
Advancement of a blended hydrologic model for robust model
performance
Robert Chlumsky1, Juliane Mai2,3, James R. Craig1, and Bryan A. Tolson1

1Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
2Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Saxony, Germany
3Center for Scalable Data Analytics and Artificial Intelligence - ScaDS.AI, Leipzig, Saxony, Germany

Correspondence: Robert Chlumsky (robert.chlumsky@uwaterloo.ca)

Abstract. A blended model structure has emerged as an alternative to the traditional representation of model structure in a

hydrologic model, in which multiple algorithmic choices are used to represent some hydrologic process within a model, and

are combined within a single model run using a weighted average of process fluxes. This approach has been shown to improve

overall model performance, as well as provide an efficient way to test multiple model structures. We propose that a blended

model may also be at least a partial solution to the calls for a more robust Community Hydrologic Model, which can mitigate5

the need for developing new hydrologic models for each catchment and application.

We develop an updated version of the blended model configuration which defines the suite of all possible hydrologic process

options in the blended model. Configuration development was guided by model performance for more than 30 different discrete

model configurations across 12 MOPEX catchments. Improvements to the blended model include the introduction of blended

potential melt and potential evapotranspiration as new process groups, inclusion of non-blended structural changes, and a10

revision of the process options within each existing group. This leads to a very high-performing model with a mean calibration

Kling-Gupta Efficiency (KGE) score of 0.90 and mean validation KGE score of 0.80 across all 12 MOPEX catchments, a

substantial improvement in model performance relative to the initial version of 0.06 and 0.07 in calibration and validation,

respectively. We test for overfitting of models and find little statistical evidence that increasing the complexity of blended

models reduces validation performance. We then select the preferred model configuration as version 2 of the blended model,15

and test it with 12 independent catchments, which shows a mean calibration and validation score of 0.89 and 0.76, respectively,

and improvement over the original model (0.03 in mean calibration KGE score). Version 2 of the blended model is robust across

a range of catchments without the need for adjusting its flexible model structure, and may be useful in future hydrology studies

and applications alike.

1 Introduction20

Hydrologic models have been useful tools in the hands of hydrologists for many decades. The exponential increase in computa-

tional power available to researchers and practitioners is partially responsible for the rapid development of hydrologic models,

where discussion around the ‘plethora of hydrologic models’ (Clark et al., 2011) and the existence of too many hydrologic

models (Horton et al., 2021) have been noted in more recent literature. Weiler and Beven (2015) advocate for the development
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of a so-called Community Hydrologic Model, which would have enough flexibility to offset the increasing number of new25

hydrologic models being developed. Such a model could be applied at different scales and for different watersheds without a

need for developing new models. The hydrologic modelling community is still largely in search of a model that successfully

fulfills this purpose.

Despite this, the number of models being developed and used in studies is increasing. Nearing et al. (2021) state that the

reason for the relatively unsuccessful efforts to nonetheless find scale-relevant theories in hydrologic models is simply that the30

hydrology community has failed to find them. Nearing et al. (2021) argue that the ability of deep-learning models to capture

complex relationships in catchments, and to provide better daily streamflow predictions in ungauged basins than traditional

hydrologic models do in gauged basins demonstrates that these relationships can be found, but have not been discovered through

traditional modelling efforts. The traditional belief that overparameterizing a model leads to poor validation performance also

does not appear to be the case with deep-learning models (e.g., see Mai et al., 2022c), which tend to have orders of magnitude35

more parameters than process-based hydrologic models. Additional work in the machine-learning community is being done to

improve the realism of machine-learning and deep-learning based models, such as the inclusion of mass-balance constraints

on models (Frame et al., 2022a), addressing a common criticism of machine-learning approaches. The relatively successful

efforts of deep-learning models in hydrology (Nearing et al., 2021; Nevo et al., 2022; Frame et al., 2022b; Lees et al., 2022;

Klotz et al., 2022; Arsenault et al., 2023) leave the process-based modelling community with a fundamental question of how40

process-based models can be made to capture complex streamflow signals, as demonstrated with deep-learning models. The

recent success of machine-learning and deep-learning models relative to process-based or conceptual models in controlled

intercomparison studies (e.g., Mai et al., 2022c) further encourages hydrologists pushing for process-based approaches to

confront these deficiencies in their models.

Here, we argue that the recently introduced blended model approach (Mai et al., 2020) may serve to provide some answers45

to these important questions in process-based hydrologic modelling, as both a plausible basis for the Community Hydrologic

Model and as a substantial step forward in process-based hydrologic model development. A blended model is one that uses

multiple process options to determine the flux of a hydrologic process (e.g., infiltration) within each time step of the model;

model weights can be adjusted through calibration or other exercise, which effectively provides the flexibility in the model

to change its structure without a need for separate model codes or setups. This is a feature that may allow a well-constructed50

blended model configuration to serve as a form of generalized model applicable to different scales and catchments. This char-

acteristic of blended models also allows them to not only maintain a relatively high performance across a range of catchments,

but inform the selection of preferred structural options, and do so with a fraction of the computational cost relative to the more

common approach of running multi-model ensembles, as demonstrated in Chlumsky et al. (2021). The additional complexity

of process representation introduced by the blended modelling approach, while maintaining the important features of process-55

based models such as mass conservation and physical interpretation of state variables, is a feature that we suggest may allow

for the successful representation of complex watershed dynamics that are seemingly captured by deep-learning models. In

the recent Great Lake Runoff Intercomparison Project (GRIP) over the Great Lakes watershed (i.e., GRIP-GL), the original

blended model of Mai et al. (2020) was one of the most successful among process-based models in a comparison against the
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dominant deep-learning model (Mai et al., 2022c). These results have been further confirmed when more than 600 experts60

where tasked to rate these hydrographs without revealing the model that was used to produce the hydrograph (Gauch et al.,

2022).

In this study, we improve upon the original blended model introduced by Mai et al. (2020) and employed by Chlumsky et al.

(2021), Mai et al. (2022b), and Mai et al. (2022c) with the goal of producing an improved blended model. This goal is distinct

from building an optimal model for a single application and catchment; this intention is to design a blended structure that can65

be robust across many applications and catchments. The process undertaken in developing a new configuration for the blended

model is also discussed in this work, and may be useful in future development of blended models.

