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Abstract. Water resources managers need to make decisions in a constantly changing environment 11 
because the data relating to water resources is uncertain and imprecise. The Robust Optimization and 12 
Probabilistic Analysis of Robustness (ROPAR) algorithm is a well-suited tool for dealing with 13 
uncertainty. Still, the failure to consider multiple uncertainties and multi-objective robustness hinder the 14 
application of the ROPAR algorithm to practical problems. This paper proposes a robust optimization 15 
and robustness probabilistic analysis method that considers numerous uncertainties and multi-objective 16 
robustness for robust water resources allocation under uncertainty. The Copula function is introduced for 17 
analyzing the probabilities of different scenarios. The robustness with respect to the two objective 18 
functions is analyzed separately, and the Pareto frontier of robustness is generated. The relationship 19 
between the robustness with respect to the two objective functions is used to evaluate water resources 20 
management strategies. Use of the method is illustrated on a case study of water resources allocation in 21 
the Huaihe River Basin. The results demonstrate that the method opens a possibility for water managers 22 
to make more informed uncertainty-aware decisions. 23 

1. Introduction 24 

Water resources is a natural resource necessary for human survival (Chen et al., 2017) but also a driving 25 
force for social and economic development (Dong and Xu, 2019). Due to the increasing population and 26 
rapid growth of economy, a contradiction between the supply and demand of water resources is becoming 27 
more acute, water quality problems are becoming more prominent, and water resources have gradually 28 
become a bottleneck for socio-economic development (Zhuang et al., 2018). This phenomenon is 29 
particularly evident in rapidly urbanizing and vital agricultural and industrial production watersheds 30 
(Yang et al., 2017). In this category of watersheds, agricultural and industrial production pose a massive 31 
challenge to water resource management (WRM) due to accelerated urbanization and rapid socio-32 
economic development (Sun et al., 2019). River basin managers must consider water sources in an 33 
integrated manner and decide how to allocate water resources between different water-using sectors and 34 
cities within the basin (Xiong et al., 2020).  35 
Multi-objective optimization (MOO) is an effective method for improving water resources allocation 36 



(WRA) schemes (Lu et al., 2017; Abdulbaki et al., 2017). MOO can provide decision-makers with WRA 37 
options based on their preferences for objectives, which makes it a well-suited decision-making method 38 
for WRM. Ashofteh et al. (2013) constructed a bottom-line-based multi-objective optimization model to 39 
calculate WRA schemes. Habibi Davijani et al. (2016) presented a multi-objective optimal allocation 40 
model of water resources in arid areas based on maximum socioeconomic benefits. However, WRM is 41 
not only a multi-stage and multi-objective problem but also a complex problem involving uncertainties 42 
and risk management (Yu and Lu, 2018). WRM departments often need to face decision challenges under 43 
uncertain conditions (Hassanzadeh et al., 2016; Ren et al., 2019). Climate change and human activities 44 
have led to an increase in uncertainties in rainfall and water demand in the basin and hence to uncertainty 45 
in managing water resource systems (Jin et al., 2020; Ma et al., 2020; Zhu et al., 2019). Uncertain factors 46 
may lead to the risk of water shortage in the basin, so the existing WRA schemes may not be longer 47 
applicable (Keath and Brown, 2009). Therefore, it is important to study WRA under uncertainty.  48 

Previously, several methods were introduced to analyze uncertainty in WRM. Scenario building and 49 
analysis is regarded as an effective method for considering possible future events and analyzing future 50 
uncertainties (Zeng et al., 2019). The fuzzy logic theory is one of the methods to deal with uncertainty, 51 
which describes uncertainty by fuzzifying the decision variables (Nikoo et al., 2013). Two-stage 52 
stochastic programming (TSP) is also an available planning method in optimization under uncertainty 53 
(Li et al., 2020). However, these approaches do not explicitly evaluate the robustness of the WRA options, 54 
although they take into account the uncertainties in WRA. 55 
Robust multi-objective optimization (RMOO) is an effective method for forming robust WRA schemes. 56 
In relation to water, RMOO was actively applied in the field of water supply system (Kapelan et al., 2005; 57 
Kapelan et al., 2006). In the last decade, RMOO has been gradually applied to other areas of WRM. 58 
Yazdi et al. (2015) and Kang and Lansey (2013) applied robust optimization to design wastewater pipes 59 
by considering uncertainties such as climate change, urbanization, and population change. Marchi et al. 60 
(2016) formed stormwater harvesting schemes under variable climate conditions using RMOO. It should 61 
be pointed out however, that in the mentioned approaches the robustness is often “hidden” into the 62 
objective function or constraints and then a common MOO problem is solved that forms a single Pareto 63 
front. This is indeed an effective method to create solution set which in a certain sense is robust. However, 64 
this approach does not explicitly show the relationship between the solution and the uncertainty variables, 65 
which prevents the decision-maker from clearly understanding the impact of uncertainty, which can 66 
influence the decision. To answer this limitation, the procedure “Robust Optimization and Probabilistic 67 
Analysis of Robustness” (ROPAR) has been developed and presented first in (Solomatine, 2012). The 68 
method will generate multiple Pareto fronts, each corresponding to a sample of uncertain variables so 69 
that the statistical characteristics of the uncertainty of the solution can be analyzed. The ROPAR has been 70 
applied in the design of urban stormwater drainage pipes (Solomatine and Marquez-Calvo, 2019) and for 71 
water quality management in water distribution (Marquez Calvo et al., 2019; Quintiliani et al., 2019).  72 

