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Abstract. The calibration of macro-scale hydrological models is often challenged by the lack of adequate observations of river

discharge and infrastructure operations. This modelling backdrop creates a number of potential pitfalls for model calibration,

potentially affecting the reliability of hydrological models. Here, we introduce a novel numerical framework conceived to

explore and overcome these pitfalls. Our framework consists of VIC-Res (a macro-scale model setup for the Upper Mekong

River Basin) and an hydraulic model used to infer discharge time series from satellite data. Using these two models and5

Global Sensitivity Analysis, we show the existence of a strong relationship between the parameterization of the hydraulic

model and the performance of VIC-Res—a co-dependence that emerges for a variety of performance metrics we considered.

Using the results provided by the sensitivity analysis, we propose an approach for breaking this co-dependence and informing

the hydrological model calibration, which we finally carry out with the aid of a multi-objective optimization algorithm. The

approach used in this study could integrate multiple remotely sensed observations and is readily transferable to other poorly10

gauged and heavily regulated river basins.

Copyright statement. This work is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction

The past few years have witnessed an increase in the implementation of hydrological models to extensive domains, from

large basins to continental or even global scale (Döll et al., 2008; Haddeland et al., 2014; Nazemi and Wheater, 2015a, b;15

Bierkens, 2015) for a variety of downstream applications, such as quantifying the potential impact of climate change on water

resources (van Vliet et al., 2016), characterizing the relationship between climate, water, and energy (Chowdhury et al., 2021),

or predicting extreme events over multiple time scales (Vegad and Mishra, 2022). Such macro-scale hydrological models are

rarely calibrated and, when they are, calibration is typically limited to a portion of the modelled domain (Bierkens, 2015). A

fundamental point to consider is that the successful implementation of macro-scale models is often challenged by two problems.20

First, we often lack long and reliable time series of in situ observations of key hydrological processes, e.g., evapotranspiration,

runoff, discharge (Hrachowitz et al., 2013). This is due to the high computational cost of calibration at large scales but also,
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and more importantly, to the lack of long and reliable time series of in situ river discharge observations in many regions of

the world (Hrachowitz et al., 2013). In poorly gauged basins, model calibration is sometimes carried out by leveraging the few

discharge data that are available (e.g., Shin et al. (2020); Galelli et al. (2022); Chuphal and Mishra (2023)). Naturally, doing so25

potentially leads to inadequate model calibration for the ungauged regions of the domain. An additional problem is the lack of

information and data on the operations of hydraulic infrastructures; a matter that we have only recently started to address (Vu

et al., 2022; Steyaert et al., 2022). This is important because hydraulic infrastructures, such as dams, are ubiquitous and heavily

affect hydrological processes (Haddeland et al., 2006; Grill et al., 2019) and therefore, if not properly accounted for, the results

of model calibration. For instance, Dang et al. (2020a) showed that a macro-scale hydrological model ignoring dams presence30

can be calibrated to attain the same level of fit-to-data as a model that explicitly represent dams; however, such performance

is attained through “optimally calibrated” soil parameters that are unrealistic, and are selected to compensate for the structural

error of neglecting dams, ultimately biasing the representation of both natural and human-impacted hydrological processes.

Importantly, both problems highlighted here are exacerbated in transboundary river basins, where access to data is particularly

difficult. This modelling backdrop creates a wealth of pitfalls for model calibration, with potential unintended consequences35

on the downstream applications of macro-scale hydrological models.

Looking at river discharge—the variable with respect to which macro-scale hydrological models are often calibrated—one

easily notes that model calibration in poorly gauged basins mostly relies on making the best of the available gauged data. In

other words, the model calibration process is carried out by leveraging discharge data where they are available (e.g., Shin et al.

(2020); Galelli et al. (2022); Chuphal and Mishra (2023)). Naturally, doing so potentially leads to inadequate model calibration40

for the ungauged regions of a large basin. Some studies have explicitly dealt with the lack of in-situ discharge time series by

inferring discharge from satellite data. As shown in Figure 1, these studies can be categorized into two groups. One builds on

the idea of first using in-situ data to develop a hydraulic model (accounting for the relationship between discharge and water

level and/or river width) for estimating river discharge, and then using these estimates to carry out the model calibration (panel

(a)) (e.g., Khan et al. (2012); Tarpanelli et al. (2022)). Yet, this approach may still partially rely on in-situ data; hence, the45

solution for calibrating hydrological models in poorly gauged basins is often limited to the second approach (panel (b)), in

which both models are calibrated concurrently (e.g., Liu et al. (2015); Sun et al. (2015); Huang et al. (2020)). One approach

(panel (a)) first develops a hydraulic model for estimating river discharge from remote-sensed water level and/or river width,

and then uses these estimates to carry out the calibration of the hydrological model (Khan et al., 2012; Tarpanelli et al., 2022).

