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Abstract. General circulation models generate climate simulations on grids with resolutions ranging from 50 km to 600 km. 10 

The resulting coarse spatial resolution of the model outcomes requires post-processing routines to ensure reliable climate 11 

information for practical studies, prompting the widespread application of downscaling techniques. However, assessing the 12 

effectiveness of multiple downscaling techniques is essential, as their accuracy varies depending on the objectives of the 13 

analysis and the characteristics of the case study. In this context, this study aims to evaluate the performance of downscaling 14 

the daily precipitation series in the Metropolitan Region of Belo Horizonte, Brazil, with the final scope of performing frequency 15 

analyses, and estimating total precipitation and the number of rainy days per hydrological year at both annual and multiannual 16 

levels. To develop this study, 78 climate model simulations with a horizontal resolution of 100 km, which participated in the 17 

SSP1-2.6 and/or SSP5-8.5 scenarios of CMIP6, are employed. The results highlight that adjusting the simulations from the 18 

general circulation models by Delta Method, Quantile Mapping, and Regression Trees produces accurate results for estimating 19 

the total precipitation and number of rainy days. Finally, it is noted that employing downscaled precipitation series through 20 

Quantile Mapping and Regression Trees yields promising results also in terms of the frequency analyses. 21 

1 Introduction 22 

As emphasised by the Intergovernmental Panel on Climate Change (IPCC), Global Climate Models (GCMs) represent the 23 

most advanced climate simulation tools and play a fundamental role in evaluating future climate scenarios (IPCC, 2014). 24 

GCMs have the capability to generate coherent climate estimations both physically and geographically. The GCMs are used 25 

to examine the effect of increasing greenhouse gas emissions on climatic variables (Ostad-Ali-Askari et al., 2020). However, 26 

due to their low spatial resolution (50-600 km), they are unable to adequately reproduce the climatic variables of small areas 27 

such as basins and sub-basins (Ozbuldu & Irvem, 2021), whereby the application of downscaling techniques has become a 28 

standard procedure (Worku et al., 2021; Olsson et al., 2016).  29 

 30 



2 
 

Downscaling aims to refine low-resolution global climate projections to local or regional scales by identifying relationships 31 

between observed climate data and simulations from GCMs (Jimenez, 2022; Zhang & Li, 2020). Downscaling enhances the 32 

representativeness of projected climate conditions, making them more accurate of local climate conditions. Ensuring adequate 33 

downscaling is essential since adjusted series are employed to assess the impacts of climate change on regional scales 34 

(Teutschbein et al., 2011). If an inadequate methodology of downscaling is selected for future climate projections, 35 

misinterpretation and inaccurate estimation of the effects of climate change, with detrimental consequences for long-term 36 

planning in the management of climate change impacts could be done (Rastogi et al., 2022). For instance, underestimating 37 

regional-scale responses to climate change can result in a lack of preparedness from a planning and mitigation perspective. 38 

Conversely, overestimating these responses can lead to an excessive budget allocation for addressing the consequences. 39 

Given the variety of downscaling techniques available in the literature (Delta Method, Quantile Mapping, Machine Learning 40 

Techniques, etc.), Rastogi et al. (2022), Yang et al. (2019), and Onyutha et al. (2016) report that the efficiency of downscaling 41 

techniques varies depending on several reasons, such as the research objectives, the data and the case study, making it necessary 42 

to evaluate multiple techniques in each specific study. The analysis and characterization of changes in precipitation patterns is 43 

one of the most relevant thematic areas in research addressing the impacts of climate change. Mahla et al. (2019), Salehnia et 44 

al. (2019),  Yang et al.  (2019), Sachindra et al.  (2018) and Hashmi et al. (2011), evaluated the performance of downscaled 45 

techniques to reduce precipitation. 46 

Mahla et al. (2019) indicated that downscaling monthly precipitation based on multiple linear regressions showed promising 47 

results for the study area. On the other hand, Salehnia et al. (2019) identified that Dynamic Downscaling (DDS) provides better 48 

results than Statistical Downscaling (SDS) in total annual and seasonal precipitation downscaling, pointing out that SDS is 49 

computationally simpler than DDS. Conversely, Yang et al., (2019), found that methods based on quantile mapping 50 

demonstrate better performance in the downscaling of seasonal scale and extreme precipitation Compared to the function 51 

transform method (CDF-t). Sachindra et al. (2018) recommended using a Regional Vector Machine (RVM) over Genetic 52 

Programming (GP), Artificial Neural Networks (ANNs) and Support Vector Machine (SVM) for monthly precipitation 53 

downscaling. Finally, Hashmi et al. (2011) identified that the GP provides better results for daily precipitation downscaling 54 

than ANNs. 55 

Most of the studies have focused on assessing the efficiency of downscaling techniques for monthly, annual, and seasonal 56 

precipitation by the civil year (Kreienkamp et al., 2019; Ozbuldu & Irvem, 2021). However, only a few studies have been 57 

conducted for the hydrological year. Instead, no studies were identified evaluating the effectiveness of these techniques for 58 

conducting frequency analysis. 59 

Tabari et al. (2021), Liu et al. (2020), Norris et al. (2020) and Hassanzadeh et. al. (2014) indicated that climate change could 60 

transform or modify temperature and relative humidity patterns, leading to the intensification of extreme weather events (Roca 61 
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et al., 2019). Thus, authors such as Fadhel et al., (2017), Shahabul and Elshorbagy (2015) and Waters et al., (2003) emphasize 62 

that in the current context of climate change, it is necessary to identify potential changes in Intensity-Duration-Frequency 63 