To the best of our knowledge, the presented versions of the ROPAR methodology have the following 73 
limitations: (1) ROPAR method has not been applied to the field of WRA; (2) ROPAR method only 74 
considers the single source of uncertainty: if there are two sources, then the joint probability of these 75 
sources needs to be considered; (3) ROPAR method only analyses the variability of one objective under 76 
conditions where the other objective function level is fixed. Although the ROPAR method can provide 77 
decision-makers with a robust solution under certain conditions, it does not take into account the 78 
relationship between the two objective functions. 79 

 80 



 81 

Based on the above analysis, although the ROPAR method has proven to be suitable for dealing 82 
with uncertainty, it still needs improvement. In this study, we propose a Copula-Multi-objective Robust 83 
Optimization and Probabilistic Analysis of Robustness (CM-ROPAR) procedure under multiple 84 
uncertainties for WRA. The proposed new procedure of the ROPAR-family considers the joint 85 
probability distribution of uncertainties (in this case, inflows) and enables decision-makers to check the 86 
robustness of the two objective functions separately.  87 

The following text is structured as follows. First, the Chapter 2 presents the methodology of the 88 
paper. It mainly includes the method of Copula function, the method of CM-ROPAR algorithm, the 89 
definition of robustness and the construction of water resources allocation model. Then, the Chapter 3 90 
introduces the overview of the study area. Then, the Chapter 4 introduces the application examples of 91 
CM-ROPAR algorithm, and this paper is an example of water resources allocation of Huaihe River Basin. 92 
Finally, the last Chapter introduces the conclusion of the paper. 93 

 94 

2. Methodology 95 

2.1 Method of Copula Function 96 

Sklar proposed Copula theory in 1959, in which he decomposed an N-dimensional Joint Distribution 97 
Function (JDF) into a Copula function and N Marginal Distribution Functions (MDF), which are not 98 
required to be the same distribution for N variables and can be used to describe the correlation between 99 
arbitrary variables. Nelsen gave a strict definition of Copula function in 1999 (Nelsen et al., 2008). 100 
Copula function is the function that connects the JDF with their respective MDF. Copula functions can 101 
be expressed as: 102 
𝐶!(𝑢", 𝑢#. . . 𝑢$) 	= 	𝐶![𝐹"(𝑥"), 𝐹#(𝑥#). . . 𝐹$(𝑥$)] (1) 103 

where 𝑥!, 𝑥". . . 𝑥# are random vectors, 𝐹!(𝑥!), 𝐹"(𝑥"). . . 𝐹#(𝑥#) are MDF of the random vectors, 104 
𝜃 is the parameter of copula function. 105 

The basic copula functions are mainly classified into Archimedean, elliptic, and quadratic types. 106 
Among them, Archimedean Copula functions have been widely applied in the field of hydrology. The 107 
most used Archimedean Copula multidimensional joint distribution models are the following: 108 
(1) GH-Copula joint distribution model 109 

𝐶$(𝑢!, 𝑢"⋯𝑢#) = 𝑒𝑥𝑝 .−(∑ (− 𝑙𝑛 𝑢%)$#
%&! )

!
"3 (𝜃 > 1), (2) 110 

(2) Clayton Copula joint distribution model 111 

𝐶$(𝑢!, 𝑢"⋯𝑢#) = 61 + ∑ (𝑢%'$ − 1)#
%&! 8'

!
" (𝜃 > 1), (3) 112 

(3) Frank Copula joint distribution model 113 

𝐶$(𝑢!, 𝑢"⋯𝑢#) = − !
$
𝑙𝑛 91 + ∏ (*#"$!'!)%

&'!
(*#"'!)%#!

