
Summary
The paper presents a novel approach for calibrating an urban rainfall-runoff model using taxi

GPS data. This is an original idea that seems to have potential as demonstrated in this study. I also
commend the authors for making available their data and code.
Response:

We thank the reviewer for the constructive comments to help us improve the manuscript. We
are pleased that the manuscript aroused the reviewer’s interest and are thankful for the positive
feedback. Our responses to your comments are provided below. The data and code used to validate
the method are available at Zenodo (https://doi.org/10.5281/zenodo.7894921).

Major comments

-What's the reason for modeling the taxi data as pass/no pass instead of directly modeling the
number of taxis passing? The latter somehow seems more obvious since the original data are taxi
counts, while your approach first requires converting taxi counts to 0/1 values, which introduces a
potential loss of information. Please better justify this modeling choice.
Response:

We attempted to utilize taxi counts as an indicator of road status. However, establishing a
relationship between precipitation or runoff and taxi count proved to be challenging. In situations
where the road is not entirely disrupted by runoff, a stable quantitative relationship between taxi
count and precipitation or runoff is hard to capture, as most taxis do not alter their travel routes

when the water level is not too high. Consequently, estimating becomes difficult

when X represents taxi volume. In contrast, when the road is disrupted, the taxi volume should be
zero by the definition of disruption, and typically greater than zero when the road is open,

simplifying the estimation of . Overall, if the method calibrates parameters based on

the taxi count, it may select the optimal parameter that best corresponds to the observed taxi count
rather than the road disruption status, thereby introducing unnecessary errors.

-An alternative approach would be to use the Poisson distribution to directly model the
number of taxis passing (rather than arriving). Have you considered this? This would be more like
a Poisson regression model, but perhaps leveraging your road disruption function to model lambda
instead of the usual Poisson link function.
Response:

We appreciate your suggestion. As stated in our previous response, this approach requires
establishing a numerical relationship between the road disruption function and lambda, which
denotes the mean of the 5 min taxi volume. Since most taxis do not modify their travel routes
during less intense runoff, the effect of rainfall on taxi volume becomes difficult to capture.

-Did you check whether the Poisson model for the number of taxis arriving at a road is a
good assumption for your data?
Response:

In the revised manuscript, a Chi-square goodness-of-fit test is conducted to check whether the



frequency distribution adheres to a Poisson distribution. The squared differences between the
observed and expected 5 min taxi frequencies, as predicted by the Poisson distribution, are
computed to construct the Chi-square statistic. This statistic is then compared to the critical value
corresponding to a significance level of 0.05. If the Chi-square statistic exceeds the critical value,
the null hypothesis—that the probability distribution follows a Poisson distribution—is rejected;
otherwise, the null hypothesis is accepted, suggesting the distribution may conform to a Poisson
distribution.

Ten roads illustrated in Figure 8 of the manuscript were selected, and the frequency
distribution of 5 min taxi volume for each period on each road was derived. Each frequency
distribution consists of 31 samples, representing the taxi volume during a specific 5 min period
collected from May 1, 2015, to May 31, 2015, for a specific road. The Chi-square goodness-of-fit
test was applied to each frequency distribution, and the proportion of periods following a Poisson
distribution for each road was calculated. The test results are presented in Table 1. According to
these results, the frequency distribution of the 5 min taxi volume during a specific period adheres
to the Poisson distribution for more than 50% of the periods in 7 out of the 10 roads. Consequently,
the Poisson model appears to be a suitable assumption in this study.

Table 1 Chi-square goodness-of-fit test of Poisson distribution for 10 roads.
Road ID 1 2 3 4 5 6 7 8 9 10

Proportion of periods that follow Poisson

distribution %
12.5 95.8 79.2 97.5 85.8 27.5 96.7 48.3 73.3 95.8

-A limitation is that all variables are treated as discrete random variables whereas the
hydrological model parameters are continuous. Why discretize the parameters?
Response:

The reason to discretize parameters stems from the challenges associated with solving
optimal problems. While continuous parameters may yield more accurate estimations, it is often

arduous to obtain an analytical or numerical solution for that maximizes

from a continuous parameter space. For instance, finding the analytical solution which maximizes

necessitates differentiating , which may not always be feasible.

