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Abstract  33 

 34 

Floods are a major natural hazard in the Mediterranean region, causing deaths and extensive 35 

damages. Recent studies have shown that intense rainfall events are becoming more extreme 36 

in this region, but paradoxically without leading to an increase in the severity of floods. 37 

Consequently, it is important to understand how flood events are changing to explain this 38 

absence of trends in flood magnitude despite increased rainfall extremes. A database of 98 39 

stations in Southern France with an average record of 50 years of daily river discharge data 40 

between 1959 and 2021 was considered, together with a high-resolution reanalysis product 41 

providing precipitation and simulated soil moisture. Flood events, corresponding to an average 42 

occurrence of one event per year (5317 events in total), were extracted and classified into 43 

excess rainfall, short rainfall and long rainfall event types. Several flood events characteristics 44 

have been also analyzed: flood event durations, base flow contribution to floods, runoff 45 

coefficient, total and maximum event rainfall and antecedent soil moisture. The evolution 46 

through time of the flood event characteristics and seasonality were analyzed. Results 47 

indicated that, in most basins, floods tend to occur earlier during the year, the mean flood date 48 

being on average advanced by one month between 1959-1990 and 1991-2021. This seasonal 49 

shift could be attributed to the increased frequency of southern-circulation weather types 50 

during spring and summer. An increase in total and extreme event precipitation has been 51 

observed, associated with a decrease of antecedent soil moisture before rainfall events, linked 52 

to a smaller contribution of base flow during floods. The majority of flood events are associated 53 

with excess rainfall on saturated soils, but their relative proportion is decreasing over time 54 

notably in spring with a concurrent increased frequency of short rain floods. Therefore, this 55 

study shows that even in the absence of trends, flood properties may change over time and 56 

these changes need to be accounted for when analyzing the long-term evolution of flood 57 

hazards.  58 

 59 

 60 
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1. Introduction 70 

 71 

There is a growing interest in understanding the evolution of floods occurring in different 72 

regions in the context of climate change. The recent sixth report of the Intergovernmental 73 

Panel on Climate Change (Ali et al., 2022), reported a mixture of observed trends in different 74 

Mediterranean countries, with both increasing and decreasing river floods and overall, a low 75 

confidence in their attribution to climate change. Several large-scale studies on changes in 76 

flood risk (Slater et al., 2021a; Blöschl et al., 2017, 2019) have indicated for the Mediterranean 77 

region a possible decrease over the last decades. This difficulty in detecting possible changes 78 

in flood hazard is doubtless linked to the fact that there are different types of floods (Tarasova 79 

et al., 2019; Berghuijs et al., 2019; Stein et al., 2020; Tramblay et al., 2022). Indeed, a 80 

distinction can be made between floods associated with soil saturation excess, soil infiltration 81 

excess or snowmelt-driven floods and the relative frequency of these different types of floods 82 

may change over time (Zhang et al., 2022). Furthermore, these changes can occur at local to 83 

regional scales, given complex combinations of climatic and physiographic triggers, making 84 

global generalization of changes in flood risk hazardous, if not irrelevant (Whitfield, 2012; 85 

Blöschl et al., 2015). 86 

 87 

Only a few studies are focusing on changes in flood types over time, while it is important to 88 

understand the long-term changes in flood processes to evaluate how flood risk can evolve, 89 

in order notably to better adapt the flood mitigation strategies (Merz et al., 2014). The main 90 

limitation to perform such studies is the need for long time-series of river discharge, to have 91 

large samples of flood events to evaluate how their properties may change over time.  For 92 

many regions of the world, the lack of observed river discharge data prevents this type of 93 

analysis. Some studies attempted to analyze the changes in different types of floods for 94 

different regions (Berghuijs et al., 2019; Mao et al., 2019; Kemter et al., 2020; Bertola et al., 95 

2021; Liu et al., 2022; Tramblay et al., 2022, Tarasova et al., 2023). Most of these studies rely 96 

on flood classification schemes, with various complexity depending on the type of data 97 

available, allowing a data-based separation of floods into their distinct generation mechanisms 98 

(Tarasova et al., 2019; Berghuijs et al., 2019; Tarasova et al., 2020; Stein et al., 2020, 2021; 99 

Tramblay et al., 2022). For basins under a Mediterranean climate, several studies reported 100 

complex interactions between precipitation increases and lower antecedent soil moisture, 101 

leading to thresholds effects (Brunner et al., 201) in the catchment response to changing 102 

hydro-climatic conditions (Wasko and Nathan, 2019; Cao et al., 2020; Bertola et al., 2021). 103 

