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Abstract. An innovative tool for modelling specific flood volume was presented, which can be applied to assess the need for 17 

stormwater network modernisation as well as for advanced flood risk assessment. Field measurements for a catchment area in 18 

Kielce, Poland were used to apply the model and demonstrate its usefulness. This model extends the capabilities of recently 19 

developed statistical and/or machine learning hydrodynamic models developed from multiple runs of the U.S. EPA’s Storm 20 

Water Management Model (SWMM) model. The extensions enable inclusion of: 1) characteristics of the catchment, and its 21 

stormwater network, calibrated model parameters expressing catchment retention and the capacity of the sewer system, (2) 22 

extended sensitivity analysis and (3) risk analysis. Sensitivity coefficients of calibrated model parameters include correction 23 

coefficients for percentage area, flow path, depth of storage, impervious area, Manning roughness coefficients for impervious 24 

areas, and Manning roughness coefficients for sewer channels. Sensitivity coefficients were determined with regard to rainfall 25 

intensity and characteristics of the catchment and stormwater network. Extended sensitivity analysis enabled an evaluation of 26 

the variability of the specific flood volume and sensitivity coefficients within a catchment, in order to identify the most 27 

vulnerable areas threatened by flooding, Thus, the model can be used to identify areas particularly susceptible to stormwater 28 

network failure and the sections of the network where corrective actions should be taken to reduce the probability of system 29 

failure. The developed simulator to determine a specific flood volume represents an alternative approach to the SWMM model 30 

that, unlike current approaches, is calibratable with limited topological data availability, therefore generates a lower cost due 31 

to the less amount and specificity of data required. 32 

 33 

 34 

 35 
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Highlight 36 

 simulator of a specific volume of flood as an alternative to the SWMM model,  37 

 sensitivity analysis extension considering rainfall and catchment topological data, 38 

 the probability of failure of the stormwater system as a criterion for corrective actions under conditions of uncertainty 39 

 40 
1. Introduction 41 

Climate change and urbanization are the main factors increasing the pressure on the functioning of sewer networks, 42 

in particular components responsible for stormwater management (Miller et al., 2014; Hettiarachchi, et al, 2018; Lama et al. 43 

2021a; Khan et al, 2022). This results in an increase in the frequency and volume of stormwater flooding, deterioration of the 44 

living standards of the inhabitants, and pipes abrasion (Jiang et al., 2018; Zhou et al. 2018; Chang et al. 2020; Lense et al. 45 

2023). The literature data (Siekmann et al. 2011) shows that the basis for making decisions on corrective actions (replacement 46 

of a pipe, removal of sediments, construction of a reservoir, etc.) is the specific flood volume expressing the volume of 47 

stormwater flooding on a unit impervious surface. Limiting values for the specific flood volume have been determined by 48 

Siekmann and Pinnekamp (2011), based on simulations for urban catchments, as the basis for the maintenance of the sewage 49 

network and the criterion for making decisions on modernization or corrective actions.  50 

In order to obtain a required hydraulic efficiencies, simulation models are typically used to plan corrective actions 51 

(Kirshen et al. 2014). For this purpose, mechanistic models are used, such as the USEPA’s Storm Water Management Model 52 

(SWMM), which account for surface runoff, drainage of the sewage network, and flooding of stormwater during system 53 

overload (Guo et al. 2021; Li et al. 2022; Yang et al., 2022; Lama et al. 2021b). As in the case with other mechanistic models 54 

(MOUSE, PCSWMM, MIKE URBAN etc.), SWMM can incorporate the spatial characteristics of a sewage network, as well 55 

hydraulic conditions, in calculations that predict and characterize stormwater flooding (Martins et al. 2018; Yang et al., 2020; 56 

Ma et al., 2022). However, such models are characterized by high specificity (one model can be used for one catchment), and 57 

they require the collection of detailed data and measurements (rainfall, runoff), which is labour-intensive and generates high 58 

costs. Moreover, there are a strong interactions between the calibrated parameters (Wu et al. 2013; Chen et al. 2018; Sonavane 59 

et al. 2020; Shrestha et al., 2022; Ray et al. 2023), leading to uncertainty of simulation results (Ball 2020; Kobarfard et al. 60 

2022; Sun et al. 2022) which complicates to select specified corrective action (Kim et al. 2017; Bobovic et al. 2018; Hung and 61 

Hobbs 2018). To solve this problem, an important step in the development of the computational algorithm is the 62 

implementation of sensitivity analysis (Fraga et. al. 2016; Cristiano et al. 2019; Razavi and Gupta 2019). Simulations by Szeląg 63 

et al. (2021) have shown the influence of uncertainty in calibrated SWMM parameters on the calculation of specific flood 64 

volume and degree of flooding, which was also confirmed by the simulations of Fraga et al. (2016) and Kelleher et al. (2017). 65 

 To overcome the limitations of MCM, the implementation of statistical and/or machine learning methods seems is a 66 

prospective alternative (Rosenzweig et al. 2021; Lei et al. 2021; Bui et al. 2019; Shafizadeh-Moghadam et al. 2018; Chen et 67 

al. 2019; Fong and Chui, 2020; Mohammand et al. 2023). ML methods can estimate of specific stormwater flood volume for 68 

a catchment area with different topology. However, so far, no simulator model based on statistical and/or machine learning 69 
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has been developed to simulate specific stormwater flood volume while taking into account the factors included in mechanistic 70 

models (Mignot et al., 2019; Guo et al. 2021; Rosenzweig et al. 2021). Some progress in application of machine learning 71 

methods to simulation of stormwater flooding has been made. Thorndahl et al. (2008), based on simulation results of flooding 72 

from manholes, including uncertainty of calibrated parameters, developed a model using the FORM (first order reliability 73 

model) method. Jato-Espino et al. (2018) and Li and Willems (2020), conducting simulations with mechanistic models, present 74 

models (logisitc regression) for identification of flooding from a single manhole based on rainfall frequency, catchment and 75 

stormwater network characteristics. Therefore, Szeląg et al. (2022a, 2022b) proposed a models for calculating estimates of 76 

stormwater flooding in a catchment, but due to insufficient data in constructing the model, application is limited. In the 77 

aforementioned models, interactions between land use, catchment and stormwater network characteristics, as well as system 78 

capacity were neglected. However, by omitting these factors, at the spatial planning stage, reduces the applicability of the 79 

model. 80 

Another important indicator of proper sewage network management is the assessment of the risk of system failure 81 

(exceed the maximum specific flood volume). Reliable risk assessment requires the integration of mechanistic models, 82 

statistical approach and simulators of rainfall data (Fu et al. 2012; Zhou et al. 2019; Venvik et al. 2020). Most of the methods 83 

(Ursino 2014; Cea and Costabile 2022; Taromideh et al. 2022) focus on determining the impact of climatic changes in rainfall 84 

on the efficiency of the sewage system and include the impact of parameters expressing terrain and sewer retention. Currently, 85 

there is no effective method of risk analysis taking into account the uncertainty of the calibrated parameters to simulate a 86 

specific flood volume for the different urban catchments. 87 

The aim of the article was to develop an innovated simulator, combined with risk assessment and sensitivity analyses 88 

for calculating the specific flood volume, taking into account rainfall data, catchment characteristics and topology. Recognition 89 

of the above factors enabled the application of the proposed logistic regression model to identify stormwater flooding in 90 

catchments with different characteristics, as an alternative approach to the SWMM model. An important aspect of the proposed 91 

approach was the risk assessment of system failure (specific volume of flood exceed 13 m3·ha-1) and sewage system operation 92 

under uncertainty. Moreover, the methodology presented in the work, integrated with the stormwater flooding simulator, 93 

enabled the identification of the impact of calibrated SWMM parameters on the results of the sensitivity analysis in catchments 94 

with different characteristics. This feature enables building a mechanistic model, which allows appropriate selection of 95 

techniques for measuring input data, which can ultimately reduce the costs of applying the model. The developed methodology 96 

enables the appropriate selection of devices for measuring the flow rate, and their location in the sewage network in the context 97 

of calibrating the catchment model and reducing the costs of flow measurements. 98 

