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Abstract. In undammed watersheds in Mediterranean climates, the timing and abruptness of the transition from the 
dry season to the wet season have major implications for aquatic ecosystems. Of particular concern in many 
coastal areas is whether this transition can provide sufficient flows at the right time to allow passage for spawning 
anadromous fish, which is determined by dry season baseflow rates and the timing of the onset of the rainy 
season. In (semi-) ephemeral watershed systems, these functional flows also dictate the timing of full 
reconnection of the stream system. In this study, we propose methods to predict, approximately five months in 
advance, t wo key hydrologic metrics in the undammed rural Scott River watershed (HUC8 18010208) in 
northern California. Both The two metrics are intended to quantify the  relative transition timing from the dry 
to the wet season and , to characterize the severity of a dry year. The ability to predict these metrics and in 
advance could support seasonal adaptive management. The first metric is the minimum 30-day dry season 
baseflow volume, Vmin, 30 days, which occurs at the end of the dry season (September-October) in this 
Mediterranean climate. The second metric is the cumulative precipitation, starting Sept. 1st, necessary to bring 
the watershed to a “full” or “spilling” condition (i.e., initiate the onset of wet season storm- or baseflows) after the 
end of the dry season, referred to here as Pspill. As potential predictors of these two valuesmetrics, we assess 
maximum snowpack, cumulative precipitation, the timing of the snowpack and precipitation, spring groundwater 
levels, spring river flows, reference ET, and a subset of these metrics from the previous water year. We find that, 
tThough many of these predictors are correlated with the two metrics of interest, of the predictors considered 
here, we find that the best prediction for both metrics is a linear combination of the maximum snowpack water 
content and total October-April precipitation. These two linear models could reproduce historic values of Vmin, 30 

days and Pspill with an average model error (RMSE) of 1.4 Mm3 / 30 days (19.4 cfs) and 20.725.4 mm (0.8 
inches),1 inch), corresponding to 49% and 37% of mean observed values, respectively. Although these predictive 
indices could be used by governance entities to support local water management, careful consideration of baseline 
conditions used as a basis for prediction is necessary. 
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1 Introduction 
 
In regions that experience periodic drought, such as the western United States, spatially distributed indices 
summarizing hydroclimate or surface water supply conditions are often critical decision-support tools for water 
managers (e.g., Garen, 1993). An index can be forward-looking, such as onesthose that forecast near-term 
seasonal water supplies (e.g., Null and Viers, 2013; Verley, 2020), or backward-looking, such as ones that 
evaluate drought severity (e.g., Palmer, 1965; Guttman, 1998; McKee et al., 1993; Wilhite and Glantz, 1985; 
Wilhite et al., 2000). In California, forward-looking seasonal indices are used extensively by water managers. The 
In many western states, forward-looking seasonal indices are used extensively by water agencies to inform local 
adaptive management decisions, e.g. in Colorado (CDWR 2023), Idaho (NRCS 2023) and California (Null and 
Viers, 2013). In California the principal examples are the Sacramento Valley Index (SVI) and San Joaquin 
Index (SJI), which are seasonal forecasts used to determine water allocations from these watersheds through the 
State Water Project (Null and Viers, 2013; 2022).(DWR 2022). The state has more recently published a 
retroactive categorical water year type (WYT) dataset for sub-county level regions throughout California, based 
on a weighted combination of the cumulative precipitation of the two preceding water years (effectively, a 
partial one-year- holdover provision), and assigning categorical types using percentiles within a 30-year ranking 
window (DWR 2021). (DWR 2021). 

Complementing suchThese summary indices, functional ecosystem flows are  provide broad characterizations 
of a framework for providing a moreanticipated or historically available water supplies, particularly in climates 
and geographies with significant snowpack, groundwater storage, and/or surface water storage capacity and a 
consummate delay – and possibly significant spatial transfer – between precipitation occurrence and water use. 
More detailed picture ofcharacteristics, including the hydrologic effects of water year type, climate change, 
human water use, and other factors, can be identified using the functional flows approach (e.g., Poff et al., 1997; 
Bunn and Arthington, 2002; Poff et al., 2010; Wheeler et al., 2018). The flows are “functional” because they 
serve an ecological purpose, such as wet season flood flows, needed to disperse cottonwood seeds (Mahoney and 
Rood, 1998) and fall pulse flows, needed to provide passage for spawning fall-run anadromous fish (see Chapter 
1 of this dissertation).(Moyle, 2002). A California-specific functional flows framework has been developed to 
assess the degree of hydrologic alteration between modern and baseline conditions (Yarnell et al., 2020; 
Patterson et al., 2020).current and unimpaired conditions (Yarnell et al., 2020; Patterson et al., 2020). 

Unlike forward-looking indices such as the SVI and SJI, the functional flows approach (e.g. Yarnell et al., 
2020) does not provide numerical flow predictions from recent seasonal hydrologic datasets. The existing 
forward-looking indices developed for Mediterranean climates, ( such as the ones used in California, Idaho and 
Colorado (, referenced above), are particularly useful widespread in stream systems with significant managed 
surface water storage, capable of bridging the temporal gap between the timing of precipitation and water use 
(e.g., DWR 2023). Under Mediterranean climate conditions, the completion of the wet season (winter, spring) 
defines the total available water supply, which is then managed through reservoirs for supply deliveries 
throughout the dry irrigation season (summer and fall, e.g., CDWR 2023). However, such indices have not been 
employed in basins without managed surface water storage, but significant seasonal snowpack or groundwater 
storage. Neither have such indices been developed specifically to manage environmental (instream) flow 
protection.  Finally, such forward-looking indices to inform adaptive water supply management are lacking in 
smaller-scale geographic settings, especially for the mixed rain and snow-fed stream category of Patterson et al., 
2020.  

Here, we outline and test a novel approach to developing a forward-looking index that may be useful to inform 
water management decisions targeting environmental instream flow management in mixed rain and snow-fed 
watersheds without managed surface water storage under Mediterranean climates. Environmentally, a critical 
period in such systems is the summer baseflow period at the end of the dry season, bracketed by the onset of 
winter stormflow (Peek et al., 2022). Summer baseflow conditions are primarily an expression of underlying 
groundwater storage, fed in turn by recharge from winter and spring precipitation, snowmelt, and runoff 
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(Tarboton 2003). During this period, native fish, particularly anadromous and/or salmonid fish, are highly 
vulnerable to below average low flow conditions (e.g., Van Kirk and Naman, 2008). Due to lack of surface water 
storage, to manage environmental flows, such basins may seek early protective water management decisions to 
support environmental flows. These decisions must be made prior to the onset of the irrigation season, butseason 
but following the (near) completion of the wet season, which defines to quantify the keybulk of annual water 
input to a Mediterranean watershed.  

We utilize the Scott River watershed in northern California as an example Mediterranean climate stream system (without 
surface water storage) to outline our approach and to evaluate whether a statistically significant, forward lookingforward-
looking index can be defined to support environmental water management.  

In this study, to test the utility of locally-tailored predictive methods for hydrologic indices that incorporate 
functional flows, we focus on a single HUC8 basin, the Scott River watershed in northern California (HUC8 
18010208). We. Three periods of water use and climate forces have been proposed for the Scott River (e.g., by 
Pyschik, 2022): Eras 1, 2, and 3, ranging from 1942-1976, 1977-2000, and 2001-2021, respectively. These eras 
reflect changes in human management, such as the widespread installation of groundwater pumps in the region in the 
late 1970s (Tolley et al., 2019); and climate conditions, such as the shift in the Pacific Decadal Oscillation in the late 
1970s (Francis et al., 1998) or the onset of a two-decade abnormally dry period in 2000 (Williams et al., 2020). 
These overlapping changes make it difficult to identify the cause of decade-scale changes in regional hydrology; 
therefore, the proposed predictive method of hydrologic behavior is agnostic as to the mechanism linking the 
predictors and hydrologic response. 

We first review the hydrologic indices and methods currently used in decision-making, such as agricultural 
cropping choices or regulatory water use restrictions, and propose two additional decision-support metrics, both 
designed as quantitative forecasts. We additionally explore the significance of each metric in the context of 
functional flows. The first metric is Vmin, 30 days, the minimum 30-day dry season baseflow volume in a given 
water year, which typically occurs in September or October. The second is a prediction of the cumulative 
rainfall needed to wet up the watershed after the dry season such that subsequent rainfall results in clear 
significant, measurable runoff, or storm surge, events. This cumulative precipitation depth is referred to as 
Pspill. Both of these metrics have significance for significance for environmental flows and – if predictable in 
advance - could support near-term (seasonal) adaptive management, similar to the SVI and SJI in California’s 
Central Valley. For exampleSpecifically, the magnitude of the minimum baseflow rate sets the spatial extent of 
the aquatic ecosystem during the dry season and influences rearing conditions for oversummeringover-
summering juvenile salmonids (Gorman, 2016), while Pspill is, meanwhile, is intuitively related to the e 
timingrelative timing of flows necessary for fall-run salmon passage: under equivalent fall rainfall, a greater 
amount of rain needed to generate stormflow is correlatedwould be associated with a prolonged dry season, 
which. This type of prolonged dry season has delayed salmon access to spawning habitat in recent years 
(CDFW 2015). AfterIn the following, we first define Vmin and Pspill.  defining andNext, we develop 
developing seasonal predictions for Vmin and Pspill from environmental observations available near the end of 
the wet season, about a half year earlier. , wWe then evaluate trends over time and consider the effects that 
climate change and changing water use patterns may have on the metrics considered in this study, and the 
decisions they support. 

