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Abstract. Efficient adaptation strategies to climate change require estimating future impacts and the uncertainty surrounding 

this estimation. Over- or under-estimating future uncertainty may lead to maladaptation. Hydrological impact studies 10 

typically use a top-down approach in which multiple climate models are used to assess the uncertainty related to climate 

model structure and climate sensitivity. Despite ongoing debate, impact modelers have typically embraced the concept of 

"model democracy" in which each climate model is considered equally fit. The newer CMIP6 simulations, with several 

models showing a climate sensitivity larger than that of CMIP5 and larger than the likely range based on past climate 

information and understanding of planetary physics, have reignited the model democracy debate. Some have suggested that 15 

hot models be removed from impact studies to avoid skewing impact results toward unlikely futures. Indeed, the inclusion of 

these models in impact studies carries a significant risk of overestimating the impact of climate change. 

This large-sample study looks at the impact of removing hot models on the projections of future streamflow over 3,107 

North American catchments. More precisely, the variability of future projections of mean, high, and low flows is evaluated 

using an ensemble of 19 CMIP6 GCMs, 5 of which are deemed "hot" based on their global equilibrium climate sensitivity 20 

(ECS). The results show that the reduced ensemble of 14 climate models provides streamflow projections with reduced 

future variability for Canada, Alaska, the Southwest US, and along the Pacific coast. Elsewhere, the reduced ensemble has 

either no impact or results in increased variability of future streamflow, indicating that global outlier climate models do not 

necessarily provide regional outlier projections of future impacts. These results emphasize the delicate nature of climate 

model selection, especially based on global fitness metrics that may not be appropriate for local and regional assessments.  25 

  



2 
 

1. Introduction 

Understanding the impact of climate change on water resources and hydrology is crucial for developing effective strategies 

for mitigation and adaptation (Eyring et al., 2019; Miara et al., 2017). The output of hydrological (e.g. Karlsson et al. 2016), 

water quality (Prajapati et al., 2023) and sediment transport (Sabokruhie et al., 2021) impact assessment studies is dependent 30 

on the choice of the future climate change projections. Hydrologists primarily use climate projection outputs from GCMs 

(e.g. Tabari, 2020) to study these impacts. The Coupled Model Intercomparison Project (CMIP) provides standardized 

metadata from coordinated simulations by different climate modeling groups (Meehl et al., 2007). The more recent CMIP6 

(Eyring et al., 2016) is gradually replacing the widely used CMIP5 from the last decade (Hirabayashi et al., 2021; Martel et 

al., 2022; Zhang et al., 2023). 35 

 

The concept of “model democracy” has been widely used in impact studies (e.g. Collins et al., 2013; IPCC, 2014) despite 

criticism (Knutti, 2010). This approach considers climate simulations independent and equally plausible, and uses the 

ensemble mean and spread to define climate model uncertainty. Research has shown that the average of equally-weighted 

projections outperforms single models in simulating mean climatic patterns (Chen et al., 2017; Reichler & Kim, 2008). 40 

However, this approach may be less effective for CMIP6 ensemble as the validity of some simulations is under question 

(Hausfather et al., 2022). 

 

The CMIP6 ensemble includes a subset of “hot models” that predict greater warming than previous predictions made by 

CMIP5 (e.g. Kreienkamp et al., 2020). These hot models have a climate sensitivity that exceeds the expected plausible range, 45 

which is based on observations and our understanding of planetary physics. They also exhibit a higher equilibrium climate 

sensitivity (ECS), a measure of the steady-state temperature increase in the event of doubled carbon dioxide (CO2) 

concentrations in the atmosphere (Flynn & Mauritsen, 2020; Zelinka et al., 2020). The ECS values' range in CMIP6 models 

has increased to 1.8–5.6 °C compared to 2.1–4.7 °C in CMIP5, with an increase in multimodel mean of 3.9 °C in CMIP6 

from 3.3 °C in CMIP5 (Zelinka et al., 2020).  50 

 

However, a plethora of evidence based on observations and our understanding of planetary physics indicate that we can 

confidently restrict the likely range of future warming trend and, more importantly, give less weight to extreme estimates 

