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Abstract. General Circulation Models (GCMs) simulations result on grids ranging from 50 km to 600 km, and, therefore, this 

coarse spatial resolution requires data processing, whereby the application of downscaling techniques has become a standard 

procedure. The main approaches employed are Statistical DownScaling (SDS) and Dynamic DownScaling (DDS). The former 

SDS consists of Linear Methods (LM), Stochastic Weather Generators, and Artificial Intelligence DownScaling techniques 

(IADS). Being computationally less demanding and highly portable, most studies apply LM, and IADS approaches to develop 15 

the downscaling. However, it is needed to evaluate whether these approaches allow obtaining representative, in the 

development of rainfall frequency analysis (RFA), in the estimative of the total precipitation (TP) and the number of rainy 

days (RD) both water year and multiannual level, as well as identify whether any of these approaches provide better results 

for the last generation of GCM’s made available for CMIP 6. On this basis and considering only the models with a horizontal 

resolution of 100 km that participated in the SSP1-2.6 and/or SSP5-8.5 scenarios of CMIP6, the present study aim to evaluate 20 

the performance of Delta Method (DM), Quantile Mapping (QM) and Regression Trees (RT) to develop RFA, estimate the TP 

and RD, based on rainfall series obtained by DownScaling, respect to estimative developed with historical records. The results 

show that the application of DM, RT and QM does not guarantee a temporal correlation between the TP and RD estimated 

with DownScaling and historical series, likewise, it is observed that in the estimation of RFA, the application of RT generates 

better results than QM.Finally, it is evident that not applying any DownScaling technique and applying QM generates similar 25 

results. 

1 Introduction 

The knowledge and characterisation of maximum rainfall patterns are important because these types of events have the 

potential to generate flooding and destruction of urban infrastructure, leading to large economic losses, social impacts, and 

sometimes, loss of human life (Eekhout et al., 2018; Nashwan & Shahid, 2022; G. Wang et al., 2020). Historically, extreme 30 

rainfall has been characterised principally by the Intensity Duration and Frequency (IDF) relationships, however, in contexts 
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of climate change, authors such as Fadhel et al., (2017), Shahabul and Elshorbagy (2015) and Waters et al., (2003), highlight 

the need to develop researches that identify possible changes in these relationships under climate change contexts, since as 

indicated by Hassanzadeh et, al. (2014),  Liu et al. (2020), Norris et al., (2020) and Tabari et al. (2021), the 

transformation/modification of temperature and relative humidity patterns leads to the intensification of extreme weather 35 

events (Roca et al., 2019). 

Most of the studies that aim to characterize and identify the impacts of climate change use the results of General Circulation 

Models (GCMs) simulations because these constitute the most advanced climate simulation tool available (IPCC, 2014). The 

GCMs have the capability to generate coherent climate estimation both physically and geographically, and like highlighted by 

Ostad-Ali-Askari et al., (2020), they allow to examine the effect of increasing greenhouse gas emissions on climatic variables. 40 

However, due to their low spatial resolution (50-600 km), GCMs are unable to adequately reproduce the climatic variables of 

small areas such as basins and sub-basins (Ozbuldu & Irvem, 2021), whereby the application of downscaling techniques has 

become a standard procedure (Olsson et al., 2016; Worku et al., 2021).  

Downscaling aims to identify the relationships between climatological variables observed at the local or regional scale and 

those simulated by GCMs (Jimenez, 2022; Zhang & Li, 2020). Once identified and validated, those relationships are applied 45 

to GCM projections with the purpose of predicting future climatological conditions, however, it has been identified that these 

are not always validated, or in other cases, they are applied even presented  a low performance, in this sense, it is necessary to 

develop studies that validate the performance of DownScaling techniques, especially in the latest generation of MCGs available 

in CMIP6, since the correct choice of DownSacling can lead to more reliable results. 

 50 

Several downscaling techniques have been proposed in the literature (Xu, 1999). However, in practice, the main approaches 

employed are Statistical DownScaling techniques (SDS) and Dynamic DownScaling, however, into the SDS we found:  Linear 

Methods (LM), Stochastic Weather Generators (SWG), and Downscaling based on artificial intelligence techniques (IADS). 

The relationships of LM are established by linear or multiple regression methods and the predictor-predictand set can be the 

same variable or different (e.g. both can be daily precipitation, or one can be daily precipitation and other the atmospheric 55 

pressure). On the other hand, SWG seeks to generate synthetic series that take into account the alterations produced by climate 

change. (Semenov & Stratonovitch, 2010; Weschenfelder et al., 2019). At the same time, DDS involves simulating GCMs 

predictions in high-resolution regional climate models (RCMs) to prognosticate future local climatic conditions (Adachi & 

Tomita, 2020). Finally, in IADS, predictor-predictand relationships are identified using artificial intelligence algorithms such 

as Neural Networks (ANNs), Genetic Programming (GP), Vector Support Machine (VSM), among others. (Hassanzadeh et 60 

al., 2014; Niazkar et al., 2022; Sachindra, Ahmed, Rashid, et al., 2018).  
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Since downscaling improves the prediction accuracy of the GCMs (Ozbuldu & Irvem, 2021), several studies have proposed to 

evaluate the efficiency of downscaling techniques. In the case of precipitation, are highlighted the studies developed by: 

Hashmi et al. (2011), Li et al. (2010), Mahla et al. (2019), Sachindra et al. (2014),  Sachindra et al. (2018), Sachindra et al. 