This approach still partially relies on in-situ data. For example, Xiong et al. (2021) converted remote-sensed water level to river50

discharge via a rating curve—the relationship between river discharge and water level—for calibrating their GR6J hydrological

model. The rating curve was developed based on Manning’s equation, using surveyed river cross-sections and a few pairs of

in-situ discharge and remote-send water level data for validation. When these data are not available, another possible approach

(panel (b)) is to calibrate both models concurrently (e.g., Liu et al. (2015); Sun et al. (2018); Huang et al. (2020)). Here, a

potential pitfall stands in the fact that estimation errors in the hydraulic model (discharge estimation) may be compensated55

by introducing parameter biases in the hydrological model, and vice versa (Lima et al., 2019). In other words, simultaneous

calibration of the hydraulic and hydrological models may yield biased parameters, ultimately compromising the realism and
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reliability of the calibrated models. Considering the increasing number of remote-sensed discharge observations that could

support such analyses (Birkinshaw et al., 2010; Papa et al., 2012; Biancamaria et al., 2016), it is paramount to explore the

pitfalls that could affect the model calibration process.60

Figure 1. Two approaches to the calibration of macro-scale hydrological models with discharge data retrieved from satellite data. (a) With

the sequential calibration, the discharge data are first estimated using a hydraulic model linking water level (H) and/or river width (W ) to

discharge (Q), and then used to calibrate the hydrological model. (b) With the second approach, both models are calibrated simultaneously.

Considering the increasing number of remotely sensed hydrological data that have become available over the last decades

(Birkinshaw et al., 2010; Papa et al., 2012; Biancamaria et al., 2016), and that in many regions of the world these satellite

products are the only means to estimate river discharges, the question arises on how to best use such remotely sensed data

to support model calibration. Hence, the overarching question that this paper addresses is: to what extent is it possible and

helpful to calibrate a macro-scale hydrological model in ungauged catchments using remotely sensed data? How do we deal65

with potential interactions between parameters used in data pre-processing (i.e., from remotely sensed data to reconstructed

discharge data) and parameters of the hydrological models when doing model calibration? Can we reduce the uncertainty

from such interactions in model calibration results? In this study, we thus develop and demonstrate a workflow to investigate
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three chief questions: (1) Does the joint calibration of hydraulic and hydrological models create any reliability issues? (2) In

particular, to what extent is the hydrological model accuracy influenced by the parameterization of the hydraulic model? (3)70

How can we make the calibration exercise less prone to potential pitfalls? We answer these questions for an implementation

of the VIC-Res hydrological model for the Upper Mekong River Basin (Dang et al., 2020a), an area characterized by the

unavailability of discharge observations as well as major hydrological alterations caused by dam development (Hecht et al.,

2019). To generate discharge time series for the calibration of VIC-Res, we use satellite altimetry data and a hydraulic model

(based on the Manning’s equation) that is also identified from satellite data. In our framework, we first use Global Sensitivity75

Analysis to demonstrate the existence of a pronounced co-dependence between the parameterization of the hydraulic model

and the modelling accuracy of VIC-Res. To break this co-dependence, we leverage the results of the sensitivity analysis to

constrain the parameterization of the hydraulic model and thus safely inform the calibration of VIC-Res, which is ultimately

carried out using a multi-objective optimization approach.

2 Study site, model domain, and gauging stations80

In this section, we provide information on our study site, the spatial domain of the hydrological model, and the availability of

observed and remote-sensed discharge data.

2.1 The Lancang-Mekong River Basin

Spanning an area of about 795,000 km2, the Mekong River Basin is the largest transboundary basin in Southeast Asia. The

river is 4,350 km long and stretches in a northwest-southeast direction from the Tibetan Plateau (approximately 5,200 m a.s.l.)85

to the East Vietnam Sea (Figure 2a). The basin can be roughly divided into two parts, namely the Upper Mekong (also known

as the Lancang, in China) and the Lower Mekong, which is shared by five countries (Myanmar, Thailand, Laos, Cambodia,

and Vietnam).

