
Author's response 

The line number(s) in the response are for the TRACK CHANGES version of the revised manuscript. 

We thank the reviewers for their valuable comments, which helped us improve the manuscript. Most 

of the comments aimed at either clarifying the methodology or adding elements to the discussion. All 

the comments were addressed and the manuscript was reviewed for English. 

Reviewer 1 

In this paper, an approach to optimizing pumping rates on Grande Entrée Island is proposed. This 

approach considers uncertainty in observations, model parameters, and climate inputs. The manuscript 

is well-organized, with a clear objective, and the results and conclusions provide answers to the study's 

objectives. Part of the methodology consists of techniques that were previously proposed and tested 

in other studies. I think the following comments/suggestions should be addressed: 

1. I suggest that the authors review the manuscript for English usage mistakes. While the article is 

generally well-written, some grammar errors are confusing, and I had to reread parts of the article 

to fully understand the ideas. 

Changes were made throughout the manuscript. One main change was modifying “2050 sea-

level and recharge ensembles” to “Sea-level and recharge ensembles for the year 2050”, to 

clarify that “2050” relates to the year and not to a number of ensembles. This change was also 

implemented in the graphical abstract and in Figure 2. 

2. In the first part of the approach, you move from a prior parameter ensemble to a posterior 

parameter ensemble, using observations. This seems to me like Bayesian model calibration, but 

you never mention the word "Bayesian" in the manuscript. Why is that? Perhaps you could explain 

this procedure from a Bayesian perspective. 

History-matching was indeed implemented in a Bayesian framework, using the assumptions of 

multivariate Gaussian prior and posterior distributions, as encoded within the ensemble-based 

data assimilation approach. We defined the prior parameter probability distribution from site 

characterization and expert knowledge and generated an ensemble from the prior distribution 

using standard sampling techniques. We then conditioned the prior ensemble with the 

information contained in listed observations by minimizing a model-to-measurement fit 

objective function (which is inversely proportional to the likelihood function), to yield an 

ensemble of posterior parameter realizations. 

 

Changes made (lines 174-180):  

“History matching was implemented in a Bayesian framework, using the assumptions of 

multivariate Gaussian prior and posterior distributions. Over successive iterations, PESTPP-IES 

adjusted conditioned the prior parameter ensemble against with the information contained in 

20 freshwater head observations and 142 freshwater-seawater interface elevation 

observations (derived from deep open wells, TDEM and ERT geophysical surveys, Fig. 1) by 

minimizing a model-to-measurement fit objective function. Observations were paired with 

random realizations of measurement noise, and the least-squares objective function was 

calculated as the sum of squared weighted differences between simulated and observed data 

(PEST++ Development Team, 2022)”. 

 



3. Following up on the previous point, is it convenient to distinguish between ensembles and pdfs? 

Clearly, an ensemble is always different from a PDF. Also, given that the statistical moments of your 

ensembles sometimes vary by an order of magnitude, what effect do you think this difference will 

have on the conclusions of your study? 

Thank you for bringing up this interesting point. We agree that the statistical moments of the 

parameter ensemble and that of the PDF will generally be different, especially for small 

ensemble sizes. We think it is useful to present both in the manuscript, to show that although 

ensembles provide more reliable estimations of PDFs than FOSM analysis, they remain samples 

of, and therefore approximations of the PDFs. The factor that will most influence the outcome 

of optimization under uncertainty is whether the statistical moments of the constraint 

ensembles converged relative to the ensemble size, since the probabilities of constraint 

violation are directly used in the optimization algorithm (Eq 4, 5). We tested prior parameter 

ensembles with sizes ranging from 50 to 1000 realizations and found that the statistical 

moments of the 50% seawater salinity ensembles (mean, standard deviation, 5th and 95th 

percentiles) converged after 200 realizations. 