 99 
2. Case study 100 

The analysed urban catchment is located in the south-eastern part of Kielce, central Poland, Świętokrzyskie region 101 

(Figure 1). Residential districts, public buildings, main and side streets are located in the study area. The catchment area covers 102 

63 ha and consists of 40% impervious and 60% permeable areas. The road density is 108 m·ha-1 (Wałek, 2019), and the terrain 103 
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denivelation is 11.20m (the ordinates of the highest and the lowest points of the terrain are 271.20 m and 260 m above sea 104 

level, respectively).  105 

 106 

Figure. 1. Study catchment area (Wałek, 2019). 107 
 108 

The length of the main interceptor channel in the stormwater network is 1569 m, with an average slope of 0.71%. The diameter 109 

of the main interceptor expands from 600 to 1250 mm, while the diameters of side sewers vary between 300 and 1000 mm. 110 

The slope of the sewers varies between 0.04 and 3.90%. The analysed stormwater system is separated from the municipal 111 

sewage. Stormwater flows to the division chamber (DC), and after reaching a depth of 0.42 m it flows into a stormwater 112 

treatment plant (STP). During heavy rainfall, when the stormwater level in the DC exceeds the overflow level (OV), it is 113 

discharged by the storm overflow (OV) into the S1 channel, which transports the stormwater directly to the Silnica river 114 

(without treatment). At a 3.0 m distance from the inlet of the main interceptor to the DC, the flow meter MES1 is installed, 115 

which measures the flow rates during heavy rainfall with resolution of 1 minute. Analysis of data from 2010–2020 showed 116 

that during dry periods the measured flow rates varied between 1–9 dm3·s-1, which indicates that infiltration occurs in the 117 

stormwater network. Measurements of stormwater network operation carried out in the years 2008–2019 indicated that 118 

stormwater flooding occurs in the analysed catchment. Taking into account, 159 episodes of rainfall –  runoff, within four 119 

catchments, 23 cases of flooding were observed. At a distance of 2.5 km from the catchment boundary, a rainfall measurement 120 

station is located, which provides constant measurement of rainfall, with a 1-minute temporal resolution.  121 

 122 
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Sub-catchment division and characteristics 123 

The analysed catchment was divided into sub-catchments (Szeląg et al. 2022), which constituted study areas for 124 

identification of stormwater flooding. Due to limited amount range of rainfall data, the obtained model for simulation of 125 

stormwater overflow did not include all important factors, such as dry period duration between rainfall events, retention 126 

catchment that impact flooding phenomenon, which meant that the model had limited predictive capability. Detailed 127 

description and justification of sub-catchments used for construction of flooding identification model was presented by Szeląg 128 

et al. (2022). In reference to approach proposed by Duncan et al. (2011), Jato – Espino et al. (2018), Li and Willems (2022), 129 

in the current analysis the number of sub-catchments used for development of a logit model was increased to 8 (Figure 2). The 130 

sub-catchments boundaries together with data on spatial development and stormwater network (Table 1) were determined 131 

based on maps for design purposes, which was discussed in detail by Szeląg (2013).  132 

 133 
Table. 1. Characteristics of sub-catchments  134 

No. F Imp Vk Gk R.t. Vkp dH1 dHp Lk Jkp Hst Impd Gkd Vrd Vkd 

  ha - m3 m·ha-1 m m3 m m m - m - m·ha-1 m3 m3 

J 12.66 0.37 157.0 0.0079 1.74 33.2 0.24 0.25 96.5 0.0036 1.42 0.40 0.0072 2159.4 2577.2 

K 18.92 0.38 360.4 0.0084 1.69 28.4 0.31 1.05 56.5 0.0055 2.36 0.40 0.0063 1886.8 2373.7 

L 27.15 0.36 557.4 0.0074 2.74 29.6 0.34 1.75 59.0 0.0058 2.36 0.42 0.0053 1496.0 2176.7 

M 29.78 0.36 678.8 0.0068 4.49 48.7 0.38 1.15 62.0 0.0061 2.32 0.43 0.0050 1373.3 2055.3 

N 36.78 0.37 712.2 0.0081 4.49 48.7 0.38 1.15 62.0 0.0061 2.32 0.44 0.0040 1061.4 2022.0 

O 41.31 0.32 858.2 0.0079 5.32 16.1 0.21 1.28 20.5 0.0102 2.31 0.49 0.0037 825.9 1876.0 

P 45.42 0.37 981.9 0.0082 5.64 16.1 0.21 1.28 20.5 0.0102 2.31 0.46 0.0027 682.2 1752.3 

R 48.31 0.37 981.9 0.0088 5.64 16.1 0.21 1.28 20.5 0.0102 2.31 0.47 0.0023 553.1 1752.3 

S 55.41 0.41 1240.2 0.0092 8.47 67.5 0.67 1.8 86.0 0.0078 2.31 0.55 0.0011 258.4 1493.9 

where: F – catchment surface area; Imp – impervious area; Vk – volume of stormwater channel; Gk – length of stormwater 135 

channel per impervious area of the catchment; R.t. – height difference of the channel, Vkp – volume of the channel above the 136 

cross-section of a catchment; dH1 – height difference of the terrain at section above cross-section r; dHp – height difference 137 

at section above cross-section; Lk – length of channel above cross-section of a catchment; Jkp – channel slope above cross-138 

section of a catchment; Hst – the height of a manhole at cross-section; Imp – impervious area of downstream area; Gkd – 139 

length of a channel per impervious area below cross-section; Vrd – catchment retention above the cross-section calculated as 140 

Vrd = F·(Imp·dimp+(1-Imp)·dper), Vkd – total retention of a catchment. 141 

 142 
Data were verified using independent analysis performed by Wałek (2019), who used Qgis program to develop spatial 143 

development model and stormwater network for Kielce. Location of closing cross-sections of sub-catchments (J, K, L, M, M, 144 

O, P, R, S) along the main interceptor were additionally supported by simulation results of outflow hydrographs developed by 145 

Wałek (2019) with use of HEC-HSM model as well as by Szeląg et al. (2014, 2022) with use of hydrodynamic model SWMM. 146 
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3. Methodology 147 

 148 
3.1. Criterion for stormwater system operation and modernisation 149 

The value of a specific flood volume was defined as stormwater flooding per paved area, which can be expressed by 150 

the following formula (Sinekamp and Pinekamp, 2011): 151 

                                                                            𝜅 =
∑ ௏೟(೔)

಼
೔సభ

஺೛ೌೡ
                                                                   (1) 152 

where: Vt – volume of stormwater flooding from i-th manhole of the stormwater network, K – number of manholes, Apav – 153 

paved area. Sinekamp and Pinekamp (2011) based on continuous simulations with hydrodynamic models for 3 urban 154 

catchments found that the specific flood volume ranged from 0 - (>20) m3·ha-1.  155 

 156 

On this basis, they established limiting κ values expressing the need to improve the operating conditions of the drainage system. 157 

They showed that for κ > 13 m3·ha-1 the drainage system requires adaptation This was also confirmed by the calculations of 158 

Kotowski et al. (2014) for the catchment in Wroclaw and Szeląg et al. (2021) for the catchment in Kielce. This allows us to 159 

conclude for urban catchments (Poland, Germany) that the κ value quoted above can be a criterion for making decisions on 160 

corrective actions of the drainage network. 161 

 162 

3.2. Simulator structure and development 163 

The concept of the proposed of tool based on simulator integrated with the risk assessment and sensitivity analysis to 164 

evaluate operation of sewage system was presented in Figure 2. Applying the MCM of an urban catchment with separate sub-165 

catchments (varying land use and topology), a simulator of the specific flood volume was developed as an alternative approach 166 

to the SWMM. A proposed simulator of logistic regression model based on rainfall data, catchment and stormwater network 167 

characteristics, SWMM parameters (width of runoff path, retention depth of impervious areas, Manning roughness coefficient 168 

of impervious areas, correction coefficient of impervious areas, Manning roughness coefficient of channels). The resulting 169 

tool enables fast analysis of sewer network performance even with limited data access and can be applied to other catchments. 170 