Recent large-scale studies (Jiang et al., 2022, Tarasova et al., 2023) suggested a reduction 104 

of the frequency of floods driven by soil saturation in Europe, including basins in the 105 

Mediterranean area. 106 

 107 

In French Mediterranean basins, several studies reported an increase in precipitation 108 

extremes (Tramblay et al., 2013; Blanchet and Creutin, 2022; Ribes et al., 2019) that did not 109 

translate into increased floods (Tramblay et al., 2019). It is hypothesized that, as many regions 110 

of the world, a decrease in soil moisture linked with a greater aridity can potentially offset the 111 

increase in precipitation extremes and thus not increase flood severity (Sharma et al., 2018; 112 

Tramblay et al., 2019; Wasko and Nathan, 2019; Wasko et al., 2021; Huang et al., 2022). 113 

Excess soil moisture was previously identified as an important flood driver notably in the 114 

Mediterranean (Kemter et al., 2020; Bertola et al., 2021), indicating that they can play an 115 

important role. Yet, beside trend detection or changes in flood types, no study has provided 116 
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an in-depth analysis of the joint long-term evolution of flood processes in Mediterranean 117 

basins, in relation to their drivers such as precipitation, soil moisture and the evolution of 118 

synoptic weather patterns associated with floods. Therefore, the objective of the study is to 119 

evaluate how the characteristics of Mediterranean floods are evolving in time, not only in terms 120 

of flood event types, but also the seasonality of events, their duration, runoff coefficients, and 121 

antecedent soil moisture. A recent study (Tramblay et al., 2019) indicated no significant trends 122 

on flood hazards for a large ensemble of basins located in southern France. This database is 123 

used herein to further analyze the possible changes in flood generating processes and in the 124 

seasonality of flood events.  125 

 126 

In section 2 are presented the different datasets used for this analysis, including river 127 

discharge, precipitation, soil moisture data and weather types classification. In section 3 the 128 

methods are presented, for event extraction, analysis of the seasonality and changes in the 129 

different flood drivers. Results are presented in section 4.  130 

 131 

2. Data 132 

 133 

We consider 98 catchments in southern France (Figure 1) where the time series of daily 134 

discharge exceeds 30 years of complete data between 1959 and 2021 (Tramblay et al., 2019). 135 

Among them, 48 basins have more than 50 years of data and the basins selected are not 136 

influenced by reservoir or dam regulation. The catchment sizes are ranging from 14 km² to 137 

3195 km², with a mean size equal to 480 km² (see Table t1 in supplementary materials).  138 

Basins with a nival regime were removed, identified from the river discharge hydrographs and 139 

removing basins with more than 20% of precipitation falling as snow. In addition to river 140 

discharge data, the precipitation and soil moisture for each basin has been retrieved from the 141 

SAFRAN-ISBA-MODCOU (SIM) reanalysis covering the whole France territory at 8 km spatial 142 

resolution (Vidal et al., 2010). Precipitation and soil moisture data have been extracted and 143 

averaged at the catchment scale. The soil moisture data extracted from SIM is a soil wetness 144 

index obtained from the normalization of the volumetric soil moisture content with the wilting 145 

point and field capacity, that ranges between 0 and 1. Land cover classes (forest, agricultural, 146 

urban) corresponding to 2018 have been extracted from the CORINE land cover inventory 147 

(Büttner, 2014). In addition, we used the weather type classification from Electricité de France 148 

(EDF), corresponding to a daily classification into 8 synoptic situations associated with rainfall 149 

events over France (Garavaglia et al., 2010). This classification is built on geopotential heights 150 

at 700 and 1000 hPa pressure levels associated with rainy days over France.  151 

 152 

3. Methods 153 

 154 

3.1 Extraction of flood events 155 

 156 

We extracted a sample of flood events with a mean occurrence of 1 event per year using a 157 

peaks-over-threshold approach. This type of sampling is chosen since low annual maximum 158 

runoff could be observed during dry years (Farquharson et al., 1992). A de-clustering algorithm 159 

is applied to identify single events to avoid introducing autocorrelation in the analysis and 160 

ensuring that flood events are independent, using two rules (Lang et al., 1999): first a minimum 161 

of n days between events, with n = 5 + log(catchment area) and second, between two 162 

consecutive peaks, runoff must drop below ⅔ of the smallest peak. The maximum daily runoff 163 

https://www.zotero.org/google-docs/?fV30aZ
https://www.zotero.org/google-docs/?CpEh7i
https://www.zotero.org/google-docs/?e6ylKD
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https://www.zotero.org/google-docs/?ZJHOUs
https://www.zotero.org/google-docs/?GoAN2E
https://www.zotero.org/google-docs/?PQkity
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of each event is kept. This means that for an event lasting several days, only the maximum 164 

daily discharge, and the corresponding date, are kept. Then, for each flood event, we 165 

computed the total rainfall and maximum rainfall. The n-day previous precipitation is extracted. 166 

