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Abstract. General Circulation Models generate simulations on grids with resolutions ranging from 50 km to 600 km. The 10 

resulting coarse spatial resolution requires data processing, prompting the widespread application of downscaling techniques. 

However, assessing the effectiveness of multiple downscaling techniques is essential, as their accuracy varies depending on 

the objectives of the analysis. In this context, this study aimed to evaluate the performance of downscaled daily precipitation 

series. The proposed downscaling approach is applied to develop frequency analyses, to estimate totall precipitation  and the 

number of rainy days per hydrological year) at both annual and multiannual levels in the Metropolitan Region of Belo 15 

Horizonte, Brazil. To develop this study,  78 models with a horizontal resolution of 100 km, which participated in the SSP1-

2.6 and/or SSP5-8.5 scenarios of CMIP6, are employed. The performance evaluation of downscaling techniques was conducted 

through the application of metrics NSE, KGE, RMSE, and R. The results highlighted that adjusting the simulations from the 

General circulation Models by Delta Method, Quantile Mapping, and Regression Trees produce better results for estimating 

the total precipitation and number of rainy days at the multiyear scale. Finally, it is noted that employing downscaled 20 

precipitation series through Quantile Mapping and Regression Trees yields promising results in the development of frequency 

analyses. 

1 Introduction 

As emphasised by the Intergovernmental Panel on Climate Change (IPCC), Global Climate Models (GCMs) represent the 

most advanced climate simulation tools and play a fundamental role in evaluating future climate scenarios (IPCC, 2014). 25 

GCMs have the capability to generate coherent climate estimation both physically and geographically. The GCMs are used to 

examine the effect of increasing greenhouse gas emissions on climatic variables (Ostad-Ali-Askari et al., 2020). However, due 

to their low spatial resolution (50-600 km), they are unable to adequately reproduce the climatic variables of small areas such 

as basins and sub-basins (Ozbuldu & Irvem, 2021), whereby the application of downscaling techniques has become a standard 

procedure (Worku et al., 2021; Olsson et al., 2016).  30 
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Downscaling aims to refine low-resolution global climate projections to local or regional scales by identifying relationships 

between observed climate data and simulations from GCMs (Jimenez, 2022; Zhang & Li, 2020). Downscaling enhances the 

representativeness of projected climate conditions, making them more accurate of local climate conditions. Ensuring an 

adequate reduction in scale is essential since reduced series are employed to assess the impacts of climate change on regional 35 

scales (Teutschbein et al., 2011).If an inadequate methodology of downscaling is selected to future climate projections, 

misinterpretation and inaccurate estimation of the effects of climate change, with detrimental consequences for long-term 

planning in the management of climate change impacts can be done (Rastogi et al., 2022). For instance, underestimating 

regional-scale responses to climate change can result in a lack of preparedness from a planning and mitigation perspective. 

Conversely, overestimating these responses can lead to an excessive budget allocation for addressing the consequences. 40 

Given the variety of downscaling techniques available in the literature (Delta Method, Quantile Mapping, ANN, etc.), Rastogi 

et al. (2022), Yang et al. (2019), and Onyutha et al. (2016) report that the efficiency of downscaling techniques varies 

depending on the research objectives, making it necessary to evaluate multiple techniques in each specific case. Like the 

analysis and characterisation of changes in precipitation patterns is one of the most relevant thematic areas in research 

addressing the impacts of climate change, Mahla et al. (2019),  Salehnia et al. (2019),  Yang et al.  (2019), Sachindra et al.  45 

(2018) and Hashmi et al. (2011), evaluated the performance of downscaled techniques to reduce precipitation. 

Mahla et al. (2019) indicated that downscaling monthly precipitation based on multiple linear regressions showed promising 

results for the study area. On the other hand, Salehnia et al. (2019) identified that Dynamic Downscaling (DDS) provides better 

results than Statistical Downscaling (SDS) in total annual and seasonal precipitation downscaling, pointing out that SDS is 

computationally simpler than DDS. On the other side, Yang et al.,  (2019), found that, methods based on quantile mapping 50 

demonstrate better performance in the reduction of seasonal scale and extreme precipitation in comparison with the function 

transform method (CDF-t). Sachindra et al. (2018) recommended using a Regional Vector Machine (RVM) over Genetic 

Programming (PG), Neural Networks (ANNs) and Suport Vector Machine (SVM) for monthly precipitation downscaling. 

Finally, Hashmi et al. (2011) identified that the PG provides better results for daily precipitation downscaling than ANNs. 

Most studies have focused on assessing the efficiency of downscaling techniques for monthly, annual, and seasonal 55 

precipitation by the civil year (Kreienkamp et al., 2019; Ozbuldu & Irvem, 2021). However, no studies have been conducted 

for the hydrological year. Additionally, no studies were identified evaluating the effectiveness of these techniques for 

conducting frequency analys. 

Tabari et al. (2021), Liu et al. (2020), Norris et al., (2020) and Hassanzadeh et, al. (2014),  indicated that climate change could 

transform or modify temperature and relative humidity patterns, leading to the intensification of extreme weather events  (Roca 60 

et al., 2019). Thus, authors such as Fadhel et al., (2017), Shahabul and Elshorbagy (2015) and Waters et al., (2003) emphasise 
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that in the current context of climate change, it is necessary to identify potential changes in Intensity-Duration-Frequency 

(IDF) relationships. 