(IDF) relationships. 64 

Therefore, it is essential to assess the representativeness of downscaling techniques for conducting frequency analyses, because 65 

the number of studies evaluating the alterations in IDF relationships in the climate change context from simulations of GCMs 66 

has been increasing (e.g., Ghasemi Tousi et al. (2021), Hassanzadeh et al. (2014) and Hashmi et al. (2011)). The assessment 67 

of changes in IDF relationships in climate change scenarios plays a fundamental role in decision-making related to the planning 68 

of hydraulic infrastructure, drainage systems, flood prevention, and water resource management. Identifying these changes 69 

enables authorities, engineers, and planners to incorporate the new climate realities into the development of infrastructure 70 

projects. 71 

To ensure accurate downscaling and enable a correct estimation and interpretation of the impacts of climate change on IDF 72 

relationships, the proposed work aims to investigate the performance of some of the most recognized downscaling techniques 73 

in the literature, such as the Delta Method (DM), Quantile Mapping (QM), and Regression Trees (RT), in terms of frequency 74 

analysis. Additionally, the techniques were also evaluated for their ability to reproduce total precipitation and the number of 75 

rainy days per hydrological year and at a multiyear level. 76 

In this way, the present study contributes to the identification and selection of downscaling techniques that can be applied in 77 

research that assessing changes in IDF relationships from CMIP6 projections, as well as in studies evaluating changes in the 78 

number of rainy days and total precipitation at the multiyear level in the context of climate change. In order to facilitate the 79 

paper's understanding, the second section presents the study area, the data used, the downscaling techniques considered, and 80 

the efficiency metrics used to evaluate the downscaling techniques. The third section presents the results and discussion, while 81 

the fourth section draws the conclusions and final considerations. 82 

2. Data and Methodology 83 

2.1 Study Area and historical rainfall records 84 

The study was conducted in the Metropolitan Region of Belo Horizonte (MRBH), which is located between latitudes 18.0º 85 

and 20.5º south and longitudes 43.15º and 44.75º east, in the central region of the state of Minas Gerais, Brazil. The MRBH 86 

covers an area of 9468 km2 with a hydrological year starting in October, with precipitation occurring from October to March. 87 

Monthly precipitation can exceed 300 mm/month. The MRBH monitoring network comprises more than 120 pluviometric 88 

stations distributed throughout the region (see Figure 1a). 89 
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The MRBH is selected because, as Nunes (2018) indicated, a significant portion of MRBH is directly or indirectly experiencing 90 

the consequences of extreme rainfall events. Between 1928 and 2000, 200 floods were recorded in Belo Horizonte, with 69.5% 91 

of these events occurring in the last two decades analysed. Furthermore, over 37 flood events were reported between 2000 and 92 

2020. 93 

The rainfall records for the MRBH are obtained from the Hydrological Information System (Hidroweb) of the Brazilian 94 

National Water Agency, available at https://www.snirh.gov.br/hidroweb/serieshistoricas. Upon downloading the rainfall data, 95 

we ensured its consistency by constructing double mass curves using total precipitation data for each hydrological year. 96 

Rainfall stations with over 30 years of consistent records and with missing data below 10% were selected. It is important to 97 

note that we did not fill in any missing data, as this could introduce uncertainties in the results. 98 

Double mass curves are processed to perform consistency analysis on the collected data. Stations with distances less than 44 99 

km and a correlation equal to or greater than 0.7 from each reference station were selected to perform this calculation. It was 100 

evident that only 29 stations have more than 30 years of consistent records and missing data below 10%. Thus, the study was 101 

developed from the rainfall information of the 29 stations shown in Figure 1b. 102 

   103 
Figure 1 Pluviometric stations of MRBH:  a) monitoring network of pluviometric stations and b) selected pluviometric 104 
stations used in the present study. 105 

https://www.snirh.gov.br/hidroweb/serieshistoricas
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2.2 Simulation of rainfall conditions 106 

The daily precipitation data simulated for the historical period (1850-2014) by GCMs with the resolution of 100 km, 107 

participating in emission scenarios SSP1-2.6 and/or SSP5-8.5 of CMIP6, were obtained from https://esgf-108 

node.llnl.gov/search/cmip6/.  It is important to emphasize that all available simulations with a resolution of 100 km have been 109 

included to consider all the ensembles available for each climate model. This choice was made with the intention of utilizing 110 

all available model outputs and thus providing a more robust analysis. 111 

The SSP5-8.5 and SSP1-2.6 scenarios are selected as the CMIP6 scenarios that project the highest and lowest temperature 112 

increases respectively. In the case of SSP5-8.5 scenario, it is assumed that the economic and social development of humankind 113 

until the end of the 21st century will be governed by: i) high exploitation of resources, ii) intensive use of fossil fuels, iii) high 114 

global energy demand. All these factors lead to high greenhouse gas concentrations, resulting in a radiative forcing of 8.5 W 115 

m-2 by the end of the 21st century (Riahi et al., 2016). On the other hand, SSP1-2.6 scenario considers that: i) the world is 116 

turning towards sustainability, ii) there is a commitment by nations to reduce social inequalities, iii) consumption is oriented 117 

towards low material growth and low resource and energy consumption. All these factors were combined with a radiative 118 

forcing of 2.6 W m-2 (Riahi et al., 2016). The simulations contemplated are presented in Table 1. 119 

 120 

Table 1 Overview of the CMIP6 GCM ensemble used in this study (r –realisation or ensemble member; i –initialisation 121 
method; p–physics; f –forcing).122 