(2018), Salehnia et al., (2019) and Wang et al., (2016). 65 

Salehnia et al. (2019) identified that DDS provides better results than SDS in total annual and seasonal precipitation 

downscaling, pointing out that SDS is computationally simpler than DDS. On the other hand, Mahla et al. (2019) indicated 

that downscaling of monthly precipitation based on multiple linear regressions showed good results for the study area. On the 

other side,  Hashmi et al. (2011) identified that the PG provide better results for daily precipitation downscaling than ANNs. 

Finally, Sachindra et al. (2018) recommended using a Regional Vector Machine (RVM) over PG, ANNs and SVM for monthly 70 

precipitation downscaling. 

Authors such as Hashmi et al. (2011), Hassanzadeh et al. (2014), e Ghasemi Tousi et al. (2021) aimed to identify the changes 

in IDF relationships in contexts of climate change based on GCMs in the Clutha River basin (New Zealand), in the city of 

Saskatoon - Canada and Tucson Arizona – USA. Hashmi et al. (2011) employed the Statistical DownScaling Model (SDSM) 

and the SWG LAR-WG to develop the downscaling, while Hassanzadeh et al. (2014) used the PG and Ghasemi Tousi et al. 75 

(2021) employed the CMhyd tool. In the case of Hashmi et al. (2011), models from phase 3 of the coupled model 

intercomparison project- CMIP3 were employed, while Hassanzadeh et al. (2014) used the third-generation coupled global 

climate model (CGCM3). Finally, Ghasemi Tousi et al. (2021) employed part of the CMIP6 models. In all cases was verified 

that the DownScaling techniques and tools employed had a good performance. 

Based on the mentioned before, it is possible to perceive that there is no consensus on which downscaling technique produces 80 

better results, and as indicated by Nover et al. (2016), it is essential to evaluate several DownScaling techniques and 

approaches. Being computationally cheaper and simpler, most studies apply LM and artificial intelligence approaches to 

develop the downscaling, however, it is needed to evaluate whether approaches guarantee representative results for GCMs 

simulations of the CMIP6, in the development of rainfall frequency analysis (RFA), in the estimative of the total precipitation 

(TP) and the number of rainy days (RD) both hydrological year and multiannual level, as well as whether any of these 85 

approaches provide better results. 

In the absence of studies evaluating the efficiency of DownScaling techniques in models with horizontal resolution of 100 km 

that participated in the simulation of scenarios SSP1-2.6 and/or SSP5-8.5 of CMIP6, the present study aims to evaluate the 

performance of Delta Method (DM), Quantile Mapping (QM) and Regression Trees (RT) as DownScaling techniques to: 

develop RFA, estimate the total precipitation and rainy days both water year (October – September) and multiannual level. 90 
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In the estimation of RFA, TP and RD, precipitation series obtained through DownScaling were used, and the results were 

compared with the estimates made from historical records obtained from rain gauge stations, thus configuring an innovative 

approach, since most studies use the reanalysis dataset as historical data. The comparison allowed to identify if the application 

of these DownScaling techniques in the CMIP-6 daily precipitation simulations guarantees accurate results, respecting those 

obtained with historical records, and to determine if there is a more appropriate technique for each case. 95 

In the first stage, each of the downscaling techniques were applied to the simulated daily rainfall for the historical period, then, 

the total precipitation, maximum rainfall and the number of rainy days per hydrological year were estimated from the 

DownScalaing series. The frequency analysis was developed with the maximums rainfall series, the results were compared 

with those obtained with the historical series. 

In order to facilitate the paper's understanding, the second section presents the study area, the data used, the Downscaling 100 

techniques considered, and the efficiency metrics used to evaluate the Downscaling techniques. The third section presents the 

results and discussion, and finally the fourth section presents the conclusions and final considerations. 

2. Data and Methodology 

2.1 Study Area and historical rainfall records 

The study was developed in the Metropolitan Region of Belo Horizonte (RMBH), it is located between latitudes 18.0º and 105 

20.5º south, and longitudes 43.15º and 44.75º east, in the central region of the state of Minas Gerais – Brazil. 

The RMBH has 9468 km2, is characterised by the occurrence of precipitation between the months of October and March, 

which can reach values higher than 300 mm/month. The RMBH monitoring network counts on more than 120 pluviometric 

stations, which are distributed throughout the territory (See Figure 1a).  

The RMBH rainfall records were obtained from the hydrological information system - Hidroweb, of the Brazilian National 110 

Water Agency (https://www.snirh.gov.br/hidroweb/serieshistoricas). Once the rainfall information was downloaded, its 

consistency was verified by building double mass curves with total precipitation by hydrological year, selecting the rainfall 

stations that presented more than 20 years of consistent records with missing data lower than 10%, emphasising that in no case 

were the missing records filled in, because this could increase the uncertainties of the results. 

Double mass curves were processed to perform consistency analysis on the collected data. Stations with distances less than 44 115 

km and a correlation equal to or greater than 0.7 from each reference station were selected to perform this calculation. The 

analysis allowed identifying that only 32 presented consistent series. Thus, the study was developed from the rainfall 

information of the 32 stations presented in Figure 1b. 
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Figure 1 Pluviometric stations of RMBH. 

 a) Monitoring Network of pluviometry stations. B) Pluviometric stations used in the present study. 

