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Abstract. Water resources managers need to make decisions in a constantly changing environment 11 
because the data relating to water resources is uncertain and imprecise. The Robust Optimization and 12 
Probabilistic Analysis of Robustness (ROPAR) algorithm is a well-suited tool for dealing with 13 
uncertainty. Still, the failure to consider multiple uncertainties and multi-objective robustness hinder the 14 
application of the ROPAR algorithm to practical problems. This paper proposes a robust optimization 15 
and robustness probabilistic analysis method that considers numerous uncertainties and multi-objective 16 
robustness for robust water resources allocation under uncertainty. The Copula function is introduced for 17 
analyzing the probabilities of different scenarios. The robustness with respect to the two objective 18 
functions is analyzed separately, and the Pareto frontier of robustness is generated. The relationship 19 
between the robustness with respect to the two objective functions is used to evaluate water resources 20 
management strategies. Use of the method is illustrated on a case study of water resources allocation in 21 
the Huaihe River Basin. The results demonstrate that the method opens a possibility for water managers 22 
to make more informed uncertainty-aware decisions. 23 

1. Introduction 24 

Water resources is a natural resource necessary for human survival (Chen et al., 2017) but also a driving 25 
force for social and economic development (Dong and Xu, 2019). Due to the increasing population and 26 
rapid growth of economy, a contradiction between the supply and demand of water resources is becoming 27 
more acute, water quality problems are becoming more prominent, and water resources have gradually 28 
become a bottleneck for socio-economic development (Zhuang et al., 2018). This phenomenon is 29 
particularly evident in rapidly urbanizing and vital agricultural and industrial production watersheds 30 
(Yang et al., 2017). In this category of watersheds, agricultural and industrial production pose a massive 31 
challenge to water resource management (WRM) due to accelerated urbanization and rapid socio-32 
economic development (Sun et al., 2019). River basin managers must consider water sources in an 33 
integrated manner and decide how to allocate water resources between different water-using sectors and 34 
cities within the basin (Xiong et al., 2020).  35 
Multi-objective optimization (MOO) is an effective method for improving water resources allocation 36 



(WRA) schemes (Lu et al., 2017; Abdulbaki et al., 2017). MOO can provide decision-makers with WRA 37 
options based on their preferences for objectives, which makes it a well-suited decision-making method 38 
for WRM. Ashofteh et al. (2013) constructed a bottom-line-based multi-objective optimization model to 39 
calculate WRA schemes. Habibi Davijani et al. (2016) presented a multi-objective optimal allocation 40 
model of water resources in arid areas based on maximum socioeconomic benefits. However, WRM is 41 
not only a multi-stage and multi-objective problem but also a complex problem involving uncertainties 42 
and risk management (Yu and Lu, 2018). WRM departments often need to face decision challenges under 43 
uncertain conditions (Hassanzadeh et al., 2016; Ren et al., 2019). Climate change and human activities 44 
have led to an increase in uncertainties in rainfall and water demand in the basin and hence to uncertainty 45 
in managing water resource systems (Jin et al., 2020; Ma et al., 2020; Zhu et al., 2019). Uncertain factors 46 
may lead to the risk of water shortage in the basin, so the existing WRA schemes may not be longer 47 
applicable (Keath and Brown, 2009). Therefore, it is important to study WRA under uncertainty.  48 

Previously, several methods were introduced to analyze uncertainty in WRM. Scenario building and 49 
analysis is regarded as an effective method for considering possible future events and analyzing future 50 
uncertainties (Zeng et al., 2019). The fuzzy logic theory is one of the methods to deal with uncertainty, 51 
which describes uncertainty by fuzzifying the decision variables (Nikoo et al., 2013). Two-stage 52 
stochastic programming (TSP) is also an available planning method in optimization under uncertainty 53 
(Li et al., 2020). However, these approaches do not explicitly evaluate the robustness of the WRA options, 54 
although they take into account the uncertainties in WRA. 55 
Robust multi-objective optimization (RMOO) is an effective method for forming robust WRA schemes. 56 
In relation to water, RMOO was actively applied in the field of water supply system (Kapelan et al., 2005; 57 
Kapelan et al., 2006). In the last decade, RMOO has been gradually applied to other areas of WRM. 58 
Yazdi et al. (2015) and Kang and Lansey (2013) applied robust optimization to design wastewater pipes 59 
by considering uncertainties such as climate change, urbanization, and population change. Marchi et al. 60 
(2016) formed stormwater harvesting schemes under variable climate conditions using RMOO. It should 61 
be pointed out however, that in the mentioned approaches the robustness is often “hidden” into the 62 
objective function or constraints and then a common MOO problem is solved that forms a single Pareto 63 
front. This is indeed an effective method to create solution set which in a certain sense is robust. However, 64 
this approach does not explicitly show the relationship between the solution and the uncertainty variables, 65 
which prevents the decision-maker from clearly understanding the impact of uncertainty, which can 66 
influence the decision. To answer this limitation, the procedure “Robust Optimization and Probabilistic 67 
Analysis of Robustness” (ROPAR) has been developed and presented first in (Solomatine, 2012). The 68 
method will generate multiple Pareto fronts, each corresponding to a sample of uncertain variables so 69 
that the statistical characteristics of the uncertainty of the solution can be analyzed. The ROPAR has been 70 
applied in the design of urban stormwater drainage pipes (Solomatine and Marquez-Calvo, 2019) and for 71 
water quality management in water distribution (Marquez Calvo et al., 2019; Quintiliani et al., 2019).  72 

To the best of our knowledge, the presented versions of the ROPAR methodology have the following 73 
limitations: (1) ROPAR method has not been applied to the field of WRA; (2) ROPAR method only 74 
considers the single source of uncertainty: if there are two sources, then the joint probability of these 75 
sources needs to be considered; (3) ROPAR method only analyses the variability of one objective under 76 
conditions where the other objective function level is fixed. Although the ROPAR method can provide 77 
decision-makers with a robust solution under certain conditions, it does not take into account the 78 
relationship between the two objective functions. 79 