The Lancang accounts for 45% of the river length, 21% of the catchment area, and 16% of the annual discharge of the

entire Mekong (MRC, 2009). The complex topography of the Lancang Basin (high mountains and low valleys) contributes90

to the uneven spatial distribution of precipitation, which ranges from 600 mm/year in the Tibetan Plateau to 1700 mm/year

in the mountains of Yunnan. Meanwhile, the monsoonal climate causes an uneven temporal distribution of precipitation, with

70-80% of precipitation arriving in the wet season (June to November) (Yun et al., 2020).

Because of the advantageous topography and abundant water availability, the Lancang River Basin has become a hotspot

for hydropower development. Indeed, the Lancang dam system—developed during the past three decades—consists of more95

than 35 hydropower dams (WLE Mekong, n.d.), including 10 large dams on the main stem with a volume larger than 100

MCM (Million Cubic Meters) each (see their location in Figure 2b 2a and specifications in Table S1). The system has a total

capacity of more than 42,000 MCM and can control up to 55% of the annual flow to Northern Thailand and Laos. The Lancang

River Basin is an excellent example of a transboundary and heavily regulated river with limited information on dam operations:

initiatives on the sharing of year-round water data are still in their infancy (Johnson, 2020), so the only data available to the100
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Figure 2. Panel (a) shows the Mekong River Basin(a) and its upper portion—the Lancang River Basin.(b). In bothpanels,we We illustrate,

in this panel, the location of the gauging station (Chiang Saen), virtual gauging station, and ten large hydropower dams on the main stem of

the Lancang with a volume larger than 100 million m3 each, all included in the hydrological model. All dams are operational as of December

2020. The light green area is the spatial domain of the hydrological model. Panel (b) illustrates the locations around Chiang Saen, in which

altimetry water level data are available. The data are collected by multiple satellites—namely EnviSat (light blue triangle), Jason-2/3 (dark

blue triangle), and Sentinel-3A (white triangle)—and are processed by DAHITI. The number above each triangle corresponds to the station

ID in DAHITI. The lower part of panel (b) illustrates the commission year of each dam and the temporal coverage of altimetry data in each

location, constrained by the operational period of the satellites. The location 1422 is chosen as our virtual station because of the temporal

coverage and resolution of altimetry water level data at this location as well as its suitability to apply the methods for constructing river

cross-section and rating curve (see Section 3.2).

public are those retrieved from satellite data (e.g., Bonnema and Hossain (2017); Biswas et al. (2021); Vu et al. (2022)). Time

series of river discharge measured within China's political boundaries are not available.
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2.2 Model domain and study period

The spatial domain of our hydrological model is the light green area illustrated in Figure 2. This domain corresponds to the

Lancang basin (namely the area falling within China's political boundaries), plus an additional area spanning across Myanmar,105

Thailand, and Laos. Note that the domain of hydrological models focusing on the Lancang is typically `closed' at Chiang Saen

(e.g., Dang et al. (2020a)), where the �rst gauging station with publicly-available data is located. Here, we slightly extend the

domain so as to account for the location of a virtual gauging station (see Section 2.3). The simulation period goes from 2009 to

2018 and thus comprises the main development of the Lancang reservoir system, including the �lling period of the two largest

reservoirs, Xiaowan and Nuozhadu, which account for� 85% of the total system's storage (Vu et al., 2022). Another reason110

for the choice of this study period is to make it compatible with the temporal coverage of altimetry data at our virtual station,

which we describe next.

2.3 Gauging stations

As mentioned above, the �rst gauging station with publicly-available data is Chiang Saen, located in Northern Thailand, about

350 km from Jinghong dam (Figure3 2). Daily water level and discharge at the station have been collected since 1990 by115

the Mekong River Commission (MCR) and are available on its online data portal (https://portal.mrcmekong.org/). Since we

developed a methodology for calibrating models in ungauged river basins, these data are used only for model validation.

To infer the discharge time series needed for model calibration, we sought for locations around Chiang Saen where altimetry

water level data are available (Figure3 2b). From these data, one can try to infer the river discharge. These data are collected

by multiple satellites (i.e., EnviSat, Jason-2/3, and Sentinel-3A) and are available in the Database for Hydrological Time Series120

of Inland Waters (DAHITI, https://dahiti.dg�.tum.de/). In this study, we choose the location 1422 (Jason-2/3)—about 280 km

downstream of Chiang Saen—as ourvirtual gauging station (virtual station hereafter). This is because of two main reasons.