2.2 Simulation of rainfall conditions 

The GCMs simulations provide the daily historical precipitation downloaded by ref (https://esgf-node,llnl,gov/search/cmip6/) 

for the emission scenarios SSP1-2.6 and SSP5-8.5. Only the GCMs with 100 km horizontal resolution, which present 125 

simulations of precipitation at the daily scale, both in the past (1850-2014) and in the future (2015-2100), were considered, it 

should be noted that only the simulations of the historical period were used, however, it was sought to ensure that the models 

used have future projections, so that the results of this study could serve as a basis for future research. On the other hand it is 

important to note that the historical period of CMIP6 was defined until 2014, and that from that year forward, atmospheric 

conditions are disturbed according to greenhouse gas concentration projected in each emission scenario. 130 

SSP5-8.5 scenario predicts that the economic and social development of humankind until the end of the 21st century will be 

governed by: i) high exploitation of resources, ii) intensive use of fossil fuels, iii) high global energy demand. All these factors 

lead to high greenhouse gas concentrations, leading to a radiative forcing of 8.5 W m-2 by the end of the 21st century (Riahi et 

al., 2016). On the other hand, SSP1-2.6 scenario considers that: i) the world is turning towards sustainability, ii) there is a 

commitment by nations to reduce social inequalities, iii) consumption is oriented towards low material growth and low resource 135 
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and energy consumption. All these factors were combined with a radiative forcing of 2.6 W m-2 (Riahi et al., 2016). The 

simulations contemplated are presented in table 1. 

Table 1 Overview of the CMIP6 GCM ensemble used in this study (r –realisation or ensemble member; i –initialisation method; p–physics; f –forcing).