Proposed methodology is based on extension of algorithms given by Szeląg et al. (2021, 2022). In contrast to previous studies 171 

(Szeląg et al. 2022), the current approach took into account the retention of the catchment and the sewer network, and the 172 

performance criterion of the sewer network was the volume of flooding and not just the fact that it occurred. Integration of the 173 

simulator with an analytical relationship for sensitivity coefficient calculations for logistic regression allows fast evaluation of 174 

the impact of MCM parameters on flooding for arbitrary catchment characteristics and topological data. 175 

 176 
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 177 

Figure. 2. Algorithm for developing an advanced tool to simulate a specific flood volume (situation maps in module 178 
(1a), (1b) by Walek (2019). 179 

 180 
In order to provide more reliable simulation results, the proposed risk assessment took into account the uncertainty of the 181 

SWMM parameters and enabled the optimisation of the operation of the sewer network based on the maximum allowable 182 

values of the channel Manning roughness coefficients. 183 

 184 

 185 

 186 
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3.3. Algorithm structure  187 

The proposed computation algorithm consists of 9 modules. Modules 1, 2, 3, 4 include identical steps as in the work 188 

of Szeląg et al. (2021, 2022). In the present study, the scope of the analyses was extended, as in addition to precipitation data 189 

and SWMM parameters (Szeląg et al. 2022), the characteristics of the catchment and the stormwater network of the separated 190 

sub-catchments were also included (module 1), which was used to determine the computational model. On the basis of spatial 191 

data (1a, 1b), a mechanistic model of the catchment was built (module 2), which allowed to perform an uncertainty analysis 192 

using the GLUE method (module 3). On this basis, simulations were performed in separated sub-catchments for rainfall events 193 

(1e) under uncertainty (module 4). Based on the simulation results a logistic regression model was developed (module 5) to 194 

calculate the local sensitivity coefficients for calibrated SWMM parameters, with regard to rainfall intensity and catchment 195 

characteristics (module 6). Modules 1, 2, 3, 4 included analyses to determine a specific flood volume simulator that can be 196 

applied to any catchment. Thus, future algorithm implementation for the new catchment, will ultimately include only modules 197 

6, 7, 8. Using adopted rainfall data, the sensitivity coefficients of SWMM model parameters for sub-catchments are computed 198 

and maps showing sensitivity changes in catchment scale are drawn (module 6). While the model is applied to identify 199 

stormwater flooding, the possible methods for improving stormwater network operating are analysed inside module 7, 8. 200 

Computations using the developed algorithm consist of the following steps: 201 

1) collecting of the input data (catchment characteristics – 1a, stormwater network characteristics – 1b, rainfall – runoff 202 

episodes – 1c), separation of independent rainfall episodes – 1d, division and determination of characteristic of sub-catchments 203 

– 1e,  204 

2) development of hydrodynamic model (module 2) based on catchment characteristics (1a) and stormwater network 205 

characteristics (1b), 206 

3) conducting of uncertainty analysis with GLUE method (section 3.3.3) using hydrodynamic model of a catchment based on 207 

rainfall – runoff episodes (1d),  208 

4) using independent rainfall events (1d) simulations with hydrodynamic model including uncertainty of calibrated parameters 209 

according to points (4a, 4b, 4c) are conducted;  210 

a) simulation of SWMM parameters (a posteriori distribution) in Table S1 using the results of uncertainty analysis, 211 

b) simulation of stormwater network operation during independent rainfall events (1d) including uncertainty (4a),  212 

c) computation of specific flood volume in each sample of independent rainfall events in sub-catchments; 213 

transformation of determined κ values to classification data (section 4a), 214 

5) determination of logistic regression simulator SWMM of specific flood volume as alternative to MCM model based on 215 

results of computations in point 4c, 216 

6) sensitivity analysis: 217 

a) computations of sensitivity coefficients (with regard to SWMM parameters) for assumed rainfall data and catchment 218 

characteristics, 219 

b) computations of sensitivity coefficients for sub-catchments (J, K, L, M, N, O, P, R, S), 220 
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7) application of developed logistic regression model for amelioration of stormwater network operation, 221 

a) analysis of the impact of corrective variants on sensitivity coefficients in sub-catchments,  222 

8) analysis of failures occurrence. 223 

 224 

3.3.1. Determination of independent rainfall events (module 1e) 225 

Determination of independent rainfall events for the period 2010 - 2021 was based upon criteria defined in DWA A-226 

118 (2006) guidelines. The minimum time period between independent rainfall events was set as 4.0 hours. Computation of 227 

stormwater flooding was performed for rainfall events with a minimum depth of Pt = 5.0 mm (Fu and Butler, 2014) and only 228 

for those events that resulted from convection rainfalls (i.e., rainfall duration below 120 min). For the analysed catchment, it 229 

was indicated that stormwater flooding occurs for C = 2, 3, 5 and rainfall duration tr = 120 min (Szeląg et al., 2021). The 230 

computed values of specific flood volume (the upper limit of 95% confidence interval) are κ = 45 m3·ha-1. Analyzing of the 231 

rainfall data, it was observed that the number of rainfall events with depths of Pt = 5.2–42 mm ranged from 12 to 30 in each 232 

year (210 rainfall events altogether), while the rainfall durations were between tr = 15 –120 min. 233 

 234 

3.3.2. Hydrodynamic catchment model (module 2) 235 

 Stormwater flooding volume calculations were performed with the SWMM model using the ,,Flooding" function 236 

(Szeląg et al. 2021). Based on the results of 𝑄(𝑡) for j – manholes (j = 1, 2, 3 ..., k) in the sub-catchments (J, K, L, M, N, O, 237 

P, R, S), the total flooding volume 𝑉௝ = ∫ 𝑄(𝑡)𝑑𝑡 was determined, which allowed specific flood volume (κ) values to be 238 

determined from Equation (1).   239 

 The model of analysed catchment covers 62 ha and is divided into 92 sub-catchments with areas varying from 0.12 240 

to 2.10 ha and impervious areas ranging 5 to 95%. The model comprises 82 nodes and 72 sections of channels. At the 241 

calibration stage method of the ,,trial and error”, the mean retention of the catchment equal of 4.60 mm. The Manning 242 

coefficient of impervious areas was found to be 0.025 m-1/3·s and 0.10 m-1/3·s for pervious areas. The flow path width was 243 

determined using the formula W=α·A0.50, where: α = 1.35. Catchment model calibration performed by Szeląg et al. (2021) 244 

indicated that for 6 rainfall-runoff events, a very good fit of modelling outflow hydrographs to measurement results was 245 

obtained (Nash - Sutcliff coefficient was 0.85 - 0.98, coefficient of determination was equal to 0.85 - 0.99, hydrograph volumes 246 

and maximum flows did not exceed 5% compared to measurement data).  247 

 248 

3.3.3. Uncertainty analysis – GLUE (module 3) 249 

In the GLUE method, the identification of model parameters was considered as a probabilistic task due to the large 250 

number of parameters characterizing processes occurring in urban catchments (runoff, infiltration, flow in stormwater conduits, 251 

flooding) – Szeląg et al. (2021), Kiczko et al. (2018), Mannina et al. (2018). The identification of model parameters in the 252 