First, the temporal coverage of data at the chosen location coversour studyperiod the commission year of the majority of the

dams, including the two largest reservoirs, Xiaowan and Nuozhadu (see the lower part of Figure3 2b). Second, the temporal

resolution of Jason-2/3 (10 days) is �ner than the one of EnviSat (35 days) and Sentinel-3A (27 days). It is also worth noting125

that another database, HydroWeb (https://hydroweb.theia-land.fr/), provides (Sentinel-3A/B) altimetry water level data for a

number of locations in our study site. However, these data have the same temporal resolution and coverage as the Sentinel-

3A data provided by DAHITI, which makes them unsuitable for our study. Moreover, the methods used to construct river

cross-section and rating curve at the virtual station work best for location 1422 (see Section 3.2).

3 Methodology130

The numerical framework developed for our study consists of two main modelling components, illustrated in Figure4 3.

We model the hydrological processes within the Lancang Basin with VIC-Res, whose routing module includes an explicit

representation of reservoir operations (Section 3.1). The discharge data at the virtual station used to calibrate VIC-Res are
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generated by a simple hydraulic model, namely a rating curve based on the Manning's equation (Section 3.2). In our approach,

we �rst use Global Sensitivity Analysis to explore the relationship between the parameterization of the rating curve and the135

performance (�t-to-data) that can be achieved through calibration of VIC-Res (Section 3.3). Then, we use the knowledge

gained through this sensitivity analysis to select the parameterisation of the rating curve and proceed with the calibration and

validation of VIC-Res.

3.1 Modelling hydrological processes and reservoir operations

3.1.1 Hydrological model140

The hydrological model used in this study is VIC-Res (Dang et al., 2020a), a novel variant of VIC, which is a macro-scale,

semi-distributed hydrological model developed by the University of Washington (Liang et al., 2014). Both VIC and VIC-Res

consist of two modules, namely a rainfall-runoff and a routing module (Figure4 3). In the rainfall-runoff module, the study

region is divided into computational cells with a customizable cell size (0.0625 degrees in this study). For each cell, the key

hydrological processes (evapotranspiration, in�ltration, base�ow, and runoff) are calculated as a function of various inputs,145

including climate forcing (e.g., precipitation, temperature, wind speed), land cover, Leaf Area Index, and albedo. In the routing

module, simulated base�ow and runoff produced by the �rst module are routed throughout the river network, with the routing

process modelled by the linearized Saint-Venant equation (Lohmann et al., 1996, 1998).

Improving on the VIC model, VIC-Res includes an explicit representation of water reservoir operations. For each reservoir

in the study region, the model solves the storage mass balance and calculates the reservoir release. Speci�cally, we leverage150

information on modeled in�ow and estimated storage (see Section 3.1.2). These two variables are combined with information

on evaporation (simulated using the estimated water surface area and evaporation rates calculated with the Penman equation) to

invert the mass balance equation, yielding the reservoir release. Additional details on VIC-Res, including alternative approaches

to reservoir operations, are described in Dang et al. (2020b).

In our VIC-Res model, we calibrate 7 soil parameters and 2 routing parameters (see Table 1). The soil parameters control-155

ling the rainfall-runoff process areb, Dmax , DS , WS , c, d1, andd2. To be more speci�c, the parameterb is the VIC curve

parameter, which determines the in�ltration capacity and surface runoff amount generated by each cell (Ren-Jun, 1992; To-

dini, 1996). In particular, higher values ofb produce less in�ltration and more surface runoff.Dmax , DS , WS , andc are the

base�ow parameters, which in�uence the shape of the base�ow curve (Franchini and Pacciani, 1991). Speci�cally,Dmax is

the maximum velocity of base�ow,DS is the fraction ofDmax at which non-linear base�ow begins, whileWS is the fraction160

of maximum soil moisture at which non-linear base�ow begins. The parameterc is the exponent used in the base�ow curve.

d1 andd2 are the thickness of the two soil layers. Thicker layers increase the water storage capacity, and hence increase the

evaporation losses. Thicker soil layers also delay the seasonal peak �ow. The routing parameters are �ow velocity (v) and �ow

diffusion (df ).