 80 



 81 

Based on the above analysis, although the ROPAR method has proven to be suitable for dealing 82 
with uncertainty, it still needs improvement. In this study, we propose a Copula-Multi-objective Robust 83 
Optimization and Probabilistic Analysis of Robustness (CM-ROPAR) procedure under multiple 84 
uncertainties for WRA. The proposed new procedure of the ROPAR-family considers the joint 85 
probability distribution of uncertainties (in this case, inflows) and enables decision-makers to check the 86 
robustness of the two objective functions separately.  87 

The following text is structured as follows. First, the Chapter 2 presents the methodology of the 88 
paper. It mainly includes the method of Copula function, the method of CM-ROPAR algorithm, the 89 
definition of robustness and the construction of water resources allocation model. Then, the Chapter 3 90 
introduces the overview of the study area. Then, the Chapter 4 introduces the application examples of 91 
CM-ROPAR algorithm, and this paper is an example of water resources allocation of Huaihe River Basin. 92 
Finally, the last Chapter introduces the conclusion of the paper. 93 

 94 

2. Methodology 95 

2.1 Method of Copula Function 96 

Sklar proposed Copula theory in 1959, in which he decomposed an N-dimensional Joint Distribution 97 
Function (JDF) into a Copula function and N Marginal Distribution Functions (MDF), which are not 98 
required to be the same distribution for N variables and can be used to describe the correlation between 99 
arbitrary variables. Nelsen discussed the basic properties and some of the main applications of Copula 100 
functions in 1999 (Nelsen et al., 2008). Copula function is the function that connects the JDF with their 101 
respective MDF. Copula functions can be expressed as: 102 

𝐶𝐶𝜃𝜃(𝑢𝑢1,𝑢𝑢2. . .𝑢𝑢𝑛𝑛)  =  𝐶𝐶𝜃𝜃[𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2). . .𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛)] (1) 103 
where 𝑥𝑥1, 𝑥𝑥2. . . 𝑥𝑥𝑛𝑛 are random vectors, 𝑢𝑢1 = 𝐹𝐹1(𝑥𝑥1),𝑢𝑢2 = 𝐹𝐹2(𝑥𝑥2). . .𝑢𝑢𝑛𝑛 = 𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛) are MDF of 104 

the random vectors, 𝜃𝜃 is the parameter or the parameter vector of copula function. 105 
The basic copula functions are mainly classified into Archimedean, elliptic, and quadratic types. 106 

Among them, Archimedean Copula functions have been widely applied in the field of 107 
hydrology(Salvadori et al., 2007). The Archimedean Copula multidimensional joint distribution models 108 
are the following: 109 
(1) GH-Copula joint distribution model 110 

𝐶𝐶𝜃𝜃(𝑢𝑢1,𝑢𝑢2 ⋯𝑢𝑢𝑛𝑛) = 𝑒𝑒𝑥𝑥𝑒𝑒 �−(∑ (− 𝑙𝑙𝑛𝑛 𝑢𝑢𝑖𝑖)𝜃𝜃𝑛𝑛
𝑖𝑖=1 )

1
𝜃𝜃� (𝜃𝜃 > 1), (2) 111 

(2) Clayton Copula joint distribution model 112 

𝐶𝐶𝜃𝜃(𝑢𝑢1,𝑢𝑢2 ⋯𝑢𝑢𝑛𝑛) = �1 + ∑ (𝑢𝑢𝑖𝑖−𝜃𝜃 − 1)𝑛𝑛
𝑖𝑖=1 �−

1
𝜃𝜃 (𝜃𝜃 ∈ [−1,∞)\{0}), (3) 113 

(3) Frank Copula joint distribution model 114 

𝐶𝐶𝜃𝜃(𝑢𝑢1,𝑢𝑢2 ⋯𝑢𝑢𝑛𝑛) = − 1
𝜃𝜃
𝑙𝑙𝑛𝑛 �1 + ∏ (𝑒𝑒−𝜃𝜃𝑢𝑢1−1)𝑛𝑛

𝑖𝑖=1
(𝑒𝑒−𝜃𝜃−1)𝑛𝑛−1

� (𝜃𝜃 ∈ 𝑅𝑅\{0}), (4) 115 

In a river basin, there may be different drought or wet conditions between different intervals of 116 
inflow, so the probability of drought and wet encounters between different intervals of inflow needs to 117 
be investigated. According to the analysis in Section 2.1, it is known that Copula function can be used to 118 



construct the multivariate joint distribution function. Therefore, this paper adopts Copula function theory 119 
to construct the joint distribution and analyze the drought and wet encounter probability. The steps of 120 
Copula function-based wet-dry encounter analysis are as follows: 1. Fit and Select the MDF. The widely 121 
applied probability distribution functions are mainly Pearson type 3 distribution (P-III), T-distribution, 122 
Normal distribution, etc. MDF can be fitted by Maximum Likelihood Estimation method (MLE method) 123 
and the goodness-of-fit test can be performed by the Kolmogorov-Smirnov test (K-S test) and the Root 124 
Mean Square Error value (RMSE value). 2. Fit and Select Copula distribution function. Based on the 125 
MDF fitted in the first step, construct the Copula function and select the fitted Copula function by AIC 126 
and BIC criteria. 3. Calculate the probability of a dry and wet encounters between different interval 127 
inflows. 128 

 129 

2.2 Method of CM-ROPAR 130 

The basic flow of CM-ROPAR algorithm is shown in Figure 1. Firstly, the multi-objective optimization 131 
problem is defined and the uncertainty variables are clarified; secondly, the Copula function is used to 132 
analyze the relationship between the two sources of uncertainty; and finally, through sampling and multi-133 
objective optimization calculations, the robustness of each solution is identified and the one with the 134 
most comprehensive robustness is selected. 135 

