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Abstract. Long continuous time series of meteorological variables (i.e. rainfall, temperature and radiation) are required for

applications such as derived flood frequency analyses. Observed time series are however generally too short, too sparse in

space, or incomplete, especially at the sub-daily timestep.

Stochastic weather generators overcome this problem by generating time series of arbitrary length. This study presents a

major revision to an existing space-time hourly rainfall model based on a point alternating renewal process, now coupled to a5

k-NN resampling model for conditioned simulation of non-rainfall climate variables.

The point based rainfall model is extended into space by the resampling of simulated rainfall events via a simulated annealing

optimisation approach. This approach enforces observed spatial dependency as described by three bi-variate spatial rainfall

criteria. A new non-sequential branched shuffling approach is introduced which allows the modelling of large station networks

(N > 50) with no significant loss in the spatial dependence structure.10

Modelling of non-rainfall climate variables, i.e. temperature, humidity and radiation, is achieved using a non-parametric

k-nearest neighbour (k-NN) resampling approach, coupled to the space-time rainfall model via the daily catchment rainfall

state. As input, a gridded daily observational dataset (HYRAS) was used. A final deterministic disaggregation step was then

performed on all non-rainfall climate variables to achieve an hourly output temporal resolution.

The proposed weather generator was tested on 400 catchments of varying size (50 - 20,000 km2) across Germany, comprising15

699 sub-daily rainfall recording stations. Results indicate no major loss of model performance with increasing catchment size,

and a generally good reproduction of observed climate and rainfall statistics.

1 Introduction

Stochastic simulation of rainfall has long been an extensive topic of research with applications including hydrological de-

sign, agricultural and water balance models, and for hydrological modelling for derived flood frequency analysis. Through20

regionalisation techniques, stochastic rainfall models may also be used to generate synthetic time series for ungauged sites.

At the daily timestep, a common approach is to model first the rainfall occurrence (wet/dry), and then the rainfall depth

separately. Examples using Markov chains to model rainfall occurrence with probability distributions modelling rainfall depth

include Richardson (1981) and Stern and Coe (1984) amongst others, and extended to the multi-site case by Wilks (1998) and

Bárdossy and Pegram (2009) via copulas. Alternatively, rainfall occurrence may also be described by an alternating renewal25

process, that is, sequences of serially independent wet and dry periods (Buishand, 1978), with a random variable describing the
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event rainfall depth. Non-parametric versions of some of the above mentioned models which sample from empirical distribu-

tions of the modelled variables also exist (Lall et al., 1996). All of the above daily rainfall models are conceptually simple plus

given the availability of observed daily rainfall data, easy to apply. These models however do not necessarily translate well to

sub-daily timesteps.30

Sub-daily rainfall models are often preferred, especially for flood simulation of smaller catchments. In the urban context,

sub-hourly rainfall models may be required to accurately model flash floods, which are ever increasing due to land use changes

and the effects of climate change. A common type of sub-daily rainfall model are point process models, which describe the

arrival of storm cells in time via a Poisson distribution. Neyman-Scott type models (Rodríguez-Iturbe et al., 1987; Cowpertwait,

1991), and Bartlett-Lewis type models (Onof and Wheater, 1994; Kaczmarska et al., 2014; Onof and Wang, 2020) both model35

storm cells as a collection of rainfall cells, with varying depths and durations that may overlap. The two types differ in how

they describe the timing of storm cells. In Neyman-Scott models, cells are described relative to the beginning of a storm using

a Poisson distribution, whereas in the Bartlett-Lewis type, the duration between cell origins is modelled via a random variable.

The Newman-Scott type has been extended into space (Cowpertwait et al., 2002; Leonard et al., 2008) by modelling storm

spatial extent and cell centre in space. Pegram and Clothier (2001b, a) presented a gridded high resolution stochastic model40

in space which mimics and is calibrated from sequences of radar images. Paschalis et al. (2013) expanded on this concept to

better describe advective storm cells stochastically in space and time.

Multiplicative cascade models disaggregate rainfall from coarser to finer timesteps. Depending on their principles of mass

conservation, they are either described as microcanonical, which strictly conserve mass (Olsson, 1998; Licznar et al., 2011),

or canonical, which only on average conserve mass (Molnar and Burlando, 2005). Müller and Haberlandt (2015) further45

expanded a microcanonical cascade model into space by the resampling of relative diurnal profiles using a simulated annealing

optimisation approach.

Alternating renewal type models, already introduced above at the daily timestep, have been also successfully applied at

sub-daily timesteps (Tsakiris, 1988; Haberlandt, 1998; Bernardara et al., 2007), including the 5 minute timestep for urban

applications (Callau Poduje and Haberlandt, 2017). Few attempts have been made to extend these point rainfall models in50

space, with the exception of Haberlandt et al. (2008). In the study, spatial consistency was applied in a two step approach. First,

time series at single sites were synthesised with no consideration of neighbouring sites. Then, rainfall events were resampled

on a site-wise basis via a simulated annealing optimisation procedure conditioned on observed bi-variate spatial dependence

measures. A major shortcoming however was that the method was only feasible for smaller stations networks (≤6).

Extending to non-rainfall climate variables, numerous parametric and non-parametric approaches exist. Richardson (1981)55

extended a single-site Markov based precipitation model to temperature and solar radiation using a multivariate stochastic

process conditioned on the wet/dry state. Wilks (1999) improved and extended this type of model into space by using spatially

correlated random numbers for synthesis. More recently, Peleg et al. (2017) introduced a gridded high resolution (2 km grid,

5 minute timestep) stochastic weather generator for the modelling of 8 meteorological variables, including advective based

rainfall. Papalexiou (2018) introduced a general purpose framework to stochastically model arbitrary combinations of hydro-60

climatic processes at a variety of time scales. Papalexiou (2022) expands on this framework to encompass properties specific
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to rainfall such as intermittency, marginal distribution and auto-correlation structure for sub-daily time series, however only

for single sites.

k-NN resampling is a flexible non-parametric approach which can easily be extended to the multi-site and multi-variate case.