ID Model Ensamble 
SSP1-2.6 

future 

SSP5-8.5 

future 

1 CESM2 r11i1f1p1        X ✓ 

2 CESM2 r4i1f1p1          ✓ X 

3 CESM2-WACCM r1i1f1p1    X ✓ 

4 CESM2-WACCM r2i1f1p1    X X 

5 CESM2-WACCM r3i1f1p1    X ✓ 

6 CMCC-CM2-SR5 r1i1f1p1   ✓ ✓ 

7 CMCC-ESM2 r1i1f1p1      ✓ ✓ 

8 EC-Earth3-CC r1i1f1p1   X ✓ 

9 EC-Earth3 r101i1p1f1  ✓ ✓ 

10 EC-Earth3 r102i1p1f1  ✓ ✓ 

11 EC-Earth3 r103i1p1f1 ✓ ✓ 

12 EC-Earth3 r104i1p1f1 ✓ ✓ 

13 EC-Earth3 r105i1p1f1  ✓ ✓ 

14 EC-Earth3 r106i1p1f1  ✓ ✓ 

15 EC-Earth3 r107i1p1f1  ✓ ✓ 

16 EC-Earth3 r108i1p1f1  ✓ ✓ 

17 EC-Earth3 r109i1p1f1  ✓ ✓ 

18 EC-Earth3 r110i1p1f1  ✓ ✓ 

19 EC-Earth3 r111i1p1f1  ✓ ✓ 

20 EC-Earth3 r112i1p1f1  ✓ ✓ 

21 EC-Earth3 r113i1p1f1  ✓ ✓ 

22 EC-Earth3 r114i1p1f1  ✓ ✓ 

23 EC-Earth3 r115i1p1f1  ✓ ✓ 

24 EC-Earth3 r116i1p1f1  ✓ ✓ 

25 EC-Earth3 r117i1p1f1  ✓ ✓ 

26 EC-Earth3 r118i1p1f1  ✓ ✓ 

27 EC-Earth3 r119i1p1f1  ✓ ✓ 

28 EC-Earth3 r11i1f1p1    ✓ ✓ 

29 EC-Earth3 r121i1p1f1  ✓ ✓ 

30 EC-Earth3 r122i1p1f1  ✓ ✓ 

31 EC-Earth3 r123i1p1f1  ✓ ✓ 

32 EC-Earth3 r124i1p1f1  ✓ ✓ 

33 EC-Earth3 r125i1p1f1  ✓ ✓ 

34 EC-Earth3 r126i1p1f1  ✓ ✓ 

35 EC-Earth3 r127i1p1f1  ✓ ✓ 

36 EC-Earth3 r128i1p1f1  ✓ ✓ 

37 EC-Earth3 r129i1p1f1  ✓ ✓ 

38 EC-Earth3 r130i1p1f1  ✓ ✓ 

39 EC-Earth3 r131i1p1f1  ✓ ✓ 

40 EC-Earth3 r132i1p1f1  ✓ ✓ 

41 EC-Earth3 r133i1p1f1  ✓ ✓ 

42 EC-Earth3 r134i1p1f1  ✓ ✓ 

43 EC-Earth3 r135i1p1f1  ✓ ✓ 

44 EC-Earth3 r136i1p1f1  ✓ ✓ 

ID Model Ensamble 
SSP1-2.6 

future 

SSP5-8.5 

future 

45 EC-Earth3 r137i1p1f1  ✓ ✓ 

46 EC-Earth3 r138i1p1f1  ✓ ✓ 

47 EC-Earth3 r139i1p1f1  ✓ ✓ 

48 EC-Earth3 r13i1p1f1    ✓ ✓ 

49 EC-Earth3 r140i1p1f1  ✓ ✓ 

50 EC-Earth3 r141i1p1f1  ✓ ✓ 

51 EC-Earth3 r142i1p1f1  ✓ ✓ 

52 EC-Earth3 r143i1p1f1  ✓ ✓ 

53 EC-Earth3 r144i1p1f1  ✓ ✓ 

54 EC-Earth3 r145i1p1f1  ✓ ✓ 

55 EC-Earth3 r146i1p1f1  ✓ ✓ 

56 EC-Earth3 r147i1p1f1  ✓ ✓ 

57 EC-Earth3 r148i1p1f1  ✓ ✓ 

58 EC-Earth3 r149i1p1f1  ✓ ✓ 

59 EC-Earth3 r150i1p1f1  ✓ ✓ 

60 EC-Earth3 r15i1p1f1    ✓ ✓ 

61 EC-Earth3 r1i1f1p1      ✓ ✓ 

62 EC-Earth3 r3i1f1p1      X ✓ 

63 EC-Earth3 r4i1f1p1      ✓ ✓ 

64 EC-Earth3 r6i1f1p1      ✓ ✓ 

65 EC-Earth3-Veg r1i1f1p1  ✓ ✓ 

66 EC-Earth3-Veg r2i1f1p1  X ✓ 

67 EC-Earth3-Veg r3i1f1p1  ✓ ✓ 

68 EC-Earth3-Veg r4i1f1p1  ✓ ✓ 

69 EC-Earth3-Veg r6i1f1p1  ✓ ✓ 

70 GFDL-CM4 r1i1f1p1       X ✓ 

71 GFDL-ESM4 r1i1f1p1      ✓ ✓ 

72 INM-CM4-8 r1i1f1p1      ✓ ✓ 

73 INM-CM5-0 r1i1f1p1      ✓ ✓ 

74 MPI-ESM1-2-HR r1i1f1p1  ✓ ✓ 

75 MPI-ESM1-2-HR r2i1f1p1  ✓ ✓ 

76 MRI-ESM2-0 r1i1f1p1     ✓ ✓ 

77 NorESM2-MM r1i1f1p1     ✓ ✓ 

78 TaiESM1-R1 r1i1f1p1        ✓ ✓ 

 140 
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2.3 Downscaling 

A pixel-station extraction data was made, thus, for each station, it was located and identified the pixel in which it was located. 

Thereafter, it was extracted from this the daily precipitation simulated, in all cases the temporal uniformity between daily 

precipitation observed and simulated was guaranteed, for example, if there was a historical record for 01/01/2000, the simulated 

daily precipitation for that day was extracted. Once it was obtained the simulated series, the Downscaling techniques were 145 

applied for each rain gauge. 

2.3.1 Delta Method 

The Delta method employs the relationships between observed and simulated local climate variables. The method has been 

employed in various research due to its simplicity and easy implementation (e.g. Golkar Hamzee et al., (2019); Salehnia et al., 

(2019), Salehnia et al., (2020); Ullah et al., (2018)). The mathematical equation employed by the Delta method is presented 150 

below: 

𝑃𝑆𝐷
𝐷𝑒𝑙𝑡𝑎 = PMod,daily (

�̅�𝑜𝑏𝑠

�̅�𝑀𝑜𝑑
)
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

                   (2) 

Where: 𝑷𝑺𝑫
𝑫𝒆𝒍𝒕𝒂  Precipitation with Downscaling, PMod,daily  precipitation simulated by the GCM, �̅�𝑜𝑏𝑠 average monthly 

precipitation of the station, �̅�𝑀𝑜𝑑  average monthly precipitation simulated by GCM. 

2.3.2 Quantile Mapping 155 

Quantile Mapping employs the empirical probability distributions of the observed and simulated series. Its use is a little more 

complex than the DM, but in general terms it is easy to implement. Due to its low complexity, it has been employed in several 

studies, among which we highlight those developed by Cannon et al. (2015), Enayati et al. (2021) and Heo et al. (2019). The 

following is a mathematical description of the method:  

𝑃𝑆𝐷
𝑄𝑄 = 𝐹𝑜

−1[𝐹𝑀(𝑃𝑀)] (1) 

 160 

where 𝑃𝑆𝐷
𝑄𝑄

  is the precipitation with downscaling, 𝐹𝑜
−1 is the inverse empirical probability function of daily precipitation for 

the historic period, 𝐹𝑀 is the empirical probability function of simulated precipitation, and 𝑃𝑀 is the simulated precipitation by 

MCG.  
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2.3.3 Regression Trees 

Regression trees is a machine learning technique employed in the generation of predictive models. These are obtained from 165 

the recursive partitioning of the sample space and the adjustment of predictive models to each subdivision (Loh, 2011). The 

development of downscaling processes from regression trees has been used in several studies, such as those developed by 

Khalid e Sitanggang (2022), Hutengs e Vohland (2016), Im et al. (2016) e Pouteau et al. (2011).  

Thus, the general goal of the technique is to divide the sample space into k units and fit a predictive model to each subspace 

in such a way that the prediction of the variable of interest, Y, can be performed using a piecewise function of the type: 170 

𝑌 =

{
 

 
𝑓𝐸0(𝑥), 𝑥 ∈ 𝐸0
𝑓𝐸1(𝑥), 𝑥 ∈ 𝐸1

…
𝑓𝐸𝑘(𝑥), 𝑥 ∈ 𝐸𝑘

 (3) 

 

Where:  Y is the predicted variable, 𝑓𝐸𝑖(𝑥) is the predictive model of the sample subspace 𝐸𝑖, and 𝑥 is the predictor variable.  