Total rainfall for each event is estimated by a cumulative sum of precipitation starting the day 167 

of the flood and this aggregation stops if there are two consecutive days with precipitation 168 

close to zero (1 mm) to account for rainfall intermittency within events. The maximum daily 169 

precipitation is extracted from the same time interval used to compute total event precipitation. 170 

The soil moisture at the beginning of the events is extracted from the previous day of the start 171 

of the rainfall event. A base flow filter has been used to separate direct runoff and base flow 172 

for each time series, using the Lyne Hollick Filter (Lyne and Hollick, 1979), with its default 173 

parameters. For each flood event, the base flow corresponding to the peak has been extracted 174 

to estimate the direct runoff, corresponding to the event rainfall contribution, in addition to base 175 

flow. Different metrics characterizing each flood event have been computed: total rainfall 176 

(mm), event maximum rainfall (mm), duration of the rainfall event (days), duration of the flood 177 

event (days), antecedent soil moisture (0-1) and runoff coefficient (0-1). The runoff coefficient 178 

was computed for each event as the ratio of direct runoff depth and total event precipitation 179 

 180 

3.2 Analysis of the mean date of occurrence 181 

 182 

Circular statistics (Burn, 1997; Berens, 2009) are used to analyze flood timing. The dates are 183 

first converted into an angular value, then from this sample of angular values, the mean date 184 

of occurrence (θ) can be computed, together with the concentration index (r) which measures 185 

the variability of the flood occurrences around the mean date. Using the dates of flood events, 186 

considering hydrological years starting September 1, θ and r are computed from the sample 187 

of dates. The first step in the analysis of seasonality is to test against circular uniformity. 188 

Circular uniformity refers to the case in which all angular values of flood dates around the 189 

circle are equally likely, indicative of the absence of flood seasonality. In that case, the 190 

computation of the mean date would have little relevance. The Rayleigh (Fisher, 1993) and 191 

the Hermans-Rasson (Landler et al., 2019) tests are used to test against uniformity for 192 

unimodal distributions, to verify the presence of flood seasonality (ie. meaning that floods do 193 

not occur randomly throughout the year). To associate flood events and weather types, for 194 

each rainy day corresponding to flood events, the weather type has been extracted from the 195 

weather type’s classification.  196 

 197 

3.3 Classification of flood generating processes 198 

 199 

A classification is applied to the flood events, adapted from a previously implemented 200 

classification at the global scale (Stein et al., 2020), in the United States (Stein et al., 2021) 201 

and Africa (Tramblay et al., 2022). This approach relates the occurrence of rainfall amounts 202 

above various thresholds to the occurrence of floods. Flood events in each catchment are 203 

classified according to three hydrometeorological generating processes, namely, the excess 204 

rainfall, short rainfall, long rainfall using a decision tree. Excess rainfall is defined as a flood 205 

event triggered by rainfall higher than average occurring over wet soils (i.e. soil moisture above 206 

than 50% saturation), short rainfall as a single daily rainfall event above high thresholds (the 207 

95th percentile computed over the whole time series of rainfall) and long rainfall as several 208 

consecutive days (> 2 days) with rainfall above the 95th percentile of rainfall summed over 7 209 

days. The classification first evaluates if a larger than average multi-day rainfall fell on wet soil 210 

to determine if the flood event was an excess rainfall type of flood. If that was not the case, it 211 

https://www.zotero.org/google-docs/?PRis5N
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6 

evaluates whether the thresholds for long rainfall and then short rainfall are exceeded. If no 212 

process could be identified, the class “other” is assigned.  213 

 214 

3.4 Changes in flood characteristics 215 

 216 

To assess the changes over time in flood dates and generating mechanisms, we split the 217 

records of each station into two periods of equal length. Given that most stations have records 218 

starting after the 1960s, on average the first period is ranging from 1959 to 1990 and the 219 

second one from 1991 to 2021, with a pivot year within +/- 5 years around 1991, allowing the 220 

comparison of the two time slices across the different stations. To assess the relative changes 221 

in the flood drivers, the frequency of each driver for each time period has been computed, and 222 

then we computed for each station the relative change (%) in each driver contribution 223 