The main objectives of this study are to (1) test additional blended model configurations, (2) improve upon the original

blended model by creating a new blended model version that is tested in multiple catchments, and (3) validate the updated

blended model version with additional catchments not used in objective (2) to demonstrate its improvement.70

The remaining sections of the manuscript are organized as follows. The methods (Section 2) is organized into several

sections. Section 2.1 introduces the concept of blended models in general and provides the theory necessary to understand

the subsequent model developments. Section 2.2 discusses the update to the initial blended model configuration, including a

description of the developments and the empirical approach taken. Section 2.3 describes the tests used to check for model

overfitting. Section 2.4 describes the metrics used to aid in the selection of a single preferred blended model structure from the75

multiple candidate configurations. Section 2.5 describes the methodology for validation of the selected blended model version

2 against the original version in an independent set of catchments. Results and Discussion (Section 3) are presented in parallel,

presenting the results associated with each method described along with accompanying discussion of those results. Concluding

points are presented in Section 4.

2 Methods80

The following methodology sections are organized as follows. Section 2.1 introduces the blended modelling approach and

provides the necessary background on the original blended model. Section 2.2 discusses the iterative development and evalua-

tion of candidate blended model configurations. Section 2.3 examines the methodology undertaken to assess model overfitting,

and ensure that additional model parameters do not decrease the performance of blended model configurations in validation.

Section 2.4 discusses the selection process for a new version of the blended model from the set of plausible blended model85

configurations. Finally, Section 2.5 describes the process to validate the new blended model version with a set of catchments

independent from the development and selection of the new blended model version.

2.1 Blended hydrologic model

The concept of a blended model was introduced by Mai et al. (2020), and provides a method to include multiple process options

for use in calculating hydrologic process fluxes within a single model simulation. A given blended model configuration defines90

all model state variables, processes and process options that can be simulated. The original blended model configuration
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included five process ‘groups’: infiltration, quickflow, baseflow, evapotranspiration, and snow balance. Within each process

group G, the process flux (e.g., infiltration rate) for that process at a given timestep t, fG(t), is calculated as a weighted average

of the model output of NPG process options. Mathematically, this may be expressed for any given process group as:

fG(t) =
NPG∑

i=1

wGifGi(t) (1)95

where fGi(t) is the process flux f (typically in mm/d) simulated for time step t by the ith process algorithm within the group

G.

This blending approach is implemented in the Raven hydrologic modelling framework (Craig et al., 2020), and can be

extended to hydrologic process where multiple process algorithms are available. Raven is an open-source, object-oriented

software framework with more than 100 process algorithms encoded, which allows for a large selection in building both100

blended model configurations and flexible model structures more generally. Two key design principles for the Raven software

include efficient runtime and model flexibility, making it an ideal choice for this type of research where the model must be

continually modified and run millions of times.

In Raven, the weights for each process group may be supplied in one of two ways; either directly as weights that sum to

unity, or they may be supplied as NPG − 1 independent numbers each distributed uniformly between 0 and 1, i.e., so-called105

weight-generating parameters. If supplied in the latter way, these weight-generating parameters are transformed within Raven

using the so-called “pie share” method (Mai et al., 2022a) of generating random numbers summing up to unity while making

sure the random variables are independent and identically distributed. This approach of determining weights also allows the

weights to be sampled independently, since the constraint of summing to unity is met as part of the transformation of these

NPG − 1 weight-generating parameters to NPG weights.110

The blended approach respects the water balance, since all weighted fluxes are limited by water availability within the

relevant storage units, which is the same handling as non-blended fluxes. A blended model is also consistent with the structure

of other process-based and conceptual hydrologic models with respect to tracking of state variables, such as soil moisture. This

approach is therefore distinguished from machine-learning approaches in which these characteristics typically do not hold.

Theoretically, blended models allow for the exploration of model space that is not available when only discrete process115

options are used in flexible modelling frameworks. The continuous weighting of process options in a blended model allows

model structure to be expressed as a continuum of plausible options, rather than discrete points represented by separate model

structures. If we imagine that optimal model solutions may exist within this continuum, rather than precisely at a specific model

structure defined by discrete options, then it becomes easy to imagine why the blended model structure generally performs

better than individual discrete model structures, as was found in Chlumsky et al. (2021) and Mai et al. (2022c).120

2.2 Blended model development and performance evaluation

This study deploys a blended model in over 30 model configurations, with up to seven blended process groups used in any

given model configuration. In the model development phase, blended model configurations are tested in calibration mode using
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the 12 catchments from the second and third workshop of the Model Parameter Estimation Experiment (MOPEX) (Duan et al.,

2006). These 12 catchments cover the southeastern portion of the United States, and were selected because they represent a125

relatively diverse range of hydrologic conditions, making them suitable for testing a given blended model configuration for

robustness across various conditions.

In each calibration, a blended model configuration is run with a daily timestep and calibrated using the Dynamically Di-

mensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007), as implemented in the Ostrich calibration toolbox (Matott,

2017). DDS is applied with a calibration budget of 10000 iterations with a two year warm up period followed by a calibration130

period of 12 years from 1972 to 1983. The Kling-Gupta Efficiency (KGE) metric (Gupta et al., 2009) is used as the objective

function. The temporal validation scores are then calculated for the six year period of 1984-1989. Each calibration was per-

formed in all 12 MOPEX catchments independently and repeated with 20 independent calibration trials for each deployment

of a blended model to account for the variable performance of the optimization algorithm. The calibration and validation setup

is consistent with the approach used in Chlumsky et al. (2021), with the exception of using KGE here rather than NSE as the135

calibration objective function. The KGE metric was selected over the Nash Sutcliffe Efficiency (NSE) metric as the KGE is

considered to be a better indication of overall model fit with a more balanced evaluation of high and low flows, with some

studies suggesting that KGE may be a better choice even for high flows than NSE (Mizukami et al., 2019).

This study adopts a comparative and empirical strategy to inform model development. This approach compares all subse-

quent blended model configurations against previous ones, including the original blended model configuration, to check for140

improved performance. This type of empirical model development is different from a more traditional approach of model

development via prior perceptions of dominant hydrologic processes, and has been used in the development of conceptual

hydrologic models such as GR4J (Perrin et al., 2003).

With the analysis of successive each blended model configuration, the primary approaches to examining the empirical results

includes the use of box and whisker plots of calibration and validation performance, both in individual catchments and across all145

catchments. The median and maximum KGE performance is visually examined and compared between model configurations.