Cross correlations between variables are inherently maintained due to simultaneous resampling, and being non-parametric, the65

approach is suitable for a diverse range of climate variables. Lall and Sharma (1996) used k-NN resampling for generating

runoff time series. Daily multi-site rainfall and temperature k-NN models as by Buishand and Brandsma (2001) can further

be conditioned on regional climate scenarios (Yates et al., 2003) or atmospheric circulation patterns (Beersma and Buishand,

2003). One drawback however of k-NN resampling is the inability to simulate values beyond the range of observations. Sharif

and Burn (2007) overcame this limitation by introducing a random component to the output. Less common are sub-daily70

resampling approaches, with most in the form of method of fragments disaggregation models which resample diurnal rainfall

profiles conditioned on daily rainfall (Mehrotra et al., 2012). The intermittency of rainfall especially at the sub-daily timestep,

create challenges for resampling and Markov approaches. Hybrid approaches exist which couple stochastic rainfall models to

non-parametric weather generators (Apipattanavis et al., 2007).

The present paper adopts this hybrid approach, by coupling a multi-site hourly rainfall model based on an alternating renewal75

approach (Haberlandt et al., 2008) to a k-NN resampling of non-rainfall variables, coupled via the daily rainfall state (wet, dry,

very wet). Innovations to the multi-site rainfall model are introduced and tested at multiple scales, by applying the model

to 400 meso-scale catchments of varying size across Germany. The resampling of non-rainfall variables is performed using

a daily gridded dataset as observations. As a last step, the daily non-rainfall climate variables are disaggregated to hourly

timesteps to match that of the rainfall model. Model validation is achieved by assessing the model’s ability to reproduce extreme80

rainfall at both the site and catchment scale, its ability to reproduce observed spatial rainfall characteristics, the reproduction

of observed correlations between rainfall and the non-rainfall variables, and more generally the reproduction of observed point

and catchment scale statistics of both rainfall and non-rainfall variables.

2 Methodology

The model chain is divided into four distinct components using two primary observation sources (Fig. 1 for a model chain85

schematic). The foundation of the weather generator is a stochastic single-site hourly rainfall model based on an alternating

renewal process (Sect. 2.1), parametrised using observed hourly station rainfall data. This single-site model is then extended

into space by site-wise resampling of rainfall events via a simulated annealing optimisation approach to enforce observed

spatial rainfall characteristics of multi-variate non-lagged rainfall time series (Sect. 2.2). Non-rainfall climate variables are

modelled using a non-parametric k-NN resampling approach (Sect. 2.3), using a gridded daily climate dataset as observations.90

The k-NN model is coupled to the space-time rainfall model via the catchment averaged daily rainfall state (dry, wet, very

wet). Finally, to achieve the target output temporal resolution, the non-rainfall climate variables are disaggregated from daily

to hourly (Sect. 2.4) using the open-source deterministic disaggregation tool MELODIST (Förster et al., 2016).
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a) Single-site ARM(t)
Δt = 1 h

b) Multi-site ARM(u,t) 
Δt = 1 h

c) k-NN WGEN(ū,t)
Δt = 1 d 

Rainfall state (ū,t)
Δt = 1 d

Obs pcp
Δt = 1 h

Obs climate
Δt = 1 d

d) Disagg(ū,t)
Δt = 1 h 

Figure 1. Workflow of the complete model chain. Two primary data sources are utilised, hourly station rainfall observations (left, blue)

and a daily gridded climate product (right, red). The foundation and first step of the model chain is the single site stochastic rainfall model

based on an alternating renewal process (a). This model is extended into space u via resampling to enforce observed spatial consistence (b).

Non-rainfall climate variables are resampled from catchment averaged observations using a k-NN approach (c), conditioned on the daily

catchment averaged rainfall state resulting from (b). Finally, the simulated non-rainfall climate variables are disaggregated from daily to

hourly (d) to meet the desired output temporal resolution.

2.1 Single site stochastic rainfall model

The first step is the generation of synthetic hourly rainfall time series at the site level. For this, an alternating renewal model is95

used. Rainfall is described as an alternating sequence of independent wet and dry spells. The model shown here is a revision of

the model introduced by Haberlandt (1998) and most recently further developed by Callau Poduje and Haberlandt (2017). The

model consists of an internal and external structure (Fig. 2). The external structure describes the occurrence of rainfall events.

The internal structure describes the temporal distribution of rainfall within a rainfall event (i.e. the event hyetograph).

The external structure is the basis of the alternating renewal model and describes the occurrence of rainfall events via the100

variables, wet spell duration (WSD), wet spell amount (WSA), and dry spell duration (DSD). Probability distributions are then

fitted to these three event variables using the method of L-Moments (Hosking, 1990). Probability distributions for the event

variables were chosen over other potential distributions through a combination of visual tests (including L-moment diagrams),

goodness-of-fit tests, and by evaluating end model performance when using various distributions. Rainfall events are defined

here as having a volume above a given threshold, the WSAmin, and a minimum separation distance to the next event of DSDmin.105

In this study, values of WSAmin = 1 mm and DSDmin = 4 hours were chosen largely arbitrarily. Auto-correlation of the event

variables is not considered, as observed auto-correlations of these variables is generally less than 0.05 even at lag 1.

There exists however a strong dependence between the event variables WSA and WSD. Copulas are one method routinely

used to model such dependencies. A copula describes a multi-dimensional space where the marginal distributions of each

variable is transformed to the uniform (i.e. each dimension has the interval [0,1]). Their use in hydrology has been increasing110

over the years (see Chen and Guo (2019) for an overview of applications). Copulas can be of any dimension ≥ 2, but as is
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Figure 2. Schematic of the external (a) and internal (b) forms of the alternating renewal single site rainfall model. Observations are shown

as vertical blue bars. Rainfall events are shown by dark blue rectangles. Observations falling outside of rainfall events are below the WSAmin

threshold. Events are additionally separated according to the DSDmin threshold. For synthesis, each event is assigned an event hyetograph

based on an exponential function (pink curve).

the case in this study and as most frequently found in the literature and in practice, only copulas of the bi-variate case will be

discussed from this point onwards.

Considering U and V as the uniformly transformed marginals of the two continuous random variables X and Y , with

U = FX(X) and V = FY (Y ), a copula C is the bi-variate distribution function of U and V :115

CU,V (u,v) = P(U ≤ u,V ≤ v) (1)

= C(FU (u),FV (v))

with C : [0,1]2 → [0,1], for u,v ∈ [0,1]

The primary benefit of this transformation is that the marginal distributions of X and Y play no role in describing the depen-120

dence between the variables.