 

Changes made (lines 310-312):  

“As the number of realizations increases, the ensembles become more representative of the 

PDFs that they sample, but computational times increase. The most important factor 

influencing the outcome of the OUU procedure is whether the statistical moments of the 

constraint ensembles have converged relative to the ensemble size, since the probabilities of 

constraint violation are directly used in the optimization algorithm (Eq 4, 5). Analyzing the 

convergence of posterior ζ50% ensemble mean and standard deviation values as a function of 

prior ensemble size led to the selection of a prior parameter ensemble containing 200 

realizations.” 

4. How do you perform the sampling? Do you assume that your parameters are mutually 

independent? 

See # 6. 

5. Why were the initial transition zone width and longitudinal dispersivity not considered in the first 

part of the approach? I see that you calibrated 58 parameters, so what is the reason for not 

including the other two parameters? 

In the same study area, the previous deterministic parameter estimation in Coulon et al (2021) 

did not consider the initial transition zone width M and longitudinal dispersivity αL, and these 

parameters were only considered for the FOSM-based optimization under uncertainty (Coulon 

et al 2022). In order to compare the ensemble-based approach to the deterministic approach, 

we decided to conserve this strategy. Furthermore, αL and M are uninformed by the head and 

interface observations used in history matching (but may influence the predicted simulated 

salinity contours). 

 

Changes made (lines 168-170):  

“Several constant model parameters were included in this ensemble and remained fixed during 

history matching, including the sea level, longitudinal dispersivity αL and the initial width of the 

transition zone M (Table 2). The dispersivity αL and transition zone width M were fixed during 

history matching but adjustable during optimization, to be consistent with the previous SLP-

FOSM approach and to enable a comparison between both approaches.” 



6. In the sentence that starts on line 152, you write that you account for spatial correlations between 

pilot points. However, I think this part is not well-explained in the document. Are you using kriging 

somehow? Or does it mean that the samples you draw from a parameter x_i are conditioned on 

the values of a parameter x_j? Please explain the method you use to account for spatial correlation. 

Answers to 4 and 6: Random parameter fields were sampled from the prior parameter PDFs, 

assuming they can be described by multi-Gaussian distributions and using a prior parameter 

covariance matrix where the diagonal elements contain the variances of the parameters, and 

the off-diagonal elements contain the covariances. Note that parameters varying over several 

orders of magnitude were all log-transformed. It was further assumed that all parameters were 

statistically independent (all off-diagonal elements are null), with the exception of pilot point 

parameters which were spatially correlated (non-null off-diagonal elements). An exponential 

variogram with a range equal to 3 times the pilot point spacing (i.e., 500 m) was used to 

describe the spatial correlation between the hydraulic conductivities at pilot point locations.  

We also note that as part of the pilot-point parameterization, ordinary kriging was used to 

interpolate grid cell values from pilot point locations to the model cells. 

 

Changes made: sentence added (lines 125-126): 

“As part of the pilot-point parameterization, ordinary kriging was used to interpolate grid 

cell values from pilot point locations to the model cells.” 

 

And lines 159-166: 

“Nprior random realizations were drawn from the prior probability distribution functions (PDFs) 

of these parameters (Table 1), assuming they could be described by multi-Gaussian 

distributions and using a prior parameter covariance matrix. It was assumed that all 

parameters were statistically independent, except for pilot point parameters which were 

spatially correlated. To describe the spatial correlation between the hydraulic conductivities 

at pilot point locations, an exponential variogram with a range equal to 3 times the pilot 

point spacing (i.e., 500 m) was used. We note that parameters varying over several orders of 

magnitude were all log-transformed. (assumed to be normal or lognormal, Table 1), 

accounting for prior spatial correlations between the pilot points parameters using an 

exponential variogram with a range equal to 3 times the pilot point spacing.” 

7. On line 166, you mention that 500-year simulations were carried out. Why 500? Why not 100 or 

1000? 

We agree that this is not clear in the manuscript. We ran the simulations until heads and 

interface elevations were stable close to pumping wells, and initial testing showed this was 

achieved within 500 years. 