The weight distributions of process options within each process group (Chlumsky et al., 2021, such as Fig. 5 therein), are also

examined within a model configuration to determine if a given process option is a) not being selected within a given catchment,

or b) not being selected in any catchments. Process options with low weights across the 20 independent trials and across all

catchments (scenario b)) indicate that the process option is not a valuable contribution to the process group and therefore the150

given blended model configuration overall; these process options are replaced in a subsequent model configuration with others.

The model development process involved (a) the adjustment of selected process equations (Section 2.2.1), (b) addition of

new blended process groups (Section 2.2.2), (c) testing of the so-called conglomerate model, (d) changes to the non-blended

part of the model structure (Section 2.2.4), and (d) the reduction of complexity by removing process equations with marginal

contribution to performance (Section 2.2.5). These specific developments are discussed in the following subsections. The155

specific algorithms included in process groups for each blended model configuration is provided in Table A1 of the Appendix.
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2.2.1 Adjustment of selected process equations

Within each blended process group exist two or more process options. Iterating on various combinations and numbers of process

options from the ones available within Raven is part of the model development process to empirically find options within a

process group where the overall model performance is improved, and all of the options within the process group are selected as160

preferable (indicated with calibrated process weights) in at least some of the tested catchments. An initial modification to the

original blended model is the selection of new process options within each blended group, recognizing that the original blended

configuration selected some options that worked well based on variations from the HMETS model (Martel et al., 2017) rather

than options that would maximize robustness and coverage of model space. In cases where process options of a similar form or

function exist within the same process group, one of the options may be replaced and this new configuration tested empirically165

to determine if a functionally different process option enhances the blended model configuration.

2.2.2 Introducing blended forcing groups

The potential melt (POTMELT) and potential evapotranspiration (PET) estimators were both revised from their original (single)

algorithm to blend two or more algorithms. Potential melt (mm/d) is defined as the snowmelt rate if snow is present, a surrogate

for energy availability at the snow or land surface. Blending forcings in addition to hydrologic fluxes is a recent feature170

implemented in Raven and a contribution of this work, as this option was not available when developing the initial version

of the blended model. The potential melt and potential evapotranspiration forcings are estimated in Raven using precipitation

and temperature data. The blending of potential melt and potential evapotranspiration follows the same form as other blended

groups, i.e., as a weighted average of two or more process options. As long as algorithms are used to provide modelled estimates

of the same units (e.g., PET and POTMELT both in mm/d), then these estimates may be combined as part of the same blended175

forcing group.

2.2.3 Conglomerate model

A so-called conglomerate model (model configuration 24) is tested and calibrated in the 12 MOPEX catchments. This con-

glomerate model is special in that it includes all process groups and process options tested in prior model configurations,

includes 4 or more options in each process group with a total of 79 parameters. The second-largest model in terms of number180

of parameters has 59 parameters (model configuration 10). This model configuration is constructed to test whether indicate

whether the maximization of the number of process options included in the blended model configuration is advantageous

relative to more carefully curated model configurations.

2.2.4 Non-blended structural changes

In addition to iterating on the blended process groups, non-blended changes in the model structure are tested in the model185

configurations. Model configuration 3 adds depression storage to the model, allowing for water to be stored on the landscape

in depression storage and seep into soil storage. Later model configurations (34-37) add a set of canopy processes, including
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canopy interception, storage, drip and evaporation; the selection of non-blended (i.e. singular) process options for these are

iterated on with different model configuration. The leaf area index (LAI) ratio is also allowed to vary seasonally in these model

configurations (34-37) by introducing calibration parameters that modify the seasonal LAI input to the Raven model, allowing190

for either seasonal peaks in LAI during July and August or a flatter LAI ratio year-round as a function of new calibration

parameters. Finally, processes are introduced in model configuration 34 that allowed the upward movement of water between

soil layers, including from the third soil layer that was previously treated as a sink for deep groundwater.

2.2.5 Reduction in complexity

Attempts are made between the model configuration iterations to reduce the complexity of a given blended model configuration195

by reducing the number of process options in one or more process group. While checks are made in the model methodology

for overfitting (see Section 2.3), instances where the model complexity can be reduced by removing one or more options (and

parameters) from the model without a reduction in performance in either calibration or validation across the 12 tested MOPEX

catchments is generally regarded as a benefit. This strategy of reducing model complexity was employed throughout the model

development stages where possible to maintain parsimony.200

2.3 Model overfitting

One of the assumptions made in this study is that increasing the complexity and the number of model parameters in a blended

model configuration is not a concern as far as model performance is considered. With a fixed calibration budget, it would be

expected that at some point, increasing model complexity will result in a lack of convergence in calibration, and an increasing

inability to identify optimal model solutions.205

In order to test this assumption, the model performance in validation for each blended model configuration (except for the

conglomerate model) is checked against the number of parameters in each model configuration in a simple regression exercise.

This is done across all model configurations and catchments, and repeated within each of the 12 MOPEX catchments. In

each case, a regression slope significantly less than zero would indicate a negative relationship between model performance

in validation and the number of parameters, suggesting that more model parameters does reduce validation performance and210

model overfitting is an issue. This analysis is repeated using the validation gap (defined as the maximum calibration KGE score

minus the validation KGE score of the same trial) instead of the validation KGE for both pooled results and individual MOPEX

catchments. When the validation gap is used, a statistically significant positive slope would indicate that the discrepancy

between the calibrated KGE score and its associated validation KGE score is increasing as more parameters are added.

2.4 Selection of a preferred blended model configuration215

Following the development of over 30 model configurations, a single model configuration needs to be selected from the set

of plausible candidates. While the KGE metric averaged over multiple independent trials and catchments is used to evaluate

relative performance in model configurations, minute discrepancies in this metric may not be the most informative when
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picking from similarly performing model candidates (i.e., a mean KGE of 0.865 may not be a better candidate model than one

with a mean KGE of 0.864).220

To aid in the evaluation of these numerous model configurations, additional metrics are used. The first is the difference

between the maximum calibration KGE and the median calibration KGE for a given model configuration and catchment, then

averaged across each of the 12 catchments. This metric is termed ‘calibration consistency’, with an ideal value of zero indicating

complete consistency between the maximum and median calibration performance. Second is the maximum calibration KGE

score minus the validation KGE score of the same trial, again averaged across 12 catchments. This is termed ‘validation gap’,225

and represents the drop in performance from calibration to validation. An ideal value would realistically be zero, indicating no

drop in performance between calibration and validation, though the validation performance could also theoretically be greater,

resulting in negative values. Third, the maximum calibration KGE performance, averaged across 12 catchments is used. Finally,

the averaged validation KGE of 20 independent trials within a given catchment, then averaged across catchments is used. These

last two metrics are simpler performance metrics relating to calibration and validation performance, respectively.230

These four metrics are plotted in a set of two plots, which are used to discriminate between multiple high-performing model

configurations. The pareto principle is applied in each case to determine which models outperform others on the plotted metrics,

where a model that is better on both plotted axes can be considered to ‘dominate’ the performance of another model. The non-

dominated models in these plots, i.e. the models that are better than any other model on at least one of the two plotted metrics,

become part of the reduced set of candidate model configurations to be selected. The model configuration selected in this way235

becomes a new version of the blended model, referred to as version 2 of the blended model herein.