: (𝜃 > 1), (4) 114 

In a river basin, there may be different drought or wet conditions between different intervals of 115 
inflow, so the probability of drought and wet encounters between different intervals of inflow needs to 116 
be investigated. According to the analysis in Section 2.1, it is known that Copula function can be used to 117 
construct the multivariate joint distribution function. Therefore, this paper adopts Copula function theory 118 



to construct the joint distribution and analyze the drought and wet encounter probability. The steps of 119 
Copula function-based wet-dry encounter analysis are as follows: 1. Fit and Select the MDF. The widely 120 
applied probability distribution functions are mainly Pearson type 3 distribution (P-III), T-distribution, 121 
Normal distribution, etc. 2. Fit and Select Copula distribution function. Fitting different MDF of the 122 
runoff, using the AIC and BIC criterion for the selection of the fitted MDF. 3. Calculate the probability 123 
of a dry and wet encounters between different interval inflows. 124 

 125 

2.2 Method of CM-ROPAR 126 

The basic flow of CM-ROPAR algorithm is shown in Figure 1. Firstly, the multi-objective optimization 127 
problem is defined and the uncertainty variables are clarified; secondly, the Copula function is used to 128 
analyze the relationship between the two sources of uncertainty; and finally, through sampling and multi-129 
objective optimization calculations, the robustness of each solution is identified and the one with the 130 
most comprehensive robustness is selected. 131 

 132 
 133 

 134 

Figure 1. Flowchart of CM-ROPAR. 135 



 136 

The specific process of optimal water allocation under runoff uncertainty based on MROPAR algorithm 137 
is as follows. 138 

Part 1 (Analyzing the wet-dry encounters) 139 
1.Analyze the inflow wet and dry encounters. If the basin has 𝑘 inflows, then there are 3, wet-140 

dry scenarios. For example, suppose there is one inflow in the upper and one in the middle reaches of the 141 
basin. In that case, there are 9 scenarios: wet-medium, wet-wet, medium-wet, medium-medium, medium-142 
dry, dry-wet, dry-medium, and dry-dry. 143 

2.Choose a scenario from 1 to 3,.  144 
Part 2 (Sampling-Inflow) 145 
3.Based on the recorded annual inflow data	 𝑄, it is assumed that 𝑄 is not a definite value but  146 
𝑄	 = 	 𝑖%$&'()*+$), ∗ 𝑄,  (5) 147 

𝑖%$&'()*+$), ∼ 𝑁2µ, σ23,  (6) 148 
where 𝑖%$&'()*+$), follows a normal distribution. 149 

4.For 𝑖 = 1	… 	𝑛𝑝 do 150 
5.Sample 𝑢 (inflow). As mentioned before, the uncertainty variable is obtained from the normal 151 

distribution 𝑁(µ, σ"). Assuming that the uncertainty variable follows 𝑁(1,0.0025),this 152 
represents that a 99.74% probability of the uncertainty variable falling within the 153 
interval [0.85,1.15]  and the inflow sample falling within the interval [0.85 ∗154 
𝑄, 1.15 ∗ 𝑄]. 155 

Part 3 (Forming the optimal solution set through 𝑛𝑝 Pareto fronts) 156 
7.Select an ideal solution (𝐼𝑆) in each Pareto front 𝐹- based on the distance to the origin point, 157 

forming the optimal solution set (set 𝑆). 158 
Part 4 (Evaluate the robustness of each solution) 159 
8.Select a solution 𝑠% (𝑖 = 1	… 	𝑛𝑝) from the solution set 𝑆. 160 
9.Cast the inflow case 𝑢-  (𝑟 = 1	… 	𝑛𝑝 ) into 𝑠%  and calculate 𝑃-(𝑢- , 𝑠%)  and 𝑊𝐷-(𝑢- , 𝑠%) , 161 

respectively, to form 1200 values of 𝑃- and 𝑊𝐷- (𝑟 = 1	… 	𝑛𝑝). 162 
10.Select the robustness evaluation criteria, 𝑅𝐶1, 𝑅𝐶2, 𝑅𝐶3, 𝑅𝐶4. 163 
11.For each 𝑠%  (𝑖 = 1	… 	𝑛𝑝), calculate the 𝑅𝐶1, 𝑅𝐶2, 𝑅𝐶3, 𝑅𝐶4 and 𝑆𝑅𝐼corresponding to 𝑃- 164 

and 𝑊𝐷- respectively. Plot the corresponding graphs and find the Pareto front of each graph. 165 
12.Find the solution with the highest robustness. 166 
End 167 

2.3 Defining the robustness criteria 168 

According to the general definition of robustness, four common Robustness Criteria (𝑅𝐶) were used in 169 
this study (Beyer and Sendhoff, 2007). These must be minimized to achieve the maximum robustness of 170 
the solution, so the lower the criteria, the higher the robustness. 171 
For the four 𝑅𝐶, two MOO are implicitly defined, and optimization can be named Two Layer-Multi-172 
objective optimization of Robustness Criteria (TL-MOORC). It is worth noting that TL-MOORC differs 173 
from the problem’s MOO. A one-layer MOORC is a solution that may not be minimized at all four 𝑅𝐶 174 
simultaneously. This problem can be solved by aggregating the four 𝑅𝐶 into one, for example, using a 175 
linear weighted combination. The second layer of MOORC is that for the two objective functions of a 176 
solution, the 𝑅𝐶 for both objective functions may not be minimized at the same time. Therefore, a trade-177 
off must be made between the𝑅𝐶 for the two objective functions.  178 