Of special importance in this study is the modelling of extreme events with high rainfall intensity. These events by defi-

nition tend to have short duration but large rainfall depth. A copula capable of modelling these extreme events should thus

be asymmetric (as these events appear in one corner of the copula but not the opposite corner). In the previous version of

the model (Callau Poduje and Haberlandt, 2017), the concept of a regional empirical copula was introduced for this purpose.125

Within the study area, rainfall events were first normalised on a station wise basis then appended together to form a study area

wide empirical copula. One drawback is that only observed events can be sampled from the copula. Events more extreme then

previously observed could never be synthesised. This is particularly problematic as observation lengths are often limited due

to relatively few recording stations being available at the sub-daily timestep, especially regarding longer recording periods.

For this study, a Khoudraji/Gumbel copula has been chosen to model the WSA-WSD dependence. Selection was again130

through a combination of visual tests, goodness-of-fit criteria, and end model performance. A Khoudraji copula is a device in
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which two copulas C1 and C2 are combined via the equation:

C = C1(u
1−a1 ,v1−a2) C2(u

a1 ,va2) (2)

with a1 and a2 being shape parameters in the range [0,1]. A common use of the Khoudraji copula is to better model asymmetries

(i.e. C(U,V ) ̸= C(V,U)). In its use here, an independence copula is selected as C1 and a single parameter Gumbel (a.k.a.135

Gumbel-Hougard) copula, which shows greater dependence in the positive tail, as C2. The second shape parameter a2 is fixed

to 1, meaning that the combined copula is described by two parameters. An independence copula is one where the uniform

marginals U and V show no dependence (correlation = 0) and is defined by:

CI(u,v) = uv = C1 (3)

The bi-variate Gumbel copula is defined by:140

CG
θ (u,v) = exp

(
−
[
(− lnu)θ +(− lnv)θ

]1/θ)
= C2 (4)

and parameterised by θ ∈ [1,∞).

An additional modification from Callau Poduje and Haberlandt (2017) is the use of the Weibull distribution for both the DSD

and WSA marginals in place of the Kappa distribution. As Weibull is a three parameter distribution versus Kappa’s four, better

model parsimony has been achieved without any significant loss of performance. This is also of benefit in any regionalisation145

setting. The cumulative distribution function for the Weibull distribution is defined by:

F (x) = 1− exp

[
−
(
x+ ζ

β

)δ
]

(5)

with x > 0, ζ ≥ min(x) a location parameter, β > 0 a scale parameter and δ > 0 a shape parameter.

The WSD is modelled using the 3 parameter log normal distribution defined by:

F (x) = Φ

[
log(x− ζ)−µlog

σlog

]
(6)150

with Φ being the cumulative distribution function of the standard normal distribution, ζ the lower bound (real space) of x,

and µlog and σlog being the mean (location parameter) and standard deviation (scale parameter) respectively of x in the natural

logarithmic space.

The internal model structure describes the temporal distribution of rainfall within a rainfall event, in other words the event

hyetograph (Fig. 2, right hand side). The following exponential function is used to disaggregate the event rainfall intensity WSI155

over each timestep within an event:

P (t) =

WSP · e[cλ(t−WSPT)]α if t ̸= WSPT

WSP if t= WSPT
(7)

with c=

+1 if t <WSPT

−1 if t >WSPT
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with P being the rainfall intensity for timestep t, WSP the wet spell peak intensity, and WSPT the timestep of the wet spell160

peak. λ is solved numerically for each event separately, and the WSPT is sampled from a uniform distribution. α is used to

adjust the shape of the exponential curve relative to the WSP (Fig. 2) and as per Callau Poduje and Haberlandt (2017) is set to

1/3.

Differently to what is presented in Callau Poduje and Haberlandt (2017), the WSP is now modelled by fitting a Weibull

distribution (eq. 5) to the ratio WSP:WSA. Events with a length equal to the timestep (one hour) are first excluded. This restricts165

the range of possible values to between (0,1). A Khoudraji/Gaussian copula then models the dependence of the ratio WSP:WSA

to WSD. Here again, use of an asymmetric Copula via Khoudraji’s device (again with a fixed second shape parameter = 1 and

an independence Copula as C1 as per eq. 2) showed best results. The bi-variate normal copula is defined by eq. 8. The previous

model relied on a symmetrical Gaussian copula to describe the dependence between WSP and the event wet spell intensity

(WSI = WSA/WSD). This approach was problematic during synthesis, as wet spell peaks could be sampled producing a wet170

spell peak greater than the event WSA. The new method avoids this issue. The normal copula is defined as:

CG
ϕR(u,v) = ϕR

(
ϕ−1(u),ϕ−1(v)

)
= C2 (8)

with ϕR being the joint bivariate Gaussian distribution function with correlation matrix R for u and v, and ϕ−1 being the

inverse normal cumulative distribution function.

The rainfall event definition (requiring WSA ≥ WSAmin, DSD ≥ DSDmin) leads to a systematic underestimation of total175

rainfall. As a final step, small events (rainfall events below the WSAmin threshold) are added to the time series. The method

simply resamples (with replacement) small events from observations until the observed proportion of small to large rainfall

events is met. Event depth, duration and distance to the next adjacent large event are sampled simultaneously and placed

randomly in dry spells of adequate length.

2.2 Space-time rainfall synthesis via resampling180

Following generation of single-site rainfall time series, rainfall events are then resampled to reproduce observed spatial rainfall

dependence across a catchment. Specifically, the method aims to preserve the rainfall occurrence, correlation, and continuity of

concurrent timesteps between station pairs within the network. As only concurrent (i.e. non-lagged) timesteps are considered,

lagged spatial rainfall effects such as advection are neither considered nor reproduced. The resampling procedure is an exten-

sion of the simulated annealing optimisation approach described by Haberlandt et al. (2008). By reshuffling rainfall events (as185

opposed to hourly timesteps), the independence of rainfall events at single sites, as is a pre-condition of the alternating renewal

model, is maintained.