(Liang et al., 2020; Tokarska et al., 2020). Recently, more research has been focused on constraining the ECS based on 

historical and paleoclimatic data (Knutti et al., 2017; Sherwood et al., 2020) or emergent constraints (Cox et al., 2018; Nijsse 55 

et al., 2020; Shiogama, Watanabe, et al., 2022). For example, Sherwood et al. (2020) used multiple lines of evidence and 

concluded that the likely (with a 66% chance) ECS value is between 2.6°C and 4.1°C. Consequently, the most recent reports 

published by the Intergovernmental Panel on Climate Change (IPCC) have narrowed the likely ECS range to 2.5 and 4°C 

(IPCC, 2021). It should be noted that the uncertainty surrounding the cooling impact (both direct and indirect) of aerosols on 
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radiative forcing poses challenges in constraining future warming estimates (Bellouin et al., 2020; Forster et al., 2013; Smith 60 

et al., 2021). In essence, the current historical measurements do not provide a clear understanding of whether we are in a 

scenario of high sensitivity, fast-warming, accompanied by strong contemporary aerosol cooling, or if the situation is the 

opposite.  

 

Climate change impact studies that include models with high ECS may be biased and may overestimate the magnitude of 65 

impacts (Hausfather et al., 2022). Using the full ensemble of CMIP6 projections without restricting the “hot models” may no 

longer be the most appropriate option for impact studies (Ribes et al., 2021). Incorporating climate models with high 

sensitivity into impact studies may potentially lead to an overestimation of the overall economic consequences arising from 

future climate changes (Shiogama, Takakura, et al., 2022). For instance, Shiogama et al. (2021) proposed a subset selection 

method that involves screening out hot models as the first step. On the other hand, Palmer et al. (2022) found that models 70 

with higher sensitivity better represent some key climatic processes over Europe. While they were unable to provide robust 

physical explanations for their findings, it is worth noting that at the regional scale, hot models may provide valuable 

information that may be more important than the global warming trend for impact modelers, adding to the complexity of 

selecting models for regional impact studies.  

 75 

The decision to weight climate models for impact studies remains controversial, but it is difficult to ignore the potential 

pitfalls of using hot models in these studies (Hausfather et al., 2022). This study aims to evaluate how including or excluding 

hot models in a multi-model ensemble affects the results of a large-scale hydrological climate change impact study. This 

influence is measured in terms of the magnitude and uncertainty of various streamflow metrics for 3107 North-American 

catchments. 80 

2. Materials and Methods 

The data for this study was obtained from the HYSETS database, which contains hydrometeorological data from various 

sources for over 14,000 catchments in North America (Arsenault et al., 2020). The database includes all necessary data for 

the reference period of this study, including catchment boundaries (in the form of shapefiles), streamflow observations, 

weather observations (from stations as well as multiple gridded and reanalysis datasets), and static catchment descriptors 85 

such as area, slope, elevation, land-use fractions, and soil properties. This study used the ERA5 reanalysis dataset for 

meteorological data, which was found to be a reliable alternative to gauge observations in a previous large-scale comparison 

study over the same study area (Tarek et al., 2020). To ensure representativeness, a subset of HYSETS catchments was 

selected using filters. First, catchments with drainage areas below 500 km2 were excluded because daily hydrological models 

would be inappropriate for modeling hydrological processes at smaller scales. Next, catchments required at least ten years of 90 
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data to ensure sufficient data for successfully calibrating hydrological models and bias-correcting climate models. Overall, 

3107 catchments were retained.  

 

Table 1 presents the list of 19 CMIP6 GCMs selected for this study. This list includes 5 hot models, defined by their ECS 

greater than 4.1. These models are: CanESM5 (ECS: 5.62), NESM3 (ECS: 4.68), IPSL-CM6A-LR (ECS: 4.52), EC-Earth3-95 

veg (ECS: 4.3), EC-Earcth3 (ECS: 4.2). This study will be able to compare the uncertainty generated by the entire ensemble 

(19 models) to that of a reduced ensemble (14 models) obtained by removing the 5 hot models. 