The first 𝑅𝐶 is the expected value of each objective function, denoted as 𝑅𝐶1. It reflects the fact that 179 
we want to find a solution that is good on average across all uncertainties and can be represented by: 180 
𝑅𝐶1(𝑠) = ∫ 𝑓(𝑠, 𝑢).(/,1) 𝑝(𝑢)𝑑𝑢,  (7) 181 

Where is the probability density function of the uncertain variable 𝑢; it is the neighborhood of the 182 
solution 𝑠. 183 

The second 𝑅𝐶 is the ‘worst case’ (or ‘minimax’ case), denoted as 𝑅𝐶2. This 𝑅𝐶 is related to 184 
robustness because we want to find a solution 𝑠 such that the value of each objective function in the 185 
worst case is the minimum possible. It can be presented as follows: 186 

𝑅𝐶2(𝑠) = min Pmax
.(/,1)

S𝑓(𝑠, 𝑢)TU,  (8) 187 

The third 𝑅𝐶 is the ‘standard deviation’ of each objective function, denoted as .  188 
is related to the robustness of each objective function because we want to find a solution  such that 189 
the value of the objective function would not vary too much due to uncertainty. It can be expressed as 190 
follows: 191 

𝑅𝐶3(𝑠) = V∫ S𝑓(𝑠, 𝑢) − 𝑓(𝑢)T.(/,1)
" 𝑝(𝑢)𝑑𝑢,  (9) 192 

The fourth 𝑅𝐶 is the "probabilistic threshold", denoted as 𝑅𝐶4. We want to find a solution 𝑠 that 193 
minimizes the probability that the objective function is higher than the threshold of interest 𝑞. This 194 
criterion is usually associated with the reliability of the system. It can be expressed as follows: 195 
𝑅𝐶4(𝑠) = 𝑃𝑟(𝑓(𝑠, 𝑢) > 𝑞|𝑠),  (10) 196 

In order to evaluate the integrated robustness of the water resources allocation scheme, the weighted 197 
sum of the four Normalized 𝑅𝐶 (𝑁𝑅𝐶𝑖) in this study was used as the integrated robustness criteria. In 198 
this study, we consider that the four 𝑅𝐶 to be of equal importance, so all four indicators are given a 199 

weight of . 200 

𝑆𝑅𝐼 = !
2
𝑁𝑅𝐶1 + !

2
𝑁𝑅𝐶2 + !

2
𝑁𝑅𝐶3 + !

2
𝑁𝑅𝐶4,  (11) 201 

(of course, other ways of aggregation can be considered as well.) 202 

2.4 Construction of WRA Model 203 

Objective function 204 
（1） Social Goals: Water Deficit (𝑊𝐷) 205 

𝑚𝑖𝑛𝑓!(𝑄) = ∑ ∑ P3()'
∑ ∑ 5&()*

+
&'!

,
*'!

3()
U6

,&!
7
8&!

"
,  (12) 206 

Where 𝐷8, denotes the water demand of the water consumption department k of the city 𝑗. 𝑄%8,9is the 207 

water supply quantity of water source 𝑖to water consumption department 𝑘	of the city 𝑗	in the period 208 
𝑡. 209 
（2） Ecological goals: Pollution (𝑃) 210 
𝑚𝑖𝑛𝑓"(𝑄) = ∑ ∑ 𝑑8,𝑝8, ∑ ∑ 𝑄%8,9,:

9&!
;
%&!

6
,&!

7
8&!   (13) 211 

Where 𝑑8, denotes the representative pollutant discharge per unit of wastewater of the water department 212 
𝑘of calculation unit 𝑗  (ton/m3 ) and 𝑝8, represents the sewage discharge coefficient of the water 213 

consumption department of calculation unit. Discharge coefficient of water consumption department 𝑘 214 
of calculation unit 𝑗 . 𝑄%8,9	 is the water supply quantity of water source 𝑖	 to water consumption 215 

department 𝑘 of calculation 	unit 𝑗	in the period 𝑡. 216 

3RC 3RC
s

1
4



Constraints 217 
（1） Water demand constraint 218 
∑ ∑ 𝑄%8,9:

9&!
;
%&! ≤ 𝐷8, ,  (14) 219 

（2） Water supply capacity constraint 220 
∑ ∑ ∑ 𝑄%8,9:

9&! ≤ 𝑈%,
7
8&!