After defining and developing seasonal predictions for Vmin, 30 days and Pspill, we then evaluate trends 
over time and consider the effects that climate change and changing water use patterns may have on the metrics 
considered in this study, and the decisions they support. 
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2 Methods 
 
The Scott River watershedIn this study we used linear regression modeling to predict watershed behavior at 

the end of the dry season (the response) using data available the previous spring (the predictors). The Scott 
River watershed (Figure 1) has a snow-influenced Mediterranean climate, giving the river’s annual hydrograph a 
characteristic high-flow season during the rainy winters, a gradual flow recession in the spring-summer as the 
snowpack melts, and a low- flow dry season after the snowpack is depleted (e.g., Figure 1). Water supplies2). In 
the U.S. Geological Survey (USGS) National Hydrography Dataset, the Scott River watershed is denoted with 
the 8-digit Hydrologic Unit Code (HUC8) 18010208. Annual demand for agricultural and domestic use 
(estimated at 23 and 1.3 thousand acre-feet, respectively) (DWR 2004) are relatively reliable stable in the Scott 
River system [(although some reports of dry wells occur in dry years; ) (Siskiyou County -Siskiyou County 
Flood Control and Water Conservation District (2021)],2021) and a. A key management challenge is persistent 
low environmental flows during the dry season baseflow period. In dry years, the lowest annual flowrates can 
overlap with the spawning periods for fall-run anadromous fish, potentially restricting fish passage and imperiling 
the long-term viability of the Scott River fishery (Siskiyou County 2021) (see also Chapters 1 and 2 of this 
dissertation).2021). Post-1970s minimum dry season baseflows have been lower than pre-1977, and very low 

minimumsminima (< 10 cfs or 0.7 Mm3 / 30 days) have been more frequent in the past two decades (Figure 
6(see Results, Section 3.2.1), making the management of these flows more urgent. 

This study focuses on the transition betweenfrom the dry season andto the wet season, which at times can straddle 
the conventional water year boundary of October 1st, and cumulative precipitation is used both as a predictor and 
as a response variable (Pspill). When it is a predictor, a traditional October 1st start date is used and it is summed 
as the cumulative precipitation of October- April, to facilitate an end-of-April prediction of fall conditions. When 
it is the response variable, to capture uncommon September precipitation, cumulative precipitation is counted 
starting on September 1st of the preceding water year to capture uncommon September precipitation. This 
September 1st start date is also used in some graphs of climate and flow data (e.g. Figure 4in Section 3.2 below), 
to establish and visualize baseline dry season conditions. 

 Additionally, all flows in this study are observed or simulated at the USGS Fort Jones streamflow gauge 
(IDstation 11519500), a key monitoring location downstream of nearly all water use and cultivated land in the 
HUC8 watershed (Figure 3 (Figure 1), with an observation record covering water years 1942-2021. 
 

2.1 Scott River watershed precipitation-runoff behavior 
 

To establish the context and meaning hydrologic relevance of the two proposed predictive indices Vmin, 30 days 
and Pspill, a brief description of the behavior of the watershed is necessary. 
 

2.1   Scott River watershed precipitation-runoff behavior and Qspill 
 
In an undammed catchment, the runoff response to one (or a series of) precipitation event(s) is dependent on 
multiple factors, including antecedent soil moisture conditions, the intensity and magnitude of the precipitation, 
and on the dampening and delay of runoff; the latter is due to interflow, snow storage and recharge to 
groundwater storage that later returns as stream baseflowand the volume of water in aquifer storage (Tarboton, 
2003). A threshold runoff response to individual storm events has been observed at the hillslope scale where soil 
directly overlays (relatively) impermeable bedrock: absent significant aquifer storage, subsurface flow increases 
dramatically after a quantifiable threshold of precipitation is reachedAt a hillslope scale, in areas where soil 
directly overlays (relatively) impermeable bedrock and aquifer storage is not appreciably present, a threshold 
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response to individual storm events has been observed: after a certain quantity of rainfall, subsurface flow 
increases dramatically (Tromp-Van Meerveld and McDonnell, 2006). The proposed mechanism is the filling and 
connecting of various distributed storage volumes, such as soil pores and microtopographic relief in the bedrock 
surface (Tromp-Van Meerveld and McDonnell, 2006). Recently this concept has been extended to the watershed 
or basin scale: relative to the beginning of a storm event, a much higher flow response is possible only when a 
critical number of storage volumes throughout a basin fill to a threshold level and become connected (McDonnell 
et al., 2021). 

In this study we expand this concept of a basin-scale, threshold-based runoff response to the temporal scale of a 
season, rather than a single storm event. In this framework the condition of the Scott River watershed, as measured 
at the basin scale using the Fort Jones stream gauge, can be classified in four main categories. These categories 
are distinguished by current precipitation conditions and the volumetric proportion of the hydrologically 
connected reservoirs that are full of water (Table 1). 

Water in the Scott River watershed is stored in five primary reservoirs (Harter and Hines, 2008): 
 

– snowpack 

– fractures in impermeable bedrock (uplands) 

– soil moisture/subflow 

– the alluvial groundwater aquifer (lowlands) 

– streams and surface water bodies 
 

Accumulating snowpack is present only in the mountainous areas of the upper watershed, andwatershed and is 
limited to the winter and spring season. The alluvial aquifer is present only within the bounds of the groundwater 
basin underlying the flat valley floor.; wWater stored in fractured rock and soils/subflow emerges as springs 
and in streambeds in the upper watershed (Mack, 1958) (Figure 1). In conditions with sufficiently high soil water 
content or groundwater elevations, soil moisture/subflow and groundwater become hydrologically connected to 
the surface water system. Conversely, water in the snowpack and fractured rock reservoirs is not hydrologically 
connected to major surface water bodies until it melts or descends lower into the watershed, effectively passing 
through the aquifer or soil to reach the stream. For convenience the soil moisture/subflow and aquifer reservoirs 
will be referred to as “connected” storage. Storage in streams and surface water bodies is negligible at temporal 
scales exceeding a few days. 
 

2.1.1 Rainfall-runoff response, functional flows and Qspill 
 
In the absence of surface water reservoirs, it is useful to consider streamflow regimes from the perspective of 
natural water storage, as an intermediary between precipitation and stream flow at the outlet of the watershed. At 
the end of the dry season, the watershed is in a “draining from low storage” condition. Snow storage has not 
been available for several months, and groundwater storage is reaching its annual low point. This, which is 
reflected in a slowly declining or flat hydrograph, with a flowrate that has decreased for several months (Figure 2, 
first period A). As the dry season ends, the watershed begins receiving rain, and enters a condition of “filling from 
a low storage level”. In this catchment, much 
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Table 1. Schematic of watershed behavior and functional flow components types occurring during the transition 
from the dry season to the wet season in a Mediterranean climate; the categories are illustrated in an example 
annual hydrograph in Figure 2. Water storage level refers to the relative water content of the soil and aquifer 
within the watershed. 
 

 
Water storage level New 

precip. 
occurring
? 

Flow behavior description Relevant functional flows 

Low No (A)    Watershed    draining    
from   a 

medium-to-low storage level (depleting snow storage filling 
groundwater storage via recharge; depleting groundwater storage) 

Late spring recession and dry 
season baseflow 

Low Yes (B)   Watershed   filling   from   
a low 

storage level, with muted response to new precipitation (hillslope 
interflow, landscape recharge, rapid streambed recharge into 
alluvial groundwater basin, especially near the mountain front - 
downstream from the bedrock-alluvium transition) 

Fall pulse flow or small/slow post-
dry- season flow increase 

High No (C)  Watershed draining from 
a high storage level (hillslope interflow, snowmelt, groundwater 
discharge to streams) 

Winter baseflow and early 
spring recession 

High Yes (D)  Watershed  spilling  from  
a high 

storage level, with rapid response to new precipitation 

Winter stormflow 
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In this study we expand this concept to the temporal scale of a season, rather than a single storm event. 
Depending on current precipitation conditions and the volumetric proportion of the hydrologically connected 
reservoirs that are full of water, the condition of the Scott River watershed, as observed at a regional scale using 
the Fort Jones stream gauge, can be classified in four main categories (Table 1). 
Water in the Scott River watershed is stored in three primary reservoirs:  
 

snowpack, soil moisture/subflow, and the alluvial groundwater aquifer. Accumulating snowpack is present 
only in the mountainous areas of the upper watershed, while the alluvial aquifer is present only within the 
bounds of the groundwater basin underlying the flat valley floor (Figure 3). (Though some groundwater may be 
stored in fractures in the surrounding mountains, it is rarely measured, and it is assumed to respond to hydrologic 
dynamics within the other three reservoirs.) In conditions with sufficiently high soil water content or 
groundwater elevations, soil moisture/subflow and groundwater become hydrologically connected to the surface 
water system, while the snowpack reservoir is not hydrologically connected until it melts and becomes water 
stored in one of the other two reservoirs. For convenience the soil moisture/subflow and aquifer will be referred to 
as “connected” storage. 
 