The data used in our VIC-Res model consist of climate forcing data, land use and cover, Leaf Area Index (LAI), albedo,165

�ow direction, and time series of reservoir storage volume. Climate forcing data include daily precipitation data retrieved
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Figure 3.Flowchart illustrating our numerical framework. The VIC-Res model (green boxes) includes a rainfall-runoff and a routing module.

The latter explicitly simulates reservoir operations using data retrieved from satellite observations. The discharge data used to calibrate VIC-

Res are estimated from altimetry water levels through a rating curve, which is based on Manning's equation and developed using multiple

satellite data (Landsat images, altimetry water level, and DEM). All remote sensing items are represented by blue boxes. The relationship

between the parameterization of the Manning's equation (dark blue box) and the performance of VIC-Res is assessed and quanti�ed via

Global Sensitivity Analysis (a). Based on the results of the sensitivity analysis, we then set a value of the Manning's coef�cient and calibrate

the parameters of VIC-Res using the" -NSGA-II algorithm (b).
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Table 1. Soil parameters controlling the rainfall-runoff process and routing parameters in VIC-Res. The last column shows the range of each

parameter considered in this study, also adopted in previous studies (e.g., Dan et al. (2012); Park and Markus (2014); Xue et al. (2015); Wi

et al. (2017)).

Parameter Unit Description Range

b -
Variable In�ltration Capacity curve

parameter
(0, 0.9]

D max mm/d Maximum velocity of base�ow (0, 30]

D S -
Fraction ofD max where non-linear

base�ow occurs
(0, 1)

Soil WS -
Fraction of maximum soil moisture

where non-linear base�ow occurs
(0, 1)

c - Exponent used in base�ow curve [1, 3]

d1 m Thickness of the upper soil layer [0.05, 0.25]

d2 m Thickness of the lower soil layer [0.3, 1.5]

Routing v m/s Flow velocity [0.5, 5]

df m2 /s Flow diffusion [200, 4000]

from the CHIRPS-2.0 dataset, daily maximum and minimum temperature, and wind speed (retrieved from the ERA5 dataset).

We collect land use and cover data from the Global Land Cover Characterization (GLCC) dataset, and soil data from the

Harmonized World Soil Database (HWSD). Monthly LAI and albedo are derived from the Terra MODIS satellite images,

while the �ow direction is calculated from the SRTM-DEM data. The monthly time series of reservoir storage volume are170

reconstructed from satellite data, as explained below.

We �nally note that the choice of the cell size could affect the rainfall-runoff and routing estimations, and thus impact

model calibration and simulated discharge (Egüen et al., 2012). Since the issue applies to any modelling exercise, not only

to those relying on remotely sensed data like this study, we do not carry out an analysis of the impact of cell size on model

performance. Instead, we choose a cell size (i.e., 0.0625� ) that falls in between what is currently being adopted for the existing175

distributed models for the Mekong region. For example, Costa-Cabral et al. (2007) and Tatsumi and Yamashiki (2015) adopted

a resolution of 1 / 12� and 0.25� , while Du et al. (2020) and Bonnema and Hossain (2017) used a resolution of 90m / 900m and

0.01� , respectively.

3.1.2 Reservoir operations

To capture the actual operations of reservoirs, we use monthly time series of reservoir storage volume reconstructed from180

satellite data by Vu et al. (2022). Speci�cally, the time series of reservoir storage volume are obtained from Landsat images

(Landsat 5 available from 1984 to 2013, Landsat 7 from 1999 to 2022, and Landsat 8 from 2013 to present) and a digital
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elevation model (SRTM-DEM). The time series are created through three steps. First, the relationship between water surface

area and storage volume (the area–storage curve) for each reservoir is calculated from DEM data. Then, the reservoir water

surface area is estimated from Landsat images by a water surface area estimation algorithm that removes the effects of clouds185

and other disturbances (Gao et al., 2012; Zhang et al., 2014). Finally, the storage volume is inferred from the water surface

area through the area–storage curve. The results obtained from Landsat images are validated with altimetry water levels (Jason

2 available from 2008 to 2016, Jason 3 from 2016 to present, and Sentinel 3 from 2016 to present) for the reservoirs where

altimetry water levels are available. Since the VIC-Res model adopts a daily simulation time step, the monthly time series of

reservoir storage volume is interpolated to daily values. Although using interpolated values (monthly to daily) is not ideal, it is190

reasonable to do so if one considers the speci�c characteristics of the reservoir system. In particular, Xiaowan and Nuozhadu

are the two largest reservoirs: they have a massive capacity (� 36 km3) and account for about 85 % of the total system's storage.