 123 
ID Model Ensamble SSP1-2.6 

future 
SSP5-8.5 

future 

1 CESM2 r11i1f1p1        X ✓ 

2 CESM2 r4i1f1p1          ✓ X 

3 CESM2-WACCM r1i1f1p1    X ✓ 
4 CESM2-WACCM r2i1f1p1    X X 

5 CESM2-WACCM r3i1f1p1    X ✓ 

6 CMCC-CM2-SR5 r1i1f1p1   ✓ ✓ 

7 CMCC-ESM2 r1i1f1p1      ✓ ✓ 

8 EC-Earth3-CC r1i1f1p1   X ✓ 

9 EC-Earth3 r101i1p1f1  ✓ ✓ 

10 EC-Earth3 r102i1p1f1  ✓ ✓ 

11 EC-Earth3 r103i1p1f1 ✓ ✓ 

12 EC-Earth3 r104i1p1f1 ✓ ✓ 

13 EC-Earth3 r105i1p1f1  ✓ ✓ 

14 EC-Earth3 r106i1p1f1  ✓ ✓ 

15 EC-Earth3 r107i1p1f1  ✓ ✓ 

16 EC-Earth3 r108i1p1f1  ✓ ✓ 

ID Model Ensamble SSP1-2.6 
future 

SSP5-8.5 
future 

17 EC-Earth3 r109i1p1f1  ✓ ✓ 

18 EC-Earth3 r110i1p1f1  ✓ ✓ 

19 EC-Earth3 r111i1p1f1  ✓ ✓ 

20 EC-Earth3 r112i1p1f1  ✓ ✓ 

21 EC-Earth3 r113i1p1f1  ✓ ✓ 

22 EC-Earth3 r114i1p1f1  ✓ ✓ 

23 EC-Earth3 r115i1p1f1  ✓ ✓ 

24 EC-Earth3 r116i1p1f1  ✓ ✓ 

25 EC-Earth3 r117i1p1f1  ✓ ✓ 

26 EC-Earth3 r118i1p1f1  ✓ ✓ 

27 EC-Earth3 r119i1p1f1  ✓ ✓ 

28 EC-Earth3 r11i1f1p1    ✓ ✓ 

29 EC-Earth3 r121i1p1f1  ✓ ✓ 

30 EC-Earth3 r122i1p1f1  ✓ ✓ 

31 EC-Earth3 r123i1p1f1  ✓ ✓ 

32 EC-Earth3 r124i1p1f1  ✓ ✓ 

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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ID Model Ensamble SSP1-2.6 
future 

SSP5-8.5 
future 

33 EC-Earth3 r125i1p1f1  ✓ ✓ 

34 EC-Earth3 r126i1p1f1  ✓ ✓ 

35 EC-Earth3 r127i1p1f1  ✓ ✓ 

36 EC-Earth3 r128i1p1f1  ✓ ✓ 

37 EC-Earth3 r129i1p1f1  ✓ ✓ 

38 EC-Earth3 r130i1p1f1  ✓ ✓ 

39 EC-Earth3 r131i1p1f1  ✓ ✓ 

40 EC-Earth3 r132i1p1f1  ✓ ✓ 

41 EC-Earth3 r133i1p1f1  ✓ ✓ 

42 EC-Earth3 r134i1p1f1  ✓ ✓ 

43 EC-Earth3 r135i1p1f1  ✓ ✓ 

44 EC-Earth3 r136i1p1f1  ✓ ✓ 

45 EC-Earth3 r137i1p1f1  ✓ ✓ 

46 EC-Earth3 r138i1p1f1  ✓ ✓ 

47 EC-Earth3 r139i1p1f1  ✓ ✓ 

48 EC-Earth3 r13i1p1f1    ✓ ✓ 

49 EC-Earth3 r140i1p1f1  ✓ ✓ 

50 EC-Earth3 r141i1p1f1  ✓ ✓ 

51 EC-Earth3 r142i1p1f1  ✓ ✓ 

52 EC-Earth3 r143i1p1f1  ✓ ✓ 

53 EC-Earth3 r144i1p1f1  ✓ ✓ 

54 EC-Earth3 r145i1p1f1  ✓ ✓ 

55 EC-Earth3 r146i1p1f1  ✓ ✓ 

ID Model Ensamble SSP1-2.6 
future 

SSP5-8.5 
future 

56 EC-Earth3 r147i1p1f1  ✓ ✓ 

57 EC-Earth3 r148i1p1f1  ✓ ✓ 

58 EC-Earth3 r149i1p1f1  ✓ ✓ 

59 EC-Earth3 r150i1p1f1  ✓ ✓ 

60 EC-Earth3 r15i1p1f1    ✓ ✓ 

61 EC-Earth3 r1i1f1p1      ✓ ✓ 

62 EC-Earth3 r3i1f1p1      X ✓ 

63 EC-Earth3 r4i1f1p1      ✓ ✓ 

64 EC-Earth3 r6i1f1p1      ✓ ✓ 

65 EC-Earth3-Veg r1i1f1p1  ✓ ✓ 

66 EC-Earth3-Veg r2i1f1p1  X ✓ 

67 EC-Earth3-Veg r3i1f1p1  ✓ ✓ 

68 EC-Earth3-Veg r4i1f1p1  ✓ ✓ 

69 EC-Earth3-Veg r6i1f1p1  ✓ ✓ 

70 GFDL-CM4 r1i1f1p1       X ✓ 

71 GFDL-ESM4 r1i1f1p1      ✓ ✓ 

72 INM-CM4-8 r1i1f1p1      ✓ ✓ 

73 INM-CM5-0 r1i1f1p1      ✓ ✓ 

74 MPI-ESM1-2-HR r1i1f1p1  ✓ ✓ 

75 MPI-ESM1-2-HR r2i1f1p1  ✓ ✓ 

76 MRI-ESM2-0 r1i1f1p1     ✓ ✓ 

77 NorESM2-MM r1i1f1p1     ✓ ✓ 

78 TaiESM1-R1 r1i1f1p1        ✓ ✓ 

124 

2.3 Downscaling 125 

The primary approaches to downscaling are SDS and DDS. In this study, two of the most popular SDS techniques were 126 