2.1.1 Rainfall-runoff response and functional flows 
 
At the end of the dry season, the watershed is in a “draining from low storage” condition, which is reflected 
in a slowly declining or flat hydrograph, with a flowrate that has decreased for several months (Figure 1, first 
period A). As the dry season ends, the watershed begins receiving rain, and enters a condition of “filling from a 
low storage level”. In this catchment, much of the earliest water entering the system is routed as recharge through 
the soil or the streambed to occupy space in the aquifer. Because groundwater moves more slowly through the 
watershed than surface water, the hydrograph at the Fort Jones gauge demonstrates a muted or delayed response 
to early rain events (Figure 1,(Figure 2, period B). 

At the onset of a new wet season, under average conditions, the flowrate of filling is greater than the flowrate 
of draining, and so the “filling from a low storage level” condition at the beginning of a rainy season is 
transient, lasting only until the filling process occupies enough aquifer and soil storage volume to produce a 
“full” condition. After the water storage in the basin reaches “full”, if no more rain occurs, the watershed 
returns to its default “draining” condition, though from a higher storage baseline than during the dry season, and 
with a higher draining flowrate (Figure 12, first period C). If there is additional precipitation, the 
hydraulicresulting surge in flow response is much more rapid, reflecting a “spilling” condition (Figure 12, 
intermittent events D). 
The precipitation and winter temperatures during the wet season produce an accumulation of snowpack, though in 

some years this can be reduced by warm periods and rain-on-snow events. Melting snowpack contributes 
subsurface flow and tributary streamflow to the lower watershed, producing a spring flow recession typically 
lasting from the last major precipitation event into the summer (Figure 12, second period C and second period A) 
and providing significant recharge via stream leakage near the mountain front, at the margins of the alluvial basin. 
This process amounts to a net transfer of water in snow storage during winter and spring to water in groundwater 
storage in spring and summer. 

Many of these phenomena are are reflected in the well-established elements the phenomena described in the 
above paragraphs have been characterized as various types of functional ecosystem flows (Table (Table 1). 
Winter stormflow is the obvious  functional flow metric corresponding to a “spilling” watershed. The spring 
recession can last for three to six months and its steepness is moderated by snowmelt. Because it bridges the 
high-storage and low-storage states, the early and late spring recession appear in two different flow behavior 
categories (Table 1).(Table 1). Conversely, the flows that are here classified under “watershed filling from a low 
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storage level” have no specifically discerning feature in the hydrograph and depend are somewhat ambiguous and 
dependent on year-to-year conditions:, since a discrete fall pulse flow does not occur in every water year, and no 
distinct metric has been proposed for the small or slowa morethe gradual post-dry-season flow increases that 
constitute the watershed’s response to minor precipitation at the end of the dry season. 

Given the regular behavior observed during the dry season-to-wet season transition in of the Fort Jones 
hydrograph (i.e., prolonged dry season baseflows followed by gradual flow increase and then storm surges), and 
the physical structure of this highly inter-connected basin, we expectexpectedpropose to find that an 
operational flowrate threshold exists at the Fort Jones gauge that defines the approximate transitionly defining 
the lower limit of the to “full” or “spilling” basin condition. This flowrate, Qspill, was estimated to be 100 
cfs based on visual inspection of annual September-March hydrographs (Figure 4, panel A (referred to here as 
Qspill; see Results, section 3.1). 
 

2.1.12.1.2 Stream-aquifer interaction 
 
In the groundwater basin (i.e., lower) portion of the watershed, the alluvial aquifer is the largest storage reservoir. 
(Mack, 1958). Groundwater- surface water interactions drive Scott River flow behavior towards the end of the dry 
season, before the next rainy season begins, when snowpack is depleted and streamflow in many areas is sustained 
by groundwater discharge alone. (Foglia et al., 2018). Discharge to streams from the alluvial aquifer occurs along 
the thalweg of the Scott River. In this highly interconnected system, groundwater discharge along the thalweg, at 
the annual scale, is balanced by landscape recharge and by recharge from stream reaches near the margins of the 
basin, overlying coarse alluvial fansIn this highly-interconnected system, groundwater discharge in one reach of 
the river is typically approximately balanced out by infiltration through the streambed to the aquifer, much of it 
occurring on the upper alluvial fans of the tributary streams (see discussion below). 

We can useused the Scott Valley Integrated Hydrologic Model [(SVIHM;) Tolley et al.(Tolley et al., 
(2019)]2019; Foglia et al., 2013a, b) to obtain the estimated volume of water exchanged monthly, in water 
years 1991-2018, between the surface stream network and the underlying aquifer. Streamflow gains from and 
streamflow losses to groundwater were integrated across the stream network to obtain a net monthly 
groundwater-surface water exchange value for the basin All positive fluxes and all negative fluxes 
(corresponding to gaining and losing stream reaches) were summed independently and then added to create a 
net value for each month in the simulation period (Figure 5, upper(Figure 3, panel A). These net monthly 
groundwater-to-stream flux values were then compared to simulated monthly flow volumes in the Scott River, 
measured at the Fort Jones gauge (Figure 5, lower panel(Figure 3, panel B). 
 

2.2 Observed response variables (Vmin, 30 days and Pspill) 
 
The Scott River is an undammed watershed, in which estimates of annual precipitation are an order of 
magnitude greater than the estimated combined volume of water stored in surface water bodies or aquifers and 
water pumped or diverted for agriculture (Tolley et al., 2019). In this study we testtested whether fundamental 
hydrologic characteristics, specifically the dry-season draining behaviorbaseflow recession and hydraulicthe 
rainfall-runoff response to early wet season cumulative precipitation, can be predicted five to six months prior 
using observable hydroclimate data of the preceding wet season and antecedent climate and flow conditions prior 
to the water year. The first step iswas identification and quantification of the two relevant response variables 
describing these two processes. 
 

2.2.1 Dry season baseflow quantities (Vmin, 30 days) and timing 
 
Multiple numerical summariesintegrated numerical indicators of dry season baseflows were evaluated for 
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suitability as the response variables in this prediction exercise (e.g., monthly flow volumes in Figure 6).. Monthly 
flow volumes were preferred over a minimum daily flow value to represent durable conditions at the end of a 
dry season, and to reduce the influence of individual events that might affect flow on one or a small number of 
days, such as groundwater pumping or surface water diversions. 

Historically, the rainy season in California tends to begin in October. , and so bBy convention, each water year 
begins on October 1st of the previous calendar year, and ends on September 30th. Matching this convention, in 
most years, the minimum-flow month for the Scott River is September; however, uncommon September storms 
can elevate flow volumes, and in some years with a late rainy season onset, the October flow volume may be 
lower. To capture these dynamics, for each calendar year, we calculated a rolling 30-day sum of daily flow 
volumes in the period July-December of each calendar year to identify the 30-day period with the minimum 
least flow volume, referred to as Vmin, 30 days (Figure 6). (see Section 3.2). For consistency, each annual Vmin, 
30 days value was assigned to the water year ending in September of that calendar year, even if the minimum 
flow window included days in October-December of the following water year. 
 

2.2.2 Cumulative precipitation Pspill 
 
Pspill was calculated for each water year as the cumulative rainfall at the end of a dry season, starting between 
September 1st and, recorded on the first day that the Fort Jones gauge measured flow greater than Qspill 
(Figure 6, lower panel).(see Results, Section 3.2). As stated above, conceptually, it is the amount of rainfall 
needed to “fill” the watershed such that streamflow at the outlet of the watershed it responds rapidly to new 
precipitation without significant intervening storage delays. 

A dry season can have negative effects on an aquatic ecosystem if it produces extraordinarily low flows, but 
also or if it lasts for an extraordinarily long time (e.g., delayed salmon habitat access,  documented in CDFW 
2015).2015). The quantity Pspill is correlated with both a lower minimum flow volume and a later river 
reconnection (Figure 2). If predicted in advance, a forecasted value of Pspill would be an indicator of the risk of 
a severe dry season. The timing of  

In addition to the increase in dry season baseflows has trended later over the past several decades (see Siskiyou 
County 2021, and Chapter 1 of this dissertation), andvolumetric quantity Pspill, there could also be demand for 
seasonal predictions of the timing of onset of the coming   rainy season. However, predicting the timing of the onset 
of the rainy season or of Qspill would likely rely on uncertain long-term weather forecasts and is beyond the scope 
of this paper. In other words, due to randomness in rainfall timing, the exact dry season baseflow extension 
caused byduration associated with a higher Pspill is highly variable and, hence, uncertainunpredictable. 
 

2.3 Potential predictors and selected formulations 
 
To evaluate candidate predictors of dry season baseflows, Pearson’s correlation coefficient, R, was calculated 
between observed response variables Vmin, 30  days  and Pspill, and the following categories of observed predictor 
data (Figure  7): 
 response variables Vmin  and Pspill, and the following categories of observed predictor data (see Results, Section  
3.3): 
 

1. Spring (March-May) water level observations in this case study in each of 7454 individual wells (Figure(Figure 
8A1). 

2. Annual maximum snowpack water content at each individual snow monitoring station here at 20 CDEC stations 
(Figure 3aggregated by the California Data Exchange Center (CDEC; Figure 1). 
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3. Cumulative precipitation, October-April, at local weather stations (here: 12 stations within and 5 outside the 
watershed for a total of 17 NOAA stations; Figure 1). Cumulative precipitation, October-April, at each weather 
station within the watershed, and five outside the watershed (total of 17 NOAA stations). In these records, 
missing values (i.e., days with no recorded observation) are assumed to have 0 precipitation. Water years with 
more than 5 missing days are excluded from the predictor dataset (Figure 3).. 