Given a catchment area and a time of concentration, constructing a synthetic unit hydrograph
(SUH) based on the SCS unit hydrograph is straightforward. However, determining these two
parameters from a given SUH poses a significant challenge. Similarly, generating runoff by
combining rainfall with the SUH through a convolution formula is easy, but deriving the SUH
from rainfall and runoff is difficult. Chow et al. (1988) demonstrated deconvolution methods such
as matrix calculations or linear programming to derive the SUH, but these approaches are complex
and cannot provide explicit functions that input runoff and output SUH. To circumvent the
backward parameter-solving process, we discretize continuous parameters and calculate

for each parameter set using a forward calculation process, which is more

convenient in this study. It is important to note that the exclusion of continuous parameters in this
study is due to the complexity of differentiating the proposed three-step procedure, not an
indication that they are inapplicable to other procedures.



-Does the model account for other (non-flooding) factors that may affect the number of taxis
in a road, e.g. time of day (rush hour)?
Response:

The time-of-day variation may affect the taxi volume in a road. In the previous version of our
manuscript, we did not account for variations in taxi volume concerning the time-of-day or
day-of-week. We assumed that the average number of taxis arriving on the road was constant, and
the no-taxi-passing probability is given by:

where is the average taxi volume per 5 min interval, calculated by averaging all 5 min taxi
volumes using historical taxi GPS data for a specific road.

However, the value of fluctuates according to the time of day, exhibiting higher taxi
volume during congested periods and lower volume during non-congested periods. In the revised
version, we incorporated the time-of-day variation in taxi volume when computing the
no-taxi-passing probability:

where is the 5 min taxi volume during the tth period, calculated by averaging the taxi volume
of the tth period from May 1, 2015, to May 31, 2015. Compared with , has smaller deviance
because it excludes more non-flooding factors.

-Curve number CN is kept fixed even though it is also uncertain.
Response:

Thank you for pointing this out. We acknowledge that fixing the curve number as 85 is not
realistic as it is influenced by various factors in urban areas, such as impervious surface
percentage and soil type. Therefore, we have revised the manuscript to include curve number as
one of the parameters to be calibrated. In total, we calibrate three parameters: catchment area, time
of concentration, and curve number.

Figure 1 presents the probability distributions of three parameters after calibration. Each row
in Fig.1 represents a different road, and each column represents the curve number. Furthermore,
each subplot shows the joint probability distributions of catchment area and time of concentration
given the curve number. The depth of colour in Fig.1 represents the magnitude of probability.
Following two iterations of updating, the posterior probability distribution for both catchment area
and time of concentration converges around the optimal parameter sets for most flood-prone roads.
This demonstrates that incorporating taxi observations has substantially narrowed the uncertainty
associated with catchment area and time of concentration. The probability typically attains its
maximum value when the curve number is either 55 or 60. Moreover, each subplot presents a
salient cluster with higher probability than other regions, suggesting that there may be multiple
parameter sets which can effectively represent the acceptable ones.

Additionally, it is observed that the optimal catchment area under a given curve number
diminishes as the curve number rises, and the optimal time of concentration under a given curve



number increases in relation to the curve number. This is logical, as a higher curve number
corresponds to increased rainfall excess given identical rainfall conditions, necessitating a
decrease in catchment area to maintain the runoff that best aligns with the observed taxi-related
road conditions. Similarly, the increase in time of concentration compensates for the additional
runoff generated by a higher curve number, also preserving the optimal runoff status.

Figure 1 Posterior probability distributions of hydrological parameter sets for 10 flood-prone roads
after calibration. The prior probability distributions are derived from the DEM and additional prior
knowledge.