 136 
 137 



 138 

Figure 1. Flowchart of CM-ROPAR. 139 
 140 

The specific process of optimal water allocation under runoff uncertainty based on MROPAR algorithm 141 
is as follows. 142 

Part 1 (Analyzing the wet-dry encounters) 143 
1.Analyze the inflow wet and dry encounters. If the basin has 𝑘𝑘 inflows, then there are 3𝑘𝑘 wet-144 

dry scenarios. For example, suppose there is one inflow in the upper and one in the middle reaches of the 145 
basin. In that case, there are 9 scenarios: wet-medium, wet-wet, medium-wet, medium-medium, medium-146 
dry, dry-wet, dry-medium, and dry-dry. 147 

2.Choose a scenario from 1 to 3𝑘𝑘.  148 
Part 2 (Sampling-Inflow) 149 
3.Based on the recorded annual inflow data 𝑄𝑄, it is assumed that 𝑄𝑄 is not a definite value but  150 
𝑄𝑄 =  𝑖𝑖𝑢𝑢𝑛𝑛𝑢𝑢𝑒𝑒𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑛𝑛𝑢𝑢𝑢𝑢 ∗ 𝑄𝑄,  (5) 151 

𝑖𝑖𝑢𝑢𝑛𝑛𝑢𝑢𝑒𝑒𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑛𝑛𝑢𝑢𝑢𝑢 ∼ 𝑁𝑁�μ,σ2�,  (6) 152 
where 𝑖𝑖𝑢𝑢𝑛𝑛𝑢𝑢𝑒𝑒𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑛𝑛𝑢𝑢𝑢𝑢 follows a normal distribution. 153 

4.For 𝑖𝑖 = 1 …  𝑛𝑛𝑒𝑒 do 154 
5.Sample 𝑢𝑢 (inflow). As mentioned before, the uncertainty variable is obtained from the normal 155 



distribution 𝑁𝑁(μ,σ2). Assuming that the uncertainty variable follows 𝑁𝑁(1,0.0025),this represents that 156 
a 99.74% probability of the uncertainty variable falling within the interval [0.85,1.15] and the inflow 157 
sample falling within the interval [0.85 ∗ 𝑄𝑄, 1.15 ∗ 𝑄𝑄]. 158 

Part 3 (Forming the optimal solution set through 𝑛𝑛𝑒𝑒 Pareto fronts) 159 
7.Select an ideal solution (𝐼𝐼𝐼𝐼) in each Pareto front 𝐹𝐹𝑢𝑢 based on the distance to the origin point, 160 

forming the optimal solution set (set 𝐼𝐼). 161 
Part 4 (Evaluate the robustness of each solution) 162 
8.Select a solution 𝑠𝑠𝑖𝑖 (𝑖𝑖 = 1 …  𝑛𝑛𝑒𝑒) from the solution set 𝐼𝐼. 163 
9.Cast the inflow case 𝑢𝑢𝑢𝑢  (𝑟𝑟 = 1 …  𝑛𝑛𝑒𝑒 ) into 𝑠𝑠𝑖𝑖  and calculate 𝑃𝑃𝑢𝑢(𝑢𝑢𝑢𝑢, 𝑠𝑠𝑖𝑖)  and 𝑊𝑊𝐷𝐷𝑢𝑢(𝑢𝑢𝑢𝑢 , 𝑠𝑠𝑖𝑖) , 164 

respectively, to form 1200 values of 𝑃𝑃𝑢𝑢 and 𝑊𝑊𝐷𝐷𝑢𝑢 (𝑟𝑟 = 1 …  𝑛𝑛𝑒𝑒). 165 
10.Select the robustness evaluation criteria, 𝑅𝑅𝐶𝐶1,𝑅𝑅𝐶𝐶2,𝑅𝑅𝐶𝐶3,𝑅𝑅𝐶𝐶4. 166 
11.For each 𝑠𝑠𝑖𝑖  (𝑖𝑖 = 1 …  𝑛𝑛𝑒𝑒 ), calculate the 𝑅𝑅𝐶𝐶1,𝑅𝑅𝐶𝐶2,𝑅𝑅𝐶𝐶3,𝑅𝑅𝐶𝐶4  and 𝐼𝐼𝑅𝑅𝐼𝐼 corresponding to 𝑃𝑃𝑢𝑢 167 

and 𝑊𝑊𝐷𝐷𝑢𝑢 respectively. Plot the corresponding graphs and find the Pareto front of each graph. 168 
12.Find the solution with the highest robustness. 169 
End 170 

2.3 Defining the robustness criteria 171 

According to the general definition of robustness, four common Robustness Criteria (𝑅𝑅𝐶𝐶) were used in 172 
this study (Beyer and Sendhoff, 2007). These must be minimized to achieve the maximum robustness of 173 
the solution, so the lower the criteria, the higher the robustness. 174 
For the four 𝑅𝑅𝐶𝐶, two MOO are implicitly defined, and optimization can be named Two Layer-Multi-175 
objective optimization of Robustness Criteria (TL-MOORC). It is worth noting that TL-MOORC differs 176 
from the problem’s MOO. A one-layer MOORC is a solution that may not be minimized at all four 𝑅𝑅𝐶𝐶 177 
simultaneously. This problem can be solved by aggregating the four 𝑅𝑅𝐶𝐶 into one, for example, using a 178 
linear weighted combination. The second layer of MOORC is that for the two objective functions of a 179 
solution, the 𝑅𝑅𝐶𝐶 for both objective functions may not be minimized at the same time. Therefore, a trade-180 
off must be made between the𝑅𝑅𝐶𝐶 for the two objective functions.  181 
The first 𝑅𝑅𝐶𝐶 is the expected value of each objective function, denoted as 𝑅𝑅𝐶𝐶1. It reflects the fact that 182 
we want to find a solution that is good on average across all uncertainties and can be represented by: 183 
𝑅𝑅𝐶𝐶1(𝑠𝑠) = ∫ 𝑓𝑓(𝑠𝑠,𝑢𝑢)𝑁𝑁(𝑠𝑠,𝑢𝑢) 𝑒𝑒(𝑢𝑢)𝑑𝑑𝑢𝑢,  (7) 184 