4. Cumulative precipitation, October-April, of a composite precipitation record with no missing values, here 
representing the mean of the Callahan and Fort Jones NOAA weather stations (located at the southern and 
northern ends of the valley, respectively), and referred to as “cal_fj_interp”. To generate the composite record, 
missing values in the Callahan and Fort Jones station records were interpolated imputed based on observations at 
neighboring stations (see method in Foglia et al.,Foglia et al., 2013).2013a). 

5. The flow volumes observed at the watershed outlet, here the Fort Jones gauge (USGS ID 11519500; Figure 
1) during the preceding March and April (Figure 3).. 

6. Cumulative reference evapotranspiration (ET0), October-April, here using observations from the Scott Valley 
CIMIS station, Station No. 225 in the California Information Management Information System (CIMIS) network 
(2015-2021), or Spatial CIMIS estimates of ET0 at the location of Station 225 (2002-2015) (Figure 3(Figure 1). 

7. The timing (in Julian days) of the date of maximum snowpack measurement. 

8. The timing (in Julian days) of the date of the volumetric center of the rainy season, calculated as the day the 
cumulative precipitation crossed 50% of the total. 

9. The 1-year-lagged metrics of maximum snowpack, October-April cumulative precipitation, and April water levels 
(e.g., the October-April cumulative precipitation measured a full 17-23 months prior to a September minimum 
flow). 
 

Individual measuring locations, such as wells or weather stations, were evaluated for sample size (i.e., years of 
data) and degree of relatedness with the two response variables. Relatedness of the monitoring locations with the 
highest R values in each category of monitoring observation are shown in Figure 7.included in analysis results (see 
Results, Section 3.3). 
 
2.3.1 Prediction formulae for Vmin, 30 days and Pspill 
 
With a sample size of 80 years of dry season baseflow volumes, a one- or two-predictor model is best to avoid 
overfitting (James et al., 2013). Nonetheless, to thoroughly assess predictive potential of this dataset, three-
predictor models were also considered. 

Commonly, model diagnostics such as Akaike’s Information Criterion (AIC) are used to evaluate the best 
of a set of competing statistical models (Burnham and Anderson, 2004). However, AIC and other information 
criteria methods can only be used when comparing models based on the same dataset (Burnham and Anderson, 
2004). In the dataset for this study, variable record lengths and missing data points produced a situation in which 
the sample size is different for most of the combinations of predictors under consideration. Consequently, though 
AIC and additional diagnostics were calculated for all models (Tables A1 through A6), cross-validation was used 
in this study as the primary model selection technique. 

To predict Vmin, a set of six one-predictor models were generated using the observation location from each 
category with the highest R, and model fit was evaluated using Leave One Out Cross Validation [LOOCV; 
James et al. (2013)] (Figure 9).(LOOCV) (James et al., 2013) (see Results, Section 3.3 and Table A1). For a 
dataset with n observations, the LOOCV error of a predictive model is obtained by recalculating the model 
coefficients n times, each time leaving out one observation, and comparing the resulting prediction to the single 
left-out observation. The root mean square of these n errors is the LOOCV error used to evaluate model 
performance in Results. 

The single predictors with the lowest LOOCV error (excluding Reference ET,other than evapotranspiration of a 
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reference crop, ETref, which was excluded due to insufficient observation record length) were used to produce a 
set of four two-predictor models (Figure 10)(see Results, Section 3.4 and Table A2) for Vmin, 30 days, including 
two that incorporate a partial one-data from a full calendar year holdover termprior, to test the validity of the 
DWR Water Year Type index method in this local setting. A similar approach was used to assess two-predictor 
models for Pspill, though no one-predictors from a prior year holdovers were included, and several additional two- 
predictor combinations were evaluated. In both cases, the best-performing model took the following form: 
 
 
Predictedi = Int. + mA ∗ obsA, i + mB ∗ obsB, i (1) 

Where: 
 

– Predictedi is the predicted value (either Vmin, 30 days or Pspill) in calendar year i (i.e., at the end of water 
year i). 

– obsA, i, obsB, i are the observed predictor values in October-April in water year i (millimeters).. 

– Int., mA, mB are the coefficients of the selected linear model. 
 
 

3 Results 
 
3.1 Scott River precipitation-runoff behavior 
 
The quantity Pspill is correlated with both a lower minimum flow volume and a later river reconnection (Figure 
4). This corroborates the hypothesis that Pspill, predicted in advance, could beis an indicator of the risk of a 
severe dry season. 
 
Visual inspection of 80 years of Fort Jones hydrograph behavior during the transition from the dry season to the 
rainy season indicate (Figure 5, panel A) indicated that there arewere two distinct domains of flow: one in 
which flow is relatively flat (dry season baseflow), and one in which the flowrate is an order of magnitude 
higher, and it is highly responsive to rain events (wet season baseflow and stormflow; Figure 4, panel A). By 
visual inspection, and corroborating local observations (see discussion below), the approximate boundary 

between these domains, denoted as Qspill, is 100 cfs (approximately 7.5 Mm3 per month).. The intermediate 
hydrologic state, “filling from low storage”, iswas visible in some fall-winter hydrographs (Figure 4, panel 
A(e.g., Figure 2), but tendstended to last a relatively short time before the filling rate overwhelmed the draining rate 
and produced a responsive “spilling” condition. 
relatively short time before the filling rate overwhelms the draining rate and produces a responsive “full” condition. 

Monthly volume of stream-aquifer exchange, estimated using SVIHM (Tolley et al., 2019), can be used to 
further investigate baseflow generation and the boundaries between the draining and spilling flow domains. In 
most months, the aquifer discharge and stream leakage components of the exchange tend to be of equivalent 
volume, and net stream-aquifer exchange near 0 (Figure 5, upper panel). Exceptions to this tend to happen only 

at high Scott River flowrates; all net groundwater-to-stream flux volumes of >0.25 Mm3 / 30 days 

(approximately 3.3 cfs) occur at simulated Fort Jones flowrates of >20 Mm3 (approximately 267 cfs; Figure 5, 
lower panel). 

Additionally, net monthly stream-aquifer exchange volume tends to be an order of magnitude lower than the 
flow simulated at the Fort Jones gauge. Clear seasonal trends in the net exchange volume suggest that in the winter 
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and spring, precipitation events can temporarily produce large pulses in groundwater discharge. In the summer 

growing season, when flows are high (e.g. > 10 Mm3/month, during the early summer snowmelt period), the 
result tends to be net aquifer recharge, but at low flowrates, the surface water flow is sustained by groundwater 

discharge. Similarly, very low dry season flows (e.g., < 1 Mm3/month) are largely composed of groundwater 
discharge, but when flowrates are higher the direction of net stream-aquifer exchange is more variable, responding 
to the elevation of the proximate groundwater (Figure 5, lower panel). 

The approximate threshold between these two hydrologic periods, denoted as Qspill, was 120 cfs (294 

thousand m3/day or approximately 9 Mm3 per month). This value was determined by testing a range of potential 
Qspill values to evaluate rainfall-runoff responses preceding and following the threshold (Figure A2). 
 
3.2 Observed response variables 
 
3.2.1 Dry season baseflow quantity and timing, and Scott River eras 
 
Minimum 30-day dry season baseflow volumes, denoted here as Vmin, 30 days, have ranged from 0.3 to 7.5 

Mm3 / 30 days (3.9 to  102 cfs), with one outlier value of 13.9 Mm3 / 30 days (189 cfs) in 1984, when an early 
September storm followed a wet year in 1983 (Figure 6). Three periods of water use and climate forces have been 
proposed for the Scott River (e.g., by Pyschik, 2022): Eras 1, 2, and 3, ranging from 1942-1976, 1977-2000, and 
2001-2021, respectively. These eras are separated by the low minimum flow in the year 1977, which corresponds 
to the widespread installation of groundwater pumps, and by the onset of a two-decade abnormally dry period in 
2000. 

As mentioned previously, three eras have been proposed for the Scott River flow record: Eras 1, 2, and 3, 
ranging from 1942-1976, 1977-2000, and 2001-2021, respectively. Matching other long-term declining flow 
trends in this watershed, the flows in August and September are relatively steady in Era 1, and they become 
more variable with significantly lower lows in Eras 2 and 3 (minima of 2.1, 0.35, and 0.33 Mm 3 / 30 days 

([28.6, 4.8 and 4.4 average cfs], in Eras 1, 2 and 3 respectively(minimum of 2.1 Mm3 / 30 days [28.6 average 

cfs] in 1942-1976 and 0.3 Mm3 / 30 days [4.4 average cfs] in 1977-2021; Figure 6, upper panel A). 
The timing of the midpoint of the 30-day minimum-flow period falls most commonly in September, though it 

has fluctuated over the last eight decades (Figure 6, middle panel B). 
 
3.2.2 Cumulative fall precipitation and watershed response 
 
Typically, flow at the Fort Jones gauge is low (i.e., < 100 cfs) and stable through the end of the dry season 
(Figure 5, panel A). However, iIn some water years prior to the 1980s, the Fort Jones flowrate exceeded Qspill 
on September 1st (Figure 4,(Figure 5, panels A and B), indicating that even under persistent dry season draining 
conditions, under the climate and water use conditions of wet years in the mid-20th century, the Scott River 
remained responsive to new precipitation year-round. As a result, the range of Pspill, the cumulative 
precipitation necessary to reach Qspill, is wide (0 to 178 mm, or 0 to 7 inches) (Figure 6, lower panel C). Mean 
Pspill values were 45, 7057, 79, and 6876 mm (2.3, 3.1, and 3 inches) in Eras 1, 2 and 3, respectively. 
 