(Berghuijs et al., 2019). In addition, to detect trends on the long-term frequency of event types 224 

per year pooled at the regional scale, we used the Mann-Kendall test for trends, modified to 225 

account for autocorrelation in the time series (Hamed and Ramachandra Rao, 1998). 226 

 227 

We use the same approach to estimate changes in the different flood events characteristics, 228 

and we applied the two-tailed Wilcoxon test to check the difference in medians. In addition, to 229 

assess the regional significance of the trends, we also computed the Mann-Kendall test on 230 

flood events characteristics pooled at the regional scale. For flood dates, we computed the 231 

mean dates of occurrence for the two time periods and assessed the significance of the 232 

difference using the Watson and Williams test, which is a circular analogue to the two sample 233 

t-test (Watson and Williams, 1956). Finally, to estimate potential relationships between 234 

different flood characteristics, the Spearman correlation coefficient (ρ) is computed.  235 

 236 

4. Results and discussion 237 

 238 

4.1 Change in flood event characteristics  239 

 240 

There are several changes in flood event characteristics as seen in Figure 2 between the two 241 

sub-periods, 1959-1990 and 1991-2021. On average, total event precipitation is increasing in 242 

65 basins (66% of basins), maximum event rainfall is increasing in 76 basins, consistent with 243 

previous studies in this area (Ribes et al., 2019; Tramblay et al., 2019; Blanchet and Creutin, 244 

2022), while on the opposite antecedent soil moisture is decreasing in 71 basins, baseflow 245 

contribution is decreasing in 75 basins and runoff coefficient is decreasing in 68 basins. These 246 

changes in soil moisture, base flow and runoff coefficients are consistent with an overall 247 

increase of aridity in southern Europe mostly driven by higher evapotranspiration (Tramblay 248 

et al., 2020) and have been also observed in other  regions with a similar climate (Ho et al., 249 

2022). The number of local statistically significant changes for each flood event characteristic 250 

is given in Table 1. These numbers remain small but it should be reminded that sample sizes 251 

are quite short for a robust statistical assessment in a context of high interannual variability. 252 

To overcome this issue, we also assessed the regional significance of these changes in flood 253 

event characteristics. We performed a regional pooling of the events and applied the Mann-254 

Kendall test to detect trends in the regional series of event characteristics. As shown in table 255 

1, all the detected changes are regionally significant except the decrease in base flow 256 

contribution to peak discharge during floods.  Overall, an increase in total event rainfall can be 257 

observed, mostly caused by the increase of maximum rainfall during the events (the changes 258 

https://www.zotero.org/google-docs/?3WtbQb
https://www.zotero.org/google-docs/?lYA3M3
https://www.zotero.org/google-docs/?NenhuU
https://www.zotero.org/google-docs/?OghTCl
https://www.zotero.org/google-docs/?OghTCl
https://www.zotero.org/google-docs/?3Gn2KG
https://www.zotero.org/google-docs/?3Gn2KG
https://www.zotero.org/google-docs/?J6CEDh
https://www.zotero.org/google-docs/?J6CEDh
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in the two variables are correlated, with ρ = 0.52), while the flood event durations are on 259 

average decreasing, consistent with studies at the global scale (Wasko et al., 2021).  260 

 261 

These changes in precipitation are associated with a decrease of antecedent soil moisture, 262 

before the beginning of the rainfall events. This decrease is also related to a smaller 263 

contribution of base flow during floods in some basins. There is indeed a significant correlation 264 

between the relative changes in the base flow contribution to peak runoff and soil moisture (ρ 265 

= 0.56), indicating that the soil moisture decrease is likely the main driver of these changes. 266 

There is also for most basins a significant nonlinear relationship (exponential type) between 267 

the flood events antecedent soil moisture and runoff coefficients, as reported in many studies 268 

(Penna et al., 2011; Rogger et al., 2013; Raynaud et al., 2015; Tarasova et al., 2020). Indeed, 269 

for the first time period, 1959-1990 the median Spearman correlation between antecedent soil 270 

moisture and flood runoff coefficients (see supplementary figure S1) is equal to 0.43 and is 271 

significant at the 5% level in 56 basins (67 basins at the 10% significance level). For the 272 

second time period, 1991-2021, the median correlation is increasing to 0.45 and is significant 273 

in 64 basins at the 5% significance level (68 at the 10% significance level). These results 274 

show, contrary to popular belief, that at the catchment scale drier soils produce less runoff, 275 

and this characteristic is even slightly accentuating over time. Indeed, increased runoff 276 

coefficients induced either by hydrophobic soil conditions following droughts (Burch et al., 277 

