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Abstract. Seasonal forecast is an early warning system that contributes to anticipatory management by providing spatial and 

temporal information of the near future. This study first examined the skill of ECMWF system 5 (SEAS5) sub–seasonal–to–

seasonal (S2S) forecasts over Mainland Southeast Asia (MSEA). We evaluated the SEAS5 skill of temperature and 

precipitation for 30 years (1985–2014) against two reference model datasets, WFDE5 and APHRODITE, using probabilistic 

forecast verification skill metrics at grid cells for each month. Then, the SEAS5 data was used to force the Variable 10 

Infiltration Capacity (VIC) hydrological model to predict runoff and streamflow. These hydrological results were compared 

against the WFDE5-driven streamflow reanalysis and observed station data, using the same probabilistic skill statistics. The 

results show a prediction potential for temperature beyond two months in advance. The skill of precipitation and streamflow 

forecasting is limited to the first month. Strong seasonal and regional dependence occurs. The model shows high forecast 

skills during the pre-monsoon (April–May) and post-monsoon (October–November), arguably the period when its usefulness 15 

is potentially highest. Conversely, poor skill is observed during the rainy monsoon season (June–August). In eastern and 

southern MSEA, i.e. in eastern Thailand, Cambodia, Vietnam and Malaysia, considerable skill levels are found. Year–to–

year precipitation tercile plots highlight skill in predicting the anomalous seasonal conditions caused by the ENSO. Overall, 

SEAS5 and derived hydrological forecasts show useful skill that can potentially be used for hydrological and agricultural 

anticipatory management in this region. 20 
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1 Introduction 

Mainland Southeast Asia (MSEA) is located in the tropical zone, where the climate variability strongly depends on a 

complex interaction between the ocean and the atmosphere of the Indian Ocean and the Pacific Ocean. Its climate is 

modulated by monsoons and amongst others the Inter Tropical Convergence Zone (ITCZ) and tropical cyclones contributing 25 

to the rainfall during the wet season. Moreover, the irregular oscillations of sea surface temperature, such as the Indian 

Ocean Dipole (IOD) and the El Niño Southern Oscillation (ENSO), are responsible for anomalous seasons. The ENSO is 

now recognized as the most important driver for year–to–year climate variability (Lieberman and Buckley, 2012), especially 

in the tropics. Abnormal ENSO phases can cause the seasonal climate to become wetter or dryer than usual and consequently 
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affect the hydrology. Generally, drought conditions in MSEA tend to be associated with El Niño, while severe flood events 30 

are correlated with La Niña (Juneng and Tangang, 2005; Villafuerte and Matsumoto, 2015; Xu et al., 2004). 

The recent increasing global mean temperature changes regional temperature and precipitation and affects streamflow 

(Gosain et al., 2006; Xu et al., 2010). This becomes a challenge to water resource management regarding climate change 

adaptation. Decisions in the past have not always been based on, nor supported by effectual information. Clearly, decision–

making needs more research to accomplish more secure and sustainable water management. Hence, probabilistic forecasts 35 

are necessary to establish a strategy taking uncertainties about future hydrological conditions into account. 

Various statistical and empirical streamflow prediction models and methods have been employed to support water 

management (Schaake et al., 2007). Hydrological planning typically requires forecasts at various lead times. For instance, 

short term forecast is used for day–to–day strategy. Seasonal forecasts produce information on such events as ENSO from a 

month to over a year in advance and that has considerable potential for an annually varying management strategy. 40 

Furthermore, sub–seasonal–to–seasonal (S2S) meteorological forecasts have been produced to fill the gap between the 

medium–range and seasonal weather forecasts for informing decision–making across sectors. Many recent studies have been 

conducted to determine the S2S prediction skill. For example, Amalia et al. (2019) studied the skill of the CFSv2 forecasting 

model over Southeast Asia. Seasonal climate model outputs subsequently drive statistical or process-based hydrological 

models and extend hydrological variables prediction on seasonal timescales. Many seasonal hydrological forecasts have been 45 

developed using variety of forecasting methods. Examples are drought forecasting in Africa by Trambauer et al. (2015) and 

seasonal streamflow forecasts over Europe produced by Arnal et al. (2018). State-of-the-art coupled ocean–atmosphere S2S 

forecasting systems, such as the one from the European Centre for Medium–Range Weather Forecasts (ECMWF) are 

promising prediction methods that have been evaluated in many studies (e.g., Olaniyan et al. (2018); Yan et al. (2021)). 

Although forecasting skills have improved, there are still some limitations. For instance, it is still unclear how well SEAS5 50 

represents the regional climate dynamics. We do not know yet how the climate forecast skill, if any, translates into skilful 

streamflow forecasts. It is worth assessing its usefulness for meteorological and inflow forecasting. Moreover, it is important 

to understand seasonal anomalies associated with the ENSO phases over MSEA to provide advanced knowledge to enhance 

implementation and planning for effective water management. Quantifying the forecasting skill for different regions and 

time scales is necessary to identify the model error and enhance the effective uptake of forecast information. 55 

In this present study, we implemented a model-based system, the variable infiltration capacity (VIC) hydrological model and 

the ECMWF system 5 to produce seasonal streamflow forecasts. It was applied in MSEA. We addressed the following 

research questions: (1) How well does the seasonal forecasting model ECMWF SEAS5 simulate the climatology and 

seasonality of the variables (i.e. precipitation and temperature) over MSEA? (2) How well does the streamflow prediction 

forced by the seasonal forcing variables perform? (3) How does forecast skill for these indicators at various lead times 60 

compare for each season and in different sub-regions? 
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Section 2 will give details regarding the study area and available data. The methodology and skill validation are given in 

Section 3. The performance of SEAS5 forecast skill result is presented in Section 4 and discussed in Section 5. We conclude 

our study in Section 6. 