3.3    Comparison with California DWR Water Year Type (WYT) category 
 

The DWR water year type categories map fairly wellwell onto the two proposed hydrologic indices Vmin 
and Pspill (Figure 7, panels A and B), which is to be expected, as both DWR WYT and the two proposed 
indices are based in part on cumulative precipitation data. However, there is less of an ability to identify a long-
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term trend in the DWR WYT index time series than in the time series of observed or predicted Vmin or Pspill 
values. Likely causes include, first, the information lost when binning water years into five categories, and, 
secondly, the 30-year ranking window that would prevent a direct comparison of post-2000 WYTs with pre-
1950s WYTs (Figure 7, panel C). 
 
 
3.4 Predictor comparison for Vmin. 30 days and Pspill 
 
The observations of spring flows, snowpack, valley floor precipitation, and groundwater elevation are positively 
correlated both within each category and to each other overall, which is unsurprising: wet years are associated with 
higher values in all of these categories. Groundwater wells with highest predictive power tend to have long 
records (e.g., n of 10 or greater years) and to be close to the Scott River (Figure 8);; these results focus 
onincorporate two wells proximate to the river, with long records (well IDs 415635N1228315W001record lengths 
of 43 and 416295N1228926W001).57 years (Figure A1). 

Both response variables are strongly correlated with four categories of observations: spring flowrates, maximum 
snow water content, cumulative precipitation recorded at weather stations oron or near the valley floor (October-
April), and March-May water levels in some wells. Observations in these categories are positively correlated 
with Vmin. 30 days and negatively correlated with Pspill. The correlation coefficient, R, of these response-
predictor relationships range from 0.5 to 0.73 for Vmin. 30 days and from -0.4538 to -0.7666 for Pspill  (Figure 
78). 

Conversely, cumulative ET0In contrast to these four categories, October-April cumulative ET0 is negatively 
correlated with Vmin. 30 days and positively correlated  

with Pspill (R of -0.68 and 0.6548 for Vmin. 30 days and Pspill, respectively). October-April cumulative ET0 
is also negatively correlated with snow, precipitation, and groundwater level indicators. WhileThis could be 
because ET can remove a significant volume of water from the watershed, this correlation reflects the fact thator 
because years with more rainy or stormy days accumulate less total insolation and atmospheric water demand, 
rather than indicating that high ET is driving low flows. Additionally, the relatively high absolute values 
ofcorrelation (R) for between ET0 and the two response variables may be due to a small sample size, as all 
available ET0 observations or estimates were collected in 2002 or later (i.e., in Era 3; Figure 9Figure A3). 

Some meteorological timing was evaluated in addition to quantities. Both response variables are also 
somewhatmoderately-to-weakly correlated with snow timing (i.e., the Julian day of the maximum measured 
snowpack in a given year; R of 0.33 to 0.52 and -0.2422 to -0.4238 for Vmin. 30 days and Pspill, respectively), 
but no significant correlation is evident between the response variables and precipitation timing (Figure 8). 7). 

AFinally, a subset of observations from the previous water year were included in the correlation matrix to test 
for multi-year influence on the response variables. These previous-year metrics had a slight positive 
correlationvery little predictive power regarding minimum flows (correlated with Vmin. 30 days ( with an R of 
0.29 to 0.33),) and an even slighter negative correlation with virtually none regarding Pspill (correlated with 
Pspill with an R of -0.1101 to -0.24), providing moderate evidence for an “echo” effect of the previous year’s 
hydroclimate conditions on a given fall season.1). 

 
 
3.5 Predicted values of Vmin. 30 days 
 
 
3.5.1 Predictor Vmin predictor assessment and prediction formula 
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In each of six high-RSix hydroclimate data categories, the contained at least one measurement station with an R 
value greater than 0.5 between a data record and observed Vmin values. The single monitoring location in each 
of these category categories with the highest R value with observed Vmin. 30 days values was selected for 
further analysis (Figure(Figure 9).A3). (Although an R value of 0.5 is not considered a strong correlation on its 
own, it was selected as an inclusion threshold to retain any predictors that could provide useful information in 
combination with other predictors.) Out of this set of six hydroclimate data records, the maximum snowpack and 

October-April cumulative precipitation produce the lowest model errors (LOOCV errors of 2.74 and 2.72 Mm3, 
respectively; Figure 9,Figure A3, top two panels; Table A1). In Among combinations of two predictors, a linear 
combination of maximum snowpack and cumulative precipitation improved on the best single- predictor 

model, with an LOOCV error of 2.29 Mm3 (Figure 10, (Figure A4, upper left panel).; Table A2). No three-

predictor models produced lower LOOCV or R2 values than the best two-predictor models (Table A3), so no 
visualizations were made of three-predictor model results. 

Among the two-predictor models evaluated was a combination of maximum snowpack water content and the 
timing of the maximum measurement (Figure 10,(Figure A4, top right panel). This produced a slightly 

worselarger error (2.78 Mm3) than the single- predictor model with maximum snowpack water content alone 

(2.74 Mm3; FigureFigure 9A3, middle left panel), indicating that the timing of maximum snow accumulation is 
either relatively unimportant in generating dry season baseflows – perhaps because, regardless of the peak time, 
the melting snowpack becomes recharge, which moves slowly enough through the subsurface to buffer the 
timing of snowmelt – or that the actual timing of snowpack maximum is not captured in temporally sparse snow 
course measurements. 

Additionally, two models featuring a partial one-year holdover were evaluated, to test the validity of this 
component of the methodology of DWR’s Water Year Type index. In both cases, the addition of the climate data 
from the previous year produced a very small change in model error (Figure 10,(Figure A4, two lower panels), 
indicating that in the Scott Valley context, the previous year’s climate may have a minor influence on dry season 
flows relative to the immediately preceding rainy season. 

Based on these results, the model selected as theto provide the best Vmin. 30 days prediction formulation 
was a linear combination of snowpack maximum from the Swampy John (SWJ) snow station (with data collected 
by CDEC) and cumulative October-April precipitation from the Fort Jones Ranger Station (FJRS) weather station 
(with data collected by NOAA) as follows: 
 
Vmin., 30 days, i = −1.33 + 0.00525 ∗ FJRSOct−Apr, i0053 ∗ F JRSi + 0.00267 ∗ SWJmax, i0027 ∗ SWJi (2) 

 
 

Where: 

-Vmin., 30 days, i is the predicted value of minimum 30-day dry season baseflows in calendar year i (i.e., at the 

end of water year i) (million m3 or Mm3)SWJmax, i 

– SWJi is the maximum snow water content recorded at the Swampy John snow course (CDEC station ID SWJ or 

–  285) in water year i (millimeters) 
– FJRSOct−Apr, iFJRSi is the cumulative precipitation, recorded October-April of water year i, measured at 

the Fort Jones Ranger Station (NOAA station ID USC00043182) (millimeters) 
 
Diagnostics for the linear regression models assessed in the Vmin analysis are included in the Appendix (Figures 
A3 through A5 and Tables A1 through A3). 



15  

 
3.5.2 Predicted and observed Vmin. 30 days over time 
 
The Vmin. 30 days formulation proposed above predicts minimum 30-day dry season baseflows with a model 

error of 2.329 Mm3 per 30 days (31.32 cfs), and a root mean squared error of 1.4 Mm3 (19.4 cfs). This RMSE 
indicates substantial uncertainty in any single year’s prediction: it corresponds to 49% of the mean Vmin  value, 

2.9 Mm3  (40 cfs). 
Matching the historical trends of decreasing snowpack, the observed and predicted Vmin. 30 days values 

show a downward trend over time (Figure 11,(Figure A5, top panel). An outlier in the year 1984 reflects 
extremely high minimum dry season baseflows, relative to the predicted values and the overall distribution. In 
that year, a relatively high-baseflow season was followed by an early September storm. The model residual 
(predicted minus observed flow volumes) for this year1984 is also an outlier, indicating that the model has a 
sufficient sample size to not be overwhelmed by this extreme value produced by an exceedingly rare extremely 
uncommon sequence of events (Figure 11A5, middle panel). 

The predictive Vmin. 30 days model is based on observations from the full record, but three additional models 
were generated based on only the observations from each period: Eras 1, 2, and 3, respectively. Residuals based 
on Era 1 data are similar to those of the full record, with a slight but systematic overprediction in Era 3; Era 2 
residuals tend to overpredict in Era 1 more 

 than the full record; and Era 3 residuals offer better performance in Era 3 than the full record, but produce 
significant systematic underpredictions pre-2000 (Figure 11, middle panel). 

 underpredictions pre-2000 Vmin values (Figure A5, middle panel). 
 
3.6 Predicted values of Pspill 
 
 
3.6.1 Pspill pPredictor assessment and prediction formula 
 
The two single predictors of Pspill (with the largest R or least error or both) were October-April cumulative 
precipitation and the maximum snowpack (Figure A6, top two panels), the same parameters that provided 
the best prediction Vmin. The LOOCV model errors are 850 mm and 718 mm, respectively. As in the Vmin 
model development, ETo was excluded from consideration due to short record length. The The results of the 
predictor assessment for the Pspill prediction formula were similar to those for Vmin. 30 days, in that the two 
best single predictors were October-April cumulative precipitation and maximum snowpack (Figure 12, top 
two panels), with LOOCV model errors of 695 and 496 mm, respectively. (Reference ET was once again 
excluded from consideration based on a short record length.) Again similar to Vmin. 30 days, the best two-
predictor model was the combination of the two best single predictors, with an LOOCV error of 461 mm (Figure 
13, upper left panel).697 mm (Figure A7, upper left panel). No three-predictor models produced lower LOOCV 

or higher R2 values (Table A6), so no visualizations were made of three-predictor model results. 

