)

− 1)) (2) 

where 𝜆𝑡 is the average number of taxis arriving at the road during the tth interval. Compared 

with 𝜆, 𝜆𝑡 has smaller deviance because it excludes more non-flooding factors. 

 

-Curve number CN is kept fixed even though it is also uncertain. 

Response: 

Thank you for pointing this out. We acknowledge that fixing the curve number as 85 is not 

realistic as it is influenced by various factors in urban areas, such as impervious surface 

percentage and soil type. Therefore, we have revised the manuscript to include curve number as 

one of the parameters to be calibrated (Line 375). In total, we calibrate three parameters: 

catchment area, time of concentration, and curve number.   

Figure 1 presents the probability distributions of three parameters after calibration. Each row 

in Fig. 1 represents a different road, and each column represents a curve number. Each subplot 

presents the joint probability distribution of the catchment area and time of concentration for a 

given curve number. The color intensity in Fig. 1 represents the magnitude of the probabilities. 

Following two iterations of updating, the posterior probability distributions for both the catchment 

area and time of concentration converge around the optimal parameter sets for most flood-prone 

roads. This demonstrates that incorporating taxi observations significantly reduces the uncertainty 

associated with catchment area and time of concentration. The probability typically achieves its 

maximum value when the curve number is either 55 or 60. Furthermore, each subplot contains a 

salient cluster with higher probability than other regions, suggesting that there may be multiple 

acceptable parameter sets.  

Furthermore, the optimal catchment area under a given curve number decreases as the curve 

number increases, whereas the optimal time of concentration under a given curve number increases 

with the curve number. This is logical, because a higher curve number corresponds to increased 

rainfall excess under identical rainfall conditions, requiring a reduction in catchment area to 

maintain the runoff that best aligns with the taxi observations. Similarly, an increase in the time of 



concentration diminishes the peak runoff produced by the additional runoff generated by a higher 

curve number, thereby preserving the optimal runoff status. 

 

Figure 1 Posterior probability distributions of hydrological parameter sets for 10 flood-prone roads 

after calibration. The prior probability distributions were derived from the DEMs and additional prior 

knowledge. 

We also present the marginal distributions of the three parameters for 10 roads before and 

after calibration in Fig. 2. In Fig. 2, the marginal posterior distributions of the curve number 

appear relatively similar to the marginal prior distributions. It seems that the proposed method 

employing taxi data provides limited information regarding the distribution of curve numbers 

compared to the catchment area and time of concentration. This outcome may be a result of the 

range and discretization granularity of the parameter spaces. Catchment area and time of 

concentration encompass 20 and 30 possible values, respectively, whereas the curve number has 

only 8 potential values. The smaller parameter space of the curve number reduces the search 

space, and its impact on the no-taxi-passing probability is comparatively lower than that of the 

catchment area and time of concentration. 



 

Figure 2 Marginal prior and posterior probability distributions of the curve number for 10 

flood-prone roads. 

For example, for road ID = 6, the optimal parameter set consists of a catchment area of 0.19 

km², time of concentration of 0.9 h, and curve number of 55. To investigate the effects of these 

parameters on the hydrograph and time series of no-taxi-passing probabilities, we held two 

parameters constant at their optimal values and observed the impact of changing the third 

parameter. Our findings are presented in Fig. 3. One can see that when the catchment area varies 

from 0.04 to 0.23 km², the maximum no-taxi-passing probability increases from 20% to 100% and 

the duration for which the no-taxi-passing probability exceeds 0.5 increases from 0.0 to 1.3 h. 

Similarly, when the time of concentration fluctuates from 0.1 to 1.9 h, the peak time of the no-

taxi-passing probability varies from 0.5 to 1.8 h. In contrast, when the curve number varies from 

40 to 75, the maximum no-taxi-passing probability is fixed at 100%, the duration for which the 

no-taxi-passing probability exceeds 0.5 extends from 1.1 to 1.3 h, and the peak time of the no-taxi-

passing probability remains fixed at the 1.1 h. These small fluctuations in the time series of no-

taxi-passing probabilities are representative of why the distribution of curve numbers remains 

relatively stable after calibration compared to the catchment area and time of concentration. 



 

Figure 3 Impacts of three parameters on the variation of the time series of runoff and no-taxi-

passing probabilities: (a) catchment area conditional on runoff, (b) catchment area conditional on 

the no-taxi-passing probability, (c) time of concentration conditional on runoff, (d) time of 

concentration conditional on the no-taxi-passing probability, (e) curve number conditional on 

runoff, and (f) curve number conditional on the no-taxi-passing probability. 

 

-Section 2.1: a more common/general way is to write Bayes equation directly in terms of 

parameters theta, as in p(theta|X) \propto p(theta)*p(X|theta) or p(theta|X) \propto 

p(theta)*L(theta|X). The likelihood on the rhs of eq. 4 in the paper would then be written in terms 

of a function omega(theta) given by your eq. 16. 

Response: 

Thanks for your suggestion. The Bayes equation is rewritten as (Line 105): 

𝑃(𝜽(𝒊)|𝑿) = 𝑃(𝜴(𝒊)|𝑿) ∝ 𝑃(𝜽(𝒊))ℒ(𝑿|𝜽(𝒊)) (3) 

Editorial comments 

 

-eq. 11: please define x and y 

Response: 

The expression of the fitting curve is: 

𝑦 = [1 + exp(−16.6(𝑥 − 0.48)2)]−1 (4) 

where x is the product of flow velocity and flow depth, and y is the disruption probability (Line 

223). 

 



-L23: metropolis --> metropolises or metropolitan areas 

Response: 

Modified as suggested (Line 23). 

 

-L40: "calibrated on runoff data alone" - there are many studies that calibrate on other data as well 

Response: 

Response: 

It is not rigorous to say that “No matter what kinds of methods, hydrological models are 

basically calibrated based on the runoff data alone.” Thus, that sentence is removed (Line 40).  

 

-L47: ungaged vs ungauged: pick one spelling 

Response: 

Modified to “ungauged” as suggested. 

 

-L83 (and other places): equals to --> equals 

Response: 

Modified as suggested. 

 

-L90: arriving --> arrival 

Response: 

Modified as suggested. 

 

-L99: does index i refer to road i? 

Response: 

No, the index i refers to the ith parameter set (Line 99).  

 

-L132: instantization --> instantiation 

Response: 

Modified as suggested (Line 136). 

 

-suggest to proofread entire manuscript to fix issues with use of English 

Response: 

We thank the reviewer for pointing this out. As suggested, the manuscript is thoroughly 

proofread, and the grammar, clarity, and overall readability is also improved.  

 

 