evaluated: the Delta Method, Quantile Mapping, as well as the ML-Method Regression Trees. Due to their simplicity and low 127 

computational effort, DM and QM have been widely used in many research studies. In the case of DM, the investigations 128 

developed by Salehnia et al., (2020), Salehnia et al., (2019) and Teutschbein & Seibert (2012) are noteworthy. The study 129 

developed by Salehnia et al., (2020) aims to investigate the impact of climate change on rainfed wheat yield in the Khorasan-130 

e Razavi province of northeast Iran. The study used climate projections from GCMs to assess the potential impact of climate 131 

changes on rainfed wheat yield over the next decades (2019–2038). The DM was used to correct the simulations of temperature 132 

and precipitation on the daily and monthly scales. On the other hand, Salehnia et al., (2019), compared the performance of DM 133 

and DDS in terms of the amount and number of wet days, and total precipitation at annual and seasonal scales. The results 134 

showed that DDS has better performance than DM. Similarly, it is highlighted that DM underestimates the annual mean 135 
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precipitation and the number of wet days, while DDS overestimates them. Finally, Teutschbein & Seibert (2012) compared 136 

the performance of different downscaling techniques to correct precipitation and temperature. Their results highlighted that 137 

the Delta Method is a stable and robust method, with the ability to produce future time series with dynamics similar to current 138 

conditions. However, the method does not consider potential changes in future climatic dynamics. 139 

With respect to QM, the studies conducted by Enayati et al. (2021), Heo et al. (2019), and Themeßl et al. (2011) are noteworthy. 140 

In the study conducted by Enayati et al. (2021), the capability of bias correction in precipitation and temperature simulations 141 

of GCMs using QM technique was evaluated. The results indicated that non-parametric methods of Quantile Mapping 142 

exhibited the best performance. On the other hand, Heo et al. (2019), evaluated the use of different probability distributions in 143 

QM, and the results showed that the selection of the probability distribution could lead to better or worse results. Finally, 144 

Themeßl et al. (2011) indicated that the use of quantile mapping has better performance in the estimation of high quantiles. In 145 

this way, the use of this technique could present an advantage in the case of extreme precipitation events. 146 

In the case of RT, the studies conducted by Khalid and Sitanggang (2022) and Hutengs and Vohland (2016) stand out. Khalid 147 

and Sitanggang (2022) compared various ML methods for downscaling precipitation, yielding that RT performed best. On the 148 

other hand, the study conducted by Hutengs and Vohland (2016) adopted RT to enhance the spatial resolution of temperature 149 

based on land surface temperature and reflectance with favourable results. 150 

A Pixel-Station downscaling approach was developed. Observational data from each station were collected along with 151 

simulated GCM data, extracted from the pixel containing that station. For all the selected pairs of time series, the temporal 152 

consistency between daily precipitation observed and simulated was guaranteed by selecting the simulated data only for the 153 

day in which the observation data are presented. Once the simulated series was obtained, the evaluated downscaling techniques 154 

were applied for each selected point. 155 

2.3.1 Delta Method 156 

In this method, differences or 'deltas' between observed and GCM-simulated climatic conditions in the historical period are 157 

calculated. Subsequently, assuming that these differences or deltas remain constant over time, they are applied to GCMs-158 

simulated future climate projections, thus refining climate projections at local or regional levels. The mathematical equation 159 

employed by the Delta method is presented below: 160 

𝑃𝑃𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = P𝑀𝑀𝑀𝑀𝑀𝑀,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �
𝑃𝑃�𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃�𝑀𝑀𝑀𝑀𝑀𝑀

�
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑙𝑙𝑙𝑙

 (1) 

 161 
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Where: 𝑃𝑃𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 represents the downscaled precipitation, 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  represents the simulated precipitation by the GCMs, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 162 

represents the average monthly precipitation of the station and 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 represents the average monthly precipitation simulated 163 

by GCMs. 164 

2.3.2 Quantile Mapping 165 

QM is based on the principle of matching the quantiles of observed and GCMs-simulated distributions. The process begins 166 

with estimating the quantiles of the observed series. Then, for the future period, the empirical probability associated with the 167 

quantile simulated by the GCMs is estimated. This probability is used in the inverse probability function of observed quantiles, 168 

thus obtaining the downscaled value. The following is a mathematical description of the method of precipitation:  169 

𝑃𝑃𝑆𝑆𝑆𝑆
𝑄𝑄𝑄𝑄 = 𝐹𝐹𝑜𝑜−1[𝐹𝐹𝑀𝑀(𝑃𝑃𝑀𝑀)] (2) 

 170 

where 𝑃𝑃𝑆𝑆𝑆𝑆
𝑄𝑄𝑄𝑄  is the precipitation with downscaling, 𝐹𝐹𝑜𝑜−1 is the inverse empirical probability function of daily precipitation for 171 

the historic period, 𝐹𝐹𝑀𝑀 is the empirical probability function of simulated precipitation, and 𝑃𝑃𝑀𝑀 is the simulated precipitation by 172 

GCMs.  173 

2.3.3 Regression Trees 174 

Regression Trees are a Machine-Learning technique used to build predictive models. These models are created by recursively 175 

dividing the sample space and adjusting predictive models for each subdivision (Loh, 2011). The main goal of this technique 176 

is to partition the sample space into k units and create a predictive model for each subspace. This approach enables the 177 

prediction of the variable of interest, Y, using a piecewise function of the type: 178 