Simulated annealing is a discrete optimisation procedure which is well suited to finding global minima or maxima (Bertsimas

and Tsitsiklis, 1993). The method as presented here minimises an objective function describing spatial rainfall dependence by

swapping rainfall events at sites at random. All reductions in the objective function are accepted, however swaps which result190

in an increase can also be accepted with a probability relative to the current annealing temperature. The annealing temperature

7



decreases as the algorithm proceeds, making it less and less likely that bad swaps will be accepted. By sometimes accepting a

worse objective function result, the algorithm avoids becoming stuck in local minima and aids in finding the global minimum.

As we are attempting to recreate observed spatial rainfall dependence, the objective function incorporates three bi-variate

rainfall dependence criteria. The first describes the probability of simultaneous rainfall occurrence at station pair k and l:195

Pk,l(zk > 0|zl > 0) =
n11
n

(9)

where n11 is the number of timesteps with simultaneous rainfall occurrence at stations k and l and n is the total number of

(non-missing) timesteps.

The second criterion describes the Pearson correlation of simultaneous rainfall at both k and l:

ρk,l(zk > 0|zl > 0) =
cov(zk,zl)√

var(zk)× var(zl)
(10)200

where zk and zl are timesteps with rainfall at k and l.

Lastly, the third criterion is a continuity measure proposed by Wilks (1998) and is the ratio of the expected rainfall at station

k for timesteps with and without simultaneous rainfall at station l.

Ck,l =
E(zk|zk > 0,zl = 0)

E(zk|zk > 0,zl > 0)
(11)

A continuity close to one describes independent stations, whereas values approaching zero describe increased dependence.205

In the paper by Haberlandt et al. (2008), these three spatial rainfall criteria were combined into one objective function as

follows:

Ok,l = wP × (Pkl −P ∗
kl)

2 +wρ × (ρkl − ρ∗kl)
2 +wC × (Ckl −C∗

kl)
2 (12)

for stations k and l with wP , wρ, and wC being weights above zero to account for the effect of differing scales between the

three criteria, and * denoting target values. Target values can be assigned either by fitting regression curves to observed values210

as a function of station separation distance, or by using observed values directly. In this study the first approach is taken in

order to demonstrate the method’s applicability in regionalisation settings. However as direction between station pairs is not

considered, any anisotropic properties of the three criteria will not be reproduced.

Experimentation showed that splitting the three part objective function into two separate objective functions could lead to a

faster and more optimal convergence. Of the three criteria, the occurrence criterion is by far the hardest to converge. In addition,215

the Pearson correlation criterion shows high sensitivity and tends to dominate over the other two criteria. Selecting appropriate

weights to counteract discordance between the three criteria also proved to be problematic. Therefore the optimisation proce-

dure has been split into a two-step process, where first the occurrence criterion (eq. 9) is converged (step I), followed together

by the correlation (eq. 10) and continuity (eq. 11) criteria (step II). For this to be possible however, in the second step, only

events of equal length are swapped, in order to maintain the rainfall occurrence which has already been optimised in step I. At220

low station counts the benefit of such an approach is negligible, however with increasing station count (N>20), such a method

can halve the computational time required and shows increased overall performance.
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In the study by Haberlandt et al. (2008), stations were shuffled in sequence. That is, the first station was left unchanged, then

the second station was shuffled against the first, then the third against both the first and second and so forth. It was shown that

such an approach is only effective up to station counts of around 5, as with each additional station, the resampling becomes225

less and less flexible due to fewer and fewer degrees of freedom.

To overcome this, a new shuffling procedure is introduced in this study, best described as a non-sequential approach. Non-

sequential here describes the fact that stations are no longer shuffled sequentially across the entire station network, but rather

simultaneously. So for a given annealing temperature, swaps are performed among all stations at random allowing for a more

flexible and rapid convergence.230

The simulated annealing shuffling algorithm is thus as follows. Let U be the set of all stations to be shuffled, k be the station

currently having two events swapped, and R be the set of reference stations for which the objective function is calculated for

k, with R= U,k /∈R.

1. The algorithm begins at step I, considering only the rainfall occurrence (eq. 9).

2. An initial annealing temperature Ta is chosen. Experience shows that an annealing temperature resulting in an initial235

swap count of ≈ 80% is optimal (Bárdossy et al., 2002).

3. A station k is chosen at random from all eligible stations within the set U .

4. The initial objective function Ok,prev is calculated for station k using eq. 13 if step I or eq. 14 if step II, with l = 1, . . . ,M

being the set of reference stations R.

Ok =

√∑M
l=1(Pkl −P ∗

kl)
2

M
(13)240

Ok = wρ

√∑M
l=1(ρkl − ρ∗kl)

2

M
+wC

√∑M
l=1(Ckl −C∗

kl)
2

M
(14)

5. Two rainfall events from station k are chosen at random to be swapped with the following pre-condition:

– for step I, the events must be within an allowed temporal distance (here, 6 events). This allows a quicker and

smoother convergence as the sensitivity of the objective function from swaps is greatly reduced.245

– for step II, only events of equal length my be swapped, in order to avoid invalidating the occurrence objective

criterion previously converged in step I.

6. An updated objective function Ok,new is calculated to reflect the swap.

7. If Ok,new < Ok,prev, then the swap is accepted.
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8. If Ok,new ≥ Ok,prev, the swap is accepted with the probability π:250

π = exp

(
Ok,prev −Ok,new

Ta

)
(15)

where Ta is the current annealing temperature.

9. Repeat steps 3-8 N times.

10. The annealing temperature Ta is reduced:

Ta = Ta−1 × dT (16)255

with dT being the temperature reduction factor in the range 0< dT < 1. Generally a slow reduction in temperature is

best (i.e. dT ≈ 0.98). After reducing the annealing temperature, proceed once more from 3.

11. The current step is stopped when the mean improvement of the objective function across all stations between temperature

reductions is below a certain threshold, or if the mean objective function across all stations is below a certain target value.

12. If step I, the algorithm proceeds again from 2. with step II now considering together the correlation (eq. 10) and continuity260

11), otherwise the optimisation is complete.

Lastly, it was shown that the shuffling process can be further optimised if large station networks are branched into groups,

similar to the approach by Müller and Haberlandt (2015). This is not absolutely necessary for successful convergence, however

was shown to both increase performance and decrease computational effort, especially for very large networks (N ≥ 20).