Therefore, it is essential to assess the representativeness of downscaling techniques for conducting frequency analyses because 

the number of studies evaluating the alterations in Intensity-Duration-Frequency (IDF) relationships in the climate change 65 

context from simulations of GCMs has been increasing (e.g. Ghasemi Tousi et al. (2021), Hassanzadeh et al. (2014) and 

Hashmi et al. (2011)). The assessment of changes in IDF relationships in climate change scenarios plays a fundamental role in 

decision-making related to the planning of hydraulic infrastructure, drainage systems, flood prevention, and water resource 

management. Identifying these changes enables authorities, engineers, and planners to incorporate the new climate realities 

into the development of infrastructure projects. 70 

To ensure accurate downscaling and enable a correct estimation and interpretation of the impacts of climate change on IDF 

relationships, the proposed work aims to investigate the performance of some of the most recognised downscaling techniques 

in the literature, such as the Delta Method (DM), Quantile Mapping (QM), and Regression Trees (RT), in terms of frequency 

analysis. Additionally, the techniques were also evaluated for their ability to reproduce total precipitation and the number of 

rainy days per hydrological year and at a multiyear level. 75 

In this way, the present study contributes to the identification and selection of downscaling techniques that can be applied in 

research that assesses changes in IDF relationships from CMIP6 projections, as well as in studies evaluating changes in the 

number of rainy days and total precipitation at multiyear level, in climate change contexts. In order to facilitate the paper's 

understanding, the second section presents the study area, the data used, the downscaling techniques considered, and the 

efficiency metrics used to evaluate the downscaling techniques. The third section presents the results and discussion; the fourth 80 

section draws the conclusions and final considerations. 

2. Data and Methodology 

2.1 Study Area and historical rainfall records 

The study was conducted in the Metropolitan Region of Belo Horizonte (MRBH), which is located between latitudes 18.0º 

and 20.5º south and longitudes 43.15º and 44.75º east, in the central region of the state of Minas Gerais, Brazil. The MRBH 85 

covers an area of 9468 km2 with a hydrological year starting in October, with precipitation from October to March. Monthly 

precipitation can exceed 300 mm/month. The MRBH monitoring network comprises more than 120 pluviometric stations 

distributed throughout the region (See Figure 1a). 

The MRBH is selected because, as Nunes (2018) indicated, a significant portion of MRBH is directly or indirectly experiencing 

the consequences of extreme rainfall events. Between 1928 and 2000, 200 floods were recorded in Belo Horizonte, with 69.5% 90 
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of these events occurring in the last two decades analysed. Furthermore, over 37 flood events were reported between 2000 and 

2020. 

The rainfall records for the MRBH are obtained from the Hydrological Information System (Hidroweb) of the Brazilian 

National Water Agency, available at https://www.snirh.gov.br/hidroweb/serieshistoricas. Upon downloading the rainfall data, 

we ensured its consistency by constructing double mass curves using total precipitation data for each hydrological year. We 95 

selected the rainfall stations with over 30 years of consistent records and with missing data below 10%. It is important to note 

that we did not fill in any missing records, as this could introduce uncertainties in the results. 

Double mass curves are  processed to perform consistency analysis on the collected data. Stations with distances less than 44 

km and a correlation equal to or greater than 0.7 from each reference station were selected to perform this calculation. The 

analysis allowed the identification that only 29 presented consistent series. Thus, the study is developed from the rainfall 100 

information of the 29 stations shown in Figure 1b. 

   
Figure 1 Pluviometric stations of MRBH. 

 a) Monitoring Network of pluviometry stations. B) Pluviometric stations used in the present study. 

https://www.snirh.gov.br/hidroweb/serieshistoricas
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2.2 Simulation of rainfall conditions 105 

The daily precipitation data simulated for the historical period (1850-2014) by GCMs with the resolution of 100 km, 

participating of emission scenarios SSP1-2.6 and/or SSP5-8.5 of CMIP6, were obtained from https://esgf-

node.llnl.gov/search/cmip6/. 

The SSP5-8.5 and SSP1-2.6 scenarios are selected as the CMIP6 scenarios that project the highest and lowest temperature 

increases respectively. In the case of SSP5-8.5 scenario, it is assumed that the economic and social development of humankind 110 

until the end of the 21st century will be governed by: i) high exploitation of resources, ii) intensive use of fossil fuels, iii) high 

global energy demand. All these factors lead to high greenhouse gas concentrations, resulting in a radiative forcing of 8.5 W 

m-2 by the end of the 21st century (Riahi et al., 2016). On the other hand, SSP1-2.6 scenario considers that: i) the world is 

turning towards sustainability, ii) there is a commitment by nations to reduce social inequalities, iii) consumption is oriented 

towards low material growth and low resource and energy consumption. All these factors were combined with a radiative 115 

forcing of 2.6 W m-2 (Riahi et al., 2016). The simulations contemplated are presented in tale 1. 

 

Table 1 Overview of the CMIP6 GCM ensemble used in this study (r –realisation or ensemble member; i –initialisation method; p–physics; f –forcing). 