 

Table 1. The 19 GCMs selected in this study and their corresponding ECS. ECS values were taken from either 1- Tokarska et al. 
(2020) or 2-Hausfather et al. (2022) 100 

GCM ECS 

CANESM5 5.621  

NESM3 4.681 

IPSL-CM6A-LR 4.521  

EC-Earth3-Veg 4.31  

EC-Earth3 4.21  

ACCESS-ESM1-5 3.882 

GFDL-CM4_gr1 3.892 

GFDL-CM4_gr2 3.892 

MRI-ESM2-0 3.141 

MPI-ESM1-2-LR 3.022 

BCC-CSM2-MR 3.011 

MPI-ESM1-2-HR 2.982 

FGOALS-g3 2.872 

GFDL-ESM4 2.621 

NorESM2-LM 2.601  

MIROC6 2.571  

NorESM2-MM 2.492 

INM-CM5-0 1.921 
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INM-CM4-8 1.831 

 

The impact study in this paper uses a traditional top-down hydroclimatic modeling chain consisting of one shared 

socioeconomic pathway (SSP8.5), 19 CMIP6 GCMs, one bias correction method, and one hydrological model. The study 

focuses solely on GCM uncertainty and doesn't consider other components, such as alternative SSPs, bias correction 

methods, or hydrological models, which would add uncertainty to future projections. These have been explored in previous 105 

studies (e.g. Wilby and Harris, 2006; Chen et al., 2011; Giuntoli et al., 2018; Troin et al., 2022), and are outside the scope of 

this work. The reference period is based on the 1971-2000 time frame, while the future climate is based on 2070-2099. 

 

Figure 1 illustrates the methodological framework for each study catchment. Precipitation and temperature data are first 

extracted from 19 CMIP6 climate models under the SSP8.5 scenario for both the reference and future periods. Using 110 

precipitation and temperature from the ERA5 reanalysis over the reference period, climate data is then bias-corrected using 

the MBCn method. These bias-corrected climate scenarios are subsequently employed as inputs for a calibrated hydrological 

model to compute streamflows. These computed streamflows are then used to examine the impact of including (or not 

including) 'hot' models in the impact study, using a set of defined metrics. Further details are provided below. 
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 115 

 

Figure 1. Methodological framework performed for each of the study catchments.  

 

Climate models are mathematical representations of the Earth's climate system, based on current understanding of its physics 

and chemistry. They are formulated using simplifying assumptions and parameterizations, but may not fully capture the 120 

complexity of the real climate system due to limited observations and understanding. As a result, climate models can be 

biased when compared to observations, due to factors such as model resolution, errors in reference datasets, and sensitivity 

to initial conditions. To ensure realistic impact simulations in impact studies, it is important to bias-correct climate model 

outputs. In this work, Cannon's (2018) N-dimensional multivariate bias correction (MBCn) method was used to correct 

biases in daily precipitation and temperature. MBCn is considered the most advanced and efficient quantile-based 125 

multivariate bias correction method, as reported by studies such as Chen et al. (2018), Su et al. (2020), and Cannon et al. 

(2020). MBCn transfers the distribution of observational data to the corresponding distribution from the climate model while 

preserving its projection trends, crucial for climate change impact studies (Maraun, 2016). No downscaling was performed 

since this study was conducted at the catchment scale. 
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In this study, the GR4J lumped rainfall-runoff model (Perrin et al., 2003) was chosen to simulate streamflows. The model 

was selected due to the large number of catchments, which made it infeasible to use more complex, distributed models. 

Additionally, lumped models use averaged temperature and precipitation at the catchment scale, which is more consistent 

with the scale of GCMs, eliminating the need for downscaling. Lumped models have been shown to perform well in 

simulating streamflows at catchment outlets (e.g. dos Santos et al., 2018; Reed et al., 2004). The GR4J model is simple, 135 

efficient, and high-performing compared to other lumped conceptual models. It uses precipitation, potential 

evapotranspiration (PET), and catchment surface area as inputs. To account for snow accumulation in some catchments, the 

GR4J model is linked with the CemaNeige snow module (Valéry et al., 2014), resulting in a 6-parameter model (GR4J_CN). 

