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Abstract: Root-zone soil moisture (RZSM) is crucial for water resource management, drought monitoring and 10 

sub-seasonal flood climate forecast. RZSM is not directly observable from space but various model-derived RZSM 11 

products are available at the global scale and are widely used. In this paper, a comprehensive quantitative 12 

evaluation of eight RZSM products is made over the Huai river basin (HRB) in China. A direct validation is 13 

performed using observations from 58 in situ soil moisture stations from 1 April 2015 to 31 March 2020. Attention 14 

is drawn to the potential factors increasing uncertainties of model-generated RZSM, such as errors on atmospheric 15 

forcings (precipitation, air temperature), soil properties, and model parameterizations. Results indicate that the 16 

Global Land Data Assimilation System Catchment Land Surface Model (GLDAS_CLSM) performs best among 17 

all RZSM products with the highest correlation coefficient (R) and lowest unbiased root-mean square error 18 

(ubRMSE): 0.503 and 0.031 m3 m-3, respectively. All RZSM products tend to overestimate the in situ soil moisture 19 

values, except for the Soil Moisture and Ocean Salinity (SMOS) L4 product, which underestimates RZSM. The 20 

underestimated SMOS L3 SSM associated with low physical surface temperature triggers the underestimation of 21 

RZSM in SMOS L4. The RZSM overestimation by other products can be explained by the overestimation of 22 

precipitation amount, precipitation event frequency (drizzle effects) and by the underestimation of air temperature. 23 

Besides, the overestimation of the soil clay content and the underestimation of the soil sand content in different 24 

LSMs leads to larger soil moisture values. The intercomparison of the eight RZSM products shows that MERRA-25 

2 and SMAP L4 RZSM are the most correlated with one another. These products are based on the same LSM and 26 

on the same surface meteorological forcing generated from the National Aeronautics and Space Administration 27 

(NASA) GEOS-5. In addition, model parameterizations in different LSMs vary considerably, affecting the transfer 28 

and exchange of water and heat in the vadose zone. 29 
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1 Introduction 30 

Soil moisture plays a key role in the hydrological cycle and in land-atmosphere interactions. It controls the 31 

water and energy balances (Calvet, 2000, Brocca et al., 2010, Xing et al., 2021), and has been recognized as one 32 

of the 50 essential climate variables by the World Meteorological Organization (WMO) (Cho et al., 2015). In 33 

particular, the root-zone soil moisture (RZSM, 0-100 cm) has important applications in agricultural drought 34 

monitoring, water resources management, flood prediction and seasonal climate forecast (Reichle et al., 2017, 35 

Zhou et al., 2020, Beck et al., 2021). In the context of climate change, extreme events (floods and droughts, 36 

heatwaves, etc.) affecting RZSM tend to occur more frequently around the world (Lorenz et al., 2010, Hauser et 37 

al., 2016, Al Bitar et al., 2021). For example flash droughts affect, more and more, the Huaibei plain in China 38 

(Gou et al., 2022). 39 

Recent satellite soil moisture missions provide global, ~3-day resolution soil moisture retrievals limited to 40 

the top few centimeters (0-5 cm for L band) due to the limitation of microwave penetration depth (Bi et al., 2016). 41 

So various model-derived RZSM products are developed from wider global scale applications. For example, 42 

model-based products such as the Global Land Data Assimilation System (GLDAS), based on the GLDAS_NOAH 43 

and on the GLDAS Catchment land surface models (GLDAS_CLSM) (Bi et al., 2016), the China Land Data 44 

Assimilation System (CLDAS) (Shi et al., 2014), and Soil Moisture Active Passive (SMAP) Level 4 (L4) 45 

(Rienecker et al., 2008, Reichle et al., 2017), were developed. They aim to provide the optimal land surface states 46 

and fluxes through the combination of an offline (not coupled to the atmosphere) Land Surface Model (LSM) and 47 

satellite data by data assimilation techniques (Calvet and Noilhan, 2000, Rodell et al., 2004). The LSM is forced 48 

with meteorological analysis fields (precipitation, wind speed, air humidity, surface pressure, air temperature and 49 

radiance). Moreover, the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth generation 50 

reanalysis (ERA5) (Albergel et al., 2018), the Modern-Era Retrospective Analysis for Research and Applications 51 

version 2 (MERRA-2) (Gelaro et al., 2017) and the National Centers for Environmental Prediction Climate 52 

Forecast System Version 2 (NCEP CFSv2) (Saha et al., 2014) also provide global, subdaily/daily resolution 53 

analysis fields of atmosphere, ocean and land surface variables through coupling an atmospheric general 54 

circulation model (AGCM) with a LSM and an Ocean Wave Model (OWM) as well as assimilating large amounts 55 

of in situ and satellite-derived observations (Saha et al., 2014, Reichle et al., 2017). Soil Moisture and Ocean 56 