GLUE method depends on the transformation of an a priori distribution to an a posteriori distribution by means of a likelihood 253 

function 𝐿(𝑄/𝜃), which determines the probability of a combination of parameters depending on the quality of fit of the 254 
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calculation result to the measured values. Uniform distribution of SWMM parameters was assumed (Table S1). Mathematical 255 

models used for description of surface runoff usually do not include runoff distribution and at most they include the range of 256 

admissible values of parameters resulting from their physical interpretation (Dotto et al., 2014; Knighton et al., 2016). 257 

Identification of distributions a posteriori and determination of likelihood functions the rainfall - runoff episodes 30 May 2010 258 

and 8 July 2011 were used, while for verification the episodes from 15 September 2010 and 30 July 2010 were applied. Subsequent 259 

computation steps of GLUE analysis were discussed in detail in Supplementary Information (Section 1).  260 

 261 

3.3.4. Simulation of stormwater network operating with regards to uncertainty (module 4) 262 

Based on the results of GLUE (a posteriori distribution SWMM parameters, 5000 sampling), the computation of 263 

stormwater network was performed for separate 175 independent rainfall events and 9 subcatchments; 35 events were used to 264 

validate the model. The values of specific flood volume for sub-catchments (J, K, L, M, N, O, P, R, S) were calculated and 265 

zero-one variables were established to develop logistic regression model. For computed values of specific flood volume (κ ≥ 266 

13 m3·ha-1) the variable value was denoted as 1, while in the opposite case it was 0 (Siekmann and Pinekamp, 2011).  267 

 268 

3.3.5. Developing a logistic regression model – simulator specific flood volume (module 5) 269 

Logistic regression model (LRM) is a tool used for classification. This model has been already applied for modelling 270 

stormwater flooding (Szeląg et al., 2020), identifying stormwater flooding from manholes (Jato – Espino et al., 2018) and the 271 

technical condition of sewage systems (Salman and Salem, 2012). The logistic regression model is described by the following 272 

equation: 273 

                    𝑝௠ =
ୣ୶୮ (ఈబାఈభ·௫భାఈమ·௫మାఈయ·௫యା⋯ାఈ೔·௫೔)

ଵାୣ୶୮ (ఈబାఈభ·௫భାఈమ·௫మାఈయ·௫యା⋯ାఈ೔·௫೔)
=

ୣ୶୮ (௑)

ଵାୣ୶୮ (௑)
=

௘௫௣(𝑋𝑟𝑎𝑖𝑛+𝑋𝑆𝑊𝑀𝑀+𝑋𝐶𝑎𝑡𝑐ℎ𝑚)

ଵା௘௫௣(𝑋𝑟𝑎𝑖𝑛+𝑋𝑆𝑊𝑀𝑀+𝑋𝐶𝑎𝑡𝑐ℎ𝑚)
                     (2) 274 

 where pm – probability of a specific flood volume (understood as the need to corrective actions the stormwater network); α0 – 275 

absolute term; α1, α2, α3, αi – values of coefficients estimated with the maximum likelihood method, X – vector describing the 276 

linear combination of the independent variables; Xrain/ XSWMM/ XCatchm – vector describing linear combination of statistically 277 

significant:  278 

(a) rainfall characteristics (𝑋௥௔௜௡ = ∑ 𝛼௦ · 𝑥௦
௧
௦ୀଵ ),  279 

(b) SWMM parameters (𝑋ௌௐெெ = ∑ 𝛼௞ · 𝑥௞
௠
௞ୀଵ ),  280 

(c) catchment characteristics, and stormwater network characteristics confidence level – 0.05 (𝑋஼௔௧௖௛௠ = ∑ 𝛼௣ · 𝑥௣
௥
௣ୀଵ ); xi – 281 

independent variables describing rainfall characteristics, e.g., rainfall depth, its duration, and the parameters calibrated in the 282 

SWMM, catchment characteristics (permeability, terrain retention, density of stormwater network, length, slope, retention in 283 

stormwater channels etc.).  284 

Independent variables in the logit model were calculated using the forward stepwise algorithm, recommended for the creation 285 

of such models. At the same time, it also ensures the elimination of correlated independent variables (Harrell 2001). The 286 
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estimation of the coefficients αi in Equation (4) and thus the determination of the logistic regression model involved two stages: 287 

learning (80%) and testing (20%). Optimisation of the pm threshold, equations for determining measures of fit between 288 

computational results and measurements was provided in Supplementary Information (Section 2). In this study, 35 independent 289 

rainfall events were assumed for model validation, for which Pt = 6.0 - 15.0 mm and tr = 30 - 120 min. For validation of the 290 

LRM model, catchments J, O, S were selected, in which catchment (Imp, Impd) and topology network (Gk, Gkd, Jkp) 291 

characteristics were varied in the interaction scheme. At the variant generation step, combinations of two inputs were used to 292 

verify model, them values of which were changed in a three-point scheme -0.2/0/+0.2. 293 

 294 

3.3.6. Sensitivity analysis (module 6) 295 

According to literature data (Morio, 2011), despite simplifications, local sensitivity analysis is widely applied at the 296 

calibration stage and while analysing the hydrodynamic catchment models. In our study, the sensitivity coefficient was 297 

calculated from the equation (Petersen et al. 2012):  298 

                                                                             𝑆௫௜ =
డ௣೘

డ௫೔
∙

௫೔

௣೘
                                                                                                (3) 299 

Where, knowing that 
డ௣೘

డ௫೔
= 𝛽௜ · 𝑝௠ · (1 − 𝑝௠), after transformations, the following formula was obtained (Fatone et al. 2021): 300 

                                                            𝑆௫௜ = 𝛽௜ · 𝑥௜ · (1 − 𝑝௠)                                                                                            (4)    301 

Value of the Sxi was calculated for calibrated SWMM parameters (Table S1), at the same time analysing the impact of rainfall 302 

duration (tr = 30 – 90 min) for rainfall depth Pt = 10 mm (representative value for analysing stormwater network functioning 303 

according to DWA – A 118, corresponding to a heavy rainfall event). For the above assumptions, Sxi was determined for 304 

different catchment characteristics, which at the same time helped to evaluate the interactions between rainfall data and the 305 

parameter SWMM.  306 

The probability of the specific flood volume (pm) was computed using the logistic regression model for the sub – 307 

catchment characteristics defined in Table 2 and SWMM parameters established during calibration (Szeląg et al., 2016) for 308 

maximum convection rainfall intensity for tr = 30 min and Pt = 9.62 mm for Kielce (Section 4 at Supplementary Information). 309 

The calculations of Szeląg et al. (2022) proved that in the urban catchment in question there is a hydraulic overload of the 310 

stormwater system due to convective rainfall. At the same time, the sensitivity coefficients for calibrated SWMM model 311 

parameters were calculated. On this basis the spatial variability of Sxi for the sub-basins was determined. 312 

 313 

3.3.7. Application of the logit model to analyse stormwater operating and catchment management (module 8) 314 

If the stormwater network ceases to function properly and the threshold value of pm is exceeded, some possible 315 

improvements were suggested, including: (a) increasing the retention depth of impervious areas, i.e. an increase of dimp from 316 

2.50 mm to 3.50 mm, and at the same time raising the Manning roughness coefficient from nimp = 0.025 m-1/3·s to nimp = 0.035 317 

m-1/3·s, (b) an increase of hydraulic capacity by reducing the Manning roughness coefficient for stormwater channels from nsew 318 
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= 0.018 m-1/3·s to nsew = 0.012 m-1/3·s. In addition, the possible change of spatial development of urban catchment area was 319 

taken into consideration. Finally, combinations of the above-mentioned computation variants were analysed. When the values 320 

of independent variables (catchment characteristics) adopted for the calculations exceeded the lower/upper (e.g., for Imp = 321 