Because of their size, their role is not to follow inter and intra-daily electricity demand variability, but rather to ensure a stable

supply of power and to minimize the variability in the production of the other dams composing the hydropower system. This

goal is re�ected by their operating patterns. In the wet season (June-November), Xiaowan and Nuozhadu reservoirs gradually195

store water until reaching their maximum operational level (and release extra water if necessary). The other reservoirs run at

their normal operational level (full capacity for power generation). In the dry season (December-May), Xiaowan and Nuozhadu

gradually release water to the downstream reservoirs to ensure that the other reservoirs can run at their normal operational

level (International Rivers, 2014). Therefore, it is fair to state that Xiaowan and Nuozhadu are characterized by slow-varying

dynamics. Additionally, the analysis carried out in Vu et al. (2022) shows a strong similarity between the monthly storage200

of Xiaowan and Nuozhadu derived from Landsat images and the storage derived from Jason altimetry data (10-day temporal

resolution) and Sentinel-1/2 images (6-day temporal resolution). Because of the spatial and temporal coverages of those data,

we use the result derived from Landsat images for this study.

3.2 Inferring discharge data

To handle the lack of discharge data for model calibration, we again resort to satellite data. Speci�cally, we convert altimetry205

water levels (Jason 2/3) to discharge through a rating curve speci�ed for the location of the virtual station (see Figure4 3). The

rating curve (i.e., Manning's equation) is identi�ed based on the information on river cross-section and water surface slope at

the virtual station, which are also derived from satellite data.

3.2.1 River cross-section

We construct the river cross-section at the virtual station by using multiple satellite products (see Figure S1a). First, we use a210

digital elevation model (SRTM-DEM), which has a spatial resolution of 30 m, to obtain the portion of the cross-section above

the water level at the observation time of the SRTM satellite (February 2000). To extend the information available to estimate

the river cross-section, we then pair data on river widths at the virtual station with the corresponding water levels (temporal

nearest observations of two satellites that provide river widths and water levels) (Bose et al., 2021). River widths are estimated

from the water pixels—classi�ed from Landsat images based on Normalized Difference Water Index (NDWI)—along the215
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river cross-section. NDWI is calculated using the Green and Near-infrared bands of Landsat images (NDWI = (Green band -

Near-infrared band)/(Green band + Near-infrared band)) (Zhai et al., 2015). All these bands have a spatial resolution of 30 m.

Meanwhile, the water level data are processed from Jason-2/3 altimetry satellite data provided by DAHITI. Finally, for each

river bank, we use a regression model (sixth-degree polynomial), which is the best �t to the data points obtained from the two

�rst steps. The two models help us extrapolate the portion of the river cross-section under the lowest water level observed by220

the satellites. It is worth noting that the approach works best for river banks in natural conditions, where it is possible to infer

the relation between river widths and water levels. It would be challenging to apply this approach at Chiang Saen, for example,

where the river banks have been engineered.

3.2.2 Rating curve

We construct the rating curve at the virtual station with the Manning's equation (Equation 1):225

Q =
A5=3S1=2

P2=3n
; (1)

whereQ, A, andP are discharge, river cross-section area, and wet perimeter corresponding to the water depthD (see Figure

S1b). As explained next,A andP are calculated from the river cross-section for different values of water depthD . S is the

hydraulic slope, estimated from DEM data (which re�ects the water surface slope at the observation time).n is the Manning's

coef�cient (riverbed roughness). Following Chow (1959) and Engineering ToolBox (2004), we assume that it ranges from 0.03230

to 0.06.

The rating curve is constructed in two steps. First, we use Equation 1 to estimate the discharge corresponding to each

water depth with regular intervals of one meter (e.g., 0, 1, 2 m). After this step, we have at hand a number of data points, each

containing a value of water depth and its corresponding discharge. Then, we �t the data points by a power curve. This translates

into our rating curve. Note that when converting altimetry water level to discharge using the rating curve, we convert altimetry235

water level to water depth by deducting the river bed elevation (Figure S1b). It is worth noting that this approach, based on the

Manning's equation, works best for straight river segments with limited discharge variations due to tributaries and distributaries

nearby (Przedwojski et al., 1995). This condition and the condition for constructing river cross-section mentioned above make

location 1422 the most suitable location for our virtual station, despite the fact that there are other locations closer to Chiang