 

Changes made (lines 183-185): 

“History matching was conducted under steady-state conditions, using long transient (500-

year) simulations with constant boundary conditions (i.e., sea level, recharge and pumping 

rates) representative of the average conditions during the 2014–2019 calibration period. The 

simulations were run until heads and interface elevations close to pumping wells were stable, 

which was achieved within 500 years.” 

8. Could you please include the mean absolute error metric in the results of Figures 6a and 6b? In Fig. 

6b, the vertical axis refers to the residual (Y_sim – Y_obs). Isn't this residual large? In the caption, 

it is written that it is a scatter plot, so which is correct? 



The y axis of Figure 6b should also be labeled “Simulated (m)”, thank you for finding this error. 

The range of simulated values is large for each observation; however, this is partly explained 

by the cutoff of PESTPP-IES after iteration 2. Over successive IES iterations, the goodness of fit 

increases and the ensemble diversity (and therefore the posterior parameter variance) 

decreases. Using a small number of iterations is recommended when using IES, but we 

acknowledge that the choice of the cutoff iteration is subjective. We preferred to maintain a 

large ensemble diversity and possibly overestimate posterior parameter variance, rather than 

taking the risk of underestimating posterior parameter variance and/or risking biases in the 

parameter estimates arising from model error phenomena. We thought being conservative 

was appropriate since there are no alternative drinking water sources on the island and the 

consequences of well salinization can be long-lasting. 

 

Changes made in Figure 6: MAE metrics are added and the vertical axis of Figure 6b is renamed 

“Simulated (m)” 

 

Sentence added to the caption (lines 329-330): “The average MAE value (mean average error) 

for each observation group is shown.” 

 

And discussion added (lines 470-477): 

“Ensemble-based history matching yielded a relatively large range of simulated values for 

each observation (Fig. 6); however, this could be explained by the cutoff of PESTPP-IES after 

the second iteration. Over successive PESTPP-IES iterations, the goodness of fit increases and 

the ensemble diversity (and therefore the posterior parameter variance) decreases (Section 

3.2). While it is recommended to use a small number of iterations with the IES algorithm 

(PEST++ Development Team 2022), the choice of the cutoff iteration can be subjective. For 

this study, it was decided to maintain a large ensemble diversity (and possibly overestimate 

posterior parameter variance), rather than taking the risk of underestimating posterior 

parameter variance and risking biases in the parameter estimates arising from model error. 

This conservative approach was appropriate since there are no alternative drinking water 

sources on the island.” 

9. What does the top horizontal axis, "Probability density," mean in Figure 10? 

This wasn’t clear, the top horizontal axis is the probability density function associated with the 

2050 water demand. 

 

Changes made in Figure 10: the top horizontal axis of Figure 10 is renamed “Probability density 

function of the projected water demand” 

 

And in its caption (lines 390-391): “The current water demand and the probability density 

function associated with the PDF of the projected (year 2050) water demand are 

superimposed.” 

 

10. In your study, you consider three sources of uncertainty (observations, model parameters, and 

climate forcing). However, you always rely on the same numerical model, which is not very accurate 

(according to Figure 6). Is the model's conceptualization another source of uncertainty? How would 

you consider this source of uncertainty? I don't expect you to include this analysis in the current 



study, which is already very comprehensive, but I wanted to highlight this source of uncertainty for 

your future studies. 

We agree that the model conceptualization is an additional source of uncertainty. This is 

discussed in more detail in Coulon et al (2022) but should be mentioned in this paper as well. 

Using a sharp interface approach was a simplification of mixing processes which could result in 

increased conceptual uncertainty. However, the posterior parameter values display physically 

plausible values that are coherent with prior parameter distribution and the information in the 

observations was assimilated in appropriate ways; these are the two indicators available to 

detect the potential for conceptual model uncertainty issues. The Doherty and Christensen 

(2011) (https://doi.org/10.1029/2011WR010763) model pairing methodology could be used 

to more explicitly investigate the potential for conceptual model issues surrounding the use of 

the sharp-interface approximation through pairing with an advective-dispersive-based 

variable-density model. In the context of lateral seawater intrusion, methodologies have also 

been developed to optimize pumping using a coupled sharp-interface/advective-dispersive 

approach (e.g. Christelis and Mantoglou 2018 - https://doi.org/10.1007/s11269-018-2116-0; 

Dey and Prakash 2022, https://doi.org/10.1007/s11269-022-03145-w) and this could be 

explored in the context of freshwater lenses. 