2.5 Validation of the selected blended model

The original blended model introduced by Mai et al. (2020) (model configuration 0 in this study) and the new blended model

selected from plausible model configurations in this study (model configuration 36, now version 2) are evaluated with an

independent set of 12 additional catchments, selected from a subset of the HYSETS catchments (Arsenault et al., 2020). This240

is considered a form of spatial validation, as these catchments were not used in the development or selection of the new blended

model version 2. These 12 independent catchments were selected randomly from the set of catchments calibrated by Mai et al.

(2022b), with the criteria that they were also 1) located in the United States, 2) had a total catchment area within range of

the MOPEX catchments, and 3) had streamflow observations available within the calibration and validation periods selected

previously for this study. The map of the 12 MOPEX and the 12 independent catchments is provided in Figure 1. Additional245

information on the selected catchments is provided in Table 1.
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Figure 1. Map of the 12 MOPEX12 catchments located in the southeastern part of the United States, as well as 12 additional independent

catchments selected to further test the blended model version 2 (model configuration 36). Captions indicate the state abbreviation; the number

in parentheses indicates the catchment index (i.e., 1 to 24).
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Table 1. Independent catchments from HYSETS selected for validating the blended model version 2

Index Catchment ID Catchment Name Area (km2)

13 01017000 AROOSTOOK RIVER AT WASHBURN, ME 4282.0

14 01122500 SHETUCKET RIVER NEAR WILLIMANTIC, CT 1045.9

15 01318500 HUDSON RIVER AT HADLEY NY 4307.9

16 02472000 LEAF RIVER NR COLLINS, MS 1923.5

17 03434500 HARPETH RIVER NEAR KINGSTON SPRINGS, TN 1768.2

18 10150500 SPANISH FORK AT CASTILLA, UT 1688.0

19 11189500 SF KERN R NR ONYX CA 1372.1

20 11272500 MERCED R NR STEVINSON CA 3295.6

21 11276500 TUOLUMNE R NR HETCH HETCHY CA 1183.1

22 13073000 PORTNEUF RIVER AT TOPAZ ID 1491.2

23 13139500 BIG WOOD RIVER AT HAILEY ID 1656.9

24 13200000 MORES CREEK AB ROBIE CREEK NR ARROWROCK DAM ID 1027.8

The evaluation of the two model versions (initial and final) is done by calibrating both model versions with the same setup

as the original experiment, i.e., using DDS with a KGE objective function, the same warm-up and evaluation periods, and with

20 independent trials of each calibration in each of the 12 additional independent catchments. These results can then be viewed

to compare the two model versions directly in terms of calibration and validation performance.250

3 Results and Discussion

The following results and discussion sections are organized as follows. Section 3.1 presents a summary of the developments

in each blended model configuration and initial performance results. Section 3.2 presents the statistical analysis undertaken

assess model overfitting. Section 3.3 presents the selection process to determine version 2 of the blended model from the

set of blended model configurations. Section 3.4 describes the process to validate the blended model version 2 with a set of255

additional independent catchments. Finally, Section 3.5 provide additional discussion on how blended models can be used to

assess structural identifiability for scientific questions.

3.1 Blended model version development and performance evaluation

The model development began with the initial blended model version, as published in Mai et al. (2020), which is referred

here to as model configuration 0. The key developments by model configuration are summarized below, and are discussed in260

more detail in this section. Model configurations not listed below (25-28, 31-32) were used for the purposes of testing different

weight-generation schemes in calibration and did not contribute to an improved blended model version, and are therefore

omitted from the results. A complete listing of the process options in each model configuration is provided in Table A1 of the
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Appendix. Further descriptions of the process options in Raven may found in the Raven User’s Manual (Raven Development

Team, 2022).265

1. Model configuration 0: original model version from Mai et al. (2020);

2. Model configuration 1 - original model version but using data sourced from MOPEX/HYSETS rather than PET_OUDIN;

3. Model configuration 2: initial update of blended process options from the original blended model version based on expert

consideration;

4. Model configuration 3-5: addition of depression storage & seepage, followed by adjustments to other process options;270

5. Model configuration 6-23: introduction of blended forcings, followed by iteration of process options;

6. Model configuration 24: testing of the conglomerate model configuration;

7. Model configuration 29-30, 33: experiments in reducing model complexity;

8. Model configuration 34-37: addition of non-blended processes (including canopy processes), and additional complexity

reduction experiments.275

As expected with the nature of this type of empirical model development process, the calibration performances improve

with successive model configurations, particularly in the initial configurations. The mean calibration KGE across catchments,

i.e. the average of all 20 independent trials and 12 catchments, improved from 0.836 in the original blended version (model

configuration 0) to 0.896 in model configuration 36, and the mean temporal validation KGE also improved from 0.728 to

0.799. The conglomerate model calibration performance was generally reduced relative to other model configurations (median280

calibration KGE reduced from 0.902 in model configuration 23 to 0.876 in the conglomerate model configuration 24). This

reduction indicates possible convergence issues with the conglomerate model under the fixed calibration budget, and at a

minimum suggests that the naïve inclusion of all (or many) plausible process options for limited calibration budgets may not

be an optimal strategy. The performance of select model runs to summarize the changes with each stage of development are

shown in Figure 2. The distribution of performance results for select model configurations is provided in Figure 3, which also285

shows a general improvement in performance with model configuration.
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Figure 2. Model performance in calibration and validation by model configuration. The maximum calibration KGE is the maximum KGE

within a given catchment across 20 independent trials. The validation KGE is the KGE associated with the maximum calibration KGE score,

where the model setup with the maximum calibration KGE score is used to perform a temporal validation simulation. The values shown in

this figure are the maximimum calibration KGE and validation KGE averaged across 12 MOPEX catchments, and plotted for each blended

model configuration.
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Figure 3. Calibration performance distributions, generated from 20 independent trials of the calibration for each model configuration and

MOPEX catchment, shown for select model configurations. The orange points indicate the validation performance of trial with the maximum

calibration performance within the 20 independent trials.