Where is the probability density function of the uncertain variable 𝑢𝑢 ; it is the neighborhood of the 185 
solution 𝑠𝑠. 186 

The second 𝑅𝑅𝐶𝐶 is the ‘worst case’ (or ‘minimax’ case), denoted as 𝑅𝑅𝐶𝐶2. This 𝑅𝑅𝐶𝐶 is related to 187 
robustness because we want to find a solution 𝑠𝑠 such that the value of each objective function in the 188 
worst case is the minimum possible. It can be presented as follows: 189 

𝑅𝑅𝐶𝐶2(𝑠𝑠) = min �max
𝑁𝑁(𝑠𝑠,𝑢𝑢)

�𝑓𝑓(𝑠𝑠,𝑢𝑢)��,  (8) 190 

The third 𝑅𝑅𝐶𝐶 is the ‘standard deviation’ of each objective function, denoted as 3RC . 3RC  191 
is related to the robustness of each objective function because we want to find a solution s  such that 192 
the value of the objective function would not vary too much due to uncertainty. It can be expressed as 193 
follows: 194 

𝑅𝑅𝐶𝐶3(𝑠𝑠) = �∫ �𝑓𝑓(𝑠𝑠,𝑢𝑢) − 𝑓𝑓(𝑢𝑢)�𝑁𝑁(𝑠𝑠,𝑢𝑢)
2 𝑒𝑒(𝑢𝑢)𝑑𝑑𝑢𝑢,  (9) 195 

The fourth 𝑅𝑅𝐶𝐶 is the "probabilistic threshold", denoted as 𝑅𝑅𝐶𝐶4. We want to find a solution 𝑠𝑠 that 196 



minimizes the probability that the objective function is higher than the threshold of interest 𝑞𝑞 . This 197 
criterion is usually associated with the reliability of the system. It can be expressed as follows: 198 
𝑅𝑅𝐶𝐶4(𝑠𝑠) = 𝑃𝑃𝑟𝑟(𝑓𝑓(𝑠𝑠,𝑢𝑢) > 𝑞𝑞|𝑠𝑠),  (10) 199 

In order to evaluate the integrated robustness of the water resources allocation scheme, the weighted 200 
sum of the four Normalized 𝑅𝑅𝐶𝐶 (𝑁𝑁𝑅𝑅𝐶𝐶𝑖𝑖) in this study was used as the integrated robustness criteria. In 201 
this study, we consider that the four 𝑅𝑅𝐶𝐶 to be of equal importance, so all four indicators are given a 202 

weight of 1
4

. 203 

𝐼𝐼𝑅𝑅𝐼𝐼 = 1
4
𝑁𝑁𝑅𝑅𝐶𝐶1 + 1

4
𝑁𝑁𝑅𝑅𝐶𝐶2 + 1

4
𝑁𝑁𝑅𝑅𝐶𝐶3 + 1

4
𝑁𝑁𝑅𝑅𝐶𝐶4,  (11) 204 

(of course, other ways of aggregation can be considered as well.) 205 

2.4 Construction of WRA Model 206 

Objective function 207 
（1） Social Goals: Water Deficit (𝑊𝑊𝐷𝐷) 208 

𝑚𝑚𝑖𝑖𝑛𝑛𝑓𝑓1(𝑄𝑄) = ∑ ∑ �
𝐷𝐷𝑗𝑗𝑗𝑗−∑ ∑ 𝑄𝑄𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖

𝐼𝐼
𝑖𝑖=1

𝑇𝑇
𝑖𝑖=1
𝐷𝐷𝑗𝑗𝑗𝑗

�𝐾𝐾
𝑘𝑘=1

𝐽𝐽
𝑗𝑗=1

2
,  (12) 209 

Where 𝐷𝐷𝑗𝑗𝑘𝑘 denotes the water demand of the water consumption department k of the city 𝑗𝑗. 𝑄𝑄𝑖𝑖𝑗𝑗𝑘𝑘𝑢𝑢is the 210 

water supply quantity of water source 𝑖𝑖to water consumption department 𝑘𝑘 of the city 𝑗𝑗 in the period 211 
𝑡𝑡. 212 
（2） Ecological goals: Pollution (𝑃𝑃) 213 
𝑚𝑚𝑖𝑖𝑛𝑛𝑓𝑓2(𝑄𝑄) = ∑ ∑ 𝑑𝑑𝑗𝑗𝑘𝑘𝑒𝑒𝑗𝑗𝑘𝑘 ∑ ∑ 𝑄𝑄𝑖𝑖𝑗𝑗𝑘𝑘𝑢𝑢,

𝑇𝑇
𝑢𝑢=1

𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1

𝐽𝐽
𝑗𝑗=1   (13) 214 

Where 𝑑𝑑𝑗𝑗𝑘𝑘 denotes the representative pollutant discharge per unit of wastewater of the water department 215 
𝑘𝑘 of calculation unit 𝑗𝑗  (ton/m3) and 𝑒𝑒𝑗𝑗𝑘𝑘 represents the sewage discharge coefficient of the water 216 

consumption department of calculation unit. Discharge coefficient of water consumption department 𝑘𝑘 217 
of calculation unit 𝑗𝑗 . 𝑄𝑄𝑖𝑖𝑗𝑗𝑘𝑘𝑢𝑢 is the water supply quantity of water source 𝑖𝑖 to water consumption 218 

department 𝑘𝑘 of calculation  unit 𝑗𝑗 in the period 𝑡𝑡. 219 
Constraints 220 
（1） Water demand constraint 221 
∑ ∑ 𝑄𝑄𝑖𝑖𝑗𝑗𝑘𝑘𝑢𝑢𝑇𝑇