A group size of 4 was used in this study, and groups are formed in a way that maximises the minimum distance between265

group midpoints. At each annealing temperature, shuffling (steps 3-8) occurs on a group-wise basis in random order. For any

group, U is restricted to group members, but R is expanded to include stations external to the group in order to transfer spatial

dependence information between groups so that a consistent result is obtained across the entire study area. These additional

stations, selected by closest distance, are included in R for the calculation of the objective function but are not included in the

set U from which station k is selected for swapping. In this study, up to 16 additional stations were added to R in step I and up270

to 24 for step II.

For very large networks (N ≥ 20), a further modification is to select from each group a single station to act as a parent

station, with all other stations classed as child stations. The shuffling procedure is then first performed for parent stations alone

(i.e. both R and U are restricted to parent stations), after which they are fixed (removed from U but remaining in R) for the

further shuffling of the child stations. This allows the wider scale transfer of spatial dependence information across the network.275

Again, this modification is not absolutely necessary but may lead to both a better and faster overall convergence. This is the

version ultimately used for this study for all catchments comprising 8 or more stations.
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2.3 k-NN non-parametric weather generator

Non-rainfall climate variables are modelled using a non-parametric k-NN approach. Non-parametric approaches have the

benefit of not needing to assume any underlying distributions of the modelled variables. Traditional k-NN weather generators280

resample target variables simultaneously for day t with replacement from observations, conditioned on the previous day t− 1.

As the name implies, k-NN selects a possible k candidate observations for resampling, selected by a distance metric between

the feature vectors for day t−1 of the simulation and the candidate observations. The day following the selected observation is

then inserted directly as day t of the simulation. As target variables are resampled simultaneously, cross correlations between

target variables are inherently maintained. The conditioning on the previous day of the simulation aids in preserving the auto-285

correlation of the target variables.

In this study, the k-NN resampling is further conditioned on the catchment averaged rainfall state S, which is the mechanism

used to couple the space-time rainfall model to the k-NN model. Conditioning on the rainfall state aims to preserve correlations

between the target variables and the already simulated catchment rainfall and is based on the method by Apipattanavis et al.

(2007).290

As the observed climate dataset used in this study is a gridded daily dataset, resampling occurs at the daily timestep. The

catchment averaged rainfall state S describes the daily areal rainfall of a catchment as either dry, wet, or very wet. The

corresponding rainfall depths which describe these states are taken as the 50th and 95th percentiles of daily rainfall (Pdry < 0.5;

0.5≤ Pwet < 0.95; Pv.wet ≥ 0.95 ). Rainfall acts here purely as a conditioning variable for the k-NN resampling of non-rainfall

climate variables, and is not itself resampled.295

For each day of the simulation, candidate days from observations are chosen using a moving window ±w around the current

simulation day t. For example, if t is June 15th and w = 7 days, only observed days between June 8th and June 22nd (from

any year) may be chosen. This allows for the reproduction of seasonal climate characteristics.

Potential neighbours are then further reduced by conditioning by rainfall state S for both days t and t− 1 of the simulation.

For example, if simulated day t is wet and simulated day t− 1 very wet, only observed days which are very wet followed300

by a wet day (and within the observation window ±w) may be chosen. If no days from observations match this criteria, this

conditioning is relaxed to apply to day t only.

Feature vectorsD are created for each day of observations, withD consisting of the normalised catchment averaged variables

x′. Each climate variable x is first normalised by subtracting the mean and dividing by the standard deviation:

x′ =
x−x√
var(x)

(17)305

The k-NN procedure proceeds as follows:

a. For the first day of the simulation t= 1, an observed day within the selection window ±w is selected at random condi-

tioned only on the rainfall state St.

b. The simulation day t is advanced by 1.
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c. Observed days within the selection window ±w are selected to form candidate days U .310

d. U is reduced by conditioning on the rainfall state St and St−1.

e. A distance metric, the weighted euclidean distance δ(Dt−1,Du), is calculated for each day u in U and simulation day

t− 1:

δ(Dt−1,Du) =

 N∑
j=1

wj(x
′
t−1,j −x′u,j)

2

1/2

(18)

with wj being the weight for climate variable x′j , N the total number of climate variables, x′t−1,j and x′u,j being the315

normalised climate variable for day t− 1 and candidate day u. For this study, variable weights were assigned manually

by trial and error. A higher weight for one variable over another will generally improve the performance of that variable

regarding its correlation to rainfall.

f. Candidate days are then ordered from nearest to farthest and given ranks j.

g. U is then further reduced to k neighbours based on lowest rank (closest distance). The selection of k is user definable,320

but is often taken as k =
√
N where N is the sample size, as proposed by Lall and Sharma (1996). As the window size

±w restricts possible neighbours, k =
√
Y × (2w+1), with Y equal to the length of observations in years.

h. A single day is then selected from U using a discrete probability distribution. Lall and Sharma (1996) recommended a

kernel which gives increased weight to nearer neighbours:

pj =
1/j
k∑

i=1

1/i

, for j = 1, . . . ,k (19)325

i. Day t of the simulation is then taken as day u+1.

j. The algorithm begins again from step b until all days have been simulated.

The choice of which combination of climate variables to resample depends largely on the intended end-use of the simulation

and the availability of observations. As the feature vector D contains normalised climate values, variables of any magnitude

and distribution may be used. Heavily skewed variables may undergo an optional log transformation. For this study, relative330

humidity, temperature (daily mean, minimum and maximum) and global radiation were chosen, as the intended end-use is de-

rived flood frequency analysis using the hydrological model HBV (Lindström et al., 1997). HBV requires rainfall, temperature

and potential evaporation as input, which can all be directly used or derived from these chosen variables. Furthermore, due

to ease of use and availability, a gridded observational climate dataset was used for this study. However the k-NN resampling

approach presented is not limited to gridded datasets and may be applied to networks of point observations, with the feature335

vector D representing mean values across the station network.
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2.4 Disaggregation from daily to hourly

A final step is required to disaggregate the resampled daily catchment-averaged non-rainfall climate variables from daily to

hourly. This is achieved using the open-source disaggregation tool MELODIST (Förster et al., 2016) which applies determin-

istic disaggregation functions to a variety of meteorological variables. This tool offers the user several forms of disaggregation,340

depending on the level of complexity sought and the availability of observations for parameter calibration. For this study, the

forms chosen do not rely on hourly observations and instead rely on geographic position (catchment midpoint) only.