Downscaling from RT requires the use of observed and simulated data, such as records of temperature, atmospheric pressure 

and precipitation, among others. However, considering that the uncertainties of downscaling increase with the number of 

predictors, we chose to use only simulated daily precipitation as the predictor variable.  175 

It was decided to train and validate the model based on the observed and simulated precipitation quantiles since it was not 

evident temporal correlation between the magnitudes of rainfall events; that is, the observed and simulated precipitation heights 

did not coincide, nor were they close in most cases, thus there were days when the GCMs simulated rainfall, while the historical 

records showed dry days. 

In the training stage, 85% of the records were used, while in the validation stage, 15% were used. The training and validation 180 

of the models were performed in the Matlab 2020b software using the default settings offered by the software. 

2.4 Frequency Analysis 

Once the downscaling was performed, we proceeded to develop the frequency analysis based on the historical and downscaling 

series. First, the maximum rainfall per water year was extracted from the historical records and Downscaling series. Then, the 

stationarity and homogeneity of the maximum series were verified by applying the statistical tests of Spearman (NERC, 1975) 185 

and Mann-Whitney (1947). The tests were applied with a significance level of 5%, as presented by Naghettini and Pinto (2007). 
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Once the homogeneity, randomness and homogeneity of the series had been verified, the frequency analysis was performed, 

in which the following probability distributions were considered: Exponential, Gamma, Gumbel, GEV, Log-Normal, Pearson 

III and Log-Pearson III, their parameters being estimated by means of the L-moments (Hosking, 1997). The adherence of the 

series to the probability distributions was performed by applying the nonparametric Kolmogorov-Smirnov test, with a 190 

significance level of 5%. For each station the quantiles of precipitation associated to return times of 2, 5, 10, 15, 15, 30, 35, 

45, 50, 60, 70, 80, 90 and 100 years were estimated with the distribution that presents the best fit. 

2.5 Comparison between estimates made with historical series and downscaling 

Using the metrics of Nash-Sutcliffe (NSE), Kling-Gupta (KGE), root-mean-square error (RMSE) and correlation coefficient 

of Pearson (R), the results of the number of rainy days and total precipitation per hydrological year, estimated with the 195 

DownScaling series, were compared respect to the historical series.  

Nash-Sutcliffe (1979) and Gupta et al. (2009) point out that values of NSE and KGE equal to 1 indicate a perfect fit between 

the observed and simulated values, while in the case of RMSE, it is represented with a value of 0, on the other hand, values of 

R between 0 and 1 represent a positive correlation, values between -1 and 0 indicate negative correlation, finally, values near 

of 0 suggests the non-correlation. The equations employed in estimating NSE, KGE, RMSE and R are presented below. 200 

𝑁𝑆𝐸 = 1 −
∑ (Xi−Xi

′)2n
i=1

∑ (Xi − �̅�𝑖)
2n

i=1

 (4) 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑖
′

𝜎𝑖
− 1)

2

+ (
�̅�𝑖
′

�̅�𝑖
− 1)

2

 (5) 

RMSE = √
∑ (Xi−Xi

′)2n
i=1

n
 (6) 

R =
𝑛(∑𝑋𝑖𝑋𝑖

′) − (∑𝑋𝑖 ∗ ∑𝑋𝑖
′)

√[𝑛(∑𝑋𝑖
2) − (∑𝑋𝑖)

2] ∗ [𝑛(∑𝑋𝑖
′2) − (∑𝑋𝑖

′)2]

 
(7) 

With Xi and Xi
′ being respectively the observed and simulated values,  �̅�𝑖 and �̅�𝑖

′ are the mean of the observed and simulated 

values, respectively, n is the number of simulated data, 𝜎𝑖
′  being the standard deviation of the simulated values, 𝜎𝑖 is the 

standard deviation of the observed records, and R is the correlation coefficient between the observed and simulated records. 

In addition to the evaluation per water year, the total rainfall and the number of rainy days were compared at the multiannual 

level by means of the percentage error; the equation used to estimate the percentage error is described below. 205 
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% 𝐸𝑟𝑟𝑜𝑟 =
|Xi
′ − Xi|

Xi
∗ 100 (4) 

where Xi and Xi
′ are the observed and simulated values, respectively. A percentage error near 0 indicates a perfect match 

between the observed and simulated values. 

3. Results and discussions 

3.1 Total precipitation and number of rainy days per hydrological year 

Considering that each station had 156 analyses, 78 associated to the total precipitation per hydrological year and 78 to the 210 

number of rainy days, the mean values of NSE, KGE, RMSE and R were estimated to facilitate the analysis and interpretation 

of the results presented in Figure 2 and Figure 3. 

For total precipitation and the number of rainy days per hydrologic year, the high RMSE, low NSE and KGE, and R less than 

0.6 and greater than -0.6 show that there is no temporal correlation between total precipitation and the number of rainy days 

per hydrologic year, estimated from the precipitation simulated by the MCGs with respect to that estimated from the historical 215 

records, even if downscaling with the DM, QM and RT are applied like downscaling techniques (See Figure 2 and Figure 3). 