2 Study area and data description 65 

2.1 Study area 

The study area is MSEA, covering Myanmar, Thailand, Laos, Cambodia, Vietnam, and Peninsular Malaysia (Figure 1). 

MSEA is a tropical humid climate region (Peel et al., 2007). Within MSEA, the Mekong River Basin is a flood-prone area 

with rich natural resources and is favourable for agricultural activities. The north and northwest areas are high plateaus and 

mountain ranges across the border between Myanmar and Thailand to Malaysia. The southwest parts are next to the Indian 70 

Ocean and the northeast part is next to the South China Sea. The climate is primarily modulated by two main monsoon 

periods, the southwest monsoon and the northeast monsoon (Loo et al., 2015). The southwest monsoon from the Indian 

Ocean forces the wet season over the entire MSEA, starting late May and lasting to August or even longer to September. It 

takes wet moisture to the northeast mountain range along Myanmar-Thailand during the summer season with the maximum 

rainfall in July. Meanwhile, coastal Vietnam coincides with the maximum rainfall around October, but a lower amount than 75 

the northeast region (Kripalani and Kulkarni, 1998). In contrast, the northeast monsoon from southern China brings dry air 

and dominates the dry and cold season from around November to March (Loo et al., 2015; Misra and DiNapoli, 2014). It 

induces the dry season over the northern and north-eastern parts and causes rainfall in the southern part. The most relevant 

oceanic system to this study area is ENSO, which occasionally causes extreme drought and flood events (Lieberman and 

Buckley, 2012; Räsänen and Kummu, 2013; Xu et al., 2004). 80 
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Figure 1 The study area Mainland Southeast Asia (MSEA) and three sub-regions: North, East, and South. The red dots indicate 

ten streamflow gauging stations from the Royal Irrigation Department (RID), Thailand.  

2.2 Data Description 

The meteorological forcing from the ECMWF ensemble forecast system has been produced since the first system in 1997 85 

(Van Oldenborgh et al., 2005) and has constantly developed to the current version, SEAS5 (Johnson et al., 2019). It is used 

to produce re-forecasts and real-time forecasts. The SEAS5 re-forecast dataset starting from 1985 to 2014 (30 years) was 

selected to evaluate meteorological skill in this study. The data is an ensemble of 25 members. The forecast initialization 

starts on the first day of each month and extends to a lead time of seven months. We performed a bias correction on each 

ensemble member of precipitation and temperature using the empirical quantile–quantile mapping (qqmap) approach 90 

(Themeßl et al., 2011) on daily data against the WFDE5 dataset. 

Observational data for the same period is needed for re-forecast (hereafter hindcast) verification. We use both reanalysis 

datasets and real observed data from the measurement stations as references. We employed the 0.5 degree horizontal 

resolution gridded reanalysis data, namely the WATCH Forcing Data ERA 5 (WFDE5) (Cucchi et al., 2020) as reference for 

the meteorological variables. The WFDE5 dataset is the bias-corrected version of the ERA5 reanalysis using the WATCH 95 

Forcing Data (WFD) methodology (Cucchi et al., 2020). 
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In addition, we used the 0.5o grided daily mean temperature and precipitation datasets from Asian Precipitation–Highly 

Resolved Observation Data Integration Towards Evaluation of Water Resources (APHRODITE) for validation with the 

meteorological variables. APHRODITE is long-term precipitation and temperature datasets developed from observation 

records over Asia (Yatagai et al., 2012). We used the APHRODITE temperature version 1808 and two versions of 100 

precipitation data, version 1101 for 1985–1997 and version 1901 for 1998–2014, because neither version covered the entire 

hindcast period. 

Lastly, we obtained the streamflow observed data from the Royal Irrigation Department (RID), Thailand, to compare with 

the streamflow output from VIC model driven by SEAS5. Ten stations (Figure 1) were selected with complete streamflow 

data. 105 

3 Methodology and skill verification 

The study consists of two main parts (Figure 2): (1) a reference simulation of VIC forced by WFDE5 and (2) a seasonal 

hindcast simulation of VIC forced by SEAS5. We simulated seasonal streamflow forecast with the Variable Infiltration 

Capacity (VIC) hydrological model WUR version (Droppers et al., 2020) using the SEAS5 data as forcing variables. VIC is 

a macroscale hydrological model originally developed by (Liang et al., 1994) that simulates full water and energy balance on 110 

an individual grid cell. VIC is forced by seven variables: 1) precipitation, 2) minimum temperature, 3) maximum 

temperature, 4) atmospheric humidity, 5) wind speed, 6) incoming short-wave radiation, and 7) incoming long-wave 

radiation. For the present study, we ran VIC with a six-hour simulation step. It was first run for the years 1983-1984 with the 