Temperature is first disaggregated to hourly values Td,h for day d and hour h using the cosine function (Debele et al., 2007):

Td,h = Tmin,d +(Tmin,d +Tmax,d)/2× (1+ cos(π(h+ a)/12)) (20)345

with Tmin,d and Tmax,d being the minimum and maximum temperatures for day d. The parameter a describes the time difference

between solar noon and the time of maximum daily temperature. For this study, a is simplified to two hours across the entire

year.

Humidity relies on already disaggregated hourly temperature data. Relative humidity for hour h for day d is calculated by:

Hd,h = 100.
es(Tdew,d)

es(Td,h)
[%] (21)350

with es being the saturation vapour pressure of a given temperature T [◦C], given by the Magnus formula (Alduchov and

Eskridge):

es(T ) =

6.1078exp
(

17.08085T
234.175+T

)
T ≥ 0◦C

6.1071exp
(

22.4429T
272.44+T

)
T < 0◦C

(22)

The dew point temperature is simplified and taken as the daily minimum temperature (Tdew,d = Tmin,d) and is constant

throughout the day (no diurnal profile). Finally global shortwave radiation is disaggregated from daily values using a simplified355

formula which assumes a flat surface (Liston and Elder, 2006):

R0 = 1370 Wm−2.cosZd,h,ϕ.(ψdir +ψdif)
[
Wm−2

]
(23)

with ψdir and ψdif being the direct and diffuse radiation scaling values, Zd,h,ϕ being the local solar zenith angle for day d,

hour h and latitude ϕ, which for this study is taken as the mid-point of each catchment. Further details of the radiation scaling

values can be found in Liston and Elder (2006).360

3 Study area and data

400 meso-scale catchments in Germany were selected for this study. These catchments range in size from 30 km2 to over

20,000 km2. Figure 3 shows a boxplot of catchment by area.
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Figure 3. Boxplot of catchment area (N = 400).

As observed rainfall, 699 point sub-daily recording stations at the hourly timestep were sourced from the German Weather

Service (DWD). A common time period of January 2006 - December 2020 was chosen to maximise station availability over365

the period across all stations. Figure 4 displays the location of both catchments and rain gauges.

Stations were assigned to catchments, and the space-time weather generator is applied on a catchment basis. The largest

catchment contains 87 stations, with 109 catchments containing at least 10 stations, and 27 catchments containing at least 30

stations.

The HYRAS (Razafimaharo et al., 2020) gridded (5 km × 5 km) daily observational climate dataset was chosen for use370

for the non-rainfall climate variables. Climate variables include the mean, maximum and minimum daily temperature, relative

humidity, and global radiation. Coverage of this dataset is German wide extending into neighbouring countries except Czech

Republic. This results in a few catchments with boundaries extending into Czech Republic not having 100% pixel coverage.

For use in the k-NN weather generator, catchment averages were calculated for each catchment and climate variable. The time

period 1976 - 2015 (40 years) was chosen to increase the total number of days available for resampling.375

To validate the weather generator results, 40 sub-daily reference climate stations were chosen across Germany (Fig. 4). Of

these, 20 also include data for global radiation.

The climate of the study area is generally temperate, tending towards continental in the east and south east and oceanic in the

north. Convective precipitation is typical in the summer months, being a reason why the parametric models presented here have

been applied to summer and winter separately. Annual rainfall sums range from around 500 mm to over 2000 mm in southern380

elevated regions. Rainfall is common year round, being highest in summer and lowest in spring. Elevations are typically below

1000 m above sea level except in the southern Alpine region. Large temperature gradients are not present, with the warmest

area being the Rhine valley along the border with France.

4 Model setup and validation

To adequately test the performance of the complete model chain, 100 realisations of 15 years simulation length were generated.385

15 years was chosen to match the observation length of the sub-daily rainfall stations. The model is conditioned on summer

(Apr-Sep) and winter (Oct-Mar) seasons separately. A conditioning on calendar month would of course have been possible,
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Figure 4. Study area showing location of DWD rainfall stations (N=699), DWD climate stations (N=39) and catchments (N=400). Catch-

ments may be overlapping.
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however due to the limited observation length, a coarser conditioning by season ensures a sufficient number of observations

leading to a more robust parametrisation.

Target values as used in the objective function of the simulated annealing resampling procedure were calculated as follows.390

For each catchment, the closest 100 (at least) to 150 (at most) stations from the centroid of the catchment were selected (this

may also include stations located outside of the catchment boundary). For each station pair the three bi-variate spatial rainfall

criteria were calculated from observations. Regression curves (not shown here) were then fitted to the observed data with

station separation distance as the independent variable. The target values for simulations were then taken from these curves

with added noise equal to the residual variance.395

For the evaluation criteria, relative bias is calculated as follows:

Bias= 100× X∗
i −Xi

Xi
[%] (24)

where Xi is the observed value of the variable in question for station i and X∗
i the simulated value. A positive bias indicate

overestimation, a negative bias underestimation.

The performance of the weather generator is evaluated as described in the sub-sections below.400

4.1 Point rainfall model

The point rainfall model (Sect. 2.1) was applied in two modes for all 699 rainfall stations. The first mode is the model as de-

scribed by Callau Poduje and Haberlandt (2017) and will be referred to as the ’Previous’ model. The second mode incorporates

the changes as introduced in this paper, and is referred to as the ’Revised’ model. The two modes allow us to directly assess

whether changes to the rainfall model have indeed increased its performance. Note however that as the previous model has a405

target output timestep of 5 minutes, it may perform less well at an hourly timestep.

The performance is assessed via:

– Relative bias of annual precipitation sum and number of events. The median bias for each station over 100 realisations

is taken.

– Relative bias of the event variables WSA, WSD, DSD, WSI and WSP. Note that WSI is indirectly modelled but acts as410

a good indicator of the performance of the bi-variate copula C(WSA,WSD). The median bias for each station over 100

realisations is taken.

– Exceedance probabilities for given durations for both WSD and DSD. The mean result over all stations is taken and

shown for winter and summer.