𝑢𝑢=1
𝐼𝐼
𝑖𝑖=1 ≤ 𝐷𝐷𝑗𝑗𝑘𝑘,  (14) 222 

（2） Water supply capacity constraint 223 
∑ ∑ ∑ 𝑄𝑄𝑖𝑖𝑗𝑗𝑘𝑘𝑢𝑢𝑇𝑇

𝑢𝑢=1 ≤ 𝑈𝑈𝑖𝑖,
𝐽𝐽
𝑗𝑗=1

𝐾𝐾
𝑘𝑘=1   (15) 224 

（3） Water Resources Constraint 225 
∑ ∑ 𝑄𝑄𝑖𝑖𝑗𝑗𝑘𝑘𝐾𝐾

𝑘𝑘=1 ≤ 𝑊𝑊𝑅𝑅𝑖𝑖 ,
𝐽𝐽
𝑗𝑗=1   (16) 226 

3. Study Area Overview 227 

The Huaihe River Basin is located in the eastern part of China, and as shown in Figure 2, the middle and 228 
upper basin flows through 15 cities of Henan Province and Anhui Province. It is an important agricultural 229 
and industrial production base in China (Xu et al., 2019). As shown in the Figure 3, the inflow of the 230 
Huaihe River Basin varies significantly between different years and between different regions, and the 231 
water demand is uneven among cities. In this study, water demand is calculated by using the quota 232 
method commonly used in the field of water resources. In addition, due to the discharge of pollutants, 233 
the contradiction between supply and demand of water resources in the middle and upper reaches of the 234 



Huaihe River Basin has become increasingly fierce. Therefore, it is meaningful to study the optimal 235 
allocation of water resources and propose a robust water resources allocation scheme based on the wet-236 
dry encounters in the Huaihe River Basin. 237 

 238 
Figure 2. Overview of watershed water supply.239 

 240 

Figure 3. Water demand proportion and inflow historical data. 241 

4. Results and discussion 242 

4.1 Identification of marginal distribution functions 243 

According to the first part (step 1-2) of the CM-ROPAR process, we need to construct the joint 244 
probability distributions for the upstream and midstream inflow and generate nine inflow scenarios via 245 



the Copula function. Therefore, before constructing the JDF, we need to construct the MDF for the 246 
upstream and midstream inflows respectively. As shown in Table 1, based on the K-S test results and 247 
RMSE value, we found that the best-fitting distributions for the upstream and midstream were the 248 
Weibull and P-III distributions, respectively. 249 
 250 
Table 1. MDF goodness-of-fit test results. 251 

  Distribution type 
Upper stream  

inflow 
Middle stream  

inflow 

p-value 

Normal 0.3341 0.8637 
Log-normal 0.5175 0.5703 

P-III 0.7674 0.7599 
Weibull 0.5758 0.9658 
Rayleigh 0.6123 0.2173 

D-value 

Normal 0.13721 0.086144 
Lognormal 0.11821 0.1152 

P-III 0.0958 0.0965 
Weibull 0.1129 0.0708 
Rayleigh 0.1096 0.1533 

RMSE 

Normal 0.0345 0.0522 
Lognormal 0.1391 0.1152 

P-III 0.0306 0.0358 
Weibull 0.0929 0.0306 
Rayleigh 0.0529 0.1736 

 252 

4.2 Analysis of upstream and midstream dry and wet encounters 253 

The optimal Copula function is selected by comparing the Akaike information criterion (AIC) and the 254 
Bayesian information criterion (BIC), AIC and BIC values in Table 2. It can be concluded that the joint 255 
distribution function of the upper and middle reaches of the Huaihe River Basin is consistent with the 256 
joint distribution of the Clayton Copula function. 257 
 258 
Table 2. AIC and BIC values for Copula functions. 259 

 Gaussian t Clayton Gumbel Frank 
AIC -20.86 -18.34 -22.69 -12.47 -20.03 
BIC -19.06 -14.73 -20.88 -10.67 -18.22 

 260 
Substituting the multi-year annual inflow for the upper and middle reaches of the Huaihe River Basin 261 
into the Clayton Copula function, respectively, the following results were obtained. 262 



 
a 

 
b 

Figure 4. Clayton Copula function. 263 
 264 
As shown in Figure 4, the joint distribution of the annual incoming water in the upper and middle reaches 265 
of the Huaihe River Basin has symmetry. In addition, the joint distribution of annual water in the upper 266 
and middle reaches has a tail correlation, which indicates a higher probability of simultaneous wetness 267 
or drought in the upper and middle reaches. 268 
 269 
Table 3. The probabilities of 9 scenarios. 270 

Wet and Dry encounters/% 
Upstream 

Wet Medium Dry 

Middlestream 
Wet 27.7 7.8 5.3 

Medium 11.6 6.5 4.6 
Dry 4.6 7.8 24.1 

 271 
As shown in Table 3, the probability of drought-wetness synchronization in the upper and middle reaches 272 
of the Huaihe River Basin is 58.3%, while the probability of asynchrony is 41.7%. The former is 16.6% 273 
higher than the latter, indicating that the upper and middle reaches are less able to complement each other. 274 
The joint distribution has a maximum probability of 27.7% that the upstream and midstream are both 275 
wet, and the risk of water scarcity is minimal under this scenario. The joint distribution has the second-276 
highest probability of both upstream and midstream being dry at 24.1%, with the highest risk of water 277 
scarcity under this scenario. 278 