0.32 - 0.41) limit of applicability of the determined logit model, the simulation results were verified with the mechanistic 322 

model. The verification procedure consisted of three steps: 323 

a) computation of the probability of specific flood volume for rainfall with durations in the range of tr = 30 – 90 min to assess 324 

stormwater network operating, 325 

b) simulation with a calibrated hydrodynamic model for rainfall data as in step (a),  326 

c) comparison of computation results obtained in steps (a), (b); in the event of a of good fit, i.e., proper identification of specific 327 

flood volume, the results obtained from the logit model can be accepted. Three specific corrective variants have been defined 328 

as presented in Table S2. 329 

  330 

3.3.8. Probability of stormwater network failure (module 9) 331 

 The probability of failure (Sun et al., 2012; Karamouz et al., 2013) was used to analyze the performance of the sewage 332 

network in a rainfall event. In the calculations, a failure was defined as an episode (assumed rainfall data, catchment 333 

characteristics, sewer network, SWMM parameters described by a posteriori distribution - GLUE results discussed in Section 334 

3.3.3) in which κ ≥ 13m3·ha-1 (pm ≥ pm,cr) is exceeded. However, the probability of failure was calculated from the equation: 335 

                                                             𝑝ி =
∑ ௓ೕ

ಿ
ೕసభ

ே
, 𝑤ℎ𝑒𝑟𝑒: 𝑍௝ = ൜

1; 𝑝௠ ≥ 𝑝௠,௖௥

0; 𝑝௠ < 𝑝௠,௖௥
                                                                 (5) 336 

where: pm – probability of specific flood volume (exceedance of this value indicates a failure), pF – probability of the stormwater 337 

network failure in the event of rainfall, Zj – function describing stormwater network operation, for Zj = 1 – drainage system requires 338 

modernisation; otherwise, i.e. Zj = 0 – modernisation is not necessary. 339 

Based on Equation (5) for the assumed characteristics (rainfall, catchment, drainage network), the operating conditions of the 340 

stormwater network were determined. Hence, an algorithm is given to calculate the performance improvement of a sewer network 341 

in the context of failure probability (pF) reduction. The above effect was obtained by introducing thresholds of maximum permissible 342 

values of Manning roughness coefficients of sewers nsew(m). It was assumed that if the value of nsew (the value from the a posteriori 343 

distribution) exceeds the maximum permissible value - nsew(m) and determines the occurrence of failure (Zj = 1) and the need to 344 

modernize the sewers, it should be corrected in such a way that pm < pm,cr. The above calculations were reduced to the following 345 

steps:  346 

a) a posteriori distribution of calibrated SWMM model parameters (N = 5000 samples),  347 

b) computation of probability of specific flood volume for N items and establishment of failure probability,  348 

c) computation of the Manning roughness coefficient for channels when pm > pm,cr from the following formula: 349 
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                                          𝑛௦௘௪ =
ଵ

ఈ೙ೞ೐ೢ
· ൤𝑙𝑛 ൬

௣೘,೎ೝ

ଵି௣೘,೎ೝ
൰ − (∑ 𝛼௞ · 𝑥௞

௠ିଵ
௞ୀଵ ) − 𝑿௥௔௜௡ − 𝑿஼௔௧௖௛௠൨                                                    (6) 350 

where: k = 1, 2, 3, …, m – calibrated SWMM model parameters; k = 1, 2, 3, …, m; αnsew – estimated coefficient in logistic regression 351 

model for the Manning roughness coefficient for channels (derivation of the Equation 6 was presented in the Supplementary 352 

Information – Section 4),  353 

d) establishment of empirical distribution describing the nsew values calculated from Equation (6),  354 

e) computation of nsew values from Equation (8) for nsew(un) ≤ nsew(m) (where: nsew(un) – Manning roughness coefficients of channels 355 

computed in step (a), nsew(m) – maximal boundary (threshold) value of Manning roughness coefficient for channels), when nsew(un) ≥ 356 

nsew(m) to nsew = nsew(un),  357 

f) computation of probability of specific flood volume and probability of failure (pF),  358 

g) determination of empirical distribution (CDF) for nsew, 359 

h) steps e – g are repeated r = 1, 2, 3, .., z – for different values of nsew,max and median values of nsew(0.5) = f(nsew(m), r) are denoted based 360 

on empirical distributions, 361 

i) steps a–h are conducted for different catchment characteristics,  362 

j) graph pF = f(nsew(0.5)) is drawn. 363 

 364 
4. Results 365 

4.1. Uncertainty analysis – GLUE (module 3) 366 

 Based on SWMM simulation results including uncertainty of calibrated parameters (Table S1), the likelihood functions 367 

were determined (Kiczko et al., 2018). For the observational events (30 May 2010 and 8 July 2011) used to identify the SWMM 368 

parameters, it was found that 96% of the measurement points included the calculated confidence interval. For the validation sets, 369 

90% of the observation points fall within the bands for the 15 September 2010 event and 70% for 30 July 2010 (Figure S1). The 370 

results of the likelihood function calculations for the calibrated SWMM model parameters are given in Figures S2 – S3 in 371 

Supplementary Information.  372 

 373 

4.2. Simulations of stormwater network operation with regard to uncertainty (module 4)    374 

 The results of variation of specific flood volume for the separated sub-catchments has been presented in Figure 3. Based on 375 

the obtained curves it was stated that the uncertainty of SWMM parameters influenced the simulation results, which was confirmed 376 

by the great variability of the 1% and 99% percentile values for each sub-catchment. The median values, enabled to identify that the 377 

largest specific flood volume was for sub-catchment J (14.90 m3·ha-1), and 8.29 m3·ha-1 for the sub-catchment S (Figure 3). The 378 

simulation results for the 1% percentiles showed that for adopted rainfall events (Pt > 5.0mm and tr < 150 min) stormwater flooding 379 

occurred in all sub-catchments. 380 
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                                             381 

Figure. 3. Variability of specific flood volume for sub-catchments. 382 

 383 
It was demonstrated that problems with operating of the stormwater network are present in each sub-catchment, since the calculated 384 

values of percentiles (75%, 99%) are higher than 13 m3·ha-1. This indicates that the stormwater network requires modernisation. 385 

 386 

4.3. Determination of the logistic regression model (module 5) 387 

A LRM was built based on the operational simulation of the stormwater network. The model can be used to identify specific 388 

flood volume and for decision-making regarding corrective actions of the stormwater system. The relationship from Equation (2) 389 

was described by the following linear combination: 390 

𝑋௥௔௜௡ = 4.05 ∙ 𝑃௧௢௧ − 0.18 · 𝑡௥ − 54.15                          (7)                                                              391 

                        𝑋ௌௐெெ = 0.23 ∙ 𝛼 − 79.40 ∙ 𝑛௜௠௣ + 6.23 ∙ 𝛽 + 0.33 ∙ 𝛾 + 234.12 ∙ 𝑛௦௘௪                           (8)                 392 

𝑋஼௔௧௖௛ = 76.72 · 𝐼𝑚𝑝 + 40.77 ∙ 𝐼𝑚𝑝𝑑 − 0.01 ∙ 𝑉𝑘 − 1967.04 ∙ 𝐺𝑘 − 1169.00 ∙ 𝐺𝑘𝑑 − 20.33 · 𝐽𝑘𝑝          (9) 393 

For other independent variables (Table S2) the determined coefficients were statistically insignificant in prediction confidence band 394 

0.05. Standard deviations of the coefficients estimated from the logit model and the test probabilities are presented in Table S2. The 395 

best fit of the computed results to the measurement data was obtained for pm,cr = 0.75. For the test data set (20%) the following values 396 

were obtained: SPEC = 95.24%, SENS = 84.62% and Acc = 87.87%.  397 

For the determined independent variables (Equation 7, 8), calculations were performed with the LRM and SWMM model 398 