 

Changes made: sentenced removed (lines 399-400): 

“The limitations associated with using a sharp-interface model to simulate saltwater upconing 

are discussed in detail in Coulon et al. (2022).” 

 

And discussion added (lines 426-434): 

“While parameter, observation and climate uncertainty were considered in this study, model 

conceptual uncertainty was neglected; and using a sharp-interface approach to simulate 

saltwater upconing could result in increased conceptual uncertainty. However, the posterior 

parameter values were physically plausible and consistent with the prior parameter 

distributions, and the information in the observations was appropriately assimilated; these 

are the two indicators available to detect the potential for conceptual model uncertainty 

issues. The Doherty and Christensen (2011) model pairing methodology could be used to 

more explicitly investigate the potential for conceptual model issues through pairing of a 

sharp-interface model with an advective-dispersive-based variable-density model. In the 

context of lateral seawater intrusion, methodologies have also been developed to optimize 

pumping using a coupled sharp-interface/advective-dispersive approach (e.g. Christelis and 

Mantoglou 2018; Dey and Prakash 2022), which could be explored in the context of 

freshwater lenses. This topic is discussed in more detail in Coulon et al. (2022).” 

In addition, please consider the following minor comments. 

1. Define the acronyms TDEM and ERT in figure 1. 

Changes made (line 109): 

“(including electrical resistivity tomography and time-domain electromagnetic surveys)” 

2. Caption of figure 1 says “The BC implemented in MODFLOW are shown” but they are not 

shown in the figure, they are described in the caption. Please rephrase. 

Changes made (line 110-112): 



“The boundary conditions implemented in MODFLOW are shown: a uniform recharge rate on 

land cells (RCH package), general head boundary conditions for sea cells (GHB package), 

groundwater pumping at municipal wells (MNW2 package).” 

3. In line 334 you use the words “former” and “latter”. However, given that in the same section 

you speak about the results of your current study and the results of your previous study, the 

usage of those words can be confusing. Could you consider using other words? 

Changes made (lines 367-369): 

“For example, a 230 m3/day pumping rate corresponded to a 25% probability of salinization 

using the former MO-ensemble approach, versus 2% using the latter SLP-FOSM approach.” 

 

Reviewer 2 

Overview: 

Authors of the manuscript “An ensemble-based approach for pumping optimization in an island aquifer 

considering parameter, observation and climate uncertainty” applied a multi-objective optimisation 

under uncertainty approach available through PEST-MOU tool kit to find Pareto-optimal solutions for 

management of sea water intrusion in a coastal island considering maximisation of pumping and 

reliability of meeting the salinity constraint as conflicting objectives. The manuscript is well-written and 

well-organised. It is a contribution of interest to readers of HESS and advances the science in 

methodologies for optimising groundwater management. I have only a few minor comments and hence 

recommend accepting the manuscript after minor revisions. 

We thank Dr Sreekanth Janardhanan for his comments, which we have addressed in the final draft. 

Here is our response to the comments: 

Individual comments: 

• Section 3.3: It is not clear if the climate change predictive runs were also steady-state? Could you 

please explain that in this section. 

 

Climate change predictive simulations were conducted under steady-state conditions, with 

boundary conditions representative of year 2050 sea-level and recharge conditions. All 

predictive simulations were conducted under steady-state conditions because the storage 

parameters were unconstrained by the history matching, and therefore remained highly 

uncertain. This was added to the methods. As mentioned in the discussion, since climate 

change effects are a transient process and this steady state may never be reached, this 

approach can be viewed as being conservative. 