WFDE5 dataset to spin up the initial state of soil moisture, snow, and river discharge. Subsequently, we used 30 years of 

SEAS5 and WDFE5 as forcing variables for VIC to generate streamflow. The VIC model was run for the entire hydrological 115 

basins in this region to assemble all the sources and outlets of the rivers. Subsequently, the streamflow results were 

aggregated for the MSEA domain as outlined before. Thus the simulation domain was significantly larger than the analysis 

domain. The SEAS5-based streamflow results were analysed and compared with the reanalysis streamflow based on the 

WFDE5 variables. The reanalysis simulation was additionally validated with the gauging observed discharge data from the 

RID.  120 

Subsequently, the daily hindcast data was aggregated to monthly means. This study examined skill for every 12 targets and 

seven lead months to achieve a higher temporal resolution instead of analysing target seasons. We further aggregated to three 

sub-regions (North, East, and South) to examine the different consequences of the ENSO phenomenon. 

There is no single verification measure that can capture all forecast qualities, so it is important to use a range of different 

statistical metrics to assess forecast skills (Murphy, 1993). We calculated three skill statistics (1) correlation coefficient, (2) 125 

Ranked Probability Skill Score, and (3) Relative Operating Curve Skill Score. The Spearman’s rank correlation coefficient 

(R) is one of the commonly used measures for forecasting skill analysis. We used the R statistic to verify the correspondence 

between the observations and the median of the hindcasts. The Ranked Probability Skill Score (RPSS) was applied to 
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evaluate the hindcast probability to standard references. A zero value means that the hindcast is as good as the climatology 

and one means a perfect forecast. Positive or negative scores imply more and less skilful than the climatology, respectively.  130 

The seasonal forecast ability to capture ENSO-associated abnormal rainfall was assessed based on anomalous (seasonal) 

years identified from NOAA’s Oceanic Nino Index (ONI) (NOAA, 2023) using the Relative Operating Curve Skill Score 

(ROCSS). We defined three seasons: March–May (MAM), July–August (JJA) and September–November (SON), and again 

the three sub-regions in the North, East and South (Figure 1). A negative ROCSS values mean no skill, zero values imply the 

forecast is as good as the climatology, and the positive values indicate an improvement. For the analysis, we used the 135 

following statistical R packages: ‘Specs Verification’ (Siegert et al., 2020), ‘easy Verification’ (Bhend et al., 2016), 

‘visualizeR’ (Frías et al., 2018), ‘transformeR’ (Bedia and Iturbide, 2017a), ‘loadeR’ (Bedia, 2018) and ‘downscaleR’ (Bedia 

and Iturbide, 2017b). 

 
Figure 2 Set-up of this study. Two dashed boxes present hindcast and reference simulations. Two solid line boxes present obtained 140 
datasets: temperature and precipitation from APHRODITE and water discharge from Royal Irrigation Department, Thailand. 
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4 Results 

4.2 Spatial–temporal pattern of climatology 

In this section, spatial–temporal patterns of temperature and precipitation of SEAS5 hindcast were compared with each 0.5 145 

degree (approximately 55 km) grid cell of WFDE5 and APHRODITE. Maps of the temperature and precipitation skill at 12 

targets and seven lead months have been made. Map information has been further aggregated and analysed against time, to 

facilitate analysis of temporal evolution of skill and its persistence.  

4.2.1 Near surface temperature  

 150 
Figure 3 Spatially aggregated correlation coefficient R (p<0.05) for temperature of SEAS5 hindcast against reference datasets for 

1985–2014 over Mainland Southeast Asia at lead 0–2. (a) Mean R against WFDE5; (b) Number of cells with significant R against 

WFDE5; (c) and (d) are against APHRODITE. Each coloured line follows the skill of a single forecast for its entire seven months. 

Dashed black lines connects points of the same lead time. The straight line at 0.31 is the significance threshold of mean R for 30 

years. 155 

Figure 3 presents the verification result for temperature of SEAS5 hindcast against the WFDE5 and APHRODITE datasets 

over MSEA for 30 years (1985–2014). The spatial domain mean correlation coefficient shown in Figures 3a and 3c shows an 

overall trend of decreasing skill with lead time. The results indicate a significant correlation mostly up to two months in 

advance. The two reference datasets agree on low skill levels during the wet season (July–September), both in mean 
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correlation and in a fraction of the area with skill. The validation against APHRODITE shows a higher skill magnitude 160 

compared with the evaluation against WFDE5, especially during the rainy season. It also can be clearly seen that the number 

of significant cells during July–September between verification against WFDE5 and APHRODITE is different. The number 

of significant grids during July–September drops to below 20% at lead-2 against WFDE5, while the significant cells at lead-

2 against APHRODITE is about 65%. The hindcast evaluation against WFDE5 reanalysis at p<0.05 shows a significant 

spatial domain mean correlation coefficient (R>0.31) at the initial (lead-0) (Figure 3a and 3c). 165 
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Figure 4 Spatially distributed correlation coefficient R (p<0.05) for temperature of SEAS5 hindcast against reference datasets: (a) 

WFDE5 and (b) APHRODITE, for 1985–2014 over Mainland Southeast Asia at lead-0. 