ID Model Ensamble SSP1-2.6 
future 

SSP5-8.5 
future 

1 CESM2 r11i1f1p1        X ✓ 
2 CESM2 r4i1f1p1          ✓ X 
3 CESM2-WACCM r1i1f1p1    X ✓ 
4 CESM2-WACCM r2i1f1p1    X X 
5 CESM2-WACCM r3i1f1p1    X ✓ 
6 CMCC-CM2-SR5 r1i1f1p1   ✓ ✓ 
7 CMCC-ESM2 r1i1f1p1      ✓ ✓ 
8 EC-Earth3-CC r1i1f1p1   X ✓ 
9 EC-Earth3 r101i1p1f1  ✓ ✓ 

10 EC-Earth3 r102i1p1f1  ✓ ✓ 
11 EC-Earth3 r103i1p1f1 ✓ ✓ 
12 EC-Earth3 r104i1p1f1 ✓ ✓ 
13 EC-Earth3 r105i1p1f1  ✓ ✓ 
14 EC-Earth3 r106i1p1f1  ✓ ✓ 
15 EC-Earth3 r107i1p1f1  ✓ ✓ 
16 EC-Earth3 r108i1p1f1  ✓ ✓ 
17 EC-Earth3 r109i1p1f1  ✓ ✓ 
18 EC-Earth3 r110i1p1f1  ✓ ✓ 
19 EC-Earth3 r111i1p1f1  ✓ ✓ 
20 EC-Earth3 r112i1p1f1  ✓ ✓ 
21 EC-Earth3 r113i1p1f1  ✓ ✓ 
22 EC-Earth3 r114i1p1f1  ✓ ✓ 
23 EC-Earth3 r115i1p1f1  ✓ ✓ 
24 EC-Earth3 r116i1p1f1  ✓ ✓ 
25 EC-Earth3 r117i1p1f1  ✓ ✓ 

ID Model Ensamble SSP1-2.6 
future 

SSP5-8.5 
future 

26 EC-Earth3 r118i1p1f1  ✓ ✓ 
27 EC-Earth3 r119i1p1f1  ✓ ✓ 
28 EC-Earth3 r11i1f1p1    ✓ ✓ 
29 EC-Earth3 r121i1p1f1  ✓ ✓ 
30 EC-Earth3 r122i1p1f1  ✓ ✓ 
31 EC-Earth3 r123i1p1f1  ✓ ✓ 
32 EC-Earth3 r124i1p1f1  ✓ ✓ 
33 EC-Earth3 r125i1p1f1  ✓ ✓ 
34 EC-Earth3 r126i1p1f1  ✓ ✓ 
35 EC-Earth3 r127i1p1f1  ✓ ✓ 
36 EC-Earth3 r128i1p1f1  ✓ ✓ 
37 EC-Earth3 r129i1p1f1  ✓ ✓ 
38 EC-Earth3 r130i1p1f1  ✓ ✓ 
39 EC-Earth3 r131i1p1f1  ✓ ✓ 
40 EC-Earth3 r132i1p1f1  ✓ ✓ 
41 EC-Earth3 r133i1p1f1  ✓ ✓ 
42 EC-Earth3 r134i1p1f1  ✓ ✓ 
43 EC-Earth3 r135i1p1f1  ✓ ✓ 
44 EC-Earth3 r136i1p1f1  ✓ ✓ 
45 EC-Earth3 r137i1p1f1  ✓ ✓ 
46 EC-Earth3 r138i1p1f1  ✓ ✓ 
47 EC-Earth3 r139i1p1f1  ✓ ✓ 
48 EC-Earth3 r13i1p1f1    ✓ ✓ 
49 EC-Earth3 r140i1p1f1  ✓ ✓ 
50 EC-Earth3 r141i1p1f1  ✓ ✓ 

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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ID Model Ensamble SSP1-2.6 
future 

SSP5-8.5 
future 

51 EC-Earth3 r142i1p1f1  ✓ ✓ 
52 EC-Earth3 r143i1p1f1  ✓ ✓ 
53 EC-Earth3 r144i1p1f1  ✓ ✓ 
54 EC-Earth3 r145i1p1f1  ✓ ✓ 
55 EC-Earth3 r146i1p1f1  ✓ ✓ 
56 EC-Earth3 r147i1p1f1  ✓ ✓ 
57 EC-Earth3 r148i1p1f1  ✓ ✓ 
58 EC-Earth3 r149i1p1f1  ✓ ✓ 
59 EC-Earth3 r150i1p1f1  ✓ ✓ 
60 EC-Earth3 r15i1p1f1    ✓ ✓ 
61 EC-Earth3 r1i1f1p1      ✓ ✓ 
62 EC-Earth3 r3i1f1p1      X ✓ 
63 EC-Earth3 r4i1f1p1      ✓ ✓ 
64 EC-Earth3 r6i1f1p1      ✓ ✓ 

ID Model Ensamble SSP1-2.6 
future 

SSP5-8.5 
future 

65 EC-Earth3-Veg r1i1f1p1  ✓ ✓ 
66 EC-Earth3-Veg r2i1f1p1  X ✓ 
67 EC-Earth3-Veg r3i1f1p1  ✓ ✓ 
68 EC-Earth3-Veg r4i1f1p1  ✓ ✓ 
69 EC-Earth3-Veg r6i1f1p1  ✓ ✓ 
70 GFDL-CM4 r1i1f1p1       X ✓ 
71 GFDL-ESM4 r1i1f1p1      ✓ ✓ 
72 INM-CM4-8 r1i1f1p1      ✓ ✓ 
73 INM-CM5-0 r1i1f1p1      ✓ ✓ 
74 MPI-ESM1-2-HR r1i1f1p1  ✓ ✓ 
75 MPI-ESM1-2-HR r2i1f1p1  ✓ ✓ 
76 MRI-ESM2-0 r1i1f1p1     ✓ ✓ 
77 NorESM2-MM r1i1f1p1     ✓ ✓ 
78 TaiESM1-R1 r1i1f1p1        ✓ ✓ 