6
,&!   (15) 221 

（3） Water Resources Constraint 222 
∑ ∑ 𝑄%8,6

,&! ≤ 𝑊𝑅% ,
7
8&!   (16) 223 

3. Study Area Overview 224 

The Huaihe River Basin is located in the eastern part of China, and as shown in Figure 2, the middle and 225 
upper basin flows through 15 cities of Henan Province and Anhui Province. It is an important agricultural 226 
and industrial production base in China (Xu et al., 2019). As shown in the Figure 3, the inflow of the 227 
Huaihe River Basin varies significantly between different years and between different regions, and the 228 
water demand is uneven among cities. In this study, water demand is calculated by using the quota 229 
method commonly used in the field of water resources. In addition, due to the discharge of pollutants, 230 
the contradiction between supply and demand of water resources in the middle and upper reaches of the 231 
Huaihe River Basin has become increasingly fierce. Therefore, it is meaningful to study the optimal 232 
allocation of water resources and propose a robust water resources allocation scheme based on the wet-233 
dry encounters in the Huaihe River Basin. 234 

 235 
Figure 2. Overview of watershed water supply.236 



 237 

Figure 3. Water demand proportion and inflow historical data. 238 

4. Results and discussion 239 

4.1 Identification of marginal distribution functions 240 

According to the first part (step 1-2) of the CM-ROPAR process, we need to construct the joint 241 
probability distributions for the upstream and midstream inflow and generate nine inflow scenarios via 242 
the Copula function. Therefore, before constructing the JDF, we need to construct the MDF for the 243 
upstream and midstream inflows respectively. Based on the Kolmogorov-Smirnov (K-S) test results, we 244 
found that the best-fitting distributions for the upstream and midstream were the Weibull and P-III 245 
distributions, respectively. 246 

4.2 Analysis of upstream and midstream dry and wet encounters 247 

The optimal Copula function is selected by comparing the Akaike information criterion (AIC) and the 248 
Bayesian information criterion (BIC), AIC and BIC values in Table 1. It can be concluded that the joint 249 
distribution function of the upper and middle reaches of the Huaihe River Basin is consistent with the 250 
joint distribution of the Clayton Copula function. 251 
 252 
Table 1. AIC and BIC values for Copula functions. 253 

 Gaussian t Clayton Gumbel Frank 
AIC -20.86 -18.34 -22.69 -12.47 -20.03 
BIC -19.06 -14.73 -20.88 -10.67 -18.22 

 254 
Substituting the multi-year annual inflow for the upper and middle reaches of the Huaihe River Basin 255 
into the Clayton Copula function, respectively, the following results were obtained. 256 



 
a 

 
b 

Figure 4. Clayton Copula function. 257 
 258 
As shown in Figure 4, the joint distribution of the annual incoming water in the upper and middle reaches 259 
of the Huaihe River Basin has symmetry. In addition, the joint distribution of annual water in the upper 260 
and middle reaches has a tail correlation, which indicates a higher probability of simultaneous wetness 261 
or drought in the upper and middle reaches. 262 
 263 
Table 2. The probabilities of 9 scenarios. 264 

Wet and Dry encounters/% 
Upstream 

Wet Medium Dry 

Middlestream 
Wet 27.7 7.8 5.3 

Medium 11.6 6.5 4.6 
Dry 4.6 7.8 24.1 

 265 
As shown in Table 2, the probability of drought-wetness synchronization in the upper and middle reaches 266 
of the Huaihe River Basin is 58.3%, while the probability of asynchrony is 41.7%. The former is 16.6% 267 
higher than the latter, indicating that the upper and middle reaches are less able to complement each other. 268 
The joint distribution has a maximum probability of 27.7% that the upstream and midstream are both 269 
wet, and the risk of water scarcity is minimal under this scenario. The joint distribution has the second-270 
highest probability of both upstream and midstream being dry at 24.1%, with the highest risk of water 271 
scarcity under this scenario. 272 

4.3 Considering solutions for the uncertainty of inflow through MROPAR 273 

In this study the situation when the upper and middle reaches are both wet is considered as a case study. 274 
For deterministic optimization we opted for the NSGA-II algorithm, which is widely used and has good 275 
historical performance (Reed et al., 2013). Inflow uncertainty is modelled by sampling 1200 inflows, as 276 

shown in Figure 5. In this study, NSGA- II algorithm is used for multi-objective function 277 
solving. For algorithm parameterization, the population size is 100, generation is 1000, 278 
cross rate is 0.9 and mutate rate is 0.2. 279 
 280 



 281 
Figure 5. Inflow samples. 282 
 283 
Figure 6(a) shows that 1200 Pareto fronts calculated for each sampled inflow, through steps 3-6 of CM-284 
ROPAR. Figure 6(b) shows 1200 ideal solutions 𝑠, selected based on their distance to the ideal solution 285 

(step 7 of CM-ROPAR). 286 

 
a 

 
b 

Figure 6. a: 1200 Pareto fronts (f1: water deficit; f2: pollution) and b: 1200 ideal solutions (f1: water 287 
deficit; f2: pollution) selected based on their distance to the ideal solution. 288 