(for 35 rainfall events, Pt ≥ 5 mm and tr ≤ 120 min) assuming values of catchment characteristics and topological data within ±0.2 in 399 

the separated sub-catchments. The results of the validation of the developed model for the identification of the specific flood 400 

volume are given in Tables S5 - S11. The results obtained confirm that the determined LRM model can be applied in a wider range 401 
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than shown in Table 1. In the range of NF(SWMM) = (0 - 6), the relative difference in the number of episodes when κ ≥ 13 m3·ha-402 

1 did not exceed 20%, and for NF(SWMM) = <6, 19> was 15 - 33% (Figure 4).  403 

 404 

Figure 4. Comparison of LRM and SWMM simulation results of the number of episodes when the specific flood volume 405 
was greater than 13m3·ha-1 (where: NF(SWMM) – prediction of SWMM, NF(LRM) – prediction of LRM; * - minimum, maximum 406 
values of the catchment characteristics, topology of the stormwater network in Table 1; yellow - the upper limit of the model, 407 

blue - the lower limit of the model).  408 
 409 
The maximum difference between LRM and SWMM simulations (NF(SWMM) - NF(LRM) = 4) was obtained for Imp = 0.49, Impd 410 

= 0.66, Gk = 0.011 m-ha-1, Vk = 1500 m3, which corresponds to the extreme values of the catchment characteristics, the 411 

topology of the sewer network. Verification results showed that the maximum difference in the number of events when κ > 13 412 

m3·ha-1 by the ML model and SWMM for Imp = 0.26 - 0.50, Impd = 0.32 - 0.66, Gk = 0.0068 - 0.011 m3·ha-1, Gkd = 0.0009 –  413 

0.0013 m3·ha-1 did not exceed 4 episodes (Figure 4). The calculations performed confirm the high fitting of the calculations with 414 

measurements of the number of episodes when the specific flood volume exceeds 13 m3·ha-1. 415 

    416 

4.4. Sensitivity analyses (module 6) 417 

 For rainfall depth Ptot = 10 mm and duration tt = 30 – 90 min, the sensitivity coefficients for the SWMM model were 418 

determined, based on Equation (4). For calculation of Sxi the values established during calibration were adopted (Kiczko et al., 2018). 419 

The computation results for two parameters of the SWMM model (β and nimp,) are presented in Figure 5. 420 
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 421 

Figure 5. The impact of rainfall duration (tr) and catchment characteristics (Imp, Impd, Vk, Jkp) on sensitivity coefficients: 422 
(a) Sβ, (b) Snimp. 423 

 424 

These two parameters appeared to have the most significant impact on specific flood volume and, at the same time, they present a 425 

vastly different impact on the dynamics of changes regarding Sxi = f (tr, Imp, Impd, Vk, Jkp); the calculation results for the other 426 

SWMM model parameters are given in Figures S4–S8 (Supplementary Information). The Figure 5 and Figures S4 – S8 indicated 427 

that for the adopted values of tr and Imp, Impd, Vk, Jkp, the highest values of Sxi was obtained for correction coefficient percentage 428 

of impervious areas (β), Manning roughness coefficient for sewer channels (nsew) and Manning roughness coefficient for 429 

impervious areas (nimp). Retention depth of impervious areas (dimp) had the lowest impact on the results of specific flood 430 

volume. An increase of rainfall duration results in higher values of  Sβ, Snimp (Figure 5). The lowest sensitivity coefficients 431 

were obtained for tr = 30 min while the highest for tr = 90 min. An increase of Imp, Impd results in a decrease of Sβ and Snimp 432 

sensitivity coefficients. For instance, an increase of Imp from 0.34 to 0.36 results in a decrease of Sβ from 1.23 to 0.28; identical 433 

values were obtained for Impd (Figure 5). Moreover, an increase of Vk, Jkp, Gk leads to an increase of Sβ and Snimp sensitivity 434 

coefficients. Among analysed catchment characteristics, density of stormwater network (Gk) had the highest impact on 435 

sensitivity coefficients, while longitudinal slope of canal (Jkp) was of the lowest significance, which is confirmed by variability 436 

of obtained curves for subsequent SWMM parameters (Figure 5). For example, when Vk increased from 400m3 to 500 m3, Sβ 437 

increased from 0.29 to 0.82. Additionally, a 10% growth of Sβ was observed due to a change of Jkp = 0.004 to Jkp = 0.010. 438 

Finally, when Gk increased from 0.0075 to 0.009 Sβ also increased from 0.29 to 3.03 (Figure 5).  439 
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4.6. Implementation of logit model to analyse the operating of the stormwater network and catchment management 440 
(module 7 & 8) 441 

Due to the fact that in the analysed stormwater network an exceedance of specific flood volume was observed, 442 

possible improvements to the network were considered in terms of correcting catchment imperviousness (Imp) as well as 443 

enhanced terrain retention and channel capacity. The results of pm computations are presented in Figure 6, while Figure 7 444 

shows Sβ for variants I, II and III for sub-catchments.  445 

 446 

Figure 6. Probability of specific flood volume in sub-catchments for: (a) present state (p0) and for (b) I, (c) II, (d) III 447 
corrective actions variants. 448 

Simulation results for the sensitivity coefficients of other SWMM model parameters (Table S1) and the probability of specific 449 

flood volumes are presented in Figures. S9–S17. A decrease of Imp by 10% in sub-catchment J has negligible impact on pm 450 

value, while in sub-catchment S it results in the decrease of specific flood volume probability by 10% (Figure 6a, 6b). It was 451 

found that decrease of catchment imperviousness (variant I) leads to improvement of stormwater system operation (Figure 6).  452 
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 453 

Figure 7. Sensitivity coefficient (Sβ) in sub-catchments for: (a) present state (0) and for (b) I, (c) II, (d) III  454 
corrective action variants. 455 

 456 

The greatest reduction in volume flooding was obtained for variant III, when pm values decreased by 2% and 36% for sub-457 

catchments J and S (Figure 6d). Based on the pm values in catchments J, M, N, S for corrective action variant III, it was found 458 

that, despite the increase in retention depth, channel capacity and reduction in imperviousness of the catchments, there was 459 

hydraulic overloading (κ > 13 m3·ha-1) in the sub-catchments. This indicates the need for further changes to both the catchment 460 

and the stormwater network than was assumed. For variants I, III the Imp values for the sub-catchment are below the 461 

applicability range of the logit model, so mechanistic model simulations were performed to verify the results (Table S4). The 462 

results of the model calculations confirm their high agreement; out of 72 cases, identical results were obtained in 68 cases. The 463 

calculations performed (variant I, II, III) for the sub-catchment showed a greater influence of changes in terrain retention and 464 

channel capacity on the sensitivity coefficients than the probability of specific flood volume (Figure 7). For catchments J, S, a 465 

10% decrease in Imp (variant I) increased Sβ by 7.55 times and 17.50 times (Figure 7a, 7d). For variant II (increasing catchment 466 
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retention), sensitivity coefficients were found to be higher than 51% (catchment S) and 59% (catchment J) compared to variant 467 

I, and the highest Sβ was obtained in variant III. The Sβ values for sub-catchment S are higher than in catchment J by 20.7 468 

times, 19.3 times and 14.7 times for variants I, II and III, respectively. These results provide relevant information for planning 469 

retention infrastructure that reduces outflow.  470 

 471 
4.7. Probability of failure (module 9) 472 

Based on SWMM model parameters determined via the MCM method (Table S1), probability of failure (pF) was 473 

computed for convection rainfall in Kielce with a duration time of tr=30 min and Ptot= 9.61 mm. The following threshold values 474 

of nsew(m) were adopted for calculations: nsew(m) = 0.015 – 0.045 m-1/3·s, coupled with three variants of catchment characteristics: 475 

Imp = 0.36 and Impd =0.40; Imp = 0.35 and Impd = 0.40; Imp = 0.35 and Impd = 0.42. The impact of canal retention (Vk = 476 