2.3 Downscaling 120 

The primary approaches to downscaling are are SDS and DDS. Under SDS. In this study, two of the most popular SDS 

techniques were evaluated: the Delta Method, Quantile Mapping, as well as the ML-Method Regression Trees. Due to their 

simplicity and low computational effort, DM and QM have been widely used in many research studies.In the case of DM, are 

stand out the investigations developed by Salehnia et al., (2020), Salehnia et al., (2019) and Teutschbein & Seibert (2012). The 

study developed by Salehnia et al., (2020) aims to investigate the impact of climate change on rainfed wheat yield in the 125 

Khorasan-e Razavi province of northeast Iran. The study used climate projections from GCMs to assess the potential impact 

of climate changes on rainfed wheat yield over the next decades (2019–2038). The DM was used to correct the simulations of 

Temperature and precipitation in the daily and monthly scale. On the other hand, Salehnia et al., (2019), compared the 

performance of DM and DDS in terms of the amount and number of wet days, and total precipitation at annual and seasonal 

scales. The results showed that DDS has better performance than DM. Similarly, it is highlighted that DM underestimates the 130 

annual mean precipitation and the number of wet days, while DDS overestimates them. Finally, Teutschbein & Seibert (2012) 

compared the performance of different downscaling techniques to correct precipitation and temperature. Their results 

highlighted that the Delta Method (DM) is a stable and robust method, with the ability to produce future time series with 

dynamics similar to current conditions. However, the method does not consider potential changes in future climatic dynamics. 

With respect to QM, the studies conducted by Enayati et al. (2021), Heo et al. (2019), and Jakob Themeßl et al. (2011) are 135 

noteworthy. In the study conducted by Enayati et al. (2021), the capability of bias correction in precipitation and temperature 

simulations of General Circulation Models (GCMs) using Quantile Mapping techniques was evaluated. The results indicated 

that non-parametric methods of Quantile Mapping exhibited the best performance. On the other hand, Heo et al. (2019), 

evaluated the use of different probability distributions in QM, the results showed that the selection of the probability 
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distribution could lead to better or worse results. Finallly, Jakob Themeßl et al. (2011) indicated that the use of quantile 140 

mapping has better performance in the estimation of high quantiles. In this way, the use of this technique could present an 

advantage in the case of extreme precipitation events 

In the case of RT the studies developed by Khalid e Sitanggang (2022) and Hutengs e Vohland (2016) are stand out.  Khalid 

e Sitanggang (2022) compared diverse ML-Methods to developed of downscaling of satellite precipitation, the evaluation 

showed RT as the best technique. On the other hand, in the study conducted by Hutengs e Vohland (2016), the use of RT to 145 

enhance the espatial resolution of temperature, from land surface temperature and reflectance showed good results. 

A Pixel-Station downscaling approach was developed. For each station, rainfall information was located, identified, and 

extracted from the pixel containing the station. In all cases the temporal uniformity between daily precipitation observed and 

simulated was guaranteed, for example, if there was a historical record for 01/01/2000, the simulated daily precipitation for 

that day was extracted. Once it was obtained the simulated series, the downscaling techniques evaluated were applied for each 150 

rain gauge. 

2.3.1 Delta Method 

In this method, differences or 'deltas' between observed and GCMs-simulated climatic conditions in the historical period are 

calculated. Subsequently, assuming that these differences or deltas remain constant over time, they are applied to GCMs-

simulated future climate projections, thus refining climate projections at local or regional levels. The mathematical equation 155 

employed by the Delta method is presented below: 

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = PMod,daily �
𝑃𝑃�𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃�𝑀𝑀𝑜𝑜𝑀𝑀

�
𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷ℎ𝐷𝐷𝑙𝑙

                   (2) 

Where: 𝑷𝑷𝑺𝑺𝑺𝑺𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫  Precipitation with downscaling, PMod,daily  precipitation simulated by the GCMs, 𝑃𝑃�𝑀𝑀𝑜𝑜𝑜𝑜 average monthly 

precipitation of the station, 𝑃𝑃�𝑀𝑀𝑀𝑀𝑀𝑀  average monthly precipitation simulated by GCMs. 

2.3.2 Quantile Mapping 160 

QM is based on the principle of matching the quantiles of observed and GCMs-simulated distributions. The process begins 

with estimating the quantiles of the observed series. Then, for the future period, the empirical probability associated with the 

quantile simulated by the GCMs is estimated. This probability is used in the inverse probability function of observed quantiles, 

thus obtaining the downscaled value. The following is a mathematical description of the method to precipitation:  

𝑃𝑃𝑆𝑆𝑆𝑆
𝑄𝑄𝑄𝑄 = 𝐹𝐹𝑀𝑀−1[𝐹𝐹𝑀𝑀(𝑃𝑃𝑀𝑀)] (1) 

 165 
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where 𝑃𝑃𝑆𝑆𝑆𝑆
𝑄𝑄𝑄𝑄  is the precipitation with downscaling, 𝐹𝐹𝑀𝑀−1 is the inverse empirical probability function of daily precipitation for 

the historic period, 𝐹𝐹𝑀𝑀 is the empirical probability function of simulated precipitation, and 𝑃𝑃𝑀𝑀 is the simulated precipitation by 

MCGs.  