Sean (e.g., the location 812), which could provide a better validation using observed data at Chiang Saen.240

3.3 Sensitivity analysis and model calibration

3.3.1 Sensitivity analysis

We carry out a Global Sensitivity Analysis (Pianosi et al., 2016) to study the relationship between the performance of VIC-Res

and the parameterization of the rating curve. We investigate a total of 10 model parameters, including 7 soil parameters of the

rainfall-runoff module, 2 parameters of the routing module, and the Manning's coef�cient appearing in the rating curve. We245
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use Latin Hypercube Sampling to create 1,000 samples in the 10-dimensional parameter space de�ned by the ranges given in

Section 3.1.1 and 3.2.2. For each parameter sample, we run a simulation over the period 2009–2018 (after a warm-up period

from 2005 to 2008), and reconstruct discharge data for the same period with the rating curve. We then compare reconstructed

and simulated discharges through four performance metrics, which are described in the next subsection. Having built this input

(parameters) and output (performance metrics) dataset, we analyse the co-dependence between the performance of VIC-Res250

and the Manning's coef�cient. We also identify the parameter samples that map into the top 25% values of each performance

metric and analyze if, and how, such constraining on performances maps back into a constraining of the parameter values.

The simulation experiment is run on an Intel (R) Xeon (R) W-2175 CPU 2.50 GHz with 128 GB RAM running Linux Ubuntu

18.04. The total running time is about 200 hours.

3.3.2 Performance metrics255

The performance metrics are calculated by comparing the simulated (by VIC-Res) and remote-sensed discharge at the virtual

station. Because the temporal resolution of remote-sensed discharge is de�ned by the revisit time of altimetry satellite (approx-

imately 10 days for Jason2/3), we calculate the performance metrics using the data of all days in which altimetry water levels

are available. Among the several metrics available in literature (Dawson et al., 2010), we chose four metrics that explicitly cap-

ture different aspects of modelling accuracy. These are the Nash–Sutcliffe Ef�ciency (NSE), Transformed Root Mean Square260

Error (TRMSE), Mean Squared Derivative Error (MSDE), and Runoff Coef�cient Error (ROCE). NSE and TRMSE assess the

model performance on high and low �ows, respectively, while MSDE accounts for the shape of the hydrograph timing errors,

and noisy signals. Finally, ROCE assesses the overall water balance (Reed et al., 2013). The metrics are de�ned as follows:

NSE = 1 �
P n

t =1 (QSim;t � QRS;t )2

P n
t =1 (Qt

RS;t � QRS )
2 ; (2)

wheren is the number of satellite altimetry water level observations,QSim;t andQRS;t are the simulated and remote-sensed265

discharge at the virtual station (for the observation numbert), andQRS is the mean of the remote-sensed discharge.

T RMSE =

vu
u
t 1

n

nX

t =1

(zSim;t � zRS;t )2; (3)

wherezsim;t and zRS;t represent the value of the simulated and remote-sensed discharge at the virtual station (for the

observation numbert), both transformed by the expressionz = (1+ Q) � � 1
� ; (� = 0 :3). In other words,� scales down the values

of the discharge, thus emphasizing the errors on low �ows.270

MSDE =
1

n � 1

nX

t =1

((QRS;t � QRS;t � 1) � (QSim;t � QSim;t � 1))2 ; (4)
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ROCE = abs
�

QSim

P
�

QRS

P

�
; (5)

whereQSim is the mean of the simulated discharge at the virtual station, andP is the mean annual rainfall.

3.3.3 Model calibration

As we shall see, the global sensitivity analysis helps us understand the relationship between the performance of VIC-Res and275

the parameterization of the rating curve. Moreover, by identifying the parameter samples that map into high values of the

performance metrics (here the top 25%), the analysis helps us narrow down the range of variability of (at least some of) the

model parameters. However, one may still want to complete the model calibration by further seeking for combinations of the

VIC-Res parameters that optimize the performance metrics. To this purpose, we couple VIC-Res with" -NSGA-II, a multi-

objective evolutionary algorithm widely used for hydrological modelling applications (Reed et al., 2013; Dang et al., 2020a).280

Here, the decision variables are the nine parameters of VIC-Res, while the objective function is a vector consisting of the four

metrics described in Section 3.3.2. Similarly to the sensitivity analysis, all metrics are calculated via simulation over the period

2008 2009–2018, with a spin-up period going from 2005 to 2008. The"-NSGA-II is set up with" = 0.001, an initial population

size of 10, and a number of function evaluations equal to 100. All performance metrics are normalized between 0 and 1. The

calibration exercise is carried out on ten independent trials, with the best (Pareto-ef�cient) parameter combinations selected285

across the ten calibration exercises. The total run time is about 210 hours (using the same computational infrastructure adopted

for the sensitivity analysis).