Spatial R patterns for the temperature at lead-0 of the verification against WFDE5 and APHRODITE are shown in Figure 4a 

and 4b, respectively (other lead times shown in the Supplement). Grids with no significant skills are presented in yellow. The 170 

darker red colour grid represents more skill. For various grid boxes, some metrics could not be computed because the 

observations or hindcasts contained more than one-third of zeros or more than one-sixth equal values: these grids will remain 

white on the maps. These skill gaps could occur because of e.g. zero precipitation in the dry period (see also Greuell et al. 

(2018)). 

The maps demonstrate poor skill or no statistical significance around the central or central-east part of MSEA, particularly in 175 

July–September, which is related to the low mean correlation during the wet season (Figure 3). Even though the evaluation 

against APHRODITE presents more significant cells in this area compared to the hindcast against WFDE5, the degree of 

skill is still less than in the other areas. More correlation is found in the central MSEA apart from the wet season. 

Temperature also shows a strong relationship in all months between SEAS5 hindcast and the reference run in mainland 

Malaysia (southern MSEA) and the Myanmar high plateau (northwest MSEA). Though, there is a weaker skill period during 180 

July and September, which can be remarkably seen with WFDE5 reanalysis. 

4.1.2 Precipitation 
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Figure 5 Spatially aggregated correlation coefficient R (p<0.05) for precipitation of SEAS5 hindcast against reference datasets for 

1985–2014 over Mainland Southeast Asia at lead 0–2. (a) Mean R against WFDE5; (b) Number of cells with significant R against 185 
WFDE5; (c) and (d) are against APHRODITE. Otherwise as figure 3. 

Figure 5 presents the correlation coefficient R of the SEAS5 precipitation hindcast against the reference datasets. The 

significant forecasting skill (R> 0.31) is observed only at the initial month (lead-0) over the spatial domain. The evaluation 

skill results with the two reference datasets are comparable and more similar than for temperature. Verifying with 

APHRODITE shows a slightly better skill. The skill results are likewise monthly dependent. The R scores are apparently low 190 

during the rainy season from June to September, which is the same low skill period for temperature. The skilful target 

months are the pre- and post-rainy seasons. Beyond the first lead month, the mean R of the precipitation model hindcast over 

the entire study area decreased with lead time (see more spatial distribution in Supplement). 

As the significant precipitation hindcast skill solely appears in lead-0 (Figure 5), we will only show the spatial distribution of 

R for precipitation against the reference datasets at lead-0 in Figure 6. There is a large area in the northwest and central 195 

MSEA (North Thailand and Myanmar) where the statistic cannot be calculated from December to March because of the ill-

defined data that occur in the hindcast. The reasons can be that the reference precipitation consists of more than one-third 

zeros or of more than one-sixth equal values. This can be the consequence of no precipitation in the dry season because these 

areas are located in the northern highland and the western mountain range blocks the moist air from the Indian Ocean to the 

central region. The non-computed grid cells cause the lower number of spatial grid cells with significant R during the dry 200 

season. The northern and central areas are skilful around the start and end of the rainy season. The southern MSEA displays 

significant R in the dry season. However, there is no clear significance pattern during the wet season. This might be due to 

the high rainfall variability in this region as the tropical zone where the maximum precipitation is high and difficult to 

forecasts. 
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 205 
Figure 6 Spatially distribution correlation coefficient R (p<0.05) for precipitation of SEAS5 hindcast against reference datasets: 

(a) WFDE5; and (b) APHRODITE, for 1985–2014 over Mainland Southeast Asia at lead-0.  

4.2 Spatial–temporal variation of skill in hydrology 

The seasonal streamflow hindcast skill is evaluated for all 12 initialization months and all seven lead months using the 30 

years of SEAS5 data as forcing for VIC to generate the hydrological outputs and that will be evaluated with WFDE5-based 210 

streamflow outputs. The analysis focuses on runoff (the amount of water that runs within a grid cell via both the surface and 

groundwater) and river discharge (the amount of water that flows through the river channel between grid cells). 
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Figure 7 Spatial domain mean correlation coefficient R (p<0.05) for river discharge (orange line) and runoff (blue line) generated 

from VIC model driven by SEAS5 hindcast against the reference dataset driven by WFDE5 for 1985–2014 over Mainland 215 
Southeast Asia at lead 0–2. 

The SEAS5-based streamflow forecast generally shows little skill. The monthly mean correlation patterns between runoff 

and discharge are almost similar (Figure 7), but the prediction is slightly better for discharge than for runoff. The difference 

can be explained by the runoff infiltrates in a single grid cell, while discharge accumulates the river flow from upstream to 

downstream that aggregates the skill through some time intervals. The difference between discharge and runoff is clearly 220 

visible in the spatial correlation coefficient map (Figure 8 and Figure 9). For example, the forecasting skill for discharge in 

March observed in the river channels is higher than the skill in discharge and runoff in the surroundings for the same month 

(Figure 8). There are some exceptions, e.g. in target months February and December, where the river channels in the central 

area show less skill than the surroundings. The occasional difference is perhaps because the discharge predictability comes 

later in response to rainfall upstream. The significant streamflow correlation at each initiation month and lead time 225 

correspond to the forecasting skill of meteorological variables. Nevertheless, the skill level of discharge and runoff hindcasts 

is lower compared to the temperature and precipitation skilful. The significant R is observed at the initialization months and 

almost no skill after lead-0. Considering lead-0, the discharge skill is small during December–March and July–September 