𝑌𝑌 =

⎩
⎨

⎧
𝑓𝑓𝐸𝐸0(𝑥𝑥), 𝑥𝑥 ∈ 𝐸𝐸0
𝑓𝑓𝐸𝐸1(𝑥𝑥), 𝑥𝑥 ∈ 𝐸𝐸1

…
𝑓𝑓𝐸𝐸𝑘𝑘(𝑥𝑥), 𝑥𝑥 ∈ 𝐸𝐸𝑘𝑘

 (3) 

 179 

Where:  Y is the predicted variable, 𝑓𝑓𝐸𝐸𝑖𝑖(𝑥𝑥) is the predictive model of the sample subspace 𝐸𝐸𝑖𝑖, and 𝑥𝑥 is the predictor variable.  180 

Downscaling using RT can incorporate more than one predictor variable to estimate the variable of interest, for example, 181 

precipitation could be estimated using multiple variables simulated by General Circulation Models, such as temperature, 182 

atmospheric pressure, and precipitation. However, it's important to note that the uncertainties in downscaling tend to increase 183 
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with the number of predictors. In this way, only daily precipitation is simulated as the predictor variable to minimize these 184 

uncertainties. 185 

The downscaling process was carried out using observed and simulated precipitation quantiles. This approach is used due to 186 

the absence of a consistent temporal correlation between the observed and simulated rainfall magnitudes. Often, the simulated 187 

precipitation by the GCMs did not match with the historical records, leading to instances where GCMs projected rainfall on 188 

days when historical data indicated dry weather conditions. In the training stage, 85% of the records were used, while in the 189 

validation stage, 15% were employed. The optimization of hyperparameters (Maximum number of splits, Split criterion) was 190 

conducted using the automatic hyperparameter optimization function available in the 'fitrtree' function in Matlab. 191 

2.4 Frequency Analysis 192 

The frequency analysis is carried out using the maximum annual precipitation series, estimated from both historical records 193 

and downscaling results. Initially, the stationarity and homogeneity of the maximum series are confirmed using the Spearman 194 

(NERC, 1975) and Mann-Whitney (1947) statistical tests. These tests are applied at a 5% significance level, as specified by 195 

Naghettini and Pinto (2007). 196 

The frequency analysis is exclusively conducted on the series that exhibited homogeneity and stationarity. This analysis 197 

considered various probability distributions, including Exponential, Gamma, Gumbel, GEV, Log-Normal, Pearson III, and 198 

Log-Pearson III. The parameters for these distributions are estimated using L-moments method (Hosking, 1997). To evaluate 199 

the adherence of the series to these probability distributions, the nonparametric Kolmogorov-Smirnov test is applied at a 200 

significance level of 5%. For each station, the quantiles of precipitation associated with return periods of 2, 5, 10, 15, 30, 35, 201 

45, 50, 60, 70, 80, 90, and 100 years were estimated based on the distribution that exhibited the best fit. 202 

2.5 Comparison between estimates made with historical series and downscaling. 203 

The efficiency of downscaling techniques was assessed in terms of total precipitation (TP) and the number of rainy days (RD) 204 

at both the hydrological year and multiyear level. In the latter case, the total precipitation and rainy days are aggregated over 205 

the available record period. Similarly, the techniques are examined in terms of frequency analysis. 206 

The TP and RD by the hydrological year are evaluated using the Nash-Sutcliffe (NSE), Kling-Gupta (KGE), root-mean-square 207 

error (RMSE), and the Pearson correlation coefficient (R). In the case of the multiyear level, the evaluation was performed 208 

using the percentage error. 209 

Nash-Sutcliffe (1979) and Gupta et al. (2009) indicated that NSE and KGE values of 1 represent an ideal match between 210 

observed and simulated data. In the case of RMSE, a value of 0 signifies a perfect fit. Moreover, the R value, which falls 211 

between 0 and 1, indicates a positive correlation. Values between -1 and 0 suggest a negative correlation, while those near 0 212 
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imply no correlation. Finally, a percentage error value of 0 indicates a perfect fit between observed and simulated data. The 213 

equations used to calculate NSE, KGE, RMSE, R and percentage error are provided below: 214 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (Xi−Xi

′)2n
i=1

∑ (Xi −  𝑋𝑋�𝑖𝑖)2n
i=1

 (4) 

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 − �(𝑟𝑟 − 1)2 + �
𝜎𝜎𝑖𝑖′

𝜎𝜎𝑖𝑖
− 1�

2

+ �
𝑋𝑋�𝑖𝑖′

𝑋𝑋�𝑖𝑖
− 1�

2

 (5) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
∑ (𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖′)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (6) 

𝑅𝑅 =
𝑛𝑛�∑ 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖′� − (∑ 𝑋𝑋𝑖𝑖 ∗ ∑ 𝑋𝑋𝑖𝑖′)

��𝑛𝑛�∑ 𝑋𝑋𝑖𝑖2� − �∑ 𝑋𝑋𝑖𝑖�
2
� ∗ �𝑛𝑛�∑ 𝑋𝑋𝑖𝑖′

2� − �∑ 𝑋𝑋𝑖𝑖′�
2
�
 (7) 

% 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
|𝑋𝑋𝑖𝑖′ − 𝑋𝑋𝑖𝑖|

𝑋𝑋𝑖𝑖
∗ 100 (8) 