750, 850, 950 m3); density of stormwater network (Gk = 0.0075, 0.0080, 0.0085 m·ha-1; Gkd = 0.005, 0.006, 0.007 m·ha-1) in 477 

upper and lower part of the catchment on probability of failure (pF) was also analysed. The Manning roughness coefficients of 478 

the channels (nsew) for the analysed variants were presented as empirical distribution (CDF). In Figure 8a, 9a the results for 479 

Imp = 0.36, Impd = 0.40 and Vk = 750, 850, 950 m3 are presented, while other variants are shown in Figures S18, S19.  480 
 481 

 482 

Figure 8. (a) Empirical distributions of threshold values of Manning roughness coefficients of channel (nsew). (b) Impact 483 
of Manning roughness coefficient of channel on failure probability (pF) in relation to Imp, Impd. 484 
 485 
Figure 8b presents the impact of nsew=f(nsew(m)) for percentiles 0.25 and 0.50 (based on the curves in Figures 8b, 9b, 9c, 9d, 486 

S25, S26 the values of the respective percentiles for the analysed nsew(m)) on the probability of failure (pF). Assuming that 487 

Manning roughness coefficients – nsew(un) determined by MC simulation which exceeds the threshold triggers the corrective 488 

actions of sewer pipes resulting in reduction of roughness below nsew(m) following the condition in which the stormwater 489 

network functions 𝑝௠  =  𝑓(𝑋௥௔௜௡ , 𝑋ௌௐெெ , 𝑋஼௧௖௛௠)  >  0.75  for an independent rainfall event, it was found out, that an 490 



20 
 

appropriate decrease of percentiles (0.25 and 0.50 - median) leads to improved network operation and to a lower failure 491 

probability (Figures. 8a, 8b). It was observed that the change of percentile 0.50 for nsew for a sample from MC simulation leads 492 

to a decrease from 0.028 m-1/3·s to 0.021 m-1/3·s (as a result of correction nsew(un) <nsew(m)) and to improved stormwater network 493 

operation understood as a lower probability of failure (decrease of pF from 0.68 to 0.42 for Imp = 0.36 and Impd = 0.40). These 494 

results confirm the significance of catchment characteristics (Imp, Impd) for the operability of a stormwater network. For Impd 495 

= 0.40, the reduction in catchment impervious area (Imp) from 0.36 to 0.35, at percentile nsew = 0.019 m-1/3·s results in a 496 

decrease in failure probability from pF = 0.42 to pF = 0.33 (Figure 8b). 497 

Great impact of channel retention (Vk) and density of stormwater network in the upper and lower part of a catchment 498 

(Gkd and Gk, respectively) on probability of failure pF were indicated (Figure 9). For nsew < 0.0215 m-1/3·s pF reached higher 499 

values (max. 0.41) than for Vk = 850 m3 and Vk = 950 m3.  500 

 501 

Figure 9. (a) Empirical distributions of threshold values of Manning roughness coefficients of channels (nsew) for  502 
Vk = 950m3. Impact of Manning roughness coefficient for channel on failure probability (pF) in relation to: (b) Vk – 503 
canal retention, (c) Gk - length of stormwater channel per impervious area in a catchment (m·ha-1), (d) Gkd - length of 504 
a channel per impervious area below closing cross-section (m ha-1). 505 
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The highest failure probability (pF = 0.80) was obtained for Vk = 750 m3 (nsew = 0.031 m-1/3·s), while the lowest pF = 0.65 was 506 

obtained for Vk = 950 m3 (Figure 9b). Furthermore, the highest probability of failure pF = 0.79 was obtained for Gk = 0.0075 507 

m·ha-1 (nsew = 0.031 m-1/3·s), while the lowest for Gk = 0.0085 m·ha-1  (nsew = 0.0276 m-1/3·s) (Figure 9c). It was established 508 

that for nsew < 0.023 m-1/3·s computed values of pF for Gk = 0.0075 m·ha-1 and Gk = 0.0080 m·ha-1 are higher than 0.41. 509 

Moreover, the highest failure probability pF for nsew = 0.035 m-1/3·s was equal to 0.82 for Gkd = 0.005 m·ha-1, while for Gkd = 510 

0.007 m·ha-1 it was 0.73 (Figure 9d).  511 

 512 

5. Discussion 513 

Developing and calibrating mathematical models to simulate stormwater network operation under hydraulic overloads 514 

is one of the latest areas of research. In comparison to the models used so far (Li and Willems, 2019; Thorndahl 2009), the 515 

logistic regression model proposed in this study includes SWMM model parameters describing catchment retention and, at the 516 

same time, the characteristics of the catchment and stormwater network (Table 4).  517 

 518 
Table. 4. Comparison of developed model for identification of specific flood volume to literature data 519 

Study Criteria M I R C S P 

Duncan et al. (2011) occurrence of flooding             

Jato - Espino et al. (2018) occurrence of flooding             

Jato - Espino et al. (2019) occurrence of flooding             

Li and Willems (2020) occurrence flooding             

Szeląg et al. (2021) volume             

Szeląg et al. (2022a) occurrence of flooding             

Szeląg et al. (2022b) specific flood volume             

Thorndahl et al. (2008) volume             

Verbovski et al. (2022) volume             

Fu et al. (2011) volume             

Chen et al. (2020) volume             

Fraga et al. (2016) volume             

this study specific flood volume             
 520 
where: M (method); the models were divided into two groups: mechanistic (·) and statistical model (˅); R (rainfall); C 521 

(catchment); S (sewer); P (calibration parameter); I (interpretation model, based on estimated factors the impact of analysed 522 

factors on stormwater flooding can be determined). 523 

 524 
Apart from the model developed in this study, the above-mentioned factors are only included in MCM, which have a form of 525 

differential equations. Therefore, they require a large number of simulations in order to determine the impact of selected 526 

variables on computation results of specific flood volume. Free from such drawbacks are statistical models (Table S4) that 527 
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take the form of empirical relationships. For models developed with neural networks, there is a need of performing additional 528 

analyses (Ke et al, 2020; Yang et al., 2020). Jato – Espino et al. (2018, 2019) and Li and Willems (2020) analysed stormwater 529 

flooding from manholes based on catchment characteristics and stormwater network characteristics (Table 4). Szeląg et al. 530 

(2022) confirmed their results and developed a model for identification of stormwater flooding in a catchment, but not 531 

considered catchment retention. In this context, the approaches cited above were insufficient to analyse the impact of different 532 

types of pavement (for example roof, road, parking etc.) on sewage flooding. Fu et al. (2011), Thorndahl et al. (2009), Szeląg 533 

et al. (2022b) analysed the uncertainty of the identified parameters, which allowed, for example, to correct for impervious area 534 

retention, roughness coefficient without being able to correct for catchment imperviousness, which limited the use of the 535 

models in catchment management. The approach proposed in this study is a combination of these two solutions, which provides 536 

a tool which can be successfully implemented to manage other catchments. 537 

The results of this study confirmed the major significance and huge interaction between catchment characteristics and 538 

SWMM model parameters. This fact can be further compared by several references (Li and Willems, 2020; Jato – Espino et 539 

al., 2019; Zhuo et al., 2019) presenting comparisons of flooding simulations in urban catchments. This analysis indicated that 540 

an impervious area in a catchment (Imp, Impd) leads to the increase of flooding; reverse dependency was obtained by Jato – 541 

Espino et al. (2018) when modelling flooding from manholes. Increase in channel volume above the closing cross-section of 542 

a catchment (Vk) and its longitudinal slope (Jkp) results in the decrease of flooding, that was confirmed for Espoo catchment 543 

in Finland (Jato – Espino et al. 2018). The increase of unit impervious area per the length of main stormwater interceptor (Gk, 544 

Gkd) results in smaller volume of stormwater flooding. This is due to the relationship that the longer the channel, the greater 545 

the number of manholes. Huang et al. (2018) based on observations conducted in a complex stormwater system indicated the 546 

impact of catchment location and hydrological conditions on the peak flow of flooding. Yao et al. (2019) obtained similar 547 

results after computations with a MCM for catchments in Beijing and in Dresden (Reyes – Silva et al. 2020).  548 