The GR4J_CN model combination has been used in many studies, including climate change impact studies, and has been 

shown to perform well under a wide range of conditions (e.g. Riboust et al., 2019; Tarek et al., 2020; Wang et al., 2019). The 140 

calibration was performed using the Kling-Gupta Efficiency (KGE) metric. The KGE metric (Gupta et al., 2009) directly 

combines the bias, ratio of variance, and correlation into a single metric. It provides a more robust and refined assessment of 

model performance when calibrating hydrological models, addressing the drawbacks of the Nash-Sutcliffe Efficiency metric 

(NSE, Nash & Sutcliffe, 1970) (Knoben et al., 2019). Figure 2 presents the location of the 3107 retained catchments, each 

having a KGE calibration value above 0.5.     145 
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Figure 2. Study catchment location.  The color scale corresponds to the hydrological model KGE calibration score over the 
reference period. Only catchments with available data, KGE values higher than 0.5 and area larger than 500 km2 were selected.  150 

 

The hydroclimatic modeling chain described above generated 19 different 30-year time series of daily streamflow for the 

2070-2099 future period, each corresponding to one of the 19 GCMs listed in Table 1. Three streamflow metrics were 

extracted from each 30-year time series, representing mass balance (Qmean) and high (Qmax) and low (Qmin) flows: 

● Qmean: obtained by averaging daily streamflow over the 30-year period. 155 

● Qmax: obtained by averaging the 30 annual maximum simulated streamflows. 

● Qmin: obtained by averaging the 30 annual minimum simulated streamflows. 

These metrics will be used to assess the impact of removing hot climate models across a range of flow conditions. 

 

Figure 3 presents the three dispersion metrics used in this study to compare the spread (or uncertainty) of future projections 160 

of streamflow metrics. For the three streamflow metrics, 19 values from the original ensemble and 14 from the reduced 

ensemble for both the reference and future periods are extracted. The spread of the streamflow projections over the reference 
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period is small, but it is not zero due to imperfect bias correction and the hydrology model's strong non-linear response to 

precipitation and temperature inputs. The spread is comparatively much larger in the future period, mainly due to differences 

in sensitivity and structure of the climate models.   165 

 

Figure 3. Representation of the dispersion metrics used in this paper. Each marker represents one of the 19 climate models. 
METRIC will either be Qmean, Qmax or Qmin, all having units of m3/sec. 

 

Total spread (TS) is defined as the full range of future streamflow responses: 170 

𝑇𝑆 =  𝑚𝑒𝑡𝑟𝑖𝑐  −  𝑚𝑒𝑡𝑟𝑖𝑐  

 

The interquartile range (IQR) is defined as the distance between the 75th and 25th quantiles of the distribution as shown by 

the blue rectangle in the boxplot in Figure 3.   

𝐼𝑄𝑅 =  𝑄  −  𝑄  175 

 

Finally, the standard deviation (σ) is the standard mathematical measure of dispersion. In the case of a normal distribution, 

the standard deviation and interquartile range are perfectly correlated, but this may not be the case for a skewed distribution.  

   

All three metrics have units of m3/s and are therefore dependent on catchment size and, to a lesser extent, mean annual 180 

precipitation. To account for this, the metrics will be presented in a non-dimensional form: 
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 𝑇𝑆  =  
 𝑇𝑆  

𝑇𝑆
 

Where 𝑇𝑆  and 𝑇𝑆  respectively represent the total spread for the full and reduced ensemble. 𝑇𝑆  varies between 0 and 1, 

with 𝑇𝑆 =1 meaning that no reduction in total spread was obtained by removing the five warm models from the ensemble, 

and 𝑇𝑆 = 0 signifies that the total spread of the reduced ensemble has been totally eliminated.  185 

 

Similarly, for the interquartile range ratio, we find: 

 𝐼𝑄𝑅  =  
 𝐼𝑄𝑅  

𝐼𝑄𝑅
 

However, in this case, the potential values vary in the 0 to ∞ range. More practically, a value below 1 indicates that the IQR 

has been reduced by removing the five hot models from the ensemble, whereas a value larger than 1 shows the opposite. The 190 

latter is possible if the removed models are somewhat close to the median of the ensemble. 