Several combinations of correlated observation categories produced comparable model results, such as spring 
water levels with maximum snow, maximum snow timing, and cumulative precipitation (Figure 13,(Figure A7, 
upper right and two middle panels). However, not all combinations of co-correlated data produced reasonable 
predictors; a model with a linear combination of maximum snowpack timing and March flow volumes 
performed relatively poorly (LOOCV error of 1,005087 mm; Figure 13,Figure A7, lower right panelspanel). 
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Based on these results, the model selected as the Pspill formulation for a given water year was a linear 
combination of the same observation records as Vmin. 30 days: snowpack maximum from the SWJ snow 
station (with data collected by CDEC) and cumulative October-April precipitation from the Fort Jones Ranger 
Station weather station (station ID USC00043182, with data collected by NOAA). 
 
 
Pspill, i = 123128 − 0.111 ∗ FJRSOct−Apr, i095 ∗ FJRSi − 0.0274 ∗ SWJmax, i028 ∗ SWJi (3) 
 
Where: 
 

– Pspill, i is the predicted value of cumulative rainfall at the end of the dry season, starting Sep. 1, on the first 
day that the Fort Jones gauge records flow greater than or equal to 100120 cfs in calendar year i (i.e., at the 
end of water year i) (millimeters) 

– SWJmax, iSWJi is the maximum snow water content recorded at the Swampy John snow course (CDEC station 
ID SWJ or 

–  285) in water year i (millimeters) 
– FJRSOct−Apr, iFJRSi is the cumulative precipitation, recorded October-April of water year i, measured at 

the Fort Jones Ranger Station (NOAA station ID USC00043182) (millimeters) 
 

Diagnostics for the linear regression models assessed in the Pspill analysis are included in the Appendix 
(Figures A6 through A8 and Tables A4 through A6). 
 
3.6.2 Predicted and observed Pspill over time 

 
The Pspill estimate formulation proposed above predicts Pspill values with a model LOOCV error of 461697 
mm (18.127.4 inches), and a root mean squared error of 20.725.4 mm (01 inch). This RMSE indicates substantial 
uncertainty in any single year’s prediction: it corresponds to 37% of the mean Pspill value, 68.8 inches).mm. 

Matching the historical trends of decreasing snowpack, the observed and predicted Pspill values show an 
upwardincreasing trend over time (Figure 14,(Figure A8, top panel). A high outlier in calendar year 1994 (in 
early water year 1995) was caused by a dry water year 1994 followed by a series of small storms in November 
and December, none of which produced 100120 cfs of flow, followed by a much larger storm on January 8th-9th 
of 1995 in which the river flow jumped to 600 and then 7,500 cfs in two days. 

The predictive Pspill model is based on observations from the full record. As for Vmin, , but three additional 
models were generated based on only the observations from each period: Eras 1, 2, and 3, respectively. 
Residuals based on Era 1 tend to underpredict Eras 2 and 3 more than the full-record model; Era 2 residuals tend 
to overpredict in Eras 1 and 3 more than the full record; and Era 3 residuals have a slightly higher tendency to 
underpredict than the full record, but overall are fairly similar to the full-record residuals (Figure 11A5, lower 
panel). 
The linear coefficients for the two prediction equations and their standard errors are summarized in Table 2. 
 
3.6    Comparison with California DWR Water Year Type (WYT) category 
 

The DWR water year type categories map fairly well onto the two proposed hydrologic indices Vmin. 30 days 
and Pspill (Figure 15, upper two panels), which is to be expected, as both DWR WYT and the two proposed 
indices are based in part on cumulative  
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Table 2. Summary of linear model coefficients for V min and P spill. 
 

 b m_SWJ m_FJRS 

V min prediction -1.3 0.0027 0.0053 
V min std. error 0.4 0.0006 0.0013 

P spill prediction 128.1 -0.0947 -0.0283 

P spill std. error 7.9 0.0228 0.0103 
 

precipitation data. However, there is less of an ability to identify a long-term trend in the DWR WYT index time 
series than in the time series of observed or predicted Vmin. 30 days or Pspill values. Likely causes include the 
information lost when binning water years into five categories, and the 30-year ranking window that would 
prevent a direct comparison of post-2000 WYTs with pre-1950s WYTs (Figure 15, lower panel). 
 
 

4 Discussion 
 

4.1 Scott River watershed behavior and long-term planning 
 

The degree to which these forward-looking seasonal predictions are accurate depends on fundamentalin this 
study are possible only because of predictable hydrologic relationships between climateearly-season inputs and 
flow outputs, with some complications introduced by water evaporating or transpiring through native or 
cultivated vegetation.The condition of a “full” watershed can be operationally defined as a state of being highly 
responsive to new (precipitation. The condition is transient,) and proximity to a full condition relies on the 
balance of slow draining late-season outputs (surface flow and rapid filling flowrates in any given rainy season. 
However, in this Mediterranean climate,ET), as is typical for many Mediterranean climate watersheds. In this 
watershed there are reasonably consistent rainfall-runoff relationships: the general shape of the relationship 
between cumulative precipitation-runoff behavior  and river flow at onset of the rainy season is preserved in dry 
and wet water years (Figure 4,(Figure 5, panel B). 
Although a  This consistency is also reflected in stormflow behavior occurring after precipitation fills the 
watershed, a condition in which the Scott River exceeds a flowrate of Qspill at the Fort Jones stream gauge. 

A Qspill  threshold of 100120 cfs was identified by an analysis of rainfall-runoff responses and a visual 
inspection of aggregate fall  hydrograph behavior (Figure 4),Figures A2 and 5). , and iIt also matches 
information from local stakeholders. Many tributary streams on the valley floor run dry during the summer and 
fall, and some tributary streams respond more quickly to fall precipitation than others. Generally, the timing of all 
tributaries reaching flowing status corresponds with the Fort Jones gauge reaching 100 cfs (Sommarstrom, 2020). 

Simulated estimates of stream-aquifer exchange corroboratescorroborate these precipitation-flow 
relationships. Dry season baseflow (Vmin. 30 days) and the onset of wet season flow (framed in terms of Pspill) 
are both influenced by net groundwater discharge from the aquifer. One interpretation of the high frequency of 
near-0 net monthly stream-aquifer flux values (Figure 5)values (Figure 3, panel B) is that the high degree of 
connectivity between the streams and the aquifer in the Scott River system produces balancing counter-forces in 
response to hydrologic stresses on the system, such as large recharge events. This balancing tendency   can be 
temporarily overwhelmed by large precipitation pulses, but high-flow conditions quickly reduce the volume of 
water  in the surface water system, returning the Scott River to a baseline of nearlyrelatively-balanced stream-to-
aquifer and aquifer-to-stream fluxes. This dynamic  
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also reflects the small size of the available aquifer storage, relative to the amount of precipitation received by the 
watershed in a given water year (see water budget information in Chapter 2 of this dissertation).DWR 2004), 
leading to net groundwater contributions that are one to two orders of magnitude smaller than streamflow during 
"spilling" conditions (Figure 3, panel B) and two or more orders of magnitude difference between dry season low 
flows (almost exclusively from groundwater contributions) and wet season high flows. 

 
These limitations in natural water storage preclude the use of wet year surplus water for dry years and dictate that 
water management focus on within-year projects and management actions that either carry over some of the wet 
season flow to enhance dry season flow (Vmin), that and possibly reduce Pspill via interim aquifer storage, or that 
reduce surface water diversions and groundwater pumping, or a combination of both.  These conditions also reduce 
resiliency to climate change. The resulting water storage limitations mean that multi‐year planning, such as the 
long‐term GSP projects, may be impossible in the Scott River watershed without making assumptions about how 
much it will rain (i.e., the future climate predictions in Siskiyou County 2021). If those assumptions are not fulfilled 
by future climate, year‐by‐year adaptive management may be necessary to achieve management outcomes. 

 
 

4.2 Vmin. 30 days and Pspill prediction utility 
 
Though various methods exist to qualitatively predict, in the spring, the severity of the coming low-flow season 
in the Scott River watershed, a quantitative short-term forecasting index could support more rigorous thresholds for 
adaptive management. To this end we developed two linear equations for predicting minimum dry season 
baseflow metrics about five months in advance, effectively by taking an inventory in each April of relevant 
seasonal hydrologic inputs in April. It The Vmin and Pspill predictions could be used to support decision making 
processess made in the late spring timeframe on regarding the growing season, such as potential regulatory actions 
and some farmer cropping decisions affecting the growing season. There are several methods in current use. 
Observations at existing monitoring locations, such as weather stations and long- term snow course records, have 
been used as ad-hoc hydrologic indices. 