4.3 Considering solutions for the uncertainty of inflow through MROPAR 279 

In this study the situation when the upper and middle reaches are both wet is considered as a case study. 280 
For deterministic optimization we opted for the NSGA-II algorithm, which is widely used and has good 281 
historical performance (Reed et al., 2013). Inflow uncertainty is modelled by sampling 1200 inflows, as 282 
shown in Figure 5. In this study, NSGA- II algorithm is used for multi-objective function solving. For 283 
algorithm parameterization, the population size is 100, generation is 1000, cross rate is 0.9 and mutate 284 
rate is 0.2. 285 
 286 



 287 
Figure 5. Inflow samples. 288 
 289 
Figure 6(a) shows that 1200 Pareto fronts calculated for each sampled inflow, through steps 3-6 of CM-290 
ROPAR. Figure 6(b) shows 1200 ideal solutions 𝑠𝑠, selected based on their distance to the ideal solution 291 

(step 7 of CM-ROPAR). 292 

 
a 

 
b 

Figure 6. a: 1200 Pareto fronts (f1: water deficit; f2: pollution) and b: 1200 ideal solutions (f1: water 293 
deficit; f2: pollution) selected based on their distance to the ideal solution. 294 

4.4 Assessing robustness of the solutions found by CM-ROPAR 295 

Four robustness criteria are calculated for each solution 𝑠𝑠 in the solution set 𝐼𝐼. Given the solution 𝑠𝑠 296 
to be evaluated, it is necessary to calculate 𝑊𝑊𝐷𝐷(𝑠𝑠, 𝐼𝐼𝐹𝐹𝑢𝑢)(𝑟𝑟 = 1 …𝑛𝑛𝑒𝑒)  and 𝑃𝑃(𝑠𝑠, 𝐼𝐼𝐹𝐹𝑢𝑢)(𝑟𝑟 = 1 …𝑛𝑛𝑒𝑒)  in 297 

order to calculate the four robustness criteria, where 𝐼𝐼𝐹𝐹𝑢𝑢 is the 𝑟𝑟𝑡𝑡ℎ sample of inflow. 𝑟𝑟 depends on 298 
the number of samples; in this study, 1200 samples were taken, so 𝑛𝑛𝑒𝑒 is 1200.  299 

As shown in Table 4 and Figure 7, 𝑅𝑅𝐶𝐶1,𝑅𝑅𝐶𝐶2,𝑅𝑅𝐶𝐶3,𝑅𝑅𝐶𝐶4  and 𝐼𝐼𝑅𝑅𝐼𝐼  for 𝑊𝑊𝐷𝐷  and 𝑃𝑃 can be 300 
calculated for each solution in 𝐼𝐼, and the solutions corresponding to the smallest value in each 𝑅𝑅𝐶𝐶𝑖𝑖 and 301 
the solutions corresponding to the smallest value in 𝐼𝐼𝑅𝑅𝐼𝐼 can be identified, respectively. In addition, we 302 
also feed 1200 samples to the deterministic solution and calculate 𝑅𝑅𝐶𝐶1,𝑅𝑅𝐶𝐶2,𝑅𝑅𝐶𝐶3,𝑅𝑅𝐶𝐶4 and 𝐼𝐼𝑅𝑅𝐼𝐼 for 303 
𝑊𝑊𝐷𝐷 and 𝑃𝑃.  304 

 305 



Table 4. Optimal solution numbers for different robustness criteria. 306 
 𝑅𝑅𝐶𝐶1 𝑅𝑅𝐶𝐶2 𝑅𝑅𝐶𝐶3 𝑅𝑅𝐶𝐶4 𝐼𝐼𝑅𝑅𝐼𝐼 

𝑊𝑊𝐷𝐷 535 361 361 361 361 
𝑃𝑃 876 876 876 876 876 
𝐼𝐼𝐼𝐼 629 84 84 915 84 

 307 

Figure 7. Performance of the robustness of solutions (a: 𝑅𝑅𝐶𝐶1, b: 𝑅𝑅𝐶𝐶2, c: 𝑅𝑅𝐶𝐶3, d: 𝑅𝑅𝐶𝐶4): robust model 308 
solutions (red dots), deterministic model solution (black ×), solution closest to origin for 𝑅𝑅𝐶𝐶𝑖𝑖 (black +), 309 
solution closest to origin for 𝐼𝐼𝑅𝑅𝐼𝐼 (black dot). The horizontal axis represents the performance of the 310 
robustness for 𝑊𝑊𝐷𝐷. The vertical axis represents the robustness performance for 𝑃𝑃. 311 

 312 
Figure 7 shows the performance of 1200 robust model solutions (red dots) and one deterministic model 313 
solution (black ×), for the four robustness criteria. From Figure 7, four Pareto fronts can also be found, 314 
which indicate the competitive relationship between water deficit and pollution emissions for each 315 
robustness criterion dimension. As shown in Figure 7(a), we can observe an interesting phenomenon that 316 
the left-most extreme solution (red dot) has the smallest robustness index 𝑅𝑅𝐶𝐶1 for water deficit, but the 317 
highest robustness index 𝑅𝑅𝐶𝐶1 for pollution; the right-most extreme solution (red dot) has the largest 318 
robustness index 𝑅𝑅𝐶𝐶1 for water deficit, but the smallest robustness index 𝑅𝑅𝐶𝐶1 for pollution. Similarly, 319 
this phenomenon can be also observed for the robustness criteria 𝑅𝑅𝐶𝐶2 , 𝑅𝑅𝐶𝐶3 , and 𝑅𝑅𝐶𝐶4 . More 320 
importantly, as shown in Table 4, the extreme solutions and the solutions closest to the origin point may 321 
differ for different robustness criteria. Specifically, for 𝑅𝑅𝐶𝐶1, solution No. 535 is the most robust for 322 
water deficit, and solution No. 876 is the most robust for pollution; for 𝑅𝑅𝐶𝐶2, 𝑅𝑅𝐶𝐶3, and 𝑅𝑅𝐶𝐶4, the most 323 
robust solution for water deficit is solution No. 361, and the most robust solution for pollution is solution 324 
No. 876.  325 