 

Finally, for the standard deviation the following ratio is used: 

 𝜎  =  
𝜎  

𝜎
 

where a value below 1 indicates a smaller standard deviation for the reduced ensemble, and the opposite for a value above 1. 195 

𝜎  has the same possible range of values as 𝐼𝑄𝑅  (0 to ∞). 

3. Results 

Figure 4-a presents the box plots of projected temperature increases for each of the 3107 catchments and for each climate 

model. The box plots provide a visual representation of key elements of the temperature increase distribution. The median of 

the distribution is shown as the red line near the centre of the blue rectangle, which delimits the interquartile range (Q75 and 200 

Q25 for the upper and lower end of the rectangle). The whiskers represent the 2.5th and 97.5th quantile of the distribution, 

providing a 95% coverage of the dataset. Quantiles below 2.5 and above 97.5 are shown as dots. Results indicate that the 

distribution of projected temperature increases generally follows the same order as the ECS values presented in Table 1. 

However, there are some differences, which are not unexpected as global-scale ECS values are compared to regional-scale 

ΔT values. The five hot models are ranked as the first, second, third, fifth, and sixth hottest regional models based on median 205 

values (considering that GFDL-CMA gr1 and gr2, respectively fourth and fifth, are actually the same model with different 

spatial resolutions). 
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 210 

 

Figure 4. a) Distribution of projected temperature increase (ΔT) and b) projected relative annual precipitation increase (ΔP/P) for 
the 19 CMIP6 selected model for the 2070-2099 future period, compared to the 1971-2000 reference period. Each boxplot 
represents the distribution of projected increases for the 3107 study catchments. The climate models are ordered in terms of their 
global-scale ECS values, starting with the largest to the left. The boxplot whiskers correspond to the 2.5th and 97.5th quantiles and 215 
a few catchment that were beyond the Y-axis limits are not shown.  
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Figure 4-b presents the boxplots of the projected changes in relative precipitation between the future and reference periods 

( ). The boxplots depict the distribution of the projected precipitation changes for each of the 3107 catchments. 220 

Results indicate that the hot models, identified by their ECS values, are also among the models with the largest projected 

changes in relative precipitation. Specifically, the five hot models are all within the group of the eight wettest models. The 

models with more modest increases in precipitation (e.g., MPI-ESM, ACCESS) are also among the cooler models. This trend 

is expected, as a warmer atmosphere can hold more moisture (up to 7% per °C, according to the Clausius-Clapeyron 

relationship), leading to more precipitation. Increased precipitation may mitigate the anticipated impacts of warmer models, 225 

such as increased evapotranspiration. 

 

In order to show regional patterns related to Figure 4, Figure 5 displays the mean ∆T (4a) and mean ∆P/P (4b) ratios between 

hot models and normal models.  For temperature a red color indicates that hot models are warmer than the other models on 

average. For precipitation, blue colors highlight increased precipitation in the hot models compared to the normal models. 230 

Overall, the hot global models exhibit a systematically larger temperature increase over the entire study domain. The hot 

models mostly exhibit increased precipitation compared to the normal models.  However, the west coast of the U.S., as well 

as some catchments in the southwestern U.S., exhibit a decrease in precipitation according to the hot models. These 

observations underscore the regional variability in temperature and precipitation patterns when comparing hot and normal 

models. 235 

 

 

Figure 5. Mean ∆T (a) and ∆P/P (b) ratios (hot models to normal models). For ∆T, a red color indicates that hot models, on 
average, are warmer than their normal (non-hot) counterparts. For ∆P/P, a blue color shows that hot models are wetter than their 
normal (non-hot) counterparts. The graphs represent the differences computed between the future and reference periods.   240 
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Figure 6 presents the ratio of mean projected streamflow changes (hot models/normal models) for Qmean, Qmax and 

Qmin. A blue color indicates larger projected streamflows by the ‘hot’ models. Results show spatial patterns which 

differ depending on the streamflow metrics. Hot models project higher mean flows over most of the study 245 

domain, except in the south-west regions, where increased evapotranspiration nullifies potential increases in 

precipitation.  For Qmax, increases are mostly localized in the Eastern US, whereas Qmin are widely increasing in 

Canada and mostly decreasing in the US.   
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 250 

Figure 6: Ratio of mean projected changes: ‘hot’ divided by normal models.  a): Qmean; b) Qmin; c): Qmax). A blue color shows 
that hot project larger streamflows than their normal (non-hot) counterparts.  