1989), soil crusting and sealing (Bissonnais and Singer, 1993) or compaction (Alaoui et al., 278 

2018), are well documented processes that mostly occur at the local plot scale that do not 279 

produce discernible effects at the catchment scale. This observation is reinforced by the fact 280 

that no negative correlation between runoff coefficients and initial soil moisture was detected. 281 

About the explanatory factors of the association between soil moisture and runoff coefficients, 282 

we found stronger correlations (significant at the 5% level) between these two variables in 283 

catchments with higher percentage of urban or agricultural areas, and on the opposite weaker 284 

correlations along with increased percentage of forests or mean catchment altitude. There is 285 

only a very small increase of the correlations for larger basins (no significant correlation with 286 

basin sizes), indicating that this relationship between soil moisture and runoff coefficient 287 

remains valid for all basins scales considered in the present study. This relationship between 288 

runoff coefficients and antecedent soil moisture remained stable between 1959-1990 and 289 

1991-2021 (Figure 3). 290 

 291 

4.2 Changes in flood dates 292 

 293 

Floods in southern France tend to occur mainly during November or December for basins 294 

close to the Mediterranean, East of the Cévennes mountainous range, while for basins located 295 

on the western part of the region, they tend to occur later during winter months, centered in 296 

January or February (Figure 4). Both the Rayleigh and Hermans-Rasson tests reject the null 297 

hypothesis of uniformity at the 5% level, indicating that floods do not occur randomly 298 

throughout the year. In most cases, the seasonal distribution is unimodal, except for a few 299 

cases; in about 15 stations the maximum occurrence of floods is observed in late autumn or 300 

winter and a secondary minor peak of occurrence is observed, usually centered around the 301 

month of March or April. These floods are associated with rainfall events rather than snowmelt, 302 

since for only 3 basins the snowfall contribution reaches 19% of total precipitation whereas 303 

the snowfall contribution is much lower for the remaining 12 basins (less than 5%).  304 

 305 
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For 79 basins, floods tend to occur earlier during the year, on average by -22 days between 306 

1959-1990 and 1991-2021 (Figure 5, left panel). On the opposite, for 19 basins the mean flood 307 

date occurs later in the second period with an average of +12 days. These changes in the 308 

mean date are significant in 26 basins at the 0.1 level according to the Watson and Williams 309 

test (18 basins at the 0.05 significance level). There are two differentiated spatial patterns: all 310 

basins where floods tend to occur earlier are located widespread in the center of the 311 

Mediterranean region, and basins where floods tend to occur later are found only in the 312 

northwestern margin of the domain. In these basins, the mean floods occur in late winter, until 313 

February and March. The same spatial patterns of changes in mean flood dates have been 314 

observed by Blöschl et al. (2017), but without providing the possible causes of these seasonal 315 

shifts. For the concentration index (i.e., the variability around the mean date) similarly two 316 

different patterns are found: for basins where floods tend to occur earlier, the concentration 317 

index is increasing, meaning more floods are clustered around the mean date, while for 318 

western basins where floods tend to occur later, the concentration index is decreasing, 319 

meaning a larger variability in flood dates (Figure 5, right panel). 320 

 321 

To assess the regional changes in flood dates, we first separated in two regional samples the 322 

stations where floods occur earlier (sample 1) or later (sample 2). Then we used the Watson-323 

William test, previously used to assess changes in flood dates in each station, to compare 324 

these two regional samples. The test results indicate that for the 19 stations where floods tend 325 

to occur later, the change in flood dates are not significant at the 5% level (p value = 0.0821), 326 

on the opposite, for the 79 stations where floods are occurring earlier, the change is significant 327 

(p value = 5.34.10^-8).   328 

 329 

4.3 Associations between flood occurrence and weather patterns 330 

 331 

The seasonal patterns observed for the floods are closely related to the occurrence of different 332 

weather types in different sub-regions. As shown in figure 6, most basins located east of the 333 

Cévennes mountainous range have floods associated with WT4, Southern Circulation, and 334 

western basins with WT2, Steady Oceanic. The most frequent pattern associated with 37% of 335 

floods, WT4, is known to be triggering intense rainfall events in this region (Ducrocq et al., 336 

2008; Tramblay et al., 2013). Interestingly, the WT6, Eastern circulation, and WT7, 337 