2.3.3 Regression Trees 

Regression trees are a machine learning technique used to build predictive models. These models are created by recursively 170 

dividing the sample space and adjusting predictive models for each subdivision (Loh, 2011). The main goal of this technique 

is to partition the sample space into k units and create a predictive model for each subspace. This approach enables the 

prediction of the variable of interest, Y, using a piecewise function of the type: 

𝑌𝑌 =

⎩
⎨

⎧
𝑓𝑓𝐸𝐸0(𝑥𝑥), 𝑥𝑥 ∈ 𝐸𝐸0
𝑓𝑓𝐸𝐸1(𝑥𝑥), 𝑥𝑥 ∈ 𝐸𝐸1

…
𝑓𝑓𝐸𝐸𝑘𝑘(𝑥𝑥), 𝑥𝑥 ∈ 𝐸𝐸𝑘𝑘

 (3) 

 

Where:  Y is the predicted variable, 𝑓𝑓𝐸𝐸𝑖𝑖(𝑥𝑥) is the predictive model of the sample subspace 𝐸𝐸𝑖𝑖, and 𝑥𝑥 is the predictor variable.  175 

Downscaling using RT can incorporate more than one predictor variable to estimate the variable of interest, for example, 

precipitation could be estimated using multiple variables simulated by General Circulation Models (GCMs), such as 

temperature, atmospheric pressure, and precipitation. However, it's important to note that the uncertainties in downscaling tend 

to increase with the number of predictors. In this way, only daily precipitation  is simulated as the predictor variable to minimise 

these uncertainties. 180 

The downscaling process was carried out using observed and simulated precipitation quantiles. This approach is used due to 

the absence of a consistent temporal correlation between the observed and simulated rainfall magnitudes. Often, the simulated 

precipitation by the General Circulation Models (GCMs) did not match with the historical records, leading to instances where 

GCMs projected rainfall on days when historical data indicated dry weather conditions. In the training stage, 85% of the 

records were used, while in the validation stage, 15% are used. The optimisation of hyperparameters (Maximum number of 185 

splits, Split criterion) is conducted using the automatic hyperparameter optimisation function available in the 'fitrtree' function 

in Matlab. 

2.4 Frequency Analysis 

The frequency analysis is carried out using the maximum annual precipitation series, estimated from both historical records 

and downscaling results. Initially, the stationarity and homogeneity of the maximum series are confirmed using the Spearman 190 
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(NERC, 1975) and Mann-Whitney (1947) statistical tests. These tests are applied at a 5% significance level, as specified by 

Naghettini and Pinto (2007). 

The frequency analysis is exclusively conducted on the series that exhibited homogeneity and stationarity. This analysis 

considered various probability distributions, including Exponential, Gamma, Gumbel, GEV, Log-Normal, Pearson III, and 

Log-Pearson III. The parameters for these distributions are estimated using L-moments method (Hosking, 1997). To evaluate 195 

the adherence of the series to these probability distributions, the nonparametric Kolmogorov-Smirnov test is applied at a 

significance level of 5%. For each station, the quantiles of precipitation associated with return periods of 2, 5, 10, 15, 30, 35, 

45, 50, 60, 70, 80, 90, and 100 years were estimated based on the distribution that exhibited the best fit. 

2.5 Comparison between estimates made with historical series and downscaling 

The efficiency of downscaling techniques was assessed in terms of total precipitation (TP) and the number of rainy days (RD) 200 

at both the hydrological year and multiyear levels. In the latter case, the total precipitation and rainy days are aggregated over 

the available record period. At the same way, the techniques are examined in terms of frequency analysis. 

The TP and RD by the hydrological year are evaluated using the Nash-Sutcliffe (NSE), Kling-Gupta (KGE), root-mean-square 

error (RMSE), and the Pearson correlation coefficient (R). In the case of multiyear level, the evaluation was performed using 

the percentage error. 205 

Nash-Sutcliffe (1979) and Gupta et al. (2009) indicated that NSE and KGE values of 1 represent an ideal match between 

observed and simulated data. In the case of RMSE, a value of 0 signifies a perfect fit. Moreover, the R value, which falls 

between 0 and 1, indicates a positive correlation. Values between -1 and 0 suggest a negative correlation, while those near 0 

imply no correlation. Finally, a percentage error value of 0 indicates a perfect fit between observed and simulated data. The 

equations used to calculate NSE, KGE, RMSE, R and percentage error are provided below: 210 

𝑁𝑁𝑁𝑁𝐸𝐸 = 1 −
∑ (Xi−Xi′)2n
i=1

∑ (Xi −  𝑋𝑋�𝑖𝑖)2n
i=1

 (4) 

𝐾𝐾𝐾𝐾𝐸𝐸 = 1 − �(𝑟𝑟 − 1)2 + �
𝜎𝜎𝑖𝑖′

𝜎𝜎𝑖𝑖
− 1�

2

+ �
𝑋𝑋�𝑖𝑖′

𝑋𝑋�𝑖𝑖
− 1�

2

 (5) 