Because there are many non-inferior solutions in the Pareto frontier, the decision-makers must 326 
choose among them. The decision-makers need not only to choose among the non-inferior solutions but 327 
also to evaluate the trade-off between different robustness criteria or to choose the best one by combining 328 
the criteria. This study takes the distance to the origin as the basis for such choice. As shown in Table 4, 329 



for 𝑅𝑅𝐶𝐶1, 𝑅𝑅𝐶𝐶2, 𝑅𝑅𝐶𝐶3, and 𝑅𝑅𝐶𝐶4, the closest points to the origin are solution No. 629, solution No. 84, 330 
and solution No. 915, respectively. 331 

4.5 Comparing solutions found by deterministic and robust approaches 332 

To see a more general relationship between the 1201 solutions (i.e., 1200 from the robust optimization 333 
solution and 1 from the deterministic optimization solution), the performance of each solution for water 334 
deficit and pollution on each of the four robustness criteria (sorted from smallest to largest) is plotted in 335 
Figure 8 and Figure 9. 336 

 337 
Figure 8. Robustness of water deficit (a: 𝑅𝑅𝐶𝐶1, b: 𝑅𝑅𝐶𝐶2, c: 𝑅𝑅𝐶𝐶3, d: 𝑅𝑅𝐶𝐶4). The horizontal coordinate 338 
represents the number of solutions and the vertical coordinate represents the robustness of the solution. 339 
 340 
As shown in Figure 8, for water scarcity, the robust solution performed significantly better than the 341 
deterministic solution. Specifically, for the four robustness criteria, the robust solution outperforms 342 
63.1%, 85.6%, 92.7%, and 77.7% of the solutions, respectively, while the deterministic solution 343 
outperforms only approximately 1% of the solutions. To analyze the robust and deterministic solutions 344 
more accurately and intuitively, this study applied the ratio of 𝑅𝑅𝐶𝐶(𝐷𝐷𝑒𝑒𝑡𝑡)/𝑅𝑅𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅)  to compare the 345 
robustness of the two solutions. The ratios of 𝑅𝑅𝐶𝐶(𝐷𝐷𝑒𝑒𝑡𝑡)/𝑅𝑅𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅) are 1.53, 1.59, 2.62, and 12.67 in the 346 
four robustness criteria dimensions. This means that, regarding water deficit, the deterministic model 347 
solution may lead to 53%, 59%, 162%, and 1167% more variability in the four robustness criteria 348 
dimensions. 349 



 350 

Figure 9. Robustness of pollution (a: 𝑅𝑅𝐶𝐶1 , b: 𝑅𝑅𝐶𝐶2 , c: 𝑅𝑅𝐶𝐶3 , d: 𝑅𝑅𝐶𝐶4 ). The horizontal coordinate 351 
represents the number of solutions and the vertical coordinate represents the robustness of the solution. 352 
 353 
However, as shown in Figure 9, the deterministic solution slightly outperforms the robust solution for 354 
pollution. Specifically, for the four robustness criteria, the deterministic solution outperforms 96% of the 355 
solutions, respectively, while the robust solution outperforms about 40% of the solutions. Similarly, we 356 
compare the two solutions by the ratio of 𝑅𝑅𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅)/𝑅𝑅𝐶𝐶(𝐷𝐷𝑒𝑒𝑡𝑡). We find that the 𝑅𝑅𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅)/𝑅𝑅𝐶𝐶(𝐷𝐷𝑒𝑒𝑡𝑡) 357 
ratio is about 1.17 for 𝑅𝑅𝐶𝐶1 to 𝑅𝑅𝐶𝐶3 and 2.37 for 𝑅𝑅𝐶𝐶4. This means that, in terms of pollution, the robust 358 
solution may lead to 17% more variability for 𝑅𝑅𝐶𝐶1 to 𝑅𝑅𝐶𝐶3 and 137% more variability for 𝑅𝑅𝐶𝐶4. 359 



 360 
Figure 10. Comprehensive robustness for four indicators (a: 𝑅𝑅𝐶𝐶1 , b: 𝑅𝑅𝐶𝐶2 , c: 𝑅𝑅𝐶𝐶3 , d: 𝑅𝑅𝐶𝐶4 ). The 361 
horizontal coordinate represents the number of solutions and the vertical coordinate represents the 362 
robustness of the solution. 363 
 364 
In order to analyze the comprehensive performance of each solution, rather than just the robustness of a 365 
single objective, this study reflects the comprehensive implementation of each solution in terms of the 366 
distance from the solution to the origin. As shown in Figure 10, the comprehensive performance of the 367 
robust solution for 𝑅𝑅𝐶𝐶1 to 𝑅𝑅𝐶𝐶4 is significantly better than that of the deterministic model solution. 368 
Specifically, the robust solution outperforms 90.3% and 62.2% of the solutions in 𝑅𝑅𝐶𝐶1  and 𝑅𝑅𝐶𝐶4 , 369 
respectively, and outperforms all solutions in 𝑅𝑅𝐶𝐶2 and 𝑅𝑅𝐶𝐶3, while the deterministic solution performs 370 
exceptionally poorly in all four robustness criteria. According to the ratio of 𝐷𝐷𝑖𝑖𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅)/𝐷𝐷𝑖𝑖𝑠𝑠(𝐷𝐷𝑒𝑒𝑡𝑡), we 371 
can find that the robust solution is 16.8%, 19.8%, 39.2%, and 7.3% more robust than the deterministic 372 
solution in the four robustness dimensions, respectively. 373 