 

Changes made (lines 201-204):  

“The climate change predictive simulations were then conducted under steady-state 

conditions, with boundary conditions representative of 2050 sea-level and recharge 

conditions. All predictive simulations were conducted under steady-state conditions because 

the storage parameters were unconstrained by the history matching, and therefore 

remained highly uncertain.” 

 

• Line 210: It is not very clear how values are resampled. Could you please explain. 



• Line 215: Ah OK. So the  are uncorrelated with current recharge – does this mean  were randomly 

added to realisations in current recharge ensemble ? 

The recharge perturbations ΔR were indeed uncorrelated with the current recharge 

values Rcurrent, MODFLOW. The ΔR and Rcurrent, MODFLOW realizations were randomly paired together to 

generate the R2050, MODFLOW ensemble. This is reformulated in the manuscript. 

Changes made (lines 234-236):  

“The ΔR and Rcurrent, MODFLOW realizations were then randomly paired together to generate 

the R2050, MODFLOW ensemble The R2050 MODFLOW ensemble, of size Npost, was then obtained by 

performing an element-wise sum between the ΔR and Rcurrent, MODFLOW ensembles” 

 

• Line 245: 500 year initial simulations with zero pumping” –  Is this for reaching a new 

equilibrium corresponding to the new recharge and other factors corresponding to future 

climate? I assume this steady state can be considerably different from the historical steady 

state with recharge and sea level changes? 

 

Initial, steady-state simulations with no pumping were run until heads and interface elevations 

were stable close to pumping wells. Initial testing showed this was achieved within 500 years. 

As shown in Figure 9, there is variability both in the steady states obtained with the posterior 

ensemble and the 2050 predictive ensemble. For the interface elevation under pumping wells, 

the mean steady-state value is similar in both cases, but there is twice as much variability in 

the initial steady states when climate change is accounted for. 

 

Changes made (lines 273-275):  

“Long transient (500-year) initial simulations with zero no pumping were run through both 

parameter ensembles, to obtain equilibrium initial conditions for to allow the freshwater lens 

to reach a steady state under the climate forcings and hydraulic properties prescribed in each 

realization.” 

 

And sentence added (lines 342-343): 

“Figure 9 shows the variability in the pumping optimization initial conditions obtained with 

both ensembles.” 

 

• Line 250: What is the significance of 200-year simulation period? 

 

The pumping optimization under uncertainty was conducted under steady-state conditions, 

using long transient simulations to allow the freshwater lens to reach a new steady state under 

the pumping rates tested. This new steady state was achieved within 200 years. 

 

Changes made (lines 275-277):  

“The pumping optimization under uncertainty was then conducted under steady-state 

conditions, using long transient (200-year) simulations to allow the freshwater lens to reach 

a new steady state under the tested pumping rates tested. 200-year simulations, and the The 

occurrence of well salinization was examined at the end of the 200-year simulation period.” 

 

• Line 265: “Prediction ensemble was reevaluated every 10 generations and reused in 

intermediate generations” – how was objective function calculated in the intermediate 

generations? 



 

In the version 5.1.24 of PESTPP-MOU that was used, each individual in intermediate 

generations was mapped to the nearest individual, in decision-variable space, at which 

constraint probability distribution functions (PDFs) were previously evaluated, in a minimum-

Euclidean-distance sense. The constraint PDFs of the latter were translated to the former, by 

differencing the simulated constraint values between the two individuals, assuming these 

values represented the mean of the PDFs. This approach assumes that individuals close to each 

other in decision variable space have similar constraint PDFs (PEST++ Development Team, 

2022; White et al., 2022). 

 

Changes made (sentence added lines 294-297): 

“In intermediate generations, each individual was mapped to the nearest individual at which 

constraint PDFs had been previously evaluated, in a minimum-Euclidean-distance sense, and 

the constraint PDFs of the latter were translated to the former. This approach assumes that 

individuals close to each other in decision variable space have similar constraint PDFs (PEST++ 

Development Team, 2022; White et al., 2022).” 

 

• Figure 7: Figure 7 shows considerable correlation between recharge and K values. Perhaps 

discuss the implication of this in predictive simulations with a different recharge regime 

(although noting that the mean doesn’t change much) that does not consider correlations with 

historical recharge. Is it likely to bias predictions? 