– Extremes are assessed via the relative bias in fitted Intensity Duration Frequency (IDF) curves. IDF curves were fitted415

to observed and simulated (100 × 15 years) annual maxima series using the robust method according to Koutsoyiannis

et al. (1998) for the storm durations 1, 3, 6, 12, 24 and 48 hours. For each storm duration, the rainfall depth for a return

period of 20 years was calculated. The median bias across realisations is then calculated for each station and presented

in box plots for each storm duration.
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– The wet/dry intermittence of daily rainfall, first by considering wet day frequencies and wet-wet/dry-wet transition420

probabilities (and by implication their complements, wet-dry/dry-dry transition probabilities). These are presented in

observed versus simulated plots. A threshold of ≥ 0.1 mm was used to classify wet days.

4.2 Space-time rainfall model

After the generation of point rainfall, the model was extended into space on a catchment-wise basis by applying the simulated

annealing resampling approach described in Sect. 2.2. Due to computational constraints, the previous model is not considered425

here. The performance in space is assessed via:

– Spatial dependence of hourly rainfall via the three bi-variate criteria (occurrence, correlation and continuity) presented

as a 2D density plot. To produce the empirical densities, for each station pair the median result across all realisations

was taken.

– Like for the point rainfall model (see above), the bias in fitted areal IDF curves, again incorporating the storm durations430

1, 3, 6, 12, 24 and 48 hours with a return period of 20 years, was calculated for each catchment and presented as boxplots.

Catchment rainfall was calculated via the Thiessen polygon method.

4.3 Non-rainfall climate variables

The non-rainfall climate variables are first assessed at the daily timestep to isolate errors stemming from the k-NN resampling.

The performance for catchment averaged values is assessed via:435

– Summary statistics of modelled climate variables comparing mean monthly observed vs. simulated values.

– For each of the modelled climate variables, the daily auto-correlations up to lag 5 is shown plotted on observed vs.

simulated plots.

– Daily correlation between rainfall vs. non-rainfall climate variables plotted on observed vs. simulated plots, shown by

month.440

Also of interest is how well the k-NN resampling approach performs considering point observations. For this, 39 reference

weather stations were taken from the German Weather Service observation network and compared to first, a) the grid cell

values taken directly from the HYRAS observational dataset in order to first assess bias resulting from the gridded dataset, and

secondly, b) the k-NN resampled values by taking the median result over 37 × 40 year simulations. Monthly mean values are

shown on observed vs. simulated plots.445

Finally, the bias due to disaggregation from daily to hourly is assessed by comparing hourly means of each climate variable

averaged across each reference station. As the intended use of the weather generator is for applications such as derived flood

frequency analyses, the performance of the hourly non-rainfall variables is of lower priority.
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5 Results and discussion

5.1 Point rainfall model450

Figure 5 shows violin plots of the median bias of event variables, the number of annual events, and the total annual precip-

itation sum. For the event variables WSD, DSD and WSI, the previous and revised models perform almost identically. This

demonstrates that the change from the four parameter kappa distribution to the three parameter log normal distribution for

the variables WSA and DSD has no negative consequence on model performance. Of the directly modelled event variables,

DSD shows the worst performance, and more so for summer, indicating that an alternative distribution function may be more455

appropriate.

The revised model shows decreased performance regarding wet spell intensities. Wet spell intensities are indirectly modelled

via the WSA:WSD copula. The previous model implements a so called regional empirical copula, which resamples from

observations. As the median bias shown in the violin plot directly compares simulated verses observed values, it may be that

this statistic favours the previous model due to this resampling. On the other hand, the revised model shows a substantially460

better modelling of the wet spell peak, which validates the new wet spell peak modelling approach. Except for WSP and WSI,

the bias lies within ±10% range.

Finally, in terms of annual number of events and rainfall sum, both models perform similarly well, with summer showing

a greater underestimation and winter a more moderate overestimation. This is likely due to a mean overestimation of DSD in

summer as was discussed above. Here bias also lies within a ±10% range.465

The ability of the models to accurately model event durations is shown in Figure 6. As the previous and revised models both

use the log normal distribution for WSD, no difference is seen between the models. The revised model shows a very slight

improvement regarding DSD over the previous model. Here it can be seen that both models have difficulties modelling smaller

durations of DSD, most likely due to poor fitting of the lower bound parameter. Overall the DSD in winter is modelled best,

with deviations from the observations strongest between 4 -24 hours.470

Figure 7 shows the bias for extreme rainfall, split by season. In general it can be seen that the revised model shows a far

better performance. Most storm durations show a median result close to zero, however winter at the 1 hour storm duration

shows an overestimation and large range (±30%). With increasing storm duration, an increasing underestimation is seen. The

previous model significantly underestimates extreme rainfall, which is likely caused by the significant underestimation of wet

spell peaks.475

Figure 8 shows wet/dry day statistics for all stations for both summer and winter seasons and for both the previous and

revised models. Large differences between the previous and revised model are not seen, so the points discussed here apply to

both model versions. The relative frequency of wet days is generally well maintained with no obvious bias for both summer and

winter. Dry-wet day transition probabilities show in winter a greater underestimation (and conversely an overestimation of dry-

dry day), however with a mean underestimation of only ∼ 5%. Wet-wet day transition probabilities are generally overestimated.480

Overall both models show a good reproduction of all wet/dry day statistics.
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Figure 5. Violin plots of the median bias from 100 × 15 year simulations for 699 rainfall stations. Left side of violin plot shows results

for winter, right side for summer. Annual N refers to the mean number of annual rainfall events and Annual P the mean annual rainfall sum

(before the addition of small events).
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Figure 6. Exceedance probabilities of the event variables WSD and DSD for varying durations, split by season, for both the previous and

revised models and compared to the empirical value from observations. The mean over all stations is shown.
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Figure 7. Boxplots of median IDF bias over 100 realisations for all stations across the study area (N = 699) for various storm durations, split

by season, for both the previous and revised models. A return period of 20 years has been used.
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Figure 8. Daily wet day statistics for all stations across the study area (N = 699), for both the previous and revised models, split across

seasons. Grey lines show the range of results across 100 realisations. The dry-dry and wet-dry transition probabilities, and the dry day

frequency, can be inferred from the plots using the complement.