(Figure 7). This may be due to the influence of the monsoon period together with ENSO. Although the line graph of the 

entire MSEA shows a low correlation during December–February, the spatial map shows Malaysia and Vietnam and 230 

Cambodia give a significant skill in this dry season (Figure 8). In contrast, the central MSEA exhibits highly skilled during 

the wet season (April–June) but shows low skill in the dry season. This result is similar to the precipitation skill pattern 

showing a strong relationship between precipitation and hydrology. 
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Figure 8 Spatially distributed correlation coefficient R (p< 0.05) for water runoff generated from VIC model driven by SEAS5 235 
hindcast against the reference dataset driven by WFDE5 for 1985–2014 over Mainland Southeast Asia at lead-0. 

 
Figure 9 Spatially distributed correlation coefficient R (p<0.05) for water discharge generated from VIC model driven by SEAS5 

hindcast against the reference dataset driven by WFDE5 for 1985–2014 over Mainland Southeast Asia at lead-0. 

4.3 Other skill metric (RPSS) 240 

So far, we have only calculated the correlation coefficient R approach to test the seasonal hindcast skill. We also applied the 

RPSS evaluation test in addition to the R statistic. The RPSS evaluation also shows the temporal dependencies in this region. 
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We present here the target May up to two lead times (Figure 10 and Figure 11), which is the month with the highest skill. 

The positive RPSS is presented in light green to blue for precipitation and orange to red for temperature, referring to 

significant cells where the forecast is better than the climatology and potentially useful, while the yellow colour refers to 245 

insignificant RPSS levels. Overall, it can be seen that the seasonal hindcast RPSS skill decreases with longer lead times. The 

spatial gridded RPSS for seasonal temperature hindcast resemble the R results, the positive RPSS results are mostly found in 

the central areas of MSEA (Figure 10a). The RPSS values advocate seasonal temperature forecast effectiveness. Even 

though the model seasonal precipitation, discharge and runoff hindcasts rarely produce RPSS skill, the high RPSS regions 

are similar to and slightly more extensive than the high R regions. This agreement gives more robust indication of which 250 

regions and what time periods the seasonal hindcast is skilful. The precipitation and streamflow results are highly correlated 

in terms of skill patterns. This emphasized the strong relationship between precipitation and the hydrological system. In 

other words, the runoff and discharge forecasting skills predominantly depend on the precipitation forecasting skill and 

apparently less so on initialization. 

 255 
Figure 10 The skill of near surface temperature by (a) mean correlation coefficient R (p<0.05); and (b) ranked probability skill 

score RPSS (p<0.05) of SEAS5 hindcast against observation from WFDE5 for 1985–2014 over Mainland Southeast Asia at lead 0–

2. (c)-(d) are the same for precipitation. 
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Figure 11 The skill of river discharge generated from VIC hydrological model driven by SEAS5 hindcast against the reference 260 
dataset driven by WFDE5. (a) mean correlation coefficient R (p<0.05); and (b) ranked probability skill score RPSS (p<0.05) for 

1985–2014 over Mainland Southeast Asia at lead 0–2. (c)-(d) are for runoff. 

4.4 Comparison of theoretical skill and actual skill of discharge 

All the previous results in this study were analysed against the generated reference model simulation. To better assess the 

value of the hindcast, skill verification against observed data is required. The terms ‘theoretical and actual skill’ was 265 

introduced for skill validating with the reanalysis method and real observational data, respectively and commonly used in 

many studies (Greuell and Hutjes, 2022; Van Dijk et al., 2013). Details of the streamflow gauging stations are presented in 

Supplement Table S1.  

Figure 12 shows the probability R values of 12 initial months in seven lead times against the observational discharge data 

(actual skill, left column) and against the VIC results forced by WFDE5 (theoretical skill, right column) at 6 gauging stations 270 

(the other station results can be found in the Supplement). Significant skill levels are displayed in yellow to red colour, and 

the remaining grey is an insignificant skill. The notable outcome is the similar skill pattern between theoretical and actual 

skills. Theoretical skill generally presents slightly higher skill degrees than actual skill. 

Station P.1 and N.1 are located in the north of Thailand (central MSEA) and show a low number of significant R results with 

unclear skill patterns. Even though some skills are found within these stations, it might be a chance that skill is attributed 275 

through the analysis process. On the other hand, the skills of other gauging stations show a more consistent skill pattern. 

Station C.2 (central Thailand), M.7 (east Thailand) and KTG.3 (southeast Thailand) reveal forecasting skill when the target 

month is May and some skills for April and June and a persistence of skill through a large number of lead months. Although 
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the actual skill degree is lower than the theoretical skill, the results of both assessments show a lot of agreement. Hence, the 

reanalysis can be considered as a reliable method to evaluate the seasonal forecast skill over this area. 280 

 
Figure 12 Comparison between river discharge from gauging stations, known as actual skill (left column), and river discharge 

generated from VIC model driven by SEAS5 hindcast, known as theoretical skill (right column), using the correlation coefficient R 

(p<0.05). (a) station P.1; (b) station N.1; (c) station C.2; (d) station M.7; (e) station KTG.3; and (f) station X.90. 