 

Figure 7 presents the  𝑇𝑆   for mean (Qmean), annual max (Qmax), and min (Qmin) streamflow obtained by removing the 5 hot 

models from the 19-member ensemble. A dark red color indicates no reduction in TS with the reduced ensemble, while 255 

lighter colors indicate a reduction. It can be seen that there is a clear spatial pattern that is relatively similar for all three 

streamflow metrics. The largest reductions in TS are seen in the northern regions as well as in the US southeast, and along 
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the US Pacific coast for Qmean and Qmin. For all other regions of the US, no reduction in TS is observed. The reduced spread 

observed in the northern regions is smaller for Qmax. Despite these trends, a lot of variability remains present, with 

neighbouring catchments sometimes showing contrasting behaviour. More specifically, 57.0% of the catchments see a 260 

decrease in TS for Qmean, 53.3% for Qmax and 61.7% for Qmin. 

 

The data from Figure 7 are shown in the form of boxplots in the left side of each panel to better illustrate the range of TS 

reduction. It shows that the median  𝑇𝑆  is relatively high for all three streamflow metrics: Qmean (0.96), Qmax (0.95) and 

Qmin (0.93). This is primarily because a significant number of catchments see no reduction in TS (43%, 46.7%, and 38.3% 265 

respectively). However, there is a significant reduction in TS observed in many catchments, and this decrease is strongly 

dependent on the geographical location of the catchments. Additionally, it can be seen that removing the hot models has a 

greater impact on Qmin than on the other two metrics. 

 

 270 
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Figure 7. Total spread ratio (𝑻𝑺𝒏𝒅 =  
𝑻𝑺𝟏𝟒 

𝑻𝑺𝟏𝟗
)  for Qmean (a), Qmax (b), and Qmin (c) resulting from the removal of the five hot models. 

Boxplots are shown in the left.  
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The  𝑇𝑆  is heavily impacted by outliers and may not accurately represent the overall spread of models. Figure 8 presents 

the  𝜎  for the three streamflow metrics. A red color ( 𝜎 > 1) indicates that the model spread has increased following the 

removal of the hot models whereas a blue color ( 𝜎 < 1) corresponds to a decrease. Results indicate that removing the hot 

models consistently reduces  𝜎  in Canada for Qmean and Qmin, and to a lesser extent for Qmax. However, in CONUS, the 

results are more complex with a lot of regional variability. Removing outlier models in the north central, north-east, and 280 

southwest of the US results in an increase in  𝜎  for both Qmean and Qmax. Overall, as shown in the boxplots of Figure 8, 

removing the hot models likely reduces the spread in roughly two-thirds of catchments, while one-third see an increase. 

These values are larger than those obtained for TS. The Trends seen in IQRnd is also very similar to that of  𝜎  (see figures 

S1 and S2). 

 285 
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Figure 8. Standard deviation ratio (𝝈𝒏𝒅 =

𝝈𝟏𝟒 

𝝈𝟏𝟗
) for Qmean (a), Qmax (b), and Qmin  (c) resulting from the removal of the five hot 

models. Boxplots are shown in the left side of each panel.  

 290 
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4. Discussion 

Uncertainty is a key factor in assessing the impact of climate change. Different models and techniques, including various 

climate models, can lead to diverse climate projections and scenarios. Climate change interacts with other stressors, such as 

land use change and population growth, in complex and unpredictable ways, making it important to accurately address 

uncertainty in climate impact studies to develop effective adaptation measures. Incorrectly representing uncertainty can lead 295 

to poor adaptation. 

 

With the increased future temperatures, an intensification in the hydrological cycle is expected. However, it does not 

guarantee an automatic increase in water flow rates. This is because the rise in average temperature can also have a 

considerable impact on evapotranspiration. The outcome of these two factors working together is complex and varies based 300 

on the geographical location and primary climate zones. The research paper indicates that regions characterized as ‘hot’ tend 

to be associated with increased precipitation, further complicating the relationship between temperature and water flow. 