4.4 Assessing robustness of the solutions found by CM-ROPAR 289 

Four robustness criteria are calculated for each solution 𝑠 in the solution set 𝑆. Given the solution 𝑠 290 
to be evaluated, it is necessary to calculate 𝑊𝐷(𝑠, 𝐼𝐹-)(𝑟 = 1…𝑛𝑝) and 𝑃(𝑠, 𝐼𝐹-)(𝑟 = 1…𝑛𝑝) in 291 

order to calculate the four robustness criteria, where 𝐼𝐹- is the 𝑟𝑡ℎ sample of inflow. 𝑟 depends on 292 
the number of samples; in this study, 1200 samples were taken, so 𝑛𝑝 is 1200.  293 

As shown in Table 3 and Figure 7, 𝑅𝐶1, 𝑅𝐶2, 𝑅𝐶3, 𝑅𝐶4  and 𝑆𝑅𝐼  for 𝑊𝐷  and 𝑃 can be 294 
calculated for each solution in 𝑆, and the solutions corresponding to the smallest value in each 𝑅𝐶𝑖 and 295 
the solutions corresponding to the smallest value in 𝑆𝑅𝐼 can be identified, respectively. In addition, we 296 
also feed 1200 samples to the deterministic solution and calculate 𝑅𝐶1, 𝑅𝐶2, 𝑅𝐶3, 𝑅𝐶4 and 𝑆𝑅𝐼 for 297 
𝑊𝐷 and 𝑃.  298 

 299 



Table 3. Optimal solution numbers for different robustness criteria. 300 
 𝑅𝐶1 𝑅𝐶2 𝑅𝐶3 𝑅𝐶4 𝑆𝑅𝐼 
𝑊𝐷 535 361 361 361 361 
𝑃 876 876 876 876 876 
𝐼𝑆 629 84 84 915 84 

 301 

Figure 7. Performance of the robustness of solutions (a: 𝑅𝐶1, b: 𝑅𝐶2, c: 𝑅𝐶3, d: 𝑅𝐶4): robust model 302 
solutions (red dots), deterministic model solution (black ×), solution closest to origin for 𝑅𝐶𝑖 (black +), 303 
solution closest to origin for 𝑆𝑅𝐼 (black dot). The horizontal axis represents the performance of the 304 
robustness for 𝑊𝐷. The vertical axis represents the robustness performance for 𝑃. 305 

 306 
Figure 7 shows the performance of 1200 robust model solutions (red dots) and one deterministic model 307 
solution (black ×), for the four robustness criteria. From Figure 7, four Pareto fronts can also be found, 308 
which indicate the competitive relationship between water deficit and pollution emissions for each 309 
robustness criterion dimension. As shown in Figure 7(a), we can observe an interesting phenomenon that 310 
the left-most extreme solution (red dot) has the smallest robustness index 𝑅𝐶1 for water deficit, but the 311 
highest robustness index 𝑅𝐶1 for pollution; the right-most extreme solution (red dot) has the largest 312 
robustness index 𝑅𝐶1 for water deficit, but the smallest robustness index 𝑅𝐶1 for pollution. Similarly, 313 
this phenomenon can be also observed for the robustness criteria 𝑅𝐶2 , 𝑅𝐶3 , and 𝑅𝐶4 . More 314 
importantly, as shown in Table 3, the extreme solutions and the solutions closest to the origin point may 315 
differ for different robustness criteria. Specifically, for 𝑅𝐶1, solution No. 535 is the most robust for 316 
water deficit, and solution No. 876 is the most robust for pollution; for 𝑅𝐶2, 𝑅𝐶3, and 𝑅𝐶4, the most 317 
robust solution for water deficit is solution No. 361, and the most robust solution for pollution is solution 318 
No. 876.  319 

Because there are many non-inferior solutions in the Pareto frontier, the decision-makers must 320 
choose among them. The decision-makers need not only to choose among the non-inferior solutions but 321 
also to evaluate the trade-off between different robustness criteria or to choose the best one by combining 322 
the criteria. This study takes the distance to the origin as the basis for such choice. As shown in Table 3, 323 



for 𝑅𝐶1, 𝑅𝐶2, 𝑅𝐶3, and 𝑅𝐶4, the closest points to the origin are solution No. 629, solution No. 84, 324 
and solution No. 915, respectively. 325 

4.5 Comparing solutions found by deterministic and robust approaches 326 

To see a more general relationship between the 1201 solutions (i.e., 1200 from the robust optimization 327 
solution and 1 from the deterministic optimization solution), the performance of each solution for water 328 
deficit and pollution on each of the four robustness criteria (sorted from smallest to largest) is plotted in 329 
Figure 8 and Figure 9. 330 