On the other hand, it is observed that the efficiency metrics in the cases in which no downscaling technique was applied are 

similar to those obtained when the DM is applied, showing that the application of this  technique may offer results that are not 

very representative for the study region, when seeking to estimating the number of rainy days by hydrologic year from the 

daily precipitation simulated by the GCMs participating of SSP1-2.6 and SSP5-8.5 scenarios. 220 

Compared with DM, the application of the QM and RT allows obtaining a better performance of the efficiency metrics. 

However, it was shown that the application of these techniques either guarantee the temporal correlation between the series 

estimated from the daily precipitation simulated by the GCMs respect to those estimated with historical records, which makes 

it evident that, to estimating the number of rainy days and total precipitation per hydrological year, it will be necessary to 

evaluate DownScaling approaches different from those presented in this article.  225 
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Figure 2 Average error metrics for the number of rainy days by hydrologic year  

. a) Without DownScaling – (WDS), b) DM, c) QM, and d) RT 
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 230 

Figure 3 Average Error Metrics for Total Precipitation by hydrologic year. 

 a) WDS, b) DM, c) QM, and d) RT 
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The time windows and the totality of the available historical records obtained through the application of DownScaling 

techniques were considered in the estimation of TP and RD at the multiannual level. For example, if the station under analysis 

had records from 1970 to 2014, the total rainfall and the number of rainy days estimated at the multiannual level were associated 235 

with this period. The number of years considered ranged from 24 to 69 years. 

As shown in Figure 4, for the number of rainy days, it is observed that the percentage errors of the DM are similar to those 

obtained when no downscaling technique is applied. However, it is evident that the application of DM generates a greater 

dispersion of the percentage errors when compared to those generated by QM and RT. It can be seen that, in general terms, the 

percentage errors associated with the estimation of the number of rainy days at the multi-year level are greater than 50% when 240 

DM is used as a downscaling technique. 

Thus, Figure 4 shows that the estimate of the RD at the multi-year level from the rainfall series obtained by applying the QM 

and RT generate percentage errors lower than 7%. In this sense, it is concluded that for the study region, the application of 

QM is appropriate in cases where it is intended to estimate the number of rainy days at the multi-year level from precipitation 

simulations of CMIP6, since to difference of RT, presents a smaller dispersion of the percentage errors. 245 

In cases where no DownScaling techniques is applied, the estimated of total multi-year precipitation shows smaller percentage 

errors than those obtained in the number of RD, being below 40%. On the other hand, a smaller number of outliers is also 

observed, which indicates a smaller dispersion of the percentage errors (See Figure 5). 

It was observed that estimating the total multi-year precipitation from the series obtained by applying DM, QM, and RT 

generates percentage errors lower than 7% in most cases. However, the DM presents a smaller dispersion of percentage errors, 250 

followed by QM and RT. Thus, it is recommended to employ DM over QM and RT in cases where it is desired to estimate 

changes in total precipitation at the multi-year level from the MCGs daily precipitation simulations of CMIP6. 
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Figure 4 Percentage errors of the number of rainy days at the multiannual level for station. 255 
 a) Without DownScaling (WDS) and applying DM like DownScaling technique, b) With the application of QM and RT like 

DownScaling techniques. 
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Figure 5 Percent errors of total precipitation at the multiannual level for each station. a) Without DownScaling (WDS)  b) With 260 

the application of DM, QM and RT like DownScaling techniques. 
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3.1 Frequency Analysis  

Considering that 238 frequency analyses were performed per station, i.e. one for each model and for each DownScaling 

technique evaluated, we proceeded to estimate the mean values of NSE, KGE and RMSE to facilitate the analysis and 265 

interpretation of the results presented in Figure 6. 

The results of stations and models where the null hypotheses of homogeneity and stationarity of the Spearman and Mann-

Whitney tests could not be accepted were disregarded. A total of 5 stations and 60 simulations of 25 stations were disregarded 

(See appendix 1).  

In the case of the DM, a low correlation is perceived between the quantiles estimated from the historical series and those 270 

estimated with the Downscaling series, which are expressed in low NSE, KGE, high RMSE and percentage errors. On the 

other hand, Figure 7 shows that the performance of the DM was similar to that obtained when no DownScaling technique was 

applied. In this sense, it is not recommended to use of this method as a downscaling technique in studies that seek to identify 

changes in the frequency of occurrence of daily rainfall from the simulated rainfall for CMIP6 since the percentage errors are 

high and the efficiency metrics do not show a good performance. 275 

In contrast, in the case of QM and RT, there is a high correlation between the quantiles estimated with the historical series and 

those estimated with the DownScaling series, which are expressed in NSE and KGE close to 1, and low RMSE and percentage 

errors.  

When comparing the QM with the RT, one realizes that RT guarantee lower RMSE, percentage errors and higher NSE and 

KGE for the study area. It is recommended to employ the RT over the quantile mapping in studies that aim to look for changes 280 

in the frequency of occurrence of daily precipitation from the simulations of CMIP6.  

Unlike the DM, Figure 7 shows for QM and RT the percentage errors do not vary significantly as the return time increases, 

and for all return times the DM performance was similar to that obtained when no DownScaling technique was applied. 

 

 285 
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Figure 6 Average of frequency analysis error metrics without application of DownScaling Techniques -WDS (a), and applying  DM 

(b)  QM (c) and RT (d)  like DownScaling Techniques. 
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Figure 7 Percent errors from the frequency analysis for the different feedbacks evaluated without DownScaling application -WSD 290 

and applying the DownScaling techniques RT, QM and DM. 