4.5 Prediction of anomalous years  285 

Infrequent events such as severe floods or extreme droughts are associated with ENSO events. We tested whether it is 

possible to capture anomalous weather and discharge with seasonal forecasts. Figure 13-15 demonstrates the year–to–year 

precipitation hindcast probability in tercile plots from 1985–2014 for the whole study area in three seasons. These tercile 

plots show the performance of a forecast system at different time scales and compare the different thresholds of hindcast 

probabilities (light to dark red blocks) to the observations (white circles). The darker the colour, the better the more certain 290 

the forecast is. We analysed the three sub-regions in the North, East and South and for three seasons, defined as pre-

monsoon phase (MAM), the rainy season (JJA) and the transition phase (SON). MAM is the dry and hottest period of the 

year. The rainy season during JJA is dominated by warm moist air from the southwest monsoon. SON is the transition phase 

from the southeast to northeast monsoon periods. The ROCSS for above normal, normal and below normal on the right of 
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the plot indicates the forecasting skill in comparison to the reference dataset. The hindcast predictabilities for above and 295 

below average precipitation hindcasts are more skilful (higher ROCSS) than in normal conditions. The highest skill is found 

at lead-0 and reduces at longer lead times. 

Even though the SEAS5 hindcast is not able to capture all the anomalous dry and wet years over the 30 years, the hindcast 

exhibits a remarkable possibility of capturing the extreme coincidences during the pre-monsoon season (MAM). 

Furthermore, we detected the predictability of the wet (La Niña) and dry (El Niño) phases during these months. For instance, 300 

a strong probability is found for the above-normal due to the La Niña in 1999, 2000. 

The observed precipitation terciles in the JJA period that are associated with the El Niño phases are predominantly above 

normal or normal, while the La Niña phases are below normal (Figure 14). The hindcast hardly detects abnormal rainfall 

during the JJA monsoon period after the first lead month. The exception is in the South, where the ENSO effect is opposite 

to the other sub-regions and anomalous rainfall due to La Niña can be identified by the SEAS5 hindcast. Significant ROCSS 305 

values are observed at the upper and lower terciles in the South during the JJA months, except the lower tercile at lead-1. 

This emphasizes the predictability for the South sub-region. 

Among the three selected seasons, the SON period is the most affected by the ENSO events. The hindcast can predict 

anomalous years in MSEA, except in the South where significant ROCSS values are rarely observed. In the East, we clearly 

see that El Niño mainly occurs in the below tercile and La Niña mainly in the above tercile, this shows that precipitation is 310 

more predictable and consequently results in higher ROCSS values. (Figure 15). There is an unclear precipitation trend in the 

North and South as El Niño events occur in both upper and lower terciles and the same for La Niña events, which explains 

the forecasting difficulty in this transition phase. 

Overall, more forecasting skill is observed during the MAM than in the JJA and SON periods, except in the South sub-

region, where the hindcast performs better during the JJA months. These results are consistent with the probabilistic R and 315 

RPSS presented before. 
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Figure 13 Year–to–year precipitation hindcast probabilities in tercile plots for March–May (MAM) by SEAS5 from 1985 to 2014 

at lead 0–2 over (a) Mainland Southeast Asia; (b) Sub-region North; (c) Sub-region East; (d) Sub-region South. White circles 

indicate observed precipitation (WFDE5) occurred in that particular tercile, black stars indicate El Niño years, black squares 320 
indicate La Niña years, and asterisks indicate significant ROCSS at p<0.05. 
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Figure 14 As figure 13 but then for precipitation hindcast probabilities in June–August (JJA)  
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Figure 15 As figure 13 but then for precipitation hindcast probabilities for September–November (SON). 325 

5 Discussion 

5.1 Performance of the SEAS forecasting skill  

The forecasting skill in MSEA varies by the sub-region and target month. Skilful areas calculated by R and RPSS statistical 

methods are similar in terms of both spatial and temporal patterns. Significant temperature forecasting skill is shown up to 

two months in advance. Even though the temperature generally shows high skill, there are some periods and areas where 330 

there is hardly any skill. This could be a challenge for forecasting because the temperature can shift towards higher 

temperature and higher peak temperature due to climate change (Supharatid et al., 2021; Villafuerte and Matsumoto, 2015). 

At the same time, for monthly precipitation, there is no forecasting skill after the first lead month (lead-0). This is not a 

surprising result as other research also found that the SEAS5 forecasts temperature better than precipitation, e.g. in Australia 
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(Wang et al., 2019). MSEA is located in the tropical zone where the high rainfall variability (i.e. intensity and frequency) 335 

and extreme convective peak obstructs forecasting. It indicates that in the tropical region, predicting precipitation is even a 

bigger issue. 

The climate variability in MSEA is dominated by two main monsoon periods, northeast monsoon and southwest monsoon. 