 331 
Figure 8. Robustness of water deficit (a: 𝑅𝐶1, b: 𝑅𝐶2, c: 𝑅𝐶3, d: 𝑅𝐶4). The horizontal coordinate 332 
represents the number of solutions and the vertical coordinate represents the robustness of the solution. 333 
 334 
As shown in Figure 8, for water scarcity, the robust solution performed significantly better than the 335 
deterministic solution. Specifically, for the four robustness criteria, the robust solution outperforms 336 
63.1%, 85.6%, 92.7%, and 77.7% of the solutions, respectively, while the deterministic solution 337 
outperforms only approximately 1% of the solutions. To analyze the robust and deterministic solutions 338 
more accurately and intuitively, this study applied the ratio of 𝑅𝐶(𝐷𝑒𝑡)/𝑅𝐶(𝑅𝑜𝑏) to compare the 339 
robustness of the two solutions. The ratios of 𝑅𝐶(𝐷𝑒𝑡)/𝑅𝐶(𝑅𝑜𝑏) are 1.53, 1.59, 2.62, and 12.67 in the 340 
four robustness criteria dimensions. This means that, regarding water deficit, the deterministic model 341 
solution may lead to 53%, 59%, 162%, and 1167% more variability in the four robustness criteria 342 
dimensions. 343 



 344 

Figure 9. Robustness of pollution (a: 𝑅𝐶1, b: 𝑅𝐶2, c: 𝑅𝐶3, d: 𝑅𝐶4). The horizontal coordinate 345 
represents the number of solutions and the vertical coordinate represents the robustness of the solution. 346 
 347 
However, as shown in Figure 9, the deterministic solution slightly outperforms the robust solution for 348 
pollution. Specifically, for the four robustness criteria, the deterministic solution outperforms 96% of the 349 
solutions, respectively, while the robust solution outperforms about 40% of the solutions. Similarly, we 350 
compare the two solutions by the ratio of 𝑅𝐶(𝑅𝑜𝑏)/𝑅𝐶(𝐷𝑒𝑡). We find that the 𝑅𝐶(𝑅𝑜𝑏)/𝑅𝐶(𝐷𝑒𝑡) 351 
ratio is about 1.17 for 𝑅𝐶1 to 𝑅𝐶3 and 2.37 for 𝑅𝐶4. This means that, in terms of pollution, the robust 352 
solution may lead to 17% more variability for 𝑅𝐶1 to 𝑅𝐶3 and 137% more variability for 𝑅𝐶4. 353 



 354 
Figure 10. Comprehensive robustness for four indicators (a: 𝑅𝐶1, b: 𝑅𝐶2, c: 𝑅𝐶3, d: 𝑅𝐶4). The 355 
horizontal coordinate represents the number of solutions and the vertical coordinate represents the 356 
robustness of the solution. 357 
 358 
In order to analyze the comprehensive performance of each solution, rather than just the robustness of a 359 
single objective, this study reflects the comprehensive implementation of each solution in terms of the 360 
distance from the solution to the origin. As shown in Figure 10, the comprehensive performance of the 361 
robust solution for 𝑅𝐶1 to 𝑅𝐶4 is significantly better than that of the deterministic model solution. 362 
Specifically, the robust solution outperforms 90.3% and 62.2% of the solutions in 𝑅𝐶1 and 𝑅𝐶4, 363 
respectively, and outperforms all solutions in 𝑅𝐶2 and 𝑅𝐶3, while the deterministic solution performs 364 
exceptionally poorly in all four robustness criteria. According to the ratio of 𝐷𝑖𝑠(𝑅𝑜𝑏)/𝐷𝑖𝑠(𝐷𝑒𝑡), we 365 
can find that the robust solution is 16.8%, 19.8%, 39.2%, and 7.3% more robust than the deterministic 366 
solution in the four robustness dimensions, respectively. 367 