4 Results

Here, we move across three steps. First, we illustrate the results leading to the estimation of a discharge time series at the virtual

station, including the identi�cation of the river cross-section and rating curve (Section 4.1). Then, we use sensitivity analysis290

to show that there exists a co-dependence between the Manning's coef�cient and the performance of VIC-Res, and we propose

an approach to overcome this potential issue (Section 4.2). We �nally calibrate VIC-Res and validate its performance using

observed discharge data at Chiang Sean (Section 4.3).

4.1 Estimation of the remote-sensed discharge at the virtual station

4.1.1 River cross-section295

Figure5a 4a shows the river cross-section at the virtual station, constructed through the use of multiple satellite data. Speci�-

cally, each dark blue bar represents a 30 m cell of the SRTM-DEM lying along the river cross-section. These bars are connected

by a series of segments representing an estimate of the cross-section above the water surface at the observation time of the

SRTM satellite. That speci�c water surface is depicted by the horizontal dark blue line at the elevation of 293 m. The light blue
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lines indicate the river widths derived from 19 Landsat-5 images and water levels obtained from Jason-2/3. Additional infor-300

mation about these images, water levels, and corresponding collection dates are reported in Table S2. Finally, the dotted blue

line represents the cross-section below the lowest observed water level. This line is created via extrapolation by two regression

models (sixth-degree polynomial), which are �tted to the observations retrieved from DEM, Landsat-5, and Jason-2/3 (11 and

14 data points for the left and right banks, respectively). We also explore four alternative cross-sections, created by moving

the one at the location of the virtual station 30 and 60 m (1 and 2 cells) both upstream and downstream, with the assumption305

that water levels at the alternative cross-sections are the same as the ones at the virtual station (water surface slope around the

virtual station estimated from DEM is about 0.00015� 8.8 mm/60 m). The alternative cross-sections are well in agreement

with the cross-section at virtual station (see Figure S2). Speci�cally, riverbed elevations are 277.2, 275.6, 276, 274.5, and 274.3

m a.s.l. (from upstream to downstream).

4.1.2 Rating curve310

With the river cross-section at hand, we estimate the rating curve at the virtual station using the Manning's equation (Equation

1). Since the value of the Manning's coef�cientn is unknown, the value of the estimated dischargeQ depends not only on the

water depthD but also onn, that is:

Q =
0:161D 2:357

n
: (6)

In Figure5b 4b, we plot the range of variability of the rating curve corresponding to values ofn varying between 0.03315

to 0.06 (Section 3.2.2). This range is represented by the light blue band. Note the large increase in river discharge estimates

corresponding to a depth larger than 20 m. In this �gure, we also report three rating curves corresponding to three speci�c

values ofn, namely minimum (dotted blue line), average (dark blue line), and maximum (dashed blue line).

4.1.3 Remote-sensed discharge

Using the rating curve and water depth (converted from Jason-2/3 altimetry water level data), we estimate 298 discharge320

data points at the virtual station during the period 2009–2018 (Figure5c 4c). The light blue band represents the envelope of

variability of the discharge corresponding to values ofn ranging between 0.03 and 0.06. The �gure also depicts the discharge

time series corresponding to the average value of the Manning's coef�cient (n = 0.045), plus an additional time series obtained

by scaling the observed discharge at Chiang Saen by a coef�cient (equal to 1.17) representing the relative increase in drainage

area between Chiang Saen and the virtual station (orange dotted line). A qualitative comparison of these estimated discharge325

values provides a few useful insights. First, there is large uncertainty in the discharge estimated during the summer monsoon

season. This result is explained by the characteristics of the rating curve—the higher the value ofD , the higher the uncertainty in

Q (Figure5b 4b). Second, there is a larger variability in the discharge estimated during the dry season of 2013-2018 compared

to the one of 2009-2012. That is because the cascade dam system in the Lancang modi�ed the natural �ow downstream,

increasing low �ows (Vu et al., 2022). The change can be seen most clearly since 2013, when Nuozhadu, the largest reservoir330
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