 Historical adaptive management decisions in the Scott River watershed, such as planning to purchase surface 
water rights leases, have relied on individual monitoring observations, such as percent of snowpack relative to 
average conditions, or the Fort Jones flow in the spring (e.g., Scott River Water Trust (SRWT), 2018).SRWT 2018). 
Additionally, DWR has effectively extended the methodology of the SVI and SJI metrics to all of California by 
publishing a categorical water year type (WYT) index for all its major watersheds [to the HUC8 level; California 
Department of Water Resources (DWR) (2021)].(to the HUC8 level) (DWR 2021). This metric quantifies 
meteorologic drought and relies only on precipitation data, so as to be comparable across the state. Matching SVI 
and SJI methodology, it can be calculated at multiple points in each spring,  with a final determination in May, but 
in the case of Scott Valley it has been used to classify WYTs only retroactively through 2018. As previously 
mentioned, it is a relatively complex metric with provisions including a partial one-year holdover (i.e., dry 
conditions in the previous year will make a dry-type categorization more likely the following year), and non-
stationary index thresholds, with a 30-year ranking window. 

 
The proposed quantitative prediction methods proposed in this study map well onto the existing DWR WYT 

index, but (Figure 7), which serves as a validation of this approach. However, the Vmin and Pspill metrics 
preserve more detailed information.detail. The primary advantages of the proposed method over thesethe DWR 
WYT and other previous methods of gauging near-term hydrologic conditions is that it is tailored to local 
hydroclimate data and is interpretable as a numeric prediction of fall streamflow conditions. This could be used 
to inform regulatory actions in an attempt tothat increase fall environmental flows, or  - for surface water diverters - 
to plan for low-flow conditions. However, each seasonal prediction should be accompanied by its measure of  
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uncertainty: the RMSE of this predictive model is 49% of the mean value for Vmin, 2.9 Mm3 (40 cfs). 
Though it also serves as an indication of the severity of a water year, the additional specificimmediate seasonal 

utility of the second predicted metric, Pspill, may be less than for that of minimum dry season baseflows. 
Management decisions such as the last possible date to keep a temporary stream gauge installed in a river, 
without risk of it being washed out, could be informed by a Pspill prediction when combined with weather 
forecasts in the fall. This prediction also carries substantial uncertainty (RMSE of 37% of the mean Pspill value, 
68.8 mm). 
 

4.3 Management implications of best-performing predictors 
 
As described in Results, the linear models that best predicted observed values of Vmin. 30 days and Pspill 
were both based on the same two observation locations (the SWJ snow course and the FJRS weather station; 
Figure 3Figure 1), both with lengthy observation records. One interpretation of these results is that the climate 
inputs produce a predictable fall watershed response, and that human management decisions have a negligible 
influence on fall river flow. However, model simulations suggest that the timing and magnitude of fall flow 
increases can be meaningfully influenced by human water use [(e.g., scenarios in Chapter 2 of this dissertation;the 
Siskiyou County -Siskiyou County Flood Control and Water Conservation District (2021)].GSP) (Siskiyou 
County 2021). 

Multiple possible explanations could reconcile these two pieces of seemingly contradictory evidence. First, 
random variability in human water use could be a contributing factor to the error of the predictive models of 
fall-season hydrologic behavior. Alternatively, human water uses could be so consistent in response to wet or dry 
season conditions that these water uses could be implicitly incorporated into the predictive models. If adaptive 
management actions (potentially including events as diverse as regulatory curtailments or individual cropping 
choices) are carefully recorded in the future, they could be compared to residuals of the climate-based 
predictive models to evaluate whether any signal of a response to human interventions can be observed. 

Potentially, these seasonal predictions could be extended to additional watersheds (albeit ones with 
abundant available hydroclimate data). However, the feasibility of this geographic generalization is beyond the 
scope of this study and should be investigated in future work. 
 

4.4 Influences of climate change on predictive indices 
 
Both predictions (using the full record of hydrologic data) assume some degree of hydroclimate stationarity, in 

that it usesthey use historical snowpack- and precipitation-runoff relationships to predict modern runoff. In one 
sense, a longer-term record can be an asset, in that it provides context for the severity of the dry periods of the past 
two decades. In another sense it is a liability for prediction accuracy: for example, the predicted Vmin. 30 days 
values based on the full record appear to systematically overpredict Vmin. 30 days in the most recent era (2001-
2021; Figure 10,Figure A4, top left panel, and Figure 11,Figure A5, middle panel). This suggests that factors not 
captured in these climate data, such as warmer air temperatures, changing upland vegetation and evapotranspiration 
dynamics, and possibly unknown changes in water use, may be altering the relationship between the spring water 
supply and dry season baseflow rates. However, even with detailed records of water use and management 
actions, disentangling the influences of hydroclimate and human management on streamflow conditions remains a 
complex challenge. 
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5 Conclusions 
 
This study proposed two locally-tailored hydrologic decision-support metrics for the Scott River watershed in 
northern California. Both metrics have been shown to be predictable quantities usinguse snowpack and 
cumulative precipitation data from October-April to predict the quantity of interest: the first metric is the 
minimum 30-day flow volume in a given water year, referred to as Vmin, 30 days, which typically occurs in 
September or October. The second index metric is the cumulative rainfall needed to “fill” the watershed after the 
end of the dry season to a “spilling” condition that responds quickly to precipitation events, referred to as Pspill. 
Both indices can be calculated at the end of April to support near-term (seasonal) adaptive management regarding 
the growing season (summer throughor the fall), similar to the SVI and SJI in California’s Central Valley. and other 
indices used throughout the western United States. However, climate change may reduce the predictive accuracy of 
indices based on long-term data records, and updates based on smaller numbers of more recent water years should 
be considered periodically. 

The management choices facing local managers in this basin are difficult to quantify and summarize, as is the 
case in basins throughout California the Western U.S. and other semi-arid and arid regions globally. Locally-
derived summary metrics, tailored to regional hydrologic dynamics, have provided and will continue to provide 
tools for supporting those choices and communicating them to diverse stakeholders and the general public. 
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6 Appendix 
 

A.1 Groundwater Well Data 
 

Groundwater elevation measurements collected in the spring were evaluated as a potential predictor of river flow behavior 
the following fall. The length of the records and number of spring-season measurements were variable, limiting the 
number of wells that could be used as predictor sites. Two wells were selected for the final predictor evaluation. 
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Figure A1. Boundary of the groundwater basin (corresponding approximately to the extent of the flat valley floor 
in the Scott River watershed) and selected well locations. Colors correspond to the correlation coefficients 
between April groundwater elevations and September flow volume. The wells included in the predictor 
comparison are highlighted with a red outer square. 54 wells had enough spring-season water level 
measurements to be included in this correlation exercise, though some wells are so close together that their 
symbols overplot on this map. 
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A.2 Selection of the Qspill threshold value 
 

The Qspill value of 120 cfs (294 thousand m3/day or approximately 9 Mm3 per month) was determined by 

testing a range of potential Qspill values (10 to 500 cfs [24 to 1223 thousand m3/day]) as a dividing threshold 
between dry- and wet-season flow behavior. Specifically, the threshold, Qspill, was here operationally 
defined as the flow rate that generated the largest , and calculating the difference in rainfall-runoff response 
on either side of the dry season-wet season divide (Figure A2, Panel A). The rainfall-runoff response was 
measured as the ratio dQ/dP, where dQ is the change in runoff and dP is the cumulative precipitation over the same 
moving 30-day period. Hence. the The objective of this analysis was to find Qspill such that maximize the 
difference between these two dQ/dP  values for the 30 days immediately prior to reaching Qspill and the 30 
days immediately following the day when Qspill reaches an initial maximum.: to 
identify the threshold that reflected a maximally different rainfall-runoff response before and after the threshold 
was reached.  
 
For the Scott Valley watershed, tThe difference between the wet and dry season rainfall-runoff responses reaches 

an initial plateauis approximately the same (113 cfs [275   m3/day] 

of increased flow per mm of precipitation) for spill thresholds from 105-135 cfs (256-330 103 m3/day) (Figure 
A2, Panel A). This indicates that in a large number of water years, flows in the range of 105-135 cfs (257 to 

330 thousand m3/day) range are preceded by a dry season flow-response regime and followed by a distinct, 
flashier flow regime regime. Though higher wet-dry flow response differences were calculated at higher 

threshold values (i.e., up to 500 cfs [1,223 thousand m3/day]), these progressively higher wet-season flow 
responses likely reflect the falling limb of individual large storms that over-fill the watershed rather than 
separating filling from spilling behavior. 

Additionally, in visual inspection of 78 years of Fort Jones hydrographs, the 120 cfs (294 103 m3/day ) 
Qspill threshold generated a plausible breakpoint between dry and wet season river behavior in all water 
years (e.g., water year 2018 in Figure A2, Panel B). Furthermore, this value corroborates local observations 
that an approximate value of 100 cfs represents “fully connected” river conditions (see Discussion section). 
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Figure A2. This analysis (Panel A) aimed to identify the flow threshold that approximately defines the 
boundary between filling (i.e. dry season) and spilling (i.e. wet season) flow behavior at the Fort Jones gauge. 
For each threshold value, for each water year, a rainfall-runoff response was calculated before and after the flow 
threshold. The rainfall-runoff response consisted of the 30-day cumulative flow difference (dQ) per 30-day 
cumulative rainfall difference (dP). 120 cfs was selected as the threshold value dividing the dry and wet seasons 
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(e.g., Panel B). 
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A.3 Model selection criteria - Vmin 
 
Diagnostics used to select the predictive models for Vmin are shown below and discussed in Results. Predictors are 
abbreviated in tables and described briefly in Table A1; for more information on potential predictors see Section 
2.3. 
 
Table A1. Linear model diagnostics for one-predictor models of minimum fall flows (V min). 
 