3.2 Model overfitting

In order to assess overfitting in the blended model configurations, a series of linear regressions of validation performance

against the number of model parameters were performed in order to look for statistically significant relationships. A linear

regression was first applied to all model configurations and catchments, and second to individual catchments. The overall290

regression for all model configurations and catchments is shown in Figure 4, and the individual regressions are summarized in

Table 2.
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Figure 4. Validation KGE on the y-axis plotted against the number of calibrated model parameters on the x-axis. Each of the 372 data

points represents the validation score associated with the top-performing calibrated model of 20 independent trials, for each of 31 model

configurations 12 MOPEX catchments (31× 12 = 372). A regression line for this relationship is shown in blue as a nearly flat relationship

(slope of 3.2E− 4 with a corresponding p-value of 0.757 for a null hypothesis of slope β1 = 0), with a 95% confidence interval shown in

transparent grey.
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Table 2. Values from individual regressions applied to data separately within each MOPEX catchment correlating validation KGE to the

number of parameters across multiple independent trials and model configurations. All p-values less than the 10% significance level or

shown in bold. Regression was a basic linear regression of the form Y ∼ β1X + β0 and the p-values are associated with null hypothesis of

slope β1 = 0.

Index Catchment ID (State) slope (β1) intercept (β0) slope p-value

1 01608500 (West Virginia) -9.83e-04 0.651 0.148

2 01643000 (Maryland) 3.88e-04 0.801 0.570

3 01668000 (Virginia) 1.12e-03 0.817 0.066

4 03054500 (West Virginia) 2.61e-04 0.858 0.317

5 03179000 (West Virginia) -5.17e-04 0.883 0.545

6 03364000 (Indiana) -1.17e-03 0.884 0.188

7 03451500 (North Carolina) 1.1e-04 0.828 0.886

8 05455500 (Idaho) -7.37e-05 0.596 0.964

9 07186000 (Missouri) 8.92e-04 0.827 0.144

10 07378500 (Louisiana) 8.46e-04 0.859 0.206

11 08167500 (Texas) 1.14e-03 0.533 0.375

12 08172000 (Texas) 1.78e-03 0.667 0.171
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Figure 4 shows that across all catchments and model configurations there is no evidence of a linear relationship between

validation KGE and the number of calibrated parameters, with a slope that is approximately 0.00032. When the regression is

applied to all individual catchments, no catchment had significant evidence of a negative correlation which would indicate a295

decrease in validation KGE with an increase in the number of blended model parameters.

A similar analysis was repeated but using the validation gap (defined in Section 2.4) to detect decreases in relative validation

performance with an increasing number of parameters. When this linear regression was applied across all model configurations

and catchments, there was no evidence of a slope significantly different from zero (p-value of 0.96). This regression was then

applied in all catchments individually, and these results are summarized in Table 3.300
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Table 3. Values from individual regressions applied to data separately within each MOPEX catchment correlating the validation gap (max-

imum calibration KGE minus validation KGE of the same model run) to the number of parameters across multiple independent trials and

model configurations. All p-values less than the 10% significance level are shown in bold. Regression was a basic linear regression of the

form Y ∼ β1X + β0 and the p-values are associated with null hypothesis of slope β1 = 0.

Index Catchment ID (State) slope (β1) intercept (β0) slope p-value

1 01608500 (West Virginia) 1.12e-03 0.232 0.111

2 01643000 (Maryland) -4.69e-05 0.104 0.938

3 01668000 (Virginia) -8.73e-04 0.071 0.066

4 03054500 (West Virginia) -1.33e-05 0.027 0.966

5 03179000 (West Virginia) 5.54e-04 0.023 0.449

6 03364000 (Indiana) 1.23e-03 0.032 0.081

7 03451500 (North Carolina) 2.67e-04 0.099 0.666

8 05455500 (Idaho) 4.56e-04 0.268 0.718

9 07186000 (Missouri) 2.2e-05 0.049 0.975

10 07378500 (Louisiana) -3.28e-04 0.046 0.450

11 08167500 (Texas) -5.23e-04 0.303 0.712

12 08172000 (Texas) -1.34e-03 0.129 0.250
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Table 3 shows that only one catchment had a positive slope that was significantly different from zero (catchment 6 in

Indiana, p-value of 0.081). This indicates that there is an increase in the validation gap at the 10% significance level, i.e. greater

discrepancy between the calibration and validation KGE, with an increasing number of parameters. However, the p-value shows

this finding is not incredibly strong, and the 11 other catchments had either no evidence of a slope significantly different from

zero or had a negative slope (i.e., indicating that the discrepancy between validation and calibration decreases with additional305

parameters).

Overall, there is little evidence that additional calibrated parameters in the blended model configurations reduce the valida-

tion performance (absolute value or relative to calibration) in this experimental setup. However, as indicated by the conglom-

erate model, it seems likely that the validation KGE could degrade with an increase in the number of parameters at some point

beyond 59 parameters, the maximum number of parameters of model configurations in this regression. Similarly, a decrease in310

the calibration budget used here of 10000 runs could also eventually affect convergence in calibration, likely degrading both

the calibration and validation performance.

3.3 Selection of a preferred blended model configuration

The sequential improvement of the overall model performance is shown in Figure 2. However, a ‘best’ model would ideally

be selected from this set of models, such that practitioners may have a single preferred blended model structure to work with.315

This task is made more difficult by the models which appear to have a similar performance, based on the mean calibration and

validation KGE. This selection is therefore informed here by additional metrics (described in Section 2.4) which are plotted

in Figure 5. In both plots A and B, the ideal point is set in the bottom left corner of the plot.