Where 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖′ are the observed and simulated values, while 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖′ the mean of the observed and simulated values, 215 

respectively. n represents the number of simulated data, 𝜎𝜎𝑖𝑖′ the standard deviation of the simulated values, 𝜎𝜎𝑖𝑖 the standard 216 

deviation of the observed records, and R the correlation coefficient between the observed and simulated records. 217 

3. Results and discussions 218 

3.1 Total precipitation and number of rainy days per hydrological year 219 

78 analyses were conducted both for total precipitation for the hydrological year and the number of rainy days, the median 220 

values of NSE, KGE, RMSE, and R were computed to facilitate the analysis and interpretation of the results, emphasizing that 221 

the median was chosen because it is less susceptible to extreme events. 222 

Number of Rainy Days per hydrological year 223 

Estimating the number of rainy days in the hydrological year, from downscaled series using DM, QM, and RT methods yields 224 

unsatisfactory results in all evaluated models. Thus, Figure 2 and Table 2 reveal discrepancies in the number of rainy days 225 

estimated per hydrological year from the downscaled series compared to observations. Without the application of any 226 

downscaling technique (WDS), this difference is approximately 78 days. However, when using DM, QM, and RT as 227 

downscaling techniques, the difference decreases to 73, 18, and 19 days, respectively. Thus, QM and RT stand out for providing 228 

the greatest reduction in the discrepancy between the number of rainy days per hydrological year estimated from the 229 
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downscaled series compared to observations. Nonetheless, as mentioned and observed in Table 2 and Figure 2, the low NSE, 230 

KGE, and R scores show that the estimation of the number of rainy days at the annual scale does not work well. 231 

 232 

 233 
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Figure 2 Median performance metrics (RMSE and R) for the estimated number of rainy days from precipitation series 234 

simulated by GCMs, without the application of downscaling techniques (WDS), as well as adjusted series obtained using the 235 

DM, QM, and RT. 236 

Table 2 Summary of performance metrics for estimating the number of rainy days from without downscaling and reduced 237 
series using DM, QM, and RT methods. 238 

 WDS DM QM RT 

 NSE 
RMS

E 
KG
E NSE 

RMS
E 

KG
E NSE 

RMS
E 

KG
E NSE 

RMS
E 

KG
E 

Maximu
m -2.3 128 0.3 -4.5 106 0.2 

-
0.28 23 0.44 

-
0.29 23 0.44 

Median -44.2 78 -0.4 
-

39.0 73 -0.4 
-

1.46 18 0.05 
-

1.48 19 0.05 

Minimum 
-

117.6 28 -0.8 
-

81.4 35 -0.7 
-

2.85 15 -0.21 
-

2.83 15 -0.20 

 239 

As shown in Figure 3, the low performance of NSE, KGE observed in the Table 2 in the estimation of number of rainy days 240 

per hydrological year, is associated with underestimations or overestimations.  241 

As observed in Figure 3, an underestimation of the number of rainy days occurs when no downscaling techniques are applied. 242 

This underestimation trend persists when the DM is applied, consistent with the results found by Salehnia et al., (2019). 243 

However, when using QM and RT, this trend reverses, resulting in overestimation. The persistence of underestimation when 244 

DM is applied may be related to the method of applying a constant correction factor per month. On the other hand, the shift 245 

from underestimation to overestimation when using QM and RT can be attributed to the relationship between simulated and 246 

observed quantiles. Therefore, it is possible that there is a reclassification of dry days (P <= 1.0 mm) as wet days (P>1.0 mm) 247 

(i.e., a simulated quantile of 0.2 mm can be associated with observed precipitation >1 mm). 248 

The median percentage underestimation errors were 85.21%, 79.3%, 14.50%, and 13.70% for WDS, DM, QM, and RT, 249 

respectively. Meanwhile, the average overestimations were 12.54% and 13.78% for QM and RT, respectively. 250 
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 251 

 252 

Figure 3 Median percentage error of underestimation or overestimation of total number of rainy days per hydrological year. The percentage error 253 

of the prevailing condition of underestimation (Under.) or overestimation (Over.) is represented in blue, while the non-prevailing condition is 254 

depicted in orange. For example, if underestimation is prevalent, overestimation is represented in orange. WDS represents the condition without 255 

the application of downscaling techniques, DM corresponds to the condition when Delta Method is applied, QM represents the condition when 256 

Quantile Mapping is applied, and RT indicates the condition of applying Regression Trees as a downscaling technique. 257 
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Total precipitation per hydrological year  258 

Estimating the total precipitation per hydrological year from the downscaled series obtained through the application of DM, 259 

QM, and RT does not guarantee good results. Thus, when no downscaling technique is applied, the difference between the 260 

total precipitation estimated from the downscaled series differs, on median 413.84 mm. In the case where DM is applied, this 261 

difference decreases to approximately 361.42 mm. However, when QM and RT are applied, the differences are higher than 262 

when no downscaling technique is applied, with median differences of 433.10 mm and 434.64 mm, respectively (see Figure 263 

4).  That way, the difference between the total precipitation estimated from the downscaled series by QM and RT increases by 264 

approximately 4% compared to the estimations when no downscaling technique is applied and decreases by 12% when the 265 

DM is applied. 266 

On the other hand, the low NSE, KGE, and R scores, as shown in Figure 4, indicate that the estimation of total precipitation at 267 

the annual scale from the downscaled series does not perform well. 268 

Table 3 Summary of performance metrics for estimating the total precipitation by hydrological year without downscaling 269 