RMSE = �∑ (Xi−Xi′)2n
i=1

n
 (6) 
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R =
𝑛𝑛(∑𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖′) − (∑𝑋𝑋𝑖𝑖 ∗ ∑𝑋𝑋𝑖𝑖′)

�[𝑛𝑛(∑𝑋𝑋𝑖𝑖2) − (∑𝑋𝑋𝑖𝑖)2] ∗ �𝑛𝑛�∑𝑋𝑋𝑖𝑖′
2� − (∑𝑋𝑋𝑖𝑖′)2�

 (7) 

% 𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟 =
|Xi′ − Xi|

Xi
∗ 100 (8) 

With Xi and Xi′ being respectively the observed and simulated values,  𝑋𝑋�𝑖𝑖 and 𝑋𝑋�𝑖𝑖′ are the mean of the observed and simulated 

values, respectively, n is the number of simulated data, 𝜎𝜎𝑖𝑖′  being the standard deviation of the simulated values, 𝜎𝜎𝑖𝑖 is the 

standard deviation of the observed records, and R is the correlation coefficient between the observed and simulated records. 

3. Results and discussions 

3.1 Total precipitation and number of rainy days per hydrological year 215 

Given that each station was subject to 156 analyses, evenly split between total precipitation for the hydrological year and the 

number of rainy days, the median values of NSE, KGE, RMSE, and R were computed to facilitate the analysis and 

interpretation of the results, emphasising that the median was chosen because it is less susceptible to extreme events. 

Number of Rainy Days per hydrological year 

Estimating the number of rainy days in the hidrological year, from downscaled series using DM, QM, and RT methods yields 220 

unsatisfactory results in all the models evaluated. Thus, Figure 2 and Table 2 reveal discrepancies in the number of rainy days 

estimated per hydrological year from downscaled series compared to observations. Without the application of any downscaling 

technique, this difference is approximately 78 days. However, when using DM, QM, and RT as downscaling techniques, the 

difference decreases to 73, 18, and 19 days, respectively. Thus, QM and RT stand out for providing the greatest reduction in 

the discrepancy between the number of rainy days per hydrological year estimated from the downscaled series respect the 225 

stimated from  observed. Nonetheless, as mentioned and observed in the table 2 and Figure 2, the low NSE, KGE, and R scores 

show that the estimation of the number of rainy days at the annual scale doesn’t work well. 
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Figure 2 Median performance metrics (RMSE and R) for the estimated number of rainy days from precipitation series 230 

simulated by GCMs, without the application of downscaling techniques WDS, as well as reduced series obtained using the 

DM, QM, and RT. 
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Table 2 Summary of performance metrics for estimating the number of rainy days from original datasets and reduced series 
using DM, QM, and RT methods. 

 WDS DM QM RT 
 NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE 

Maximum -2.3 128 0.3 -4.5 106 0.2 -0.28 23 0.44 -0.29 23 0.44 
Median -44.2 78 -0.4 -39.0 73 -0.4 -1.46 18 0.05 -1.48 19 0.05 
Minimum -117.6 28 -0.8 -81.4 35 -0.7 -2.85 15 -0.21 -2.83 15 -0.20 

 235 

As shown in Figure 3, the low performance of NSE, KGE observed in the table 2 in the stimation of number of rainy days per 

hidrological year, is associated with underestimations or overestimations.  

As observed in Figure 3, an underestimation of the number of rainy days occurs when no downscaling techniques are applied. 

This underestimation trend persists when the Delta Method (DM) is applied, consistent with the results found by Salehnia et 

al., (2019). However, when using QM and RT, this trend reverses, resulting in overestimation. The persistence of 240 

underestimation when DM is applied, may be related to the method applying a constant correction factor per month. On the 

other hand, the shift from underestimation to overestimation when using QM and RT can be attributed to the relationship 

between simulated and observed quantiles. Therefore, it is possible that there is a reclassification of dry days (P <= 1.0 mm) 

as wet days (P>1.0 mm) (i.e., a simulated quantile of 0.2 mm can be associated with observed precipitation >1 mm). 

The median percentage underestimation errors were 85.21%, 79.3%, 14.50%, and 13.70% for WDS, DM, QM, and RT, 245 

respectively. Meanwhile, the average overestimations were 12.54% and 13.78% for QM and RT, respectively.  
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Figure 3 Median percentage error of underestimation or overestimation of total precipitation for each hydrological year. The percentage error of 

the prevailing condition of underestimation (Under.) or overestimation (Over.) is represented in blue. 250 
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Total precipitation per hydrological year  

Estimating the total precipitation per hydrological year from the downscaled series obtained through application of DM, QM, 

and RT does not guarantee good results. Thus, when no downscaling technique is applied, the difference between the total 

precipitation estimated from downscaled series differs, on median 413,84 mm. In the case where DM is applied, this difference 255 

decreases to approximately 361,42 mm. However, when QM and RT are applied, the differences are higher than when no 

downscaling technique is applied, with median differences of 433,10 mm and 434.64 mm, respectively (See  and Figure 4).  

That way, the difference between the total precipitation estimated from downscaled series by QM and RT increases by 

approximately 4% compared to the estimations when no downscaling technique is applied, and decreases by 12% when the 

DM is applied. 260 

On the other hand, the low NSE, KGE, and R scores shown in  and Figure 4 indicate that the estimation of the total precipitation 

at the annual scale from downscaled series doesn’t work well at annual scale. 