For Figure 5A, this ideal point is located at [0,0], and represents the point where the maximum calibration KGE is equal

to the mean calibration KGE (i.e. all independent trials result in the same KGE score), and the validation KGE is equal to320

the maximum calibration KGE. The validation KGE may theoretically be greater than the calibration score, but a model is

generally not expected to perform better in validation than in calibration, and on average this assumption (calibration scores

better than validation scores) holds in this experiment. The dashed line in this plot represents the Pareto front of non-dominated

model configurations, i.e. model configurations that are not clearly inferior in performance on these axes to another model

configuration (namely, model configurations 36, 37, 34, 29, and 30). In Figure 5B, this ideal point is located at [1,1], where325

the mean of the maximum calibration KGE and the mean validation KGE are both equal to the maximum KGE value of 1.0.

In Figure 5A, a Pareto front of tradeoffs in the calibration consistency and the validation gap are generated, with model

configurations 36, 37, 34, 29, and 30. It is noteworthy that model configuration 0, the original blended model configuration, is

dominated in this plot by all model configurations except two (model configuration 1 and 8).

In Figure 5B, only model configuration 36 is considered non-dominated, and model configuration 36 is also on the Pareto330

front in plot A. Again, it is noteworthy that the original blended model (configuration 0) is dominated by every other model

configuration, for which it is perhaps unsurprising given the empirical approach to modifying model configurations. The out-

come here suggests that model configuration 36 is preferred over all of the options tested herein for use as a future baseline

blended model. This selection is dependent on the setup of this study, such as the daily timestep, lumped model discretization,
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Figure 5. A) Model configurations plotted based on the consistency in model calibration performance on the y-axis (mean difference in the

maximum calibration KGE minus mean calibration KGE for 20 independent trials, averaged across all 12 MOPEX catchments) against the

‘validation gap’ on the x-axis, measured as the maximum KGE calibration performance (taken as the best solution of 20 independent trials)

minus its associated validation performance, averaged across catchments. The black dashed line shows the Pareto front of non-dominated

model configurations (from left to right, 36, 37, 34, 29, and 30). B) Model configurations plotted based on the mean of the maximum

calibration KGE performance, averaged across all 12 catchments) against the mean validation KGE performance for the model iteration

with the maximum calibration KGE on the x-axis, averaged across catchments. Model configuration 36 is the only non-dominated model

configuration in this plot. In both plots, Pareto points are plotted with larger shapes than other data points.
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and available daily forcing data, and the preferred blended model configuration may change with different model decisions in335

other applications. The list of processes and process options for model configuration 36 are provided in Table A2, and the pa-

rameter information for model configuration 36 is provided in Table A3 of the Appendix. Raven model files are also available

with the supporting data for model configuration 36 (see the Code and Data Availability section).

3.4 Validation of the selected blended model

The original and the newly selected blended model (model configuration 36) were calibrated on the independent set of 12340

catchments as a form of spatial validation, since these new catchments were not used in the development or fine-tuning of

either blended model configuration. The results for the two model versions in the independent catchments are summarized

using a combination of density and box plots for calibration performance, and the validation period performance associated

with the best calibration solution, in Figure 6.
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Figure 6. Calibration performance distributions and boxplots, generated from 20 independent trials of the calibration for model configurations

0 (original) and 36 (version 2) for 12 independent catchments. The orange point indicates the validation performance of the best calibration

solution from the 20 independent trials.
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From the results, model configuration 36 improved the calibration performance in 8 of 12 catchments compared to model345

configuration 0, with a similar performance in an additional 2 catchments. The overall mean calibration KGE improved from

approximately 0.866 to 0.886 moving from the original blended model configuration to model configuration 36, and improved

just 0.003 regarding KGE in mean validation, effectively signaling no change in validation performance for the additional

catchments. In considering the mean of the best run in each catchment, the KGE improved from 0.886 to 0.899, and the

validation KGE improved from 0.803 to 0.834.350

The initial high performance of the original blended model version is noteworthy, with all calibrated model performances

with the original blended model (configuration 0) exceeding a KGE of 0.7, and falling between 0.85 and 0.90 KGE in most

catchments. The calibration and (temporal) validation using a substantially reduced calibration budget of 2000 model evalua-

tions (instead of 10,000) and 10 independent trials (instead of 20) across more than 3000 catchments in North America lead to

a median NSE performance of 0.73 and 0.64, respectively (Mai et al., 2022b, see Fig. 2 therein).355

Overall, the work presented here indicates an improvement in the model calibration performance with blended model con-

figuration 36 over the original model configuration 0, but suggests that the increase in validation performance may be less than

that seen in the MOPEX 12 catchments where the new blended model version was developed.

3.5 Identifiability in blended models

In the development of the new blended model configuration and testing multiple process algorithms, distributions of weights for360

each process option were continuously examined to determine which options were being selected for. In borrowing the concept

of ‘identifiability’ from literature in being able to select a unique parameter value from the data available (Wagener et al., 2003;

Guillaume et al., 2019), and applying it to model structure, we can informally asses the identifiability of a process group in a

blended model as more or less identifiable based on the broadness of weight distributions for a given model configuration. This

was demonstrated in Chlumsky et al. (2021) in examining box plots of model weights with the blended model. In this study, the365

distributions for the baseflow group tend to be quite wide and thus it was difficult to ‘identify’ a preferred option between the

two baseflow algorithms, while the distributions for groups such as infiltration and PET tended to be much narrower and show

some selection across trials. An interesting note is that while there was little identifiability in the baseflow group, reducing the

low identifiability groups to a single option still reduced the performance of the model. This suggests that high identifiability

in process groups is not required for the model to benefit in model performance from the blending of those groups - flexibility370

may be more important than identification in this case. This may be related to the mixing of faster and slower subsurface flow

signatures, where a blended group can generate a much more complex signature than a single process.

The identifiability of process groups is very likely impacted by the choice of optimization objective, highlighting the diffi-

culty in selecting a single optimization metric. In this study the KGE was used, which likely allows some process groups, such

as infiltration or snowbalance, to be quite identifiable, and likely obscures the identifiability of processes that respond on a375

different timescale, such as baseflow. A low flow metric would likely improve the identifiability of the baseflow group, though

this remains to be tested.

22

https://doi.org/10.5194/hess-2023-69
Preprint. Discussion started: 23 March 2023
c© Author(s) 2023. CC BY 4.0 License.



4 Conclusions

The blended model configuration initially published in the literature has been shown in several studies to have a high perfor-

mance when deployed. However, this initial configuration and overall model structure was fixed. In this study, we explore many380

blended model configurations and test their performance in the 12 MOPEX catchments located within the continental United

States. In addition to testing different blended process groups, we introduce two blended forcing groups for potential melt and

potential evapotranspiration, and we also introduce non-blended structural changes including processes for depression storage

and canopy interception.