In addition, we plotted the marginal distributions of three parameters for ten roads before and
after calibration in Fig.2. Upon examining Fig.2, the marginal posterior distributions of curve
number post-calibration appear relatively similar to the marginal prior distributions of curve
number. It seems that the method employing taxi data offers limited information about the
distribution of curve number after calibration in comparison to catchment area and time of
concentration. This outcome may be ascribed to the range and discretization granularity of the
parameter spaces. Catchment area and time of concentration encompass 20 and 30 possible values,
respectively, whereas the curve number includes only eight potential values. The smaller
parameter space of curve number diminishes the search space, and its impact on the
no-taxi-passing probability is comparatively lower than that of catchment area and time of
concentration.



Figure 2Marginal prior and posterior probability distribution of curve number for 10
flood-prone roads.

For instance, for road ID=6, the optimal parameter set maximizing the no-taxi-passing
probability consists of a catchment area of 0.19 km², a time of concentration of 0.9 hour, and a
curve number of 55. To investigate the effects of these parameters on the hydrograph and the time
series of no-taxi-passing probability, we held two parameters constant at their optimal values and
observed the impact as the third parameter varied. Our findings, illustrated in Fig.3, demonstrate
that when the catchment area varies from 0.04 km² to 0.23 km², the maximum no-taxi-passing
probability ranges from 20% to 100%, and the duration of no-taxi-passing probability exceeding
0.5 hour extends from 0.0 to 1.3 hours. Similarly, when the time of concentration fluctuates from
0.1 to 1.9 hour, the peak time of no-taxi-passing probability spans from 0.5 to 1.8 hour. In contrast,
when the curve number varies from 40 to 75, the maximum no-taxi-passing probability is fixed at
100%, the duration of no-taxi-passing probability excessing 0.5 hour extends from 1.1 to 1.3 hours,
and the peak time of no-taxi-passing probability remains fixed at the 1.1 hour. The smaller
fluctuations in the time series of no-taxi-passing probability interpret why the distribution of curve
number remains relatively stable after calibration compared to catchment area and time of
concentration.



Figure 3 Impacts of three parameters on the variation of time series of runoff and no-taxi-passing
probability. (a) Catchment area on the runoff. (b) Catchment area on the no-taxi-passing
probability. (c) Time of concentration on the runoff. (d) Time of concentration on the
no-taxi-passing probability (e) Curve number on the runoff. (f) Curve number on the
no-taxi-passing probability

-Section 2.1: a more common/general way is to write Bayes equation directly in terms of
parameters theta, as in p(theta|X) \propto p(theta)*p(X|theta) or p(theta|X) \propto
p(theta)*L(theta|X). The likelihood on the rhs of eq. 4 in the paper would then be written in terms
of a function omega(theta) given by your eq. 16.
Response:

Thanks for your suggestion. The Bayes equation is rewritten as:

Editorial comments

-eq. 11: please define x and y
Response:

The expression of the fitting curve is:

(11)



where x is the product of flow velocity and flow depth, and y is the disruption probability.

-L23: metropolis --> metropolises or metropolitan areas
Response:

Modified as suggested.

-L40: "calibrated on runoff data alone" - there are many studies that calibrate on other data as well
Response:
Response:

It is not rigorous to say that “No matter what kinds of methods, hydrological models are
basically calibrated based on the runoff data alone.” Thus, that sentence is removed.

-L47: ungaged vs ungauged: pick one spelling
Response:

Modified to “ungaged” as suggested.

-L83 (and other places): equals to --> equals
Response:

Modified as suggested.

-L90: arriving --> arrival
Response:

Modified as suggested.

-L99: does index i refer to road i?
Response:

No, the index i refers to the ith parameter set.

-L132: instantization --> instantiation
Response:

Modified as suggested.

-suggest to proofread entire manuscript to fix issues with use of English
Response:

We thank the reviewer for pointing this out. As suggested, the manuscript is thoroughly
proofread, and the grammar, clarity, and overall readability is also improved.