Table 3 Summary of performance metrics for estimating the total precipitation by hydrological year from original datasets 

and reduced series using DM, QM, and RT methods. 

 WDS DM QM RT 
 NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE 

Maximum -0.53 654.02 0.36 -0.09 482.54 0.38 -0.66 524.55 0.31 -0.67 526.83 0.31 
Median -1.43 413.84 0.07 -0.77 361.42 0.08 -1.58 433.10 0.00 -1.59 434.64 -0.01 
Minimum -5.14 324.65 -0.21 -1.75 277.78 -0.24 -2.79 343.72 -0.29 -2.81 344.30 -0.29 

In the same way as with the number of rainy days, the difference between the total precipitation per hydrological year estimated 265 

from observed data and downscaled data is associated with underestimations and overestimations. When no downscaling 

technique is applied, an underestimation of total precipitation per hydrological year is observed. However, when DM, QM, or 

RT is applied, this underestimation changes to overestimations (See Figure 5). 

 In the case of QM and RT, the overestimation of total hydrological precipitation per year (Figure 4) is related to the 

overestimation of the number of rainy days (Figure 3) most of the time. Thus, it is noticeable that the application of QM and 270 

RT increases both the number of rainy days in the hydrological year and the magnitudes of simulated precipitations. However, 

this trend is intrinsic to the conceptual foundation of these methods. For example, during the application of QM or RT, a 

simulated quantile of 1 mm of rain can be associated with an observed quantile of 20 mm of rain. 

The median percentage underestimation errors were 25.58%, 17,02%, 18.74%, and 18.77% for WDS, DM, QM, and RT, 

respectively. Meanwhile, the average overestimations were 22.37%, 14.63%, 18.37%, and 18.30% for WDS, DM, QM, and 275 

RT, respectively. 
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Figure 4 Median performance metrics (RMSE and R) for estimated total precipitation from series simulated by GCMs, without 

downscaling  WDS, as well as reduced series obtained using the DM, QM, and RT. 280 
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Figure 5 Median percentage error of underestimation or overestimation of total precipitation per hydrological year. The percentage error of the 

prevailing condition of underestimation (Under.) or overestimation (Over.) of each model is represented in blue . 
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3.2 Total precipitation and number of rainy days at multiyear level. 

In the multiyear context, estimates derived from downscaled series using DM, QM, and RT showed more robust agreement 

with the estimations made from the historical records compared to the annual scale. A low discrepancy between the number 285 

of rainy days and total precipitation was observed at the multiyear scale. 

When examining the number of rainy days, it was noted that the smallest errors are achieved when employing QM and RT as 

scale reduction techniques. Additionally, estimates derived from  downscaled series through DM demonstrated a performance 

similar to cases where no scale reduction technique was applied (See Figure 6 and Table 4). Thus, in the pluriannual scale, the 

series reduced by QM yielded the smallest percentage errors, followed by those reduced by RT and DM. 290 

Table 4 Summary of percentual errors of number of rainy days in the pluriannual level. 

 SDS DM QM RT 
Maximum 141.90% 116.78% 1.21% 2.58% 
Median 83.90% 77.88% 0.60% 1.83% 
minimum 21.56% 1.20% 0.27% 1.19% 

On the other hand, it was observed that the estimation of total precipitation at the pluriannual scale, from series reduced by 

DM, QM, and RT, significantly reduces percentage errors compared to cases where no scale reduction technique is applied 

(See Figure 7 and Table 5). 

Table 5 Summary of percentual errors of total precipitation in the pluriannual level. 295 

 SDS DM QM RT 
Maximum 33.59% 1.55% 1.99% 1.83 
Median 12.13% 0.81% 1.02% 0.89 
minimum 7.62% 0.43% 0.00% 0.01 

 

Based on the results, employing downscaled series for estimating total precipitation and the number of rainy days on a 

hydrological year scale demonstrates better performance in the multi-year context. Therefore, it is recommended to utilize 

downscaled series by employing DM, QM, and RT for estimating total precipitation and the number of rainy days at the multi-

year scale. 300 

 

It was observed that the performance of reduction techniques at the annual scale consistently reflected at the pluriannual scale. 

Regarding the number of rainy days, the QM method demonstrated superior performance across both annual and pluriannual 

scales. As for total precipitation per hydrological year, the DM method showcased the best performance, exhibiting even higher 

efficiency at the pluriannual scale. 305 
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Figure 6 Median of Percentage Errors of Rainy Days at the pluriannual level to each model. Without the application of downscaling 
techniques - WDS, and with the application of Delta Method - DM, Quantile Mapping QM, and Regression Trees RT as downScaling 
techniques. 310 

 



19 
 

 
Figure 7 Median of Percentage Errors of total precipitation at the pluriannual level to each model. Without the application of downscaling 
techniques - WDS, and with application of Delta Method - DM, Quantile Mapping QM, and Regression Trees RT as downScaling techniques. 

 315 
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3.1 Frequency Analysis  

Developed frequency analyses from downscaled series using QM and RT yields satisfactory results, evidenced by good 

performance in the NSE and KGE metrics. With respect to the frequency analyses developed from series downscaled by the 

DM method, it is observed that the results were comparable to those obtained when no downscaling technique was applied 

(See Figure 8 and Table 6). 320 

Figure 8 illustrates a significant improvement in yield metrics following the implementation of QM and RT. The metrics 

approach unity, suggesting that the quantiles estimated from the reduced series closely align with those derived from the 

historical series. 