(WDS) and with DM, QM, and RT methods. 270 

 WDS DM QM RT 
 NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE 

Maximum -0.53 654.02 0.36 -0.09 482.54 0.38 -0.66 524.55 0.31 -0.67 526.83 0.31 
Median -1.43 413.84 0.07 -0.77 361.42 0.08 -1.58 433.10 0.00 -1.59 434.64 -0.01 
Minimum -5.14 324.65 -0.21 -1.75 277.78 -0.24 -2.79 343.72 -0.29 -2.81 344.30 -0.29 

In the same way as with the number of rainy days, the difference between the total precipitation per hydrological year estimated 271 

from observed data and downscaled data is associated with underestimations and overestimations. When no downscaling 272 

technique is applied, an underestimation of total precipitation per hydrological year is observed. However, when DM, QM, or 273 

RT is applied, this underestimation changes to overestimation (see Figure 5). 274 

In the case of QM and RT, the overestimation of total hydrological precipitation per year (Figure 4) is related to the 275 

overestimation of the number of rainy days (Figure 3) most of the time. Thus, it is noticeable that the application of QM and 276 

RT increases both the number of rainy days in the hydrological year and the magnitudes of simulated precipitations. However, 277 

this trend is intrinsic to the conceptual foundation of these methods. For example, during the application of QM or RT, a 278 

simulated quantile of 1 mm of rain can be associated with an observed quantile of 20 mm of rain. 279 

The median percentage underestimation errors were 25.58%, 17,02%, 18.74%, and 18.77% for WDS, DM, QM, and RT, 280 

respectively. Meanwhile, the average overestimations were 22.37%, 14.63%, 18.37%, and 18.30% for WDS, DM, QM, and 281 

RT, respectively. 282 
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 283 

 284 

Figure 4 Median performance metrics (RMSE and R) for estimated total precipitation from series simulated by GCMs, without 285 

downscaling (WDS), as well as adjusted series obtained using the DM, QM, and RT.286 
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Figure 5 Median percentage error of underestimation or overestimation of total precipitation per hydrological year. The percentage error of the 287 

prevailing condition of underestimation (Under.) or overestimation (Over.) is represented in blue, while the non-prevailing condition is depicted in 288 

orange. For example, if underestimation is prevalent, overestimation is represented in orange. WDS represents the condition without the application 289 

of downscaling techniques, DM corresponds to the condition when the Delta Method is applied, QM represents the condition when Quantile 290 

Mapping is applied, and RT indicates the condition of applying Regression Trees as a downscaling technique.291 
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3.2 Total precipitation and number of rainy days at multiyear level. 292 

In the multiyear context, estimates derived from downscaled series using DM, QM, and RT showed more robust agreement 293 

with the estimations made from the historical records compared to the annual scale. A low discrepancy between the number 294 

of rainy days and total precipitation was observed at the multiyear scale. 295 

When examining the number of rainy days, it was noted that the smallest errors are achieved when employing QM and RT as 296 

downscaling techniques. Additionally, estimates derived from downscaled series through DM demonstrated a performance 297 

similar to cases where no downscaling technique was applied (see Figure 6 and Table 4). Thus, in the multiyear scale, the 298 

series adjusted by QM yielded the smallest percentage errors, followed by those adjusted by RT and DM. 299 

Table 4 Summary of percentual errors of number of rainy days in the multiyear level. 300 

 WSD DM QM RT 
Maximum 141.90% 116.78% 1.21% 2.58% 
Median 83.90% 77.88% 0.60% 1.83% 
Minimum 21.56% 1.20% 0.27% 1.19% 

On the other hand, it was observed that the estimation of total precipitation at the multiyear scale, from series downscaled by 301 

DM, QM, and RT, significantly reduces percentage errors compared to cases where no downscaling technique is applied (See 302 

Figure 7 and Table 5). 303 

Table 5 Summary of percentual errors of total precipitation in the multiyear level. 304 

 WSD DM QM RT 
Maximum 33.59% 1.55% 1.99% 1.83 
Median 12.13% 0.81% 1.02% 0.89 
Minimum 7.62% 0.43% 0.00% 0.01 

 305 

Based on the results, employing downscaled series for estimating total precipitation and the number of rainy days on a 306 

hydrological year scale demonstrates better performance in the multi-year context. Therefore, it is recommended to utilize 307 

downscaled series by employing DM, QM, and RT for estimating total precipitation and the number of rainy days at the multi-308 

year scale. 309 

It was observed that the performance of downscaling techniques at the annual scale was consistently reflected at the multiyear 310 

scale. Regarding the number of rainy days, the QM method demonstrated superior performance across both annual and 311 

multiyear scales. As for total precipitation per hydrological year, the DM method showcased the best performance, exhibiting 312 

even higher efficiency at the multiyear scale. 313 
 314 
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 315 
Figure 6 Median of Percentage Errors of Rainy Days at the multiyear level to each model. Without the application of 316 
downscaling techniques (WDS), and with the application of Delta Method (DM), Quantile Mapping (QM), and Regression 317 
Trees (RT) as downscaling techniques. 318 
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 319 

 320 
Figure 7 Median of Percentage Errors of total precipitation at the multiyear level to each model. Without the application of 321 
downscaling techniques - WDS, and with the application of Delta Method - DM, Quantile Mapping - QM, and Regression 322 
Trees - RT as downscaling techniques. 323 
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 324 

3.1 Frequency Analysis  325 

Developed frequency analyses from downscaled series using QM and RT yield satisfactory results, evidenced by good 326 

performance in the NSE and KGE metrics. With respect to the frequency analyses developed from series downscaled by the 327 

DM method, it is observed that the results were comparable to those obtained when no downscaling technique was applied 328 