 

Results show that removing the "hot models" is likely to reduce the spread of three streamflow metrics. Between 60% and 

75% of catchments show a decrease in the spread of future streamflow projections, indicating that the hot models are outliers 305 

or further from the mean than the average model. In such cases, keeping the hot models would result in an overestimation of 

future streamflow uncertainty. However, removing the hot models also led to an increase in the spread in certain regions, 

indicating overconfidence in the results. This means that while the hot models are outliers with respect to ECS, they may not 

be outliers with respect to impact studies. Generally, a reduction in spread was evident in northern regions such as Canada 

and Alaska, as well as the coast of California and the southeastern region of the US. Shiogama, Watanabe, et al., (2022) also 310 

concluded that the inclusion of hot models leads to an overestimation of annual mean precipitation increases in Alaska, 

Canada, and the western United States, where there is a substantial decrease in the variability of streamflow metrics. 

 

A reduction in the spread of future streamflow is expected when removing the hot models or reducing the number of climate 

models. A bootstrap methodology was used to determine if the changes in spread were due to a reduction in the number of 315 

models. This was conducted by selecting a random sample of 14 (out of 19) models 100 times and computing the average 

standard deviation ratio. This was repeated for all catchments and the aggregated results are shown in Figure 9. 

 

The results indicate that removing five random models results in a decrease in the standard deviation ratio more than 75% of 

the time for all three streamflow metrics, but the median spread reduction ratio for this spread metric is extremely small 320 

(about 0.99 for all three streamflow metrics). This shows that removing the 5 hot models has a much larger impact than 

removing 5 random models. The spread reduction observed in many catchments is therefore not solely related to a reduction 

in the number of models. 
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 325 

Figure 9. Boxplots of the average standard deviation ratio for Qmean, Qmax, and Qmin resulting from the removal of 5 random 
models, after sampling 100 random combinations of 5 models. 

 

At first glance, there is a strong physical reasoning for removing climate models with equilibrium climate sensitivity (ECS) 

exceeding values expected from current data and understanding of planetary physics (Ribes et al., 2021; Shiogama et al., 330 

2021). However, it should be noted that most impact studies are conducted at the regional or local scale and these models 

may not be considered outliers at these scales. This study found that while globally hot models may still be among the hottest 

in the study domain, they are not consistently the hottest, raising questions about whether their global behavior should 

automatically eliminate them from regional studies. 

 335 

In this study, the climate performance of these models (such as their ability to represent climatic, hydroclimatic, or 

hydrological metrics) was not evaluated. The goal was to examine the impact of removing 5 hot models from a 19-member 

ensemble. However, it is important to note that judging climate models based solely on their ECS values may result in the 

removal of models that have desirable characteristics at the regional scale (e.g. Palmer et al., 2022). Additionally, keeping 

hot models may also be useful from an impact perspective as they may provide a clearer picture of future changes, as internal 340 

variability is less likely to obscure changes. This is similar to the rationale behind using high-emission scenarios in impact 

studies, such as SSP8.5, even though they may not be considered realistic scenarios anymore (e.g. Hausfather and Peters, 

2020). It is important to consider worst-case scenarios when analysing potential outcomes, as high levels of greenhouse gas 



21 
 

emissions, or high model sensitivity, such as those projected in SSP8.5 or high ECS models, are not unrealistic, even though 

they may be less likely. While it is valuable to consider these high-end scenarios, it should be made clear that they are indeed 345 

worst-case scenarios. 

 

In this study, the question of whether to remove the "hot models" for impact studies is complex. Results showed that for 

about one-third of all catchments, removing these models increased the future uncertainty of streamflow. This suggests that 

these "hot outliers" may not always be "hydrological outliers" when put through a hydrological modeling process. 350 

Hydrological models are well-known for being highly non-linear integrators of weather variables such as temperature and 

precipitation, and these results align with findings from other studies that have demonstrated the complex relationship 

between climate model projections and hydrological projections (e.g. Chen et al., 2016; Ross and Najjar, 2019). The fact that 

the CMIP6 hot climate models tend to be wet models may also be a factor in these results, as increased evapotranspiration 

could be offset by increased precipitation, leading to somewhat average results for the wrong reasons. 355 

 

The regional impact of model importance is also compared (see figures S3 and S4 supporting information), which 

demonstrate the total spread ratio resulting from removing a single climate model and creating an 18-member ensemble. 