Southwestern circulation, are both associated to a lesser extent with floods across the whole 338 

region, but without notable spatial differences in the relative frequency of floods associated 339 

with these weather types. Change in flood seasonality could be ascribed to changes in the 340 

seasonal occurrence of the weather types (Figure 7): WT4 tends to occur more frequently 341 

from March to August during 1991-2021 compared to 1959-1990, and these changes are 342 

statistically significant (see supplementary figure S2). When looking at the actual count of WT4 343 

days, this change represents an increase of 69 events during that 6-month period for 1991-344 

2021, so an average of +2.2 days per year. Associated with a warmer Mediterranean Sea over 345 

the last decades notably during summer (Pastor et al., 2020), the combination of these two 346 

factors could explain the earlier occurrence of floods east of the Cévennes mountainous 347 

range. Similarly, there is an increased frequency of WT2 in January, February and March 348 

between 1991-2021 and 1959-1990, that is also significant (supplementary figure S2)that 349 

could be possibly related to the later occurrence of floods west of the Cévennes range. 350 

Although this change in weather types seasonality leading to heavy rainfalls is a plausible 351 

cause of the observed changes in the flood seasonality, more research is needed to better 352 

understand these relationships and attribute changes in flood seasonality. Notably, to analyze 353 

https://www.zotero.org/google-docs/?dLUzpf
https://www.zotero.org/google-docs/?dLUzpf
https://www.zotero.org/google-docs/?dLUzpf
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https://www.zotero.org/google-docs/?GvmtIt
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in more detail the moisture supply from the Mediterranean or Atlantic seas, the interaction with 354 

the atmospheric thermodynamics, the duration, localization and the spatial dependence of the 355 

rainfall episodes inducing floods. 356 

 357 

4.4 Changes in flood generating processes 358 

 359 

When first applying the classification of flood-generating processes on all floods, we find a 360 

predominance of excess rainfall events (Figure 8), followed by long rain and short rains, that 361 

is consistent with the known flood-generating processes in this region (Mediterranean 362 

episodes) and, in particular, the strong influence of saturated soils on runoff generation with 363 

floods mostly occurring during the autumn (Tramblay et al., 2010, 2019). The category ‘other’ 364 

regroups only 0.97% of floods and it represents mostly events with very low precipitation 365 

amounts, likely due to an underestimation of rainfall in the SAFRAN database for some events.  366 

It is worth noticing that despite the large sample of basins considered, the patterns are 367 

remarkably consistent and homogeneous across different basin sizes and locations. There is 368 

a significant, yet low, correlation (ρ = 0.26, p-value = 0.008) between the ratio of excess rain 369 

floods and catchment size, with a larger proportion of excess rain in larger basins, while on 370 

the opposite there is an even weaker and negative correlation (ρ = -0.16, p-value =0.09) 371 

between the ratio of short rain and basin size. It should be noted that floods driven by short 372 

rain episodes are potentially affecting smaller regions than floods driven by excess floods 373 

(Brunner and Dougherty, 2022). For 30 basins (not necessarily the largest ones), the 374 

proportion of excess rain exceeds 80% of the total number of flood events (see supplementary 375 

figure S3). For short rain and long rain, the maximum contributions observed much lower, 36% 376 

and 32%, respectively, but these maximum values are only found in small basins. Indeed, 377 

basins when short rain or long rain exceed 30% of episodes are only found in basins smaller 378 

than 100 km².  379 

 380 

The mean date of occurrence is significantly different between the three flood types, according 381 

to the Watson and Williams test. As shown on figure 9, the highest proportion of floods induced 382 

by short rain is observed during September to November, while the floods induced by long 383 

rain are mostly occurring during October to December, and excess rain floods are observed 384 

in late autumn and winter, with a peak in February. This is consistent with the annual soil 385 

moisture cycle in this region: at the end of the summer the soils are dry and it takes several 386 

months to replenish the soil moisture level, which is at highest during winter. If examining the 387 

long-term changes in this monthly repartition of flood types (see supplementary figure S4), the 388 

frequency of excess rain is decreasing from February to April, and also in October, while 389 

increasing during winter months. This implies that the season during which excess rain floods 390 

are occurring is reducing in length and concentrated during wet winter months. On the 391 

opposite the frequency of short or long rain floods is increasing in June and September, 392 

months that are getting drier over time in this region. 393 

 394 

The noticeable changes in flood processes over time are a reduction of Excess rainfall in 71 395 

basins and an increased frequency of short rains in 53 basins and Long rains in 63 basins 396 