5.2 Space-time rainfall model

Figure 9 shows the performance of the three bi-variate spatial criteria in the form of 2D density plots over all catchments and

station pairs. Station separation distances of up to 150 km are shown. Results for the occurrence criterion show an overall good

reproduction of observations with no significant loss, however with a narrower range of values, especially for summer. As the485

occurrence criterion is optimised first before the other two criteria, we should expect good results. For Pearson’s correlation,

the general form of the density plot is maintained but again with a narrower range of values. Above 75 km there is a greater loss

in performance unlike for the occurrence criterion. This is most likely due to the fact that such distant stations are generally

not included in the set of reference stations R used in the objective function of the re-sampling optimisation approach, due to

the grouping approach used for larger catchments. Lastly the continuity criterion can be described as the worst performing of490
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Figure 9. 2D density plots of the occurrence (a), Pearson’s correlation (b) and continuity (c) bi-variate spatial dependence criteria, grouped

by season, for all station pairs across all catchments (N = 19,773), by station distance. For simulated results, the median value from 100

realisations was taken.

the three criteria, especially regarding summer. A general loss in performance can be seen across all station distances, however

the general form of the density plot is maintained.

The reproduction of extreme catchment rainfall has been assessed via the bias in areal rainfall depth for a return period of

20 years for varying storm durations as shown in Fig. 10. For the one hour storm duration, winter performs significantly worse

than for summer, especially regarding the median and range. This matches the result seen at the station level. The median495

annual result is close to zero however with a wide overall range (±30%). From duration 3 hours and above, winter performs

similarly than for summer. A general underestimation (∼ 10%) of extreme rainfall can be observed.

5.3 Non-rainfall climate variables

The non-rainfall climate variables were first assessed at the daily timestep (before disaggregation to hourly), to isolate errors

arising from the k-NN resampling procedure.500

Mean monthly values of all resampled climate variables are shown in the form of observed vs. simulated scatter plots

(Fig. 11). All three temperature variables show a good reproduction over the year, with no systematic under or overestimation.

Global radiation performs worse in both spring and summer, with the highest values showing greatest spread. The relative
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Figure 10. Boxplots of median areal IDF bias over 100 realisations for all catchments across the study area (N = 400) for various storm

durations, split by season. A return period of 20 years has been used.

Figure 11. Scatter plots of mean monthly values for all catchments (N=400). The range from all realisations is shown via grey bars and the

median is shown coloured by month.

absolute bias is rarely greater than 5% however. Relative humidity shows the greatest spread of values, particularly for the

months April-July. For all variables, large variations across realisations was not shown.505

The ability of the k-NN resampling procedure to maintain observed variable auto-correlation is shown in Fig. 12. The

magnitude of auto-correlation is well preserved for all variables and all lags, however as expected a certain loss in auto-

correlation is seen, particularly for lag 1. In general it can be said that the temperature variables are the better performing.
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Figure 12. Scatter plots of variable auto-correlation for lags 1 to 7 for all catchments (N = 400). The range from all realisations is shown via

grey bars and the median is shown coloured by month.

Figure 13. Scatter plots of correlation to daily rainfall for all catchments (N = 400). The range from all realisations is shown via grey bars

and the median is shown coloured by month.
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The auto-correlation results are sensitive to the weights used in the distance metric (eq. 18). As these are user assigned, the

performance relating to auto-correlation can be manipulated to a degree. The results here also show only small variations across510

realisations for all variables.

The Pearson correlation between resampled climate variables and daily rainfall is shown in Fig. 13. Also here cross-

correlation is reproduced well, however a loss in correlation is observed for all variables across most months. The temper-

ature variables are worst performing during the winter months, where correlation is highest. Summer months where a smaller

negative correlation is observed, perform on average better however with a greater spread of results. Relative humidity also515

performs worse for summer months. Correlation to global radiation is seen to be less dependent on month and a general loss

of correlation is observed.

To assess errors stemming from the use of the gridded climate dataset, observed daily time series from 39 reference stations

from the German Weather service where compared against corresponding HYRAS gridded values both before and after re-

sampling (Fig. 14). Looking at the results before resampling (top row of figure), performance is generally good with absolute520

bias generally not exceeding 2◦C for temperature. Radiation shows a very good reproduction of observations, however relative

humidity shows in part a very poor reproduction. The results after resampling (bottom row of figure) mimic those of before,

however with a small increase in bias, with temperature still performing very well, followed by global radiation and humidity.

This shows that the use of the gridded dataset does not bring about a significant loss of performance, with the exception for

relative humidity.525

Finally the disaggregation to hourly performance is assessed by comparing hourly observed vs. simulated means of each

climate variable, as shown in Fig. 15. Significant deviations between observed and simulated values can be seen, particularly

for daily minimum values, and for relative humidity in winter. However as the model’s intended end-use is derived flood

frequency analyses, the recreation of diurnal profiles is of lower priority. In contrast to the results from the k-NN resampling,

global radiation is the best performing of the three resampled variables.530

6 Conclusions

This study presents a major revision of the previous space-time rainfall model by Haberlandt et al. (2008). Large station

networks of over 80 stations can now be modelled with limited loss in the observed spatial dependence structure. This was

achieved by introducing a novel branched non-sequential event resampling approach based on a simulated annealing discrete

optimisation procedure, extending the single site rainfall model into space. While the current version does not consider advec-535

tion or anisotropic properties, the optimisation procedure is flexible enough that such features could be incorporated in future

model revisions by expansion of the objective function. Further modifications to the single site rainfall model also resulted in

improved model parsimony and performance regarding rainfall extremes.

Furthermore, the coupling of the space-time rainfall model to a non-parametric k-NN weather generator and subsequent

disaggregation to hourly now provides the user a single tool for the generation of hourly climate time series for applications540

such as derived flood frequency analyses. Coupling the two sub-models via rainfall state allowed an adequate reproduction of
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both auto-correlations and correlation to rainfall. The flexibility of the approach allows the modelling of a diverse range of

climate variables and observation sources (point or gridded).

By testing the complete model on 400 catchments and 699 rainfall stations across Germany, the model was shown to perform

across a wide range of catchment sizes and location. Future studies may assess the performance in different climates and over545

more diverse terrain.

Currently the space-time rainfall model is run separately for summer and winter seasons. This coarse partitioning is one

potential area for future improvement. Conditioning the model on circulation patterns, which better categorise different rainfall

and weather pattern types, may lead to increased performance, particularly regarding extremes. It may however be that a

conditioning of the model on circulation patterns is too restrictive, especially as observation lengths of sub-daily rainfall are550

generally too short.
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