These monsoon periods are considered as the source of the forecast. For instance, accurate monsoon onset prediction can 

improve seasonal forecasting skill. Yan et al. (2021) have studied the predictability of the northeast monsoon onset with the 340 

SEAS5 data, and conclude that the monsoon onset date can be predicted ten days in advance. This accuracy definitely 

contributes to the capability to predict seasonal rainfall over short lead times. Chevuturi et al. (2021) exposed that the 

southwest monsoon onset could be forecasted one month in advance according to SEAS5. Wang et al. (2021) evaluated the 

seasonal forecast results for the East Asian summer monsoon implementing Beijing Climate Center Climate System Model 

and also found that the forecast skill dropped dramatically from lead-0 to lead-1 and then fluctuated beyond lead time. These 345 

related studies highlight the importance of how the monsoon season affects seasonal weather and what can or cannot be 

predicted. 

The seasonal hydrological hindcast shows a lack of skill beyond lead-0. The predictive streamflow skill in the studied region 

decreases with the increase in lead times. Similar results have been reported to other hydrological studies (Greuell and 

Hutjes, 2022; Lucatero et al., 2018; Petry et al., 2021). The research in other areas, such as Denmark, showed limited 350 

streamflow skill beyond a one month lead time (Lucatero et al., 2018) and the same in South America where the peak 

streamflow could be predicted one month in advance (Petry et al., 2021). The streamflow generation processes mainly come 

from the precipitation (Schmitt Quedi and Mainardi Fan, 2020), the streamflow skill hence presents similar patterns to the 

precipitation skill although at slightly lower levels. It could be the complexity of the streamflow itself that reduces skill. 

Besides, the uncertainties of the hydrological model would minimize skill. Despite this, the similarity suggests that where 355 

and when the seasonal meteorological forecasts are skilful, it adds value to streamflow forecast (Jackson-Blake et al., 2022; 

Lucatero et al., 2018). 

Meteorological and hydrological forecasting skills in MSEA do not predominantly depend on the lead time but more on the 

target month. The research by Yuan (2016) also found that the seasonal hydrological forecasting of the Yellow River basin 

has a strong seasonal dependency. Our study demonstrates that the highest skill occurs for target May, whereas target 360 

September is the less skilful month. Apparently, because the monsoon influences precipitation predictability differently for 

each season which propagates to similar results in streamflow. Research by Yang et al. (2008) studied the southwest 

monsoon forecast using the NCEP Climate Forecast System model and found that there was forecasting skill at the start of 

the monsoon (May–June), but the monsoon retreat (September) showed limited forecasting skill. 

5.2 Trust in skill verification method  365 

We applied the WFDE5 reanalysis dataset to establish the initial state conditions for VIC, to evaluate the hindcasted 

meteorological variables and to simulate seasonal streamflow reference data. We decided to use this reanalysis approach 
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because no actual grid observation dataset is available for the regional scale. Nonetheless, the SEAS5 and WFDE5 datasets 

are created with almost the same atmospheric model (IFS cycle version 43r1 for SEAS5 and version 41r2 for WFDE5) 

(Cucchi et al., 2020; Johnson et al., 2019) and consequently the results of these systems are not independent, and comparison 370 

could be biased. Therefore, we compared WFDE5 also with APHRODITE, which is an alternative and more independent 

reference dataset. The almost identical results of these two models build trust in our study using the WFDE5 reanalysis 

method. 

Moreover, the comparable streamflow results between the reanalysis approach and the actual observational data enhances 

confidence in using the reanalysis approach. However, there is a difference in terms of skill degree, the theoretical skill is 375 

higher than the actual skill. Errors in the hydrological measurements, notoriously so for flooding events could reduce data 

accuracy and therefore lead to lower actual skill. We nevertheless expect that the measurement errors are not as large as the 

model errors and only have a small effect on the actual skill. The hindcast and the model reanalysis initial conditions are 

both generated by WFDE5, which differ from the real streamflow and could cause dissimilarity (Greuell et al., 2019). VIC 

performs well in many regional and hydrological contexts although there are still some sensitivities in model prediction 380 

(Nijssen et al., 2001; Yan et al., 2015; Yun et al., 2021). Despite the skill level dissimilarity, the reanalysis is a potential 

method for skill analysis. 

To reassure the competence of reanalysis method, more observations covering this study area for a prolonged period are 

needed to assess the actual skill better and contribute to a better understanding of the seasonal forecasting skill. Still, this 

obviously would entail a long-term investment as it takes several decades before time series are long enough to allow such 385 

analysis. Therefore, comparing different reanalysis models method is more time efficient. 

5.3 Aggregated seasonal skill of anomalous years 

We used the ROCSS to evaluate the performance of the tercile forecasts over seasons (MAM, JJA and SON) rather than over 

individual months. The assessment over the MSEA finds obvious skill patterns with the upper and lower terciles exhibiting 

more skill than the climatology. The ROCSS values for the three seasons and three sub-regions underline the dependency of 390 

lead time hindcast skill on seasons and regions. The ROCSS score is higher than those R and RPSS because the seasonal 

aggregates increase skill. The skill value decreases with a longer lead time, same as the R and RPSS results, though in many 

areas remaining significant to lead-2 for the variable analysed. The decreasing skill at higher lead times was also seen in 

other studies, such as Ogutu et al. (2017) and Chen et al. (2019). 