The percentage errors obtained in the estimates made with series reduced by QM and RT were less than 12.18% and 5.91%, 

respectively. In contrast, the errors in the estimates made with series reduced by the DM method were similar to those obtained 325 

when no one downScaling reduction technique was applied (See Table 6) 

Table 6 Summary of percentual errors obtained in the Frequency analysis. 

 SDS DM QM RT 
Maximum 57.95% 55.9% 12.18% 5.91% 
Median 52.69% 47.1% 7.38% 1.56% 
minimum 1.97% 0.45% 1.21% 0.09% 

The high performance achieved in the estimation of quantiles from reduced series through QM and RT is associated with the 

fact that the largest quantiles simulated by GCMs are correlated with the largest observed quantiles. Consequently, observed 

and simulated series of maximum values end up close values. This fact, leads to comparable outcomes in estimations, 330 

regardless of whether they are derived from observed or downscaled series. 

Given that scale reduction in the case of DM is accomplished through the application of factors, the difference between the 

maximum precipitation observed and estimated from reduce series is substantial. Consequently, this results in a significant 

disparity in the outcomes of Frequency Analyze. 

It was evident that the dispersion and variability of estimated quantiles from reduced series increased as the return period 335 

extended, however, this must be associated with the low occurrence of quantiles with high return times in the historical series 

( See Figure 10). Additionally, it was observed that errors related to DM are associated with an underestimation of quantiles 

for different return periods. Thus, it is concluded that the development of frequency analyses from reduced series through QM 

and RT is feasible, with RT emerging as the technique that exhibited the best performance. 
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 340 
Figure 8 Median performance metrics (NSE e KGE) for the frequency analysis developed from precipitation series simulated by Global Climate Models (GCMs), 
without the application of downscaling techniques WDS, as well as reduced series obtained using the Delta Method - DM, Quantile Mapping QM, and Regression 
Trees RT.  

 

 345 
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Figure 9 Median of percentual error obtained in the frequency analysis developed from precipitation series simulated by Global Climate 
Models (GCMs), without the application of downscaling techniques WDS, as well as reduced series obtained using the Delta Method - DM, 
Quantile Mapping QM, and Regression Trees RT. 350 
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Figure 10 frequency analysis developed from precipitation series simulated by Global Climate Models (GCMs), without the application of downscaling techniques 
WDS, as well as reduced series obtained using the Delta Method - DM, Quantile Mapping QM, and Regression Trees RT for the return time of 2, 5, 10, 15, 25, 30, 
35, 45, 50, 60, 70, 80, 90 and 100 years. 
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4. Conclusions 355 

This works aimed to investigate the performance of used downscaled series by Delta Method, Quantile Mapping, and 

Regression Trees, to developed frequency analysis, and for estimated total precipitation and number of rainy days at annual 

and multiyear level. 

It was observed that the GCMs from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) underestimated 

the number of rainy days per hydrological year for MRBH, with a median of 78 days. When estimating the number of rainy 360 

days from downscaled series by DM, the tendency of underestimation persists but decreases to 73 days. It was observed too 

that underestimation is reversed to overestimation when downscaled series by Quantile Mapping (QM) and Regression Trees 

(RT) are used, with median overestimations of 18 and 19 days, respectively. Even though the overestimations were low, the 

low NSE and KGE scores show that estimating the number of rainy days at an annual scale from downscaled series by DM, 

QM, and RT don’t guarantee good results. 365 

In the same way as with the number of rainy days, the GCMs underestimated the total precipitation by hydrological year with 

a median of 413.84 mm. When downscaled series by DM were used, the difference decreased to 361.42 mm. However, in the 

case of downscaled series by QM and RT, the differences were higher than when no downscaling technique was applied, with 

median differences of 433.10 mm and 434.64 mm, respectively. Just like with the number of rainy days, the low NSE and 

KGE scores indicate that making these estimations at an annual scale from downscaled series by DM, QM, and RT don’t 370 

guarantee good results. 

In contrats at annual scale, the estimation of number of rainy days and total precipitation at multiannual escale, presented a 

good performance. In the case of the number of rainy days, the difference between the magnitudes of the total number of rainy 

days estimated from the reduced and observed series reached percentage errors less than 1.21%, 2.58% when downscaled 

series by QM and RT were employed. On the other hand, The percentage errors obtained in estimating total rainfall per 375 

hydrological year on a multiyear scale were 1.55%, 1.99%, and 1.83% when downscaled series by DM, QM, and RT, were 

used respectively.  

Finally, developing frequency analysis from the daily precipitation simulated by the MCGs allows obtaining quantiles close 

to those estimated with historical records when QM and RT are applied. The performance achieved in estimating quantiles 

from reduced series by QM and RT is attributed to the fact that QM and RT associate the largest quantiles simulated by GCMs 380 

with the largest observed quantiles. As a result, observed and downscaled series have closely aligned values. The percentage 

error of estimates made from downscaled series by QM and RT, in relation to estimates based on observed data, were lower 
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than 12.18% and 5.91%, respectively. In this context, it is recommended to utilise downscaling based on RT when the goal is 

to assess future changes in frequency of occurrence. 
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