Of the more than 30 alternate model configurations explored, one is found to have a non-dominated performance upon exam-385

ination of different calibration and validation metrics. This blended model configuration was then further evaluated against an

additional 12 independent catchments within the continental United States, and generally found to improve model performance

relative to the original blended model configuration in most of the catchments even though validation performances are not

as pronounced as was seen using the 12 MOPEX catchments used to develop the revised model. We also tested for overfit-

ting by performing a series of regression analyses of model validation performance (both absolute and relative to calibration390

performance) against the number of model parameters, and found no evidence of a decrease in validation performance with

additional model parameters within the conditions of our calibration experiments.

This study provides several considerations for future development of blended model configurations, including approaches

for evaluating process options when designing a blended model, assessing the identifiability of these processes, new options for

blended forcings, and strategies to reduce the dimensionality of blended models. This study also delivers an improved blended395

model as version 2, with a demonstrated increase in calibration and validation performance for catchments in the continental

United States. This blended model version provides enough flexibility to be robust across a range of various catchments without

the need for adjusting its structure beyond what is done in model calibration. The blended model version 2 may be used in

future applications where high model performance is required, and may also be used in addressing scientific questions around

the identifiability of processes in hydrologic models.400

Code and data availability. The code and data used for this analysis will be available on Github (https://github.com/rchlumsk/blendedmodel_

update_2022) upon publication of this manuscript. The Raven Hydrologic Modelling Framework v3.6 is available at http://raven.uwaterloo.

ca/Downloads.html. The DDS algorithm and Ostrich software v21.03.16 are available at https://github.com/usbr/ostrich/releases/tag/v21.03.

16.
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Appendix A: Additional information on the blended model configurations405

This appendix contains a table showing the process options included within each blended model configuration tested (Table

A1), a table listing all of the processes and process options included in the selected blended model version 2 (Table A2), and

a table listing all model parameters included in the selected blended model version 2 (Table A3).
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Table A1. Process options included within each blended model configuration. Model configurations 25-28 & 31-32 were used for testing

weighting schemes and are omitted.
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1. Original model version from Mai et al. (2020)
0 X X X X X X X X X X X X X X X 43

2. Original model version but using data sourced from MOPEX/HYSETS rather than PET_OUDIN
1 X X X X X X X X X X X X X X X 43

3. Initial update based on expert consideration of process options
2 X X X X X X X X X X X X X X X 45

4. Addition of depression storage & seepage, followed by adjustments to other process options
3 X X X X X X X X X X X X X X X 48
4 X X X X X X X X X X X X X X X X 49
5 X X X X X X X X X X X X X X X X X 51

5. Introduction of blended forcings, followed by iteration of process options
6 X X X X X X X X X X X X X X X X X X X 54
7 X X X X X X X X X X X X X X X X X X X X X 57
8 X X X X X X X X X X X X X X X X X X X X X 55
9 X X X X X X X X X X X X X X X X X X X X X 58

10 X X X X X X X X X X X X X X X X X X X X X 59
11 X X X X X X X X X X X X X X X X X X X X X 56
12 X X X X X X X X X X X X X X X X X X X X X 59
13 X X X X X X X X X X X X X X X X X X X X 58
14 X X X X X X X X X X X X X X X X X X X X 58
15 X X X X X X X X X X X X X X X X X X X X 55
16 X X X X X X X X X X X X X X X X X X X X 55
17 X X X X X X X X X X X X X X X X X 52
18 X X X X X X X X X X X X X X X X X 44
19 X X X X X X X X X X X X X X X X X X 50
20 X X X X X X X X X X X X X X X X X X 50
21 X X X X X X X X X X X X X X X X X X 50
22 X X X X X X X X X X X X X X X X X 50
23 X X X X X X X X X X X X X X X X X 47
6. Conglomerate model configuration
24 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 79
7. Experiments in reducing complexity of the blended configuration
29 X X X X X X X X X X X X X X X 41
30 X X X X X X X X X X X X X X 40
33 X X X X X X X X X X X X 37
8. Addition of non-blended processes, and additional complexity reduction experiments
34 X X X X X X X X X X X X 45
35 X X X X X X X X X X X X X X X 51
36 X X X X X X X X X X X X X X 48
37 X X X X X X X X X X X X 44
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Table A2. Processes and process options used for the blended model version 2 setup (model configuration 36) in Raven. The model pa-

rameters active in each option are listed as well. The ranges and a description of the parameters can be found in Table A3. Note that

weight-generating parameters used to determine process weights within each process group are not listed in this table.

Process Process option Parameters active
Processes with multiple (blended) options:
Quickflow H1 BASE_POWER_LAW {x4,x6,x29}

" H2 BASE_THRESH_POWER {x5,x6,x38,x29}
Soil evaporation (AET) I1 SOILEVAP_ALL {x8,x29}

" I2 SOILEVAP_ROOT {x8,x9,x10,x29}
" I2 SOILEVAP_SEQUEN {x8,x9,x10,x29}

Baseflow J1 BASE_POWER_LAW {x11,x12,x30}
" J2 BASE_THRESH_POWER {x44,x12,x39,x30}

PET K1 PET_GRANGERGRAY −
" K2 PET_HAMON −
" K3 PET_PENMAN_MONTEITH {x55}

POTMELT L1 POTMELT_HMETS {x24,x25,x26,x27}
" L2 POTMELT_RESTRICTED −

Processes with single option:
Infiltration M1 INF_HMETS {x1,x29}
Snow balance N1 SNOBAL_HBV {x18,x19}
Canopy interception O1 PRECIP_ICEPT_USER {x49,x52,x55,x56}
Canopy drip P1 CANDRIP_RUTTER {x52,x55,x56}
Canopy evaporation Q1 CANEVP_MAXIMUM {x8,x48,x49,x52,x55}
Abstraction R1 ABST_PERCENTAGE {x41}
Depression seepage S1 SEEP_LINEAR {x40}
Groundwater upwelling T1 CRISE_HBV {x53,x54}
Percolation U1 PERC_LINEAR {x28,x29,x35,x30}
Convolution (surface runoff) V1 CONVOL_GAMMA {x20,x21}
Convolution (delayed runoff) W1 CONVOL_GAMMA_2 {x22,x23}
Rain-snow partitioning X1 RAINSNOW_HBV {x31,x32}
Precipitation correction Y1 RAINSNOW_CORRECTION {x33,x34}
Processes with single option but no tunable parameter combined to process:
Extraterr. Shortwave Gener. Z1 SW_RAD_DEFAULT −
In-catchment routing Z2 ROUTE_DUMP −
In-channel routing Z3 ROUTE_NONE −
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Table A3: The model parameters xi used for the blended model version 2 setup (model configuration 36) in Raven. The

parameter numbering is discontinuous as not all parameters across model configurations are used in model configuration