The ENSO phenomenon forces precipitation anomalies differently among sub-regions and seasons. In MSEA, the warm 395 

phase (El Niño) tends to be below the normal precipitation and the cold phase (La Niña) tends to be above normal 

(Kirtphaiboon et al., 2014; Räsänen and Kummu, 2013; Sein et al., 2015). This tendency is apparent in the MAM and OND 

seasons but opposite in the JJA months. The SEAS5 can capture the strong ENSO anomalous incidences (e.g. El Niño in 

1997/1998 and La Niña 1999, 2000, 2001) yet still miss a few of the other incidences. It is because rainfall in this region is 

complex and is influenced by many processes apart from ENSO. 400 
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The MAM period exposes the strongest probability terciles for the entire study area and the ENSO circulation could be 

predicted well by the forecast system. In comparison, the JJA and SON periods show less clear evidence to predict ENSO-

correlated events. This might be because high rainfall variability hampers the prediction. However, the number of ENSO 

events that dominated the MAM pre-monsoon season during the past 30 years is limited compared with more ENSO events 

during the JJA and OND seasons. This possibly cannot represent the skill well; therefore, studying a longer period could 405 

assist this understanding.  

5.4 Implication and recommendation 

Seasonal forecast information may be beneficial for decision-making. This research focussed on the regional scale to 

examine the potential use of SEAS5 and VIC as an early warning system for rainfall and river discharge anomalies over 

MSEA. So, the detailed seasonal forecasting skill found by this study could be applicable for many specific purposes. To 410 

elaborate, the seasonal forecast is important not only for the agricultural sector but it is also important to the water 

management, energy, and industrial sectors (Block, 2011; Everingham et al., 2002). For example, the prediction of discharge 

amount is inherent to the capability of hydropower production. The seasonal streamflow forecast can also be used to improve 

anticipatory flood management and reservoir operation management (Kompor et al., 2020). According to our study, the 

SEAS5/VIC-based meteorological and streamflow forecasts are skilful for one month in advance. But meteorology-related 415 

planning and water management in this area still faces forecasting difficulties for advance planning beyond one month. 

However, the SEAS5 is valuable for short-term planning. For example, the skilful first month forecast for the early and late 

phases of the monsoon from SEAS5 can effectively be used for crop management, such as planning sowing and harvest date, 

especially for rice cultivation as this is the main crop in this region. The low forecasting skill during the wet period may be 

less relevant for farmers' decisions since during this period water limitation is generally not an issue. 420 

The current study shows the scientific perspectives, which is the first step in developing an early warning system. Consulting 

with stakeholders will be the next step for an effective implementation of such a system. The agricultural sector and 

particularly farmers, for instance, should be consulted. We must understand their needs and limitations for effective 

implementation of adaptation measures using the results of this study and building trust in seasonal forecasting (Ebhuoma, 

2020; Nyadzi et al., 2019). In addition, other seasonal forecasting systems and hydrological models should be studied and 425 

compared with this study, as they may exhibit better or complementary skill in this region. Our findings demonstrate the 

forecast that could provide a possible link to regional level end users. As such, it provides a good basis for applying seasonal 

forecasts, additional work could be done by adding information to support the possible use of the seasonal forecast. 

6 Conclusions 

This research evaluates the potential use of the ensemble seasonal forecast model, ECMWF System 5 (SEAS5), for 430 

Mainland Southeast Asia. The SEAS5 possesses skills to forecast meteorological and hydrological systems. The seasonal 
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temperature hindcast verification using R and RPSS shows significant skill up to two months in advance, except the target 

August and September that only show significant skill at lead-0. The seasonal precipitation hindcast demonstrates an almost 

similar spatial skill as the temperature but a lower skill degree, which a considerable skill is in the initial month (lead-0). The 

temperature and precipitation forecasting skills depend on the target month and location but barely on lead time. Both 435 

temperature and precipitation skill levels certainly depend on the target month. April–May and October–November are the 

most predictable skills periods of the year. During the wet season itself (July–September) SEAS5 is hardly able to predict 

seasonal weather in the MSEA area. This is caused by the high number of rainy days in combination with a high variability 

of rainfall intensity during the monsoon periods and ENSO. Different sub-regions also respond to the forecast differently. 

We find a large area in MSEA where the forecasting is skilful, including the middle and eastern parts (East Thailand, 440 

Cambodia, Laos and Vietnam) and the southern part (Malaysia). The forecasting skill for meteorological forcing variables 

influences the hydrological streamflow forecast skill; thus, both monthly discharge and runoff hindcasts show comparable 

patterns to the monthly precipitation hindcast skill with a lower skill degree. Evaluation of year–to–year seasonal 

precipitation hindcast over the entire period presents a good skill for detecting anomalous years in both El Niño and La Niña 

occurrences, specifically during the MAM period. This indicates the potential use of the SEAS5 for impact studies. 445 

According to this study, even though the overall meteorological and hydrological forecasting skill for MSEA beyond one 

month is limited, this information is valuable. The forecast could be utilized as an input for early warning system for many 

sectors. Especially the highly skilful pre-monsoon season could be helpful to farmer decisions such as deciding crop type 

and sowing date. Further research will investigate the influence of seasonal forecasting products such as the meteorological 

forcing and the streamflow in crop model implementation. The results of this study could already support a first step to come 450 

to potential anticipatory hydrological management in MSEA. 
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