4. Conclusions 

The estimation of total precipitation and the number of rainy days per hydrologic year from the daily precipitation series 

simulated by the MCGs participants of CMIP6, does not present a temporal correlation with the estimations undertaken from 

observed series, in these sense, different magnitudes were observed. It was observed, the application of DM, QM and RT as 295 

DownScaling techniques is not able to solve that drawback of CMIP6 models. 

Nevertheless, the analysis of each precipitation characteristic separately, i.e. total precipitation and the number of rainy days, 

at the multi-year level from the rainfall simulated by the MCGs shows values close to the historical data in the case of the 

application of the DownScaling techniques QM and RT. In these two cases, the percentage of errors is lower than 10%, with 

smaller errors and relative dispersion with QM. In this sense, we recommend the application of QM over RT in studies that 300 

aim to identify the possible changes in total precipitation and the number of rainy days at the multi-year level in the study 

region from the daily precipitation projected by the models participating in the SSP1-2.6 and SSP5-8.5 emission scenarios. 

Developing frequency analysis from the daily precipitation simulated by the MCGs allows obtaining quantiles close to those 

estimated with historical records when QM and RT are applied. However, it was observed that in the cases where RT was 

applied, the results were more accurate in terms of errors and dispersion. Thus, it is recommended the application of RT over 305 
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QM to estimate the possible changes in the frequency of occurrence of daily precipitation from the precipitation simulated by 

the MCGs participating in the scenarios SSP1-2.6 and SSP5-8.5, in the Metropolitan Region of Belo Horizonte- Brazil.  

Except for the estimation of total precipitation at the multi-year level, the application of the DM as a DownScaling technique 

generates results close to those obtained when no DownScaling technique is applied. Because of this scarce performance, the 

application of QM and RT over DM in the study region is recommended to identify the possible changes in the frequency of 310 

occurrence of daily precipitation, number of rainy days, and total precipitation per hydrologic year by the MCGs participating 

in the scenarios SSP1-2.6 and SSP5-8.5. 

QM and RT performed better in developing frequency analyses. This performance may be associated with the statistical 

formulation of the process, which implicitly associates the high magnitudes of simulated precipitation with the highest 

magnitudes of recorded precipitation.  315 

Taking account, the results, it is recommended that the studies that aim to evaluate the changes RFA in the Region of study 

for the SSP1-2.6 and SSP5-8.5 scenarios, employ the RT like Downscaling technique, since it has shown a greater 

representativeness respect to the DM and QM. 
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Appendix 1 455 

Simulations disregarded per station 

 

Model Ensamble Station 

CESM2_R4 r4i1f1p1          2044024 

CESM2_WACCM_R2 r2i1f1p1    

1943004, 1943009, 1943022, 1943024, 

1943042, 1943049, 1943055, 1944027, 

2043002, 2043004, 2044008 

CESM2_WACCM_R3 r3i1f1p1    
1943009, 1943022, 1943024, 1943055, 

1944007, 1944062, 2043042, 2044024 

CMCC_CM2_SR5_R1 r1i1f1p1   1944007, 1944055, 2044008 

CMCC_ESM2_R1 r1i1f1p1      2044024, 2044043, 2044053 

EC_Earth3_R1 r1i1f1p1      1944004, 1944027, 2044016 

EC_Earth3_R101 r101i1p1f1  
1943009, 1943010, 1943022, 1943024, 

2043002, 2043042, 2044016 

EC_Earth3_R102 r102i1p1f1  1943004, 1943049 

EC_Earth3_R103 r103i1p1f1 1943010 

EC_Earth3_R104 r104i1p1f1 

1944007, 1944026, 1944055, 1944062, 

2043002, 2043004, 2043043, 2044008, 

2044012, 2044024, 2044043, 2044053, 

2044054 

EC_Earth3_R105 r105i1p1f1  1944026, 2044024, 2044043 

EC_Earth3_R106 r106i1p1f1  

1943004, 1943009, 1943022, 1943024, 

1943042, 1943049, 1943055, 1944026, 

1944027, 1944055, 2043002, 2043004, 

2043042, 2044012, 2044016, 2044024, 

2044043, 2044054 

EC_Earth3_R109 r109i1p1f1  

1943004, 1943009, 1943010, 1943022, 

1943024, 1943042, 1943049, 1943055, 

1944004, 1944027, 2043002, 2043004, 

2043042, 2044008, 2044016 

EC_Earth3_R11 r11i1f1p1    

1944007, 1944026, 1944055, 2043043, 

2044008, 2044012, 2044024, 2044043, 

2044053, 2044054 

EC_Earth3_R110 r110i1p1f1  2044043 

EC_Earth3_R111 r111i1p1f1  1943042, 1943049 

EC_Earth3_R112 r112i1p1f1  

1943004, 1943009, 1943024, 1944026, 

1944062, 2043043, 2044012, 2044024, 

2044043 

EC_Earth3_R114 r114i1p1f1  1943049, 2043042 

EC_Earth3_R115 r115i1p1f1  
1943010, 1943022, 1944055, 2043004, 

2043042, 2044008 

EC_Earth3_R116 r116i1p1f1  1943042, 1943049 

EC_Earth3_R118 r118i1p1f1  
1943004, 1943022, 1943042, 1943049, 

1944004, 2043002, 2044016 

EC_Earth3_R119 r119i1p1f1  
1944007, 1944026, 2043043, 2044012, 

2044053, 2044054 

EC_Earth3_R122 r122i1p1f1  1944062 
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EC_Earth3_R123 r123i1p1f1  1943009, 1943042 