Calculation results obtained in this study confirmed relevant impact of rainfall data, catchment characteristics, and 549 

stormwater network characteristics on sensitivity coefficients – relationships between SWMM parameters and specific flood 550 

volume. For rainfall data and catchment characteristics (assumed as constant) it was proved that correction coefficient of 551 

impervious area (β) and the Manning roughness coefficient for channels (nsew) have the greatest impact on specific flood 552 

volume. The results of this computations were consistent with Thorndahl et al. (2009), who simulated flooding from a single 553 

manhole in the Frejlev catchment (Belgium), based on rainfall data and calibrated parameters of a MCM. These findings were 554 

confirmed by calculations Fu et al. (2012) and Prodanovic et al. (2022) respectively for catchments of 400 ha and 8 ha. Szeląg 555 

et al. (2021, 2022b) based on simulations with MCM including uncertainty of SWMM parameters proved the key impact of 556 

Manning roughness coefficient of sewers on specific flood volume (for rainfall event tr = 30 min and Pt = 15.25 mm). Fraga 557 

et al. (2016) used GLUE+ GSA method for a road catchment and indicated the impact of rainfall data (rainfall duration, depth, 558 

temporal distribution) on sensitivity analysis results. It was confirmed in computations of stormwater flooding using logit 559 

model (Szeląg et al. 2022) and specific flood volume calculations with SWMM model (Freni et al. 2012). Xing et al. (2021) 560 

used MCM to determine characteristics of spatial development and stormwater characteristics in Chongqing catchment (China) 561 
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on the depth of stormwater flooding. The aforementioned research studies indicate the impact of rainfall data, catchment 562 

characteristics, and stormwater network characteristics on sensitivity of hydrodynamic simulation model for stormwater 563 

flooding.  564 

The sensitivity analysis development proposed in this study enabled its application for catchments with different 565 

characteristics, which is an improvement compared to previously applied, more specified approaches (Cristiano et al. 2019; 566 

Fatone et al., 2021). Differences in probability of occurrence/sensitivity coefficients indicate the influence of catchments 567 

downstream on conditions in the catchment above. The variation in sensitivity coefficients does not account for local conditions 568 

within the side channels. Due to the creation of successive sub-catchments by combining them, the conditions of the sewer 569 

system in its area are averaged out, making the interpretation of the results difficult. Using the developed tool, catchment 570 

management may become difficult when there is a particularly hydraulically overloaded area within the catchment, which 571 

impacts neighbouring sub-catchments. 572 

As in the case to the sensitivity analysis, in this study the extension of the sewer system failure assessment has been 573 

adapted to enable the implementation for a random catchment (for the sewer system without pump stations). Calculations 574 

outputs showed the influence of the catchment and sewage network characteristics on the failure probability. The introduction 575 

of the maximum allowable value of the Manning roughness coefficient for the sewer channel, enabled to model the 576 

improvement of the operating conditions of the sewage network under uncertainty. A similar approach was used in the study of 577 

Fu et al. (2012) by limiting to probabilistic rainfall characteristics (Del Giudice, et al. 2013) and using a MCM to simulate the drainage 578 

system. Fu et al. (2011) modified the above approach by focusing on the impact of uncertainty in the calibrated parameters on 579 

flooding; however, it was not possible to analyse retention, channel capacity on system performance.  580 

 581 

6. Conclusions 582 

In this study a novel simulator of logistic regression extended by advanced risk assessment was developed for 583 

modeling stormwater systems operation under uncertainty. The proposed model is an alternative approach to mechanistic 584 

models, that can be used at the preliminary stage of analyses related to spatial planning, urban development and expansion etc. 585 

This is of major significance since at the preliminary stage, the data set for building catchment models is limited and urgent 586 

demand for simulation algorithm to assist decision making is required. Assuming Manning roughness coefficients – nsew(un) 587 

estimations that exceed the threshold triggers corrective actions of sewer pipes resulting in a reduction of roughness below 588 

nsew(m) following the condition of proper functioning of the stormwater network (pm > pmcr). Appropriate decrease of percentiles 589 

(0.25 and 0.50 - median) led to improved network operation and to a lower failure probability requirement.  590 

In the adopted hydrodynamic model (based LRM), the impact of rainfall data, catchment characteristics (impervious 591 

areas in the downstream and upstream) and stormwater network characteristics (the length of channel per unit impervious area, 592 

channel slope and volume) as well as SWMM parameters (roughness coefficient for sewer channel, correction coefficient for 593 

percentage impervious area Manning roughness coefficients for impervious area) were included simultaneously. The obtained 594 

simulations results show the strong interaction between the above-listed parameters. This is extremely relevant in the context 595 
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of models calibration that can be applied to analyse stormwater network operation and to support the decision-making process 596 

(management of stormwater in an urban catchment). Since the proposed solution analyses the spatial distribution of sensitivity 597 

coefficients, it is possible to identify the most vulnerable areas inside a catchment that require specific attention while 598 

identifying SWMM model parameters, which could also be taken into account when locating measuring facilities. 599 

 600 

7 Appendices 601 

Appendix A: List of Symbols 602 
 603 
Symbols: 604 

Apav – area of paved surface (ha), 605 

dH1 – height difference of the terrain at section above closing cross-section (m), 606 

dHp – height difference at section above closing cross-section (m), 607 

CDF – Cumulative Distribution Function (–),  608 

dimp – retention depth of impervious areas (mm), 609 

dperv – retention depth of pervious areas (mm), 610 

F – catchment surface area (ha), 611 

Gk – length of stormwater channel per impervious area in a catchment (m·ha-1), 612 

Gkd – length of a channel per impervious area below closing cross-section (m·ha-1), 613 

GLUE - Generalized Likelihood Uncertainty Estimation, 614 

Hst – the height of a manhole at closing cross-section (m), 615 

Imp – impervious area, 616 

Impd – impervious area of a catchment of downstream area, 617 

J – average rainfall intensity (l·(s·ha)-1), 618 

Jkp – channel slope above closing cross-section of a catchment 619 

K – total number of sewer manholes (–), 620 

Lk – length of channel above closing cross-section of a catchment (m), 621 

L(Q/θ) – likelihood function, 622 

nimp – Manning roughness coefficient for impervious areas (m-1/3·s), 623 

nperv – Manning roughness coefficient for pervious areas (m-1/3·s), 624 

nsew – Manning roughness coefficients of sewer channels (m-1/3·s),  625 

Qz – denote z-th value from the times series of observed and computed discharges (m3·s-1), 626 

Pt – maximum depth of rainfall (mm), 627 

p – cumulative distribution function (CDF), 628 

pm – probability of specific flood volume, 629 
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P(θ) – stands for a priori parameter distribution, 630 

R.t. – height difference of the channel (m), 631 

Sxi – sensitivity coefficient,  632 

xi – independent variables,  633 

SWMM – Storm Water Management Model,  634 

tr – duration of rainfall (min), 635 

V () – variance,  636 

Vk – volume of stormwater channel (m3), 637 

Vkd – total retention of a catchment. 638 

Vkp – volume of the channel above the closing cross-section of a catchment (m3), 639 

Vrd – catchment retention above the closing cross-section (m3), 640 

Vt(i) – floodings volume from i - th sewer manhole (where: i = 1, 2, 3, …, k) (m3), 641 

W – width of the runoff path in a subcatchment (m), 642 

α – Coefficient for flow path width (–), 643 

β – Correction coefficient for percentage of impervious areas (–), 644 

γ – Correction coefficient for subcatchment slope (–), 645 

ε- a scaling factor for the variance of model residua, used to adjust the width of the confidence intervals, 646 

κ – specific flood volume (m3·ha-1), 647 

 648 
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