 374 
Figure 11. The integrated robustness index distribution of the robust and deterministic solution. 375 



 376 
Figure 12. Comprehensive robustness criteria performance (a: Performance of comprehensive 377 
robustness criterion, b: Comprehensive robustness of robust solutions and deterministic solution, c and 378 
d: comprehensive robustness criteria for water deficit and pollution). 379 
 380 
As shown in Figure 11, for water scarcity, the integrated criteria of the robust solution is clustered at 381 
approximately 0.5 and is significantly more robust than the deterministic solution; for pollution, the 382 
integrated index of the robust solution is significantly higher than that of the deterministic solution, but 383 
the span of the integrated index of the two solutions is similar, so the robustness of the deterministic 384 
solution is slightly better than that of the robust solution. 385 
Similarly, as shown in Figure 12, there is also a Pareto front for the composite robustness criteria. For 386 
water deficit, the robustness of the robust solution is better than the deterministic solution; for pollution, 387 
the robustness of the deterministic solution is better than the robust solution. Specifically, for water deficit, 388 
the robust solution outperforms 85.3% of the solutions while the deterministic solution outperforms only 389 
about 1% of the solutions; for pollution, the deterministic solution outperforms 96% of the solutions 390 
while the robust solution outperforms only 39.6% of the solutions. According to the ratio of 391 
𝐼𝐼𝑅𝑅𝐼𝐼(𝑅𝑅𝑅𝑅𝑅𝑅)/𝐼𝐼𝑅𝑅𝐼𝐼(𝐷𝐷𝑒𝑒𝑡𝑡), the deterministic solution is about 130% more uncertain than the robust solution 392 
for water deficit; for pollution, the robust solution is about 37.7% more variable than the deterministic 393 
solution. The distance of each solution to the origin can reflect the comprehensive performance of the 394 
robustness of each solution. For the robustness composite index, the ratio of 𝐷𝐷𝑖𝑖𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅)/𝐷𝐷𝑖𝑖𝑠𝑠(𝐷𝐷𝑒𝑒𝑡𝑡) is 395 
0.655, which means that the composite robustness of the robust solution is 52.6% higher than the 396 
robustness of the deterministic solution. 397 
For the robustness composite, the robust solution outperforms all the solutions, while the deterministic 398 
model solution outperforms only about 3.2% of the solutions. Comparing the distance to the origin of 399 
the robust solution and the deterministic solution, we can find that the robustness of the robust solution 400 
improves by 27.8% over the deterministic solution. 401 

4.6 Analysis of specific water resources allocation schemes 402 



First, as shown in Figure 13, we analyzed the proportion of water supply for each city. We find that the 403 
water supply share for the scheme most robust to water deficit rates is significantly higher than that for 404 
the scheme with the most robust pollutant emissions. This is because an increase in water supply leads 405 
to an increase in pollutant emissions, which in turn leads to a decrease in the robustness of pollutant 406 
emissions. For specific cities, the least robust allocation scenario for water deficit reduces the water 407 
supply in City 3, City 7, City 10, City 12, and City 15 compared to the most robust allocation scenario 408 
for pollutant emissions. Interestingly, these cities have the most water demand in the basin (as shown in 409 
Figure 3). Therefore, basin managers can increase the water supply to these cities if they need to improve 410 
the water deficit robustness of the water resources allocation scheme.  411 

Then we analyze specifically the distribution of water resources between sectors. An interesting 412 
phenomenon can be observed. As shown in Figure 13, although the scenario with the best robustness in 413 
terms of pollutant emissions has a lower water supply than the scenario with the best robustness in terms 414 
of water deficit, the reduction is mainly in the agricultural sector. Water for domestic and industrial 415 
production did not change much. The reason for this may be that agricultural water use causes more 416 
pollution and may create more uncertainty. So how can watershed managers hope that improving the 417 
robustness of pollutant discharge can reduce water supply to the agricultural sector. 418 

 419 
Figure 13. Specific water resources allocation schemes. 420 

5. Conclusion 421 

In this study, we propose a multi-objective robustness analysis method considering multiple uncertainties 422 
(CM-ROPAR approach) based on the robust optimization method for uncertainty perception (ROPAR 423 
approach). To verify the superiority and practicality of the CM-ROPAR approach, four robustness criteria 424 
are selected, and we compare the robust solution calculated by the method with the optimal solution of 425 
the deterministic model. In the studied case, there is a competitive relationship between the robustness 426 
of the two objective functions, which can form a Pareto frontier. For the water deficit rate, the robust 427 
solution outperforms the deterministic solution by 53%, 59%, 162%, and 1167% for the four robustness 428 
criteria, respectively; for the pollutant emission, the deterministic solution outperforms the robust 429 



solution by only 17% for 𝑅𝑅𝐶𝐶1 − 𝑅𝑅𝐶𝐶3, and outperforms the robust solution by 137% for 𝑅𝑅𝐶𝐶4. For the 430 
composite robustness, the robust solution outperforms the deterministic solution by 52.6%, the CM-431 
ROPAR finds a more robust solution. 432 

The CM-ROPAR approach permits to exhibit the handling of uncertainty, to be able to analyze how 433 
uncertainty is transmitted to the Pareto frontier, and to perform the corresponding probabilistic analysis. 434 
The novelty of the new method compared to existing ROPAR methods is reflected in two aspects. First, 435 
the ROPAR method only considers uncertainty at a single point. In contrast, the CM-ROPAR method 436 
considers multiple uncertainties through the joint probability distribution of two points, which is closer 437 
to the actual situation and more general. Second, the new way analyzes the robustness of two objective 438 
functions of the solution instead of fixing one objective function to analyze the robustness of the other 439 
objective function. The CM-ROPAR method is more comprehensive and can identify the robustness of 440 
both objective functions, giving decision-makers more information for decision making. 441 

One of the limitations of this study is that the CM-ROPAR approach is applicable to problems with 442 
two uncertainties and two objective functions; however, water allocation allows for more uncertainties 443 
and more objective functions (e.g., the uncertainty of inflow between multiple tributaries). In future 444 
research, we will focus on more complex objective functions and multi-objective optimization problems 445 
with at least three objective functions. 446 
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