CanESM5 (Figure S3) and NESM3 (Figure S4) have the highest global sensitivity in this study. Removing CanESM5 leads 

to a clear reduction of total spread in Alaska and Yukon (for Qmean and Qmin) and in the Southeast USA for Qmax, indicating 360 

that CanESM5 is an outlier in these regions. Conversely, removing NESM3 does not result in significant decreases in spread 

over most of the study domain, as the high ECS value of NESM3 does not automatically translate into a correspondingly 

higher level of regional warming (see also fig. 4), demonstrating that it is not an outlier in most regions. This underscores the 

strong regional differences among globally identified hot models. 

 365 

The only uncertainty in this study is that originating from GCM/EMSs. As stated earlier, in most impact studies, additional 

sources of uncertainty would also be incorporated. Additional greenhouse gases emissions scenarios would be selected as 

well as other impact models (e.g. hydrology models). Downscaling and additional bias correction may be performed. These 

additional components are likely to generate additional uncertainty which may, in some cases, dwarf that of climate models.  

As such, many of the differences observed in this paper between the original and reduced climate model ensembles may 370 

have little impact on the final uncertainty estimation. For example, for low flows, many studies have shown that most of the 

uncertainty lies within the hydrology models (e.g. Giuntoli et al., 2018; Krysanova et al., 2018; Trudel et al., 2017) and 

removing climate models would have no impact on uncertainty.    

 

The results show that there is no simple answer as to whether or not including hot models in climate change impact studies.   375 

In the absence of any computational limitations, we would recommend using as many climate models as possible and study 

at posteriori the impact of including hot models or not. If a selection of a subset of climate models is necessary (e.g. inability 
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to use a large ensemble due to limited computational capability or costly to run impact models) removing hot models may be 

a reasonable option. Evaluating climate model fitness for impact studies is a difficult endeavour, and in addition to ECS, 

additional performance metrics should also carefully be taken into account.  380 

5. Conclusion  

This study examines the impact of removing a subset of hot climate models on the spread of future projections of streamflow 

for 3,107 North American catchments. Three streamflow metrics were considered: mean annual streamflow, as well as the 

mean of the annual maximum and minimum streamflow, over the reference period (1971-2000) and future period (2070-

2099). 385 

 

Hot climate models are determined based on their global equilibrium climate sensitivity (ECS), whereas impact studies 

typically focus on the local to regional scale. The hot climate models remain among the hottest in our regional evaluation, 

but they also tend to be among the wettest, potentially leading to a complex hydrological response. 

 390 

Our research revealed mixed impacts of removing the hot climate models. A decrease in the variability of projected 

streamflow metrics was generally observed in Canada and Alaska, the southeast US, and the Pacific coast of the US. 

However, in other regions, removing the hot models resulted in no changes, and in some cases, even increases in the 

variability of projected flows. This suggests that the hot models are not necessarily hydrological outliers, raising questions 

about using global performance metrics rather than regional ones for model selection. 395 

 

The findings of this study emphasize the importance of carefully selecting climate models and the potential risks of including 

inadequate models in impact studies. In the absence of constraints, it is recommended to use as many climate models as 

possible in determining impact uncertainty and to assess the impact of subsets of climate models (based on high global 

equilibrium climate sensitivity or other performance metrics) a posteriori to assess the sensitivity of the impact model to 400 

climate model selection. These results highlight the need for further research on climate model fitness and the proper 

selection of model subsets for impact studies. 

 

Code and data availability.  

The hydrometeorological data used in this study was obtained from the HYSETS database, which is available at  405 

https://doi.org/10.17605/OSF.IO/RPC3W (Arsenault et al., 2020). The CMIP6 GCM model outputs are accessible through 
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the Earth System Grid Federation Portal at Lawrence Livermore National Laboratory (https://esgf-

node.llnl.gov/search/cmip5/). The processed data and the used codes are available via contacting the authors.  
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