(Figure 10), while short rain and long rain floods are decreasing for 19 and 22 basins, 397 

respectively. For excess rain, there are only 16 basins where their relative proportion is 398 

increasing; they are mostly located on the margins of the Alps and Pyrenees mountains. For 399 

more frequent events (ie. if considering an average of 3 episodes per year instead of one), the 400 

https://www.zotero.org/google-docs/?KQ8fbj
https://www.zotero.org/google-docs/?FNO7hE
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number of basins with a change is larger, with a reduction of Excess rainfall in 82 basins out 401 

of 98 (results not shown). This indicates that the soil moisture depletion has more impacts on 402 

small to moderate flood events, as previously observed by Bertola et al. (2021). There is no 403 

relationship between the rate of change in the different flood generating processes and 404 

catchment sizes indicating a clear regional pattern. The average magnitude across all basins 405 

of these changes remains low, on average -4.1% for excess rain, +1.2% for short rain and + 406 

2.1% long rain. Yet, the magnitude of these changes is ranging from +15% to -21% for excess 407 

rain, +11% to -20% for short rain and +12% to -11% for long rain, depending on the catchment, 408 

indicating that local catchment characteristics could strongly modulate the regional signal. In 409 

addition, the average values over the whole domain are hiding some local changes: for 410 

instance, short rainfall floods are increasing in the southeastern part of the Cévennes while 411 

decreasing for the northwestern part as seen in Figure 10.  412 

 413 

4.5 Regional changes  414 

 415 

To assess whether the changes in the relative influence of the three different flood types are 416 

significant at the regional scale, we computed for each year the relative frequency of the 417 

different flood types, all basins together. It is indeed not possible to do this analysis for each 418 

station independently, due to the small size of the samples over the two periods. These 419 

changes in the occurrence of flood types are significant at the regional scale according to the 420 

Mann-Kendall test (Figure 11), for the frequency of excess rain floods and short rain floods, at 421 

the 5% significance level, but not for the long rain floods.  All events pooled regionally, the 422 

decrease in excess rain floods is equal to -13% between 1959-1990 and 1991-2021, and the 423 

increase of short rain floods is equal to +36%. In addition, to assess whether these results are 424 

robust to the thresholds used in the classification of flood events, a Monte Carlo experiment 425 

has been also conducted. Results show (see supplementary figure S5) that regional changes 426 

in excess rain and short rain floods are not dependent on classification thresholds, while it is 427 

not the case for long rain floods.  In terms of flood severity for the different flood types, the 428 

median flood computed for each basin is strongly correlated to basin size (ρ = 0.78) for floods 429 

caused by excess rain, short rain (ρ = 0.80) and long rain (ρ = 0.75); and very similar results 430 

are found for the maximum flood. On the contrary, the specific discharge of flood peaks is non 431 

linearly related to basin sizes, with a clear threshold effect for basins smaller than 500 km² 432 

that have a much larger specific discharge than larger basins.  433 

 434 

Given that there are different flood sample sizes in the different basins corresponding to 435 

different flood-generating processes, we pooled regionally the flood events. To do so, we 436 

computed the specific discharge for each event (i.e. the flood magnitude divided by catchment 437 

area) to analyze the distributions of specific discharge for all the events associated with excess 438 

rain, long rain or short rain. Specific discharge is used herein since it is a good indicator of 439 

flash floods severity, notably in this Mediterranean region (Delrieu et al., 2005, Ruin et al., 440 

2008). Figure 12 shows that the short rain floods are more severe, in terms of specific 441 

discharge, than excess rain or long rain floods at the regional level (as shown also by Tarasova 442 

et al., 2023). The regional distributions for the different event types are different according to 443 

the Kolmogorov-Smirnov test. It must be noted that for a given basin the magnitude of the 444 

different types of floods may not be very different, showing the strong variability from one event 445 

to another that is not solely linked to the flood trigger. When comparing the different flood 446 

distributions between the time periods 1959-1990 and 1991-2021, the differences in flood 447 

magnitudes between excess rain, long and short rain are reduced. This is mainly due to a 448 
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slight decrease in the specific discharge of short rain floods, notably for flood events with a 449 

return level higher than 10 years, while the excess rain floods show very little changes in 450 

intensity over time.  451 

 452 

5. Conclusions 453 

 454 

The aim of this study was to document the evolution of the characteristics of Mediterranean 455 

floods, using a large database of long river discharge records in southern France. In most 456 

basins, floods tend to occur earlier during the year, the mean flood date being on average 457 

advanced by one month. This seasonal shift can be attributed to the increased frequency of 458 

southern-circulation weather types during spring and summer that are strongly associated with 459 

the occurrence of floods in this region. Over time, floods also tend to be more clustered in time 460 

over the different basins, as reflected by a decreasing variability in flood occurrence 461 

throughout the year. On the contrary, for the westernmost basins influenced by Atlantic 462 

circulation patterns, floods tend to occur later during the year, also due to a seasonal shift of 463 

the flood-generating circulation patterns that are occurring more frequently in late winter. 464 