Salinity (SMOS) Centre Aval de Traitement des Données (CATDS) provides SMOS L4 RZSM derived from 57 

SMOS Level 3 (L3) 3-day SSM using a statistical exponential filter model (Albergel et al., 2008).  58 
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Large amounts of studies were conducted to validate and assess the utility of SSM using in situ observations 59 

in the topsoil layer (Collow et al., 2012, Cui et al., 2017, Beck et al., 2021, Zheng et al., 2022), more rarely for 60 

RZSM, especially in China (Xing et al., 2021, Xu et al., 2021). Being one of the important agricultural grain 61 

production areas in China, it is crucial to assess the performance of various RZSM products over the Huai River 62 

Basin (HRB). Model-derived RZSM products are commonly validated using in situ observations, which can be 63 

considered as the reference data set with highest quality. Differences between in situ and model-derived RZSM 64 

may be caused by errors in the model meteorological forcing data, soil properties, parameterization, and by the 65 

scale mismatch. Nevertheless, using in situ observations may be the most accurate method for soil moisture 66 

validation (Xu et al., 2021). Many studies have evaluated the satellite-derived SSM or model-derived RZSM using 67 

in situ soil moisture observations (Albergel et al., 2012, Cui et al., 2017, Reichle et al., 2017, Pablos et al., 2018, 68 

Beck et al., 2021, Wang et al., 2021, Xing et al., 2021, Xu et al., 2021). Further, Rüdiger et al. (2009) made the 69 

intercomparison of different SSM products with one other together with the comparison with in situ soil moisture 70 

observations. 71 

The quality of meteorological forcing data (mainly precipitation and air temperature) is one of the most 72 

important factors determining the accuracy of model-derived RZSM simulations (Zeng et al., 2021). However, 73 

numerous studies showed that there exist large uncertainties in atmospheric forcing data derived from global 74 

climate model, in particular, the precipitation frequency, intensity and heavy precipitation events (Sun et al., 2005, 75 

Piani et al., 2010, Velasquez et al., 2020, Jiao et al., 2021). Describing soil properties right is also important. Many 76 

global LSMs use the FAO/UNESCO (Food and Agriculture Organization, United Nations Educational, Scientific 77 

and Cultural Organization) soil map of the World generated in 1981, for instance, GLDAS products (Bi et al., 78 

2016, Yang et al., 2020), NCEP CFSv2 (Yang et al., 2020), ERA5 (Qin et al., 2017, Yang et al., 2020), SMOS L4 79 

(Al Bitar et al., 2021), MERRA-2 (Koster et al., 2016, Gelaro et al., 2017) and SMAP L4 (Reichle et al., 2019), 80 

which incorporates little soil information in many regions including China (Shangguan et al., 2013). This increases 81 

the uncertainty of soil moisture simulations. Moreover, soil stratification may influence RZSM. In the Huaibei 82 

plain, the plough, black soil and lime concretion layers stratification may impede the vertical transfer of water 83 

from the surface layer to the root-zone layer. Finally, the quality of the model parameterizations are key factors 84 

determining the accuracy of soil moisture simulations. Different LSMs are used in LDAS or reanalysis products, 85 

such as the Noah LSM in GLDAS_NOAH and NCEP CFSv2 (Rodell et al., 2004, Saha et al., 2014), HTESSEL 86 

in ERA5 (Yang et al., 2020), CLSM in GLDAS_CLSM, MERRA-2 and SMAP L4 (Koster et al., 2000, Reichle 87 

et al., 2017, Reichle et al., 2019), the Community Land Model 3.5 (CLM), Common Land Model (CoLM) and the 88 
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community Noah land surface model with multi-parameterization options (Noah-MP) in CLDAS products (Wang 89 

et al., 2021). The exponential filter technique is used in SMOS L4 (Al Bitar et al., 2021). 90 

The objectives of this study are as follows: (1) compare eight global RZSM products (ERA5, MERRA-2, 91 

NCEP CFSv2, GLDAS_CLSM v2.2, GLDAS_NOAH v2.1, CLDAS v2.0, SMAP L4 and SMOS L4) with in situ 92 

soil moisture observations over HRB from 1 April 2015 to 31 March 2020, (2) intercompare the RZSM products 93 

with one another over HRB, (3) investigate the potential error sources of RZSM (meteorological forcing data, soil 94 

properties and soil stratification, model parameterizations).  95 
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2 Datasets 96 

2.1 HRB in situ measurements 97 

The HRB is the transitional zone between northern subtropical and warm temperate climates and one of the 98 

most important commodity grain production areas in China. It is located in eastern China, 111°55′-121°25′ 99 

E, 30°55′-36°36′ N, and covers an area of 270000 km