 368 
Figure 11. The integrated robustness index distribution of the robust and deterministic solution. 369 



 370 
Figure 12. Comprehensive robustness criteria performance (a: Performance of comprehensive 371 
robustness criterion, b: Comprehensive robustness of robust solutions and deterministic solution, c and 372 
d: comprehensive robustness criteria for water deficit and pollution). 373 
 374 
As shown in Figure 11, for water scarcity, the integrated criteria of the robust solution is clustered at 375 
approximately 0.5 and is significantly more robust than the deterministic solution; for pollution, the 376 
integrated index of the robust solution is significantly higher than that of the deterministic solution, but 377 
the span of the integrated index of the two solutions is similar, so the robustness of the deterministic 378 
solution is slightly better than that of the robust solution. 379 
Similarly, as shown in Figure 12, there is also a Pareto front for the composite robustness criteria. For 380 
water deficit, the robustness of the robust solution is better than the deterministic solution; for pollution, 381 
the robustness of the deterministic solution is better than the robust solution. Specifically, for water deficit, 382 
the robust solution outperforms 85.3% of the solutions while the deterministic solution outperforms only 383 
about 1% of the solutions; for pollution, the deterministic solution outperforms 96% of the solutions 384 
while the robust solution outperforms only 39.6% of the solutions. According to the ratio of 385 
𝑆𝑅𝐼(𝑅𝑜𝑏)/𝑆𝑅𝐼(𝐷𝑒𝑡), the deterministic solution is about 130% more uncertain than the robust solution 386 
for water deficit; for pollution, the robust solution is about 37.7% more variable than the deterministic 387 
solution. The distance of each solution to the origin can reflect the comprehensive performance of the 388 
robustness of each solution. For the robustness composite index, the ratio of 𝐷𝑖𝑠(𝑅𝑜𝑏)/𝐷𝑖𝑠(𝐷𝑒𝑡) is 389 
0.655, which means that the composite robustness of the robust solution is 52.6% higher than the 390 
robustness of the deterministic solution. 391 
For the robustness composite, the robust solution outperforms all the solutions, while the deterministic 392 
model solution outperforms only about 3.2% of the solutions. Comparing the distance to the origin of 393 
the robust solution and the deterministic solution, we can find that the robustness of the robust solution 394 
improves by 27.8% over the deterministic solution. 395 

4.6 Analysis of specific water resources allocation schemes 396 



First, as shown in Figure 13, we analyzed the proportion of water supply for each city. We find that the 397 
water supply share for the scheme most robust to water deficit rates is significantly higher than that for 398 
the scheme with the most robust pollutant emissions. This is because an increase in water supply leads 399 
to an increase in pollutant emissions, which in turn leads to a decrease in the robustness of pollutant 400 
emissions. For specific cities, the least robust allocation scenario for water deficit reduces the water 401 
supply in City 3, City 7, City 10, City 12, and City 15 compared to the most robust allocation scenario 402 
for pollutant emissions. Interestingly, these cities have the most water demand in the basin (as shown in 403 
Figure 3). Therefore, basin managers can increase the water supply to these cities if they need to improve 404 
the water deficit robustness of the water resources allocation scheme.  405 

Then we analyze specifically the distribution of water resources between sectors. An interesting 406 
phenomenon can be observed. As shown in Figure 13, although the scenario with the best robustness in 407 
terms of pollutant emissions has a lower water supply than the scenario with the best robustness in terms 408 
of water deficit, the reduction is mainly in the agricultural sector. Water for domestic and industrial 409 
production did not change much. The reason for this may be that agricultural water use causes more 410 
pollution and may create more uncertainty. So how can watershed managers hope that improving the 411 
robustness of pollutant discharge can reduce water supply to the agricultural sector. 412 

 413 
Figure 13. Specific water resources allocation schemes. 414 

5. Conclusion 415 

In this study, we propose a multi-objective robustness analysis method considering multiple uncertainties 416 
(CM-ROPAR approach) based on the robust optimization method for uncertainty perception (ROPAR 417 
approach). To verify the superiority and practicality of the CM-ROPAR approach, four robustness criteria 418 
are selected, and we compare the robust solution calculated by the method with the optimal solution of 419 
the deterministic model. In the studied case, t there is a competitive relationship between the robustness 420 
of the two objective functions, which can form a Pareto frontier. For the water deficit rate, the robust 421 
solution outperforms the deterministic solution by 53%, 59%, 162%, and 1167% for the four robustness 422 
criteria, respectively; for the pollutant emission, the deterministic solution outperforms the robust 423 



solution by only 17% for 𝑅𝐶1 − 𝑅𝐶3, and outperforms the robust solution by 137% for 𝑅𝐶4. For the 424 
composite robustness, the robust solution outperforms the deterministic solution by 52.6%, the CM-425 
ROPAR finds a more robust solution. 426 

The CM-ROPAR approach permits to exhibit the handling of uncertainty, to be able to analyze how 427 
uncertainty is transmitted to the Pareto frontier, and to perform the corresponding probabilistic analysis. 428 
The novelty of the new method compared to existing ROPAR methods is reflected in two aspects. First, 429 
the ROPAR method only considers uncertainty at a single point. In contrast, the CM-ROPAR method 430 
considers multiple uncertainties through the joint probability distribution of two points, which is closer 431 
to the actual situation and more general. Second, the new way analyzes the robustness of two objective 432 
functions of the solution instead of fixing one objective function to analyze the robustness of the other 433 
objective function. The CM-ROPAR method is more comprehensive and can identify the robustness of 434 
both objective functions, giving decision-makers more information for decision making. 435 

One of the limitations of this study is that the CM-ROPAR approach is applicable to problems with 436 
two uncertainties and two objective functions; however, water allocation allows for more uncertainties 437 
and more objective functions (e.g., the uncertainty of inflow between multiple tributaries). In future 438 
research, we will focus on more complex objective functions and multi-objective optimization problems 439 
with at least three objective functions. 440 
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