During floods, an increase in total and extreme event precipitation has been observed, 465 

associated with a decrease of antecedent soil moisture before rainfall events, linked to a 466 

smaller contribution of base flow during floods. It can be concluded that it is the depletion of 467 

soil water content, due to increased aridity in south France notably related to higher 468 

evapotranspiration rates (Tramblay et al., 2020), that is the likely cause of the absence of flood 469 

trends despite the increase in extreme rainfall. It should be also noted that over all basins, 470 

dryer soils are associated with lower runoff coefficients, and this relationship remains valid 471 

over time. The majority of flood events are associated with excess rainfall on saturated soils, 472 

but that proportion is decreasing over time with a concurrent increased frequency of short rain, 473 

potentially leading to more severe floods. At the regional scale, floods induced by short rains 474 

are indeed of higher magnitude, but due to a lower runoff coefficient induced by drier 475 

antecedent soil moisture, the specific discharge associated with short rain flood is decreasing 476 

over time. These results are consistent with those obtained in other regions, showing that 477 

floods do not necessarily increase with the increase in extreme precipitation, and that soil 478 

moisture seems to play a key role in explaining these changes and the lack of trends ultimately 479 

on flood hazard (Wasko and Nathan, 2019; Bertola et al., 2021; Wasko et al., 2021). The 480 

results of the present study are rather homogeneous given the different catchment sizes and 481 

land use types, indicating that changes in flood types are mainly resulting from regional climate 482 

change and not only local changes, such as land cover or agricultural practice changes, nor 483 

the increase of urban and peri-urban areas. Nonetheless, if the observed trend in increased 484 

short rain floods is persisting in the upcoming decades, the severity of floods, particularly the 485 

most important ones, could increase along with the rise in rainfall extremes particularly in 486 

areas where the soil infiltration potential is low, such as in mountainous or urbanized areas, 487 

that have expanded a lot in recent years. This aspect could be further investigated using 488 

climate scenarios.  489 

One of the main perspectives of this work would be to perform a similar analysis at sub-daily 490 

time steps, that would be more adapted to analyze changes in flash floods characteristics, 491 

notably in terms of the flashiness response of the catchments (Baker et al., 2004; Li et al., 492 

2022). Indeed, the daily time step prevents a thorough analysis of changes in rainfall patterns, 493 

notably at shorter time steps. Yet, there is no gridded dataset of hourly precipitation before the 494 

https://www.zotero.org/google-docs/?9JjFeV
https://www.zotero.org/google-docs/?yzhJM1
https://www.zotero.org/google-docs/?yzhJM1
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2000s in Southern France, that does not allow to repeat such a similar study over 62 years. 495 

However, given the availability of radar rainfall over France, it would be possible to analyze, 496 

at least for the recent years after 2000, the evolution of several characteristics, such as the 497 

evolution of storm hydrographs, concentration time and the flashiness response of the basins. 498 

Another relevant prospective work would be to analyze the spatial extent of floods. Given the 499 

future evolution of weather types associated with floods in combination with more local to 500 

regional characteristics, such as soil moisture state, these types of events may impact 501 

simultaneously wider, or smaller, parts of the region considered, and this could have serious 502 

implications on risk management (Brunner et al., 2021; Brunner and Dougherty, 2022). 503 

Therefore, the joint analysis of flood occurrence in nearby basins would be highly relevant. 504 

Finally, there is also a need for new approaches to incorporate these changes in flood 505 

generating process into engineering practice (Slater et al., 2021b), notably to estimate the 506 

return levels for different types of infrastructure design.  507 
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 577 

 578 

Table 1: Number of local significant changes in the median of flood events characteristics 579 

detected by the Wilcoxon test and results of the regional Mann-Kendall test on flood event 580 

characteristics 581 

 582 

Indicator Number of 
significant local 
changes 
(Wilcoxon, 10%) 

pvalue of the 
regional MK test 

Regional changes 
between 1959 and 
2022 (%) 

Flood event 
duration 

17 
0.0046178 -0.40% 

Base flow 
contribution to 
peak 

15 

0.5687962 -8.62% 

Runoff coefficient 19 0.0000002 -14.62% 

Total event rainfall 16 0.0011851 9.01% 

Maximum event 
rainfall 

27 
0.0000000 13.47% 

Antecedent soil 
moisture 

12 
0.0000008 -9.80% 
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