36. The parameter ranges used in calibration are provided. The process option shows where the corresponding parameter is

active. The Raven table and parameter name can be used to locate the parameter in the Raven setup files. The TOPSOIL is

the upper soil layer while PHREATIC is the lower soil layer. The three Raven parameters FIELD_CAPACITY TOPSOIL,

SNOW_SWI_MAX, and MAX_MELT_FACTOR are derived using a sampled parameter (x10, x14, and x25) and SAT_WILT

TOPSOIL, SNOW_SWI_MIN, and MIN_MELT_FACTOR, respectively, to make sure that one parameter is always larger than

the other. The baseflow coefficients BASEFLOW_COEFF TOPSOIL and PHREATIC are derived from parameters x4 and x11

to allow for a logarithmic sampling. The weight-generating parameters, with a range of [0 . . .1], are omitted from the table.

Param. Range Unit Proc. Opt. Raven table Parameter name
Quickflow:
x4 [−5.0,−1.0] 1/d H1 SoilParameterList BASEFLOW_COEFF TOPSOIL = 10.0x4

x5 [0.0,100.0] mm/d H2 SoilParameterList MAX_BASEFLOW_RATE TOPSOIL
x6 [0.5,2.0] - H1, H2 SoilParameterList BASEFLOW_N TOPSOIL
x38 [0.0,1.0] - H2 SoilParameterList BASEFLOW_THRESH TOPSOIL
Soil evaporation (AET):
x8 [0.0,3.0] - I1− I3, Q1 SoilParameterList PET_CORRECTION TOPSOIL
x9 [0.0,0.05] frac I2,I3 SoilParameterList SAT_WILT TOPSOIL
x10 [0.0,0.45] frac I2,I3 SoilParameterList FIELD_CAPACITY TOPSOIL =

SAT_WILT TOPSOIL + x10

Baseflow:
x11 [−5.0,−2.0] 1/d P1 SoilParameterList BASEFLOW_COEFF PHREATIC = 10.0x11

x12 [0.5,2.0] - P1, P2 SoilParameterList BASEFLOW_N PHREATIC
x39 [0.0,1.0] - P2 SoilParameterList BASEFLOW_THRESH PHREATIC
x44 [0.5,100.0] mm/d P2 SoilParameterList MAX_BASEFLOW_RATE PHREATIC
Potential melt:
x24 [1.5,3.0] mm/d/◦C L1 LandUseParameterList MIN_MELT_FACTOR
x25 [0.0,5.0] mm/d/◦C L1 LandUseParameterList MAX_MELT_FACTOR =

MIN_MELT_FACTOR + x25
x25 [0.0,5.0] mm/d/◦C L2 LandUseParameterList MELT_FACTOR =

MIN_MELT_FACTOR + 0.5*x25
x26 [−1.0,1.0] ◦C L1,L2 LandUseParameterList DD_MELT_TEMP
x27 [0.01,0.2] 1/mm L1 LandUseParameterList DD_AGGRADATION
Infiltration:
x1 [0.0,1.0] - M1 LandUseParameterList HMETS_RUNOFF_COEFF
Snow balance:
x18 [0.0,5.0] mm/d/◦C N1 LandUseParameterList REFREEZE_FACTOR
x19 [0.0,0.4] frac N1 GlobalParameter SNOW_SWI
Canopy interception:
x49 [0.0,0.2] - O1 VegetationParameterList RAIN_ICEPT_PCT
x56 [1.0,1.5] - O1 VegetationParameterList SNOW_ICEPT_PCT = x49 ∗ x56
Canopy drip:
x52 [0.0,10.0] - O1,P1,Q1 VegetationParameterList MAX_CAPACITY
x56 [1.0,1.5] - O1,P1 VegetationParameterList MAX_SNOW_CAPACITY = x52 ∗ x56
Canopy evaporation:
x48 [0.0,0.99] - Q1 LandUseParameterList FOREST_SPARSENESS
Abstraction:
x41 [0.0,1.0] - R1 LandUseParameterList ABST_PERCENTAGE
Depression seepage:
x40 [−1.0,−3.0] 1/d S1 LandUseParameterList DEP_SEEP_K = 10.0x40

Groundwater upwelling:
x53 [0.0,6.0] mm/d T1 SoilParameterList MAX_CAP_RISE_RATE TOPSOIL
x54 [0.0,12.0] mm/d T1 SoilParameterList MAX_CAP_RISE_RATE PHREATIC
Percolation:
x28 [0.00001,0.02] 1/d U1 SoilParameterList PERC_COEFF TOPSOIL
x35 [0.01,5.0] - U1 SoilParameterList PERC_COEFF PHREATIC
Convolution (surface runoff):
x20 [0.3,20.0] - V1 LandUseParameterList GAMMA_SHAPE
x21 [0.01,5.0] - V1 LandUseParameterList GAMMA_SCALE

Continued on next page
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Table A3 – Continued from previous page
Param. Range Unit Proc. Opt. Raven table Parameter name
Convolution (delayed runoff):
x22 [0.5,13.0] - W1 LandUseParameterList GAMMA_SHAPE2
x23 [0.15,1.5] - W1 LandUseParameterList GAMMA_SCALE2
Rain-snow partitioning:
x31 [−3.0,3.0] ◦C X1 GlobalParameter RAINSNOW_TEMP
x32 [0.5,4.0] ◦C X1 GlobalParameter RAINSNOW_DELTA
Precipitation correction:
x33 [0.8,1.2] - Y1 Gauge RAINCORRECTION
x34 [0.8,1.2] - Y1 Gauge SNOWCORRECTION
Soil model:
x29 [0.0,0.5] m H1,2,I1,2,3 SoilProfiles thickness TOPSOIL

M1,U1 L
x30 [0.0,2.0] m J1,2, U1 SoilProfiles thickness PHREATIC
LAI model:
x55 [0.0,1.0] K3,O1, SeasonalRelativeLAI LAI seasonal decrease factor

P1,Q1

410
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