Predictor ID Predictor Descrip. n Log AI LOOC R 

SWJ_max_wc_mm Snow maximum 70 -131 269 2.7 0.53 
USC00043182_oct_apr_mm Oct.-Apr. Precip. 75 -142 290 2.7 0.49 

SWJ_jday_of_max Snow maximum 70 -154 314 5.1 0.11 

springWL_415635N1228315 March-May WLs 50 -100 206 3.6 0.39 

et0_oct_apr ET Ref. 17 -21 48 0.9 0.46 

mar_flow March flow vol. 78 -162 330 4.1 0.25 
 
 

Table A2. Linear model diagnostics for two-predictor models of V min. See table of one-predictor models for 
description of predictor IDs. Reference ET was not included in two- and three-predictor models due to an 
insufficient sample size. 
 

Predictor 1 Predictor 2 n Log AI LOOC R 

SWJ_max_wc_mm USC00043182_oct_apr_mm 67 -119 246 2.3 0.62 
SWJ_max_wc_mm SWJ_jday_of_max 70 -131 270 2.8 0.53 

SWJ_max_wc_mm springWL_415635N1228315 50 -91 191 2.7 0.57 

SWJ_max_wc_mm mar_flow 70 -128 264 2.6 0.57 

USC00043182_oct_apr_mm SWJ_jday_of_max 67 -127 263 2.9 0.52 

USC00043182_oct_apr_mm springWL_415635N1228315 47 -91 190 3.3 0.48 

USC00043182_oct_apr_mm mar_flow 75 -139 286 2.8 0.52 

SWJ_jday_of_max springWL_415635N1228315 50 -97 203 3.3 0.45 

SWJ_jday_of_max mar_flow 70 -141 291 3.8 0.37 

springWL_415635N1228315 mar_flow 50 -94 197 3.1 0.51 



27  

 

 

 

Figure A3. Single-predictor models of minimum 30-day dry season baseflows in the Scott River. 
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Figure A4. Two-predictor models of minimum 30-day dry season baseflows in the Scott River. 
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Figure A5. Observed and predicted minimum 30-day dry season baseflows both trend downward between the 
three eras of the period of record (top panel). The predicted-minus-observed difference (residual) over time 
also reflects this trend, underpredicting minimum flows pre-1977 and overpredicting them post-2000 (middle 
panel). The predictive model is based on observations from the full record, but three additional models were 
generated based on only the observations from Eras 1, 2, and 3. Residuals based on Era 1 data are similar to those 
of the full record; Era 2 residuals tend to overpredict more than the full record; and Era 3 residuals show better 
performance post-2000 than the full record, but significant underprediction pre-2000. 
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Table A3. Linear model diagnostics for three-predictor models of minimum fall flows (V min). See table of one-
predictor models for description of predictor IDs. Reference ET was not included in two- and three-predictor models 
due to an insufficient sample size. 
 
Predictor 1 Predictor 2 Predictor 3 n Log AI LOOC R 
SWJ max wc mm USC00043182 oct apr SWJ jday of max 67 -119 247 2.3 0.63 
SWJ max wc mm USC00043182 oct apr springWL 415635N1228 47 -86 181 2.8 0.59 
SWJ max wc mm USC00043182 oct apr mar flow 67 -117 244 2.3 0.64 
SWJ max wc mm SWJ jday of max springWL 415635N1228 50 -91 192 2.7 0.58 
SWJ max wc mm SWJ jday of max mar flow 70 -127 265 2.7 0.58 
SWJ max wc mm springWL 415635N1228 mar flow 50 -89 187 2.6 0.61 
USC00043182 oct a SWJ jday of max springWL 415635N1228 47 -90 190 3.3 0.51 
USC00043182 oct a SWJ jday of max mar flow 67 -123 256 2.8 0.58 
USC00043182 oct a springWL 415635N1228 mar flow 47 -87 184 3.0 0.56 
SWJ jday of max springWL 415635N1228 mar flow 50 -91 191 2.9 0.58 

 
A.4 Model selection criteria - Pspill 

 
Diagnostics used to select the predictive models for Pspill are shown below and discussed in Results. 
Predictors are abbreviated in tables and described briefly in Table A4; for more information on 
potential predictors see Section 2.3. 
 
Table A4. Linear model diagnostics for one-predictor models of P spill. 
 

Predictor ID Predictor Descrip. n Log AI LOOC R 

SWJ_max_wc_mm Snow maximum 70 -333 673 850 0.38 

USC00043182_oct_apr_mm Oct.-Apr. Precip. 75 -351 708 718 0.43 

SWJ_jday_of_max Snow maximum 70 -347 699 1243 0.09 

springWL_415635N1228315 March-May WLs 50 -245 495 1123 0.24 

et0_oct_apr ET Ref. 17 -81 167 932 0.23 

mar_flow March flow vol. 78 -380 767 1061 0.14 
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Figure A6. Single-predictor models of P spill, the cumulative precipitation after the dry season needed to 
generate 120 cfs of flow in the Scott River. 
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Figure A7. Two-predictor models of P spill, the cumulative precipitation after the dry season needed to generate 
120 cfs of flow in the Scott River. 
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Figure A8. Observed and predicted values of P spill (panel A) indicate a worse model fit for the P spill 
prediction than for minimum 30- day dry season baseflows. Serious overprediction in Era 1 is followed by more 
mixed over- and under-prediction in Eras 2 and 3 (bottom panel). The overall P spill model is based on 
observations from the full record, but three additional models were generated based on only the observations from 
Eras 1, 2, and 3. Residuals based on Era 1 data are generally lower than those from Eras 2 or 3 or from the full 
record. 
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Table A5. Linear model diagnostics for two-predictor models of P spill. See table of one-predictor models for 
description of predictor IDs. Reference ET was not included in two- and three-predictor models due to an insufficient 
sample size. 
 

Predictor 1 Predictor 2 n Log AI LOOC R 

SWJ_max_wc_mm USC00043182_oct_apr_mm 67 -312 631 697 0.51 
SWJ_max_wc_mm SWJ_jday_of_max 70 -333 674 870 0.39 

SWJ_max_wc_mm springWL_415635N1228315 50 -240 487 951 0.38 

SWJ_max_wc_mm mar_flow 70 -333 674 853 0.39 

USC00043182_oct_apr_mm SWJ_jday_of_max 67 -315 637 760 0.47 

USC00043182_oct_apr_mm springWL_415635N1228315 47 -224 457 920 0.43 

USC00043182_oct_apr_mm mar_flow 75 -351 709 728 0.44 

SWJ_jday_of_max springWL_415635N1228315 50 -243 493 1068 0.30 

SWJ_jday_of_max mar_flow 70 -341 690 1079 0.23 

springWL_415635N1228315 mar_flow 50 -242 493 1067 0.31 
 

Table A6. Linear model diagnostics for three-predictor models of P spill. See table of one-predictor models for 
description of predictor IDs. Reference ET was not included in two- and three-predictor models due to an insufficient 
sample size. 
 
Predictor 1 Predictor 2 Predictor 3 n Log AI LOOC R 
SWJ max wc mm USC00043182 oct apr SWJ jday of max 67 -311 633 712 0.52 
SWJ max wc mm USC00043182 oct apr springWL 415635N1228 47 -222 455 874 0.47 
SWJ max wc mm USC00043182 oct apr mar flow 67 -312 633 714 0.51 
SWJ max wc mm SWJ jday of max springWL 415635N1228 50 -239 488 973 0.39 
SWJ max wc mm SWJ jday of max mar flow 70 -332 675 872 0.40 
SWJ max wc mm springWL 415635N1228 mar flow 50 -239 488 955 0.40 
USC00043182 oct a SWJ jday of max springWL 415635N1228 47 -224 457 936 0.44 
USC00043182 oct a SWJ jday of max mar flow 67 -314 638 768 0.48 
USC00043182 oct a springWL 415635N1228 mar flow 47 -223 457 923 0.45 
SWJ jday of max springWL 415635N1228 mar flow 50 -240 490 1008 0.37 

 

A.5 Diagnostic plots for selected models 
 
Standard diagnostic plots for the selected predictive models for Vmin and Pspill. For Vmin, these diagnostic 
plots highlight outlier record 42, which corresponds to the year 1983, when an early September storm 
followed a wet year. For Pspill, three lesser outliers are highlighted, corresponding to water years 1994, 2000 
and 2004, in which the three highest values of Pspill were observed. These outliers represent the basin in 
extreme hydrologic conditions, so are retained in the dataset even though they exert disproportionate leverage 
over the predictive models. 
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Residuals vs Fitted Normal Q−Q 
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Figure A9. Diagnostic plots for the selected predictive models of V min. 
 
 
. Analyses and figures in this manuscript were drafted in RMarkdown. The RMarkdown scripts are available on the 
corresponding author’s GitHub page. All data used in this manuscript are publicly available on local, state or federal 
data portals. 
 
 
 
.  The authors declare no competing interests. 

42 

12 

61 

42

12

61

42 

61 12 

  28  

42 

22 

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

 
R

e
si

d
u

a
ls

 

0
.0

 
1

.5
 

−
2

 
4

 
8

 

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

 
S

ta
n

d
a

rd
iz

e
d

 r
e

si
d

u
a

ls
 

−
2

 
2

 
6

 
−

2
 

2
 

6
 



36  

 
 
 

. This manuscript emerged from dissertation work funded by Siskiyou County SGMA planning grants, with funding 
from California water bonds. 



37  

Residuals vs Fitted Normal Q−Q 
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Figure A10. Diagnostic plots for the selected predictive models of P spill. 
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