(see Figure 8 and Table 6). 329 

Figure 8 illustrates a significant improvement in yield metrics following the implementation of QM and RT. The metrics 330 

approach unity, suggesting that the quantiles estimated from the adjusted series closely align with those derived from the 331 

historical series. 332 

The percentage errors obtained in the estimates made with series downscaled by QM and RT were less than 12.18% and 5.91%, 333 

respectively. In contrast, the errors in the estimates made with series downscaled by the DM method were similar to those 334 

obtained when no downscaling technique was applied (See Table 6). 335 

Table 6 Summary of percentual errors obtained in the Frequency analysis. 336 

 WSD DM QM RT 
Maximum 57.95% 55.9% 12.18% 5.91% 
Median 52.69% 47.1% 7.38% 1.56% 
Minimum 1.97% 0.45% 1.21% 0.09% 

The high performance achieved in the estimation of quantiles from adjusted series through QM and RT is associated with the 337 

fact that the largest quantiles simulated by GCMs are correlated with the largest observed quantiles. Consequently, observed 338 

and simulated series of maximum values end up close values. This fact leads to comparable outcomes in estimations, regardless 339 

of whether they are derived from observed or downscaled series. 340 

Given that downscaling in the case of DM is accomplished through the application of factors, the difference between the 341 

maximum precipitation observed and estimated from the adjusted series is substantial. Consequently, this results in a 342 

significant disparity in the outcomes of frequency analysis. 343 

It was evident that the dispersion and variability of estimated quantiles from the adjusted series increased as the return period 344 

extended; however, this must be associated with the low occurrence of quantiles with high return times in the historical 345 

series (See Figure 10). Additionally, it was observed that errors related to DM are associated with an underestimation of 346 

quantiles for different return periods. Thus, it is concluded that the development of frequency analyses from adjusted series 347 

through QM and RT is feasible, with RT emerging as the technique that exhibited the best performance.348 
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 349 
Figure 8 Median performance metrics (NSE e KGE) for the frequency analysis developed from precipitation series simulated by GCMs, without 350 
the application of downscaling techniques (WDS), as well as adjusted series obtained using the Delta Method (DM), Quantile Mapping (QM), and 351 
Regression Trees (RT).  352 

 353 
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 354 

 355 
Figure 9 Median of percentual error obtained in the frequency analysis developed from precipitation series simulated by GCMs, 356 
without the application of downscaling techniques WDS, as well as reduced series obtained using the Delta Method - DM, 357 
Quantile Mapping - QM, and Regression Trees - RT.358 
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  359 
Figure 10 Frequency analysis developed from precipitation series simulated by GCMs, without the application of downscaling techniques (WDS), 360 
as well as adjusted series obtained using the Delta Method (DM), Quantile Mapping (QM), and Regression Trees (RT) for the return time of 2, 5, 361 
10, 15, 25, 30, 35, 45, 50, 60, 70, 80, 90 and 100 years.362 
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4. Conclusions 363 

This study aimed to assess the performance of using downscaled series through the Delta Method, Quantile Mapping, and 364 

Regression Trees to develop frequency analysis and estimate total precipitation and the number of rainy days per hydrological 365 

year at annual and multiyear levels. 366 

It was observed that the Global Climate Models (GCMs) from the sixth phase of the Coupled Model Intercomparison Project 367 

(CMIP6) underestimated the number of rainy days per hydrological year for MRBH, with a median of 78 days. When 368 

estimating the number of rainy days from the downscaled series by DM, the tendency of underestimation persists and 369 

insignificantly decreases to 73 days. It was also observed that, when employing downscaled series through the application of 370 

QM  and RT, underestimation is reversed to a slight overestimation. The average overestimations were 18 days for QM and 371 

19 days for RT. Despite the relatively low magnitude of overestimations, the low NSE and KGE scores suggest that estimating 372 

the number of rainy days at an annual scale from downscaled series using DM, QM, and RT does not guarantee accurate 373 

results. 374 

Similarly, GCMs underestimate total precipitation for the hydrological year, with a median of 413.84 mm. The use of a 375 

downscaled series by the DM reduces this difference to 361.42 mm. However, when QM and RT are applied, the differences 376 

surpass those without downscaling. The median differences in those cases are 433.10 mm for QM and 434.64 mm for RT. 377 

These facts, along with the low NSE and KGE scores, suggest that annual estimations of the number of rainy days and total 378 

precipitation from downscaled series by DM, QM, and RT do not yield reliable results. This result is also due to the fact that 379 

a one-year time window is not optimal for analysing the precipitation simulated by the considered RCMs, and consequently, 380 

more significant results were found with the multiyear study. 381 

Therefore, at the multiyear scale, the estimation of the number of rainy days and total precipitation demonstrated high 382 

performance. For the number of rainy days, the percentage errors between the magnitudes of the total estimated from adjusted 383 

and observed series were less than 1.21% and 2.58% when downscaled series by QM and RT were employed. Percentage 384 

errors for estimating total rainfall per hydrological year on a multiyear scale were 1.55%, 1.99%, and 1.83% when downscaled 385 

series by DM, QM, and RT were used, respectively.  386 

Finally, developing frequency analysis from the daily precipitation simulated by the GCMs allows obtaining quantiles close 387 

to those estimated with historical records when QM and RT are applied. The performance achieved in estimating quantiles 388 

from adjusted series by QM and RT is attributed to the fact that QM and RT associate the largest quantiles simulated by GCMs 389 

with the largest observed quantiles. As a result, observed and downscaled series have close values. The percentage error of 390 

estimates made from downscaled series by QM and RT, in relation to estimates based on observed data, were lower than 391 
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12.18% and 5.91%, respectively. In this context, it is recommended to utilize downscaling based on RT when the goal is to 392 

assess future changes in frequency of occurrence. 393 
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