EC_Earth3_R124 r124i1p1f1  

1943010, 1943022, 1943042, 1943055, 

2043002, 2043004, 2043042, 2043043, 

2044008, 2044043 

EC_Earth3_R125 r125i1p1f1  

1943004, 1943009, 1943010, 1943022, 

1943024, 1943042, 1943049, 1943055, 

1944004, 1944027, 2043002, 2043004, 

2043042, 2043043, 2044008, 2044016 

EC_Earth3_R127 r127i1p1f1  1944062, 2044043 

EC_Earth3_R128 r128i1p1f1  

1943004, 1944007, 1944062, 2043043, 

2044012, 2044024, 2044043, 2044053, 

2044054 

EC_Earth3_R129 r129i1p1f1  

1943004, 1943009, 1943010, 1943022, 

1943024, 1943042, 1943049, 1943055, 

2043002, 2043004, 2043042 

EC_Earth3_R130 r130i1p1f1  
1943010, 1943022, 1943055, 2043002, 

2043004, 2043042 

EC_Earth3_R131 r131i1p1f1  1943024 

EC_Earth3_R133 r133i1p1f1  
1943010, 1943022, 1944004, 1944027, 

2044008 

EC_Earth3_R134 r134i1p1f1  

1943009, 1943010, 1943022, 1943024, 

1943042, 1943049, 1943055, 1944004, 

1944007, 1944026, 1944027, 1944055, 

1944062, 2043002, 2043004, 2043042, 

2043043, 2044008, 2044012, 2044016, 

2044024, 2044043, 2044053, 2044054 

EC_Earth3_R136 r136i1p1f1  2043004 

EC_Earth3_R137 r137i1p1f1  

1943004, 1943009, 1943010, 1943022, 

1943042, 1943049, 1943055, 2043002, 

2043004, 2043042 

EC_Earth3_R138 r138i1p1f1  

1943004, 1943009, 1943010, 1943022, 

1943024, 1943042, 1943049, 1943055, 

1944004, 1944027, 2043002, 2043004, 

2043042, 2044008, 2044016, 2044043 

EC_Earth3_R141 r141i1p1f1  1943049 

EC_Earth3_R142 r142i1p1f1  1943042 

EC_Earth3_R143 r143i1p1f1  1943024 

EC_Earth3_R144 r144i1p1f1  
1943009, 1943022, 1943055, 1944062, 

2043002, 2043042, 2044043 

EC_Earth3_R145 r145i1p1f1  1943004 

EC_Earth3_R146 r146i1p1f1  
1943010, 1944055, 1944062, 2043043, 

2044024, 2044043 

EC_Earth3_R147 r147i1p1f1  1943049, 2044043 

EC_Earth3_R149 r149i1p1f1  
1943022, 1943042, 1944004, 1944027, 

2044008, 2044016 

EC_Earth3_R15 r15i1p1f1    
1943004, 1943022, 1943042, 1943049, 

1943055, 1944055, 2043042, 2044043 
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EC_Earth3_R150 r150i1p1f1  

01943009, 01943024, 01944007, 01944026, 

01944055, 01944062, 02043043, 02044008, 

02044012, 02044053, 02044054 

EC_Earth3_R4 r4i1f1p1      01943009, 01943024 

EC_Earth3_Veg_R1 r1i1f1p1  

01943022, 01943042, 01943049, 01943055, 

01944026, 02043002, 02043043, 02044024, 

02044043, 02044054 

EC_Earth3_Veg_R2 r2i1f1p1  
01944026, 01944055, 02044024, 02044043, 

02044054 

EC_Earth3_Veg_R3 r3i1f1p1  
01944004, 01944027, 02044008, 02044016, 

02044024 

EC_Earth3_Veg_R4 r4i1f1p1  
01943009, 01943010, 01943022, 01943024, 

01943055, 02043002, 02043004, 02043042 

EC_Earth3_Veg_R6 r6i1f1p1  02043004 

GFDL_CM4_R1 r1i1f1p1       02043002 

GFDL_ESM4_R1 r1i1f1p1      01943024 

INM_CM5_0_R1 r1i1f1p1      

01943010, 01943022, 01943042, 01943055, 

01944007, 01944026, 01944027, 01944055, 

01944062, 02043002, 02043004, 02043042, 

02043043, 02044008, 02044012, 02044016, 

02044024, 02044043, 02044053, 02044054 

MPI_ESM1_2_HR_R1 r1i1f1p1  01944026, 01944055, 02044024, 02044043 

MPI_ESM1_2_HR_R2 r2i1f1p1  01943004, 01943024, 01943042 

MRI_ESM2_0_R1 r1i1f1p1     
01943010, 01943022, 01943049, 01943055, 

02043002, 02043042, 02044008 

NorESM2_MM_R1 r1i1f1p1     01944062 

TaiESM1_R1 r1i1f1p1        
01943004, 01943009, 01943024, 01943042, 

01943049, 01944004, 02044016 

 

 

Simulations disregarded in the frequency analysis 460 

 

ID Name Station Code 

1 Mineração Morro Velho 01943000 

3 Sabará 01943006 

4 Vespasiano 01944009 

25 Fazenda Vista Alegre 02044019 

26 Calambau 02044020 

27 Alto da Boa Vista 02044021 

30 Jardim 02044052 
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