 

Parameter correlations can be identified during history matching. Recharge (R) and hydraulic 

conductivity (K) parameters are known to be correlated (Anderson et al., 2015), which can 

result in realizations where high current R is paired with high K values or low current R is paired 

with low K values. The current R values stayed paired with their corresponding K field and 

recharge perturbations due to climate change (ΔR) were randomly added to them. However, 

no correlation was assumed between current and future recharge. With this assumption, high 

future R (i.e., high ΔR) could be paired with low K values, and low future R (i.e., low ΔR) with 

high K values; therefore, the tails of the constraint PDFs can be explored more thoroughly. 

While this assumption might overestimate the constraint uncertainty, it can be viewed as being 

conservative. Furthermore, bias in future recharge predictions could be caused by having 

excessive confidence in the R/K correlation learned during history matching. 

 

Changes made (lines 461-468): 

“Recharge (R) and hydraulic conductivity (K) parameters are known to be correlated 

(Anderson et al., 2015), therefore history matching could have resulted in realizations where 

high current R is paired with high K values, or low current R is paired with low K values. The 

current R values stayed paired with their corresponding K field and recharge perturbations 

ΔR were randomly added to them. However, no correlation was assumed between current 

and future recharge. With this assumption, high future R could be paired with low K values, 

and low future R with high K values; therefore, the tails of the constraint PDFs can be 

explored more thoroughly. While this assumption might overestimate the constraint 

uncertainty, it can be viewed as being conservative. Furthermore, bias in future recharge 

predictions could be caused by having excessive confidence in the R/K correlation learned 

during history matching.” 

 



• Figures 10 and 11: Looks like the final convergence of the Pareto-optimal front hasn’t been 

achieved. There are several solutions that are dominated by other solutions for both objective 

functions. I assume you had to optimise the number of iterations (150) and population (30)  of 

NSGA-II to make it computationally feasible and it may have affected the pareto-optimality? 

From a practical point of view, these still give valuable solutions. 

• Line 375: Ah, I see the answer to the above question explained here. 

 

Changes made (lines 481-486): 

“However, a compromise had to be made between the number of realizations in the 

parameter ensemble, the number of individuals in the decision variable population, the 

frequency at which the prediction ensemble was re-evaluated during the optimization 

(Section 3.4) and the number of generations of the optimization algorithm. At the end of the 

optimization, several solutions were dominated by other solutions for both objective 

functions (Fig. 10 and 11), showing that final convergence to the Pareto front could be further 

improved. Although complete convergence to the Pareto front was limited by computational 

constraints, from a practical perspective, the Pareto front that was obtained provides 

valuable solutions and insights.” 

 

• line 420 – 425: Yes, stack ordering approaches may relieve the computational burden. 

Especially in this case, if you pick realisations from the tail end of recharges for worst climate 

scenarios it would do the job? 

 

We agree that worst-case scenarios could be explored by running optimizations on the 

realizations with the lowest historical recharge values associated with the most extreme 

recharge decrease scenarios (i.e., the most important -ΔR perturbations). However, 

realizations remain samples of PDFs, and the ΔR realizations randomly sampled from the 

ΔR probability distribution function may not be representative of its extreme percentiles. 

Therefore, these worst-case realizations could still underestimate the worst-case scenario. 

 

Changes made (lines 497-498): 

“Worst-case scenarios could be explored by running optimizations on the realizations with 

the lowest current recharge estimates associated with the most extreme recharge decrease 

scenarios (i.e., the most important -ΔR perturbations).” 

Other changes 

• Affiliation: the affiliation (1) was also added to co-author Alexandre Pryet’s name. 

 

• Acknowledgments added (lines 539-540): 

“The authors would like to thank John Molson for proofreading the manuscript and for his 

insightful comments, and Sreekanth Janardhanan and an anonymous reviewer for their 

valuable comments.” 

 

• References: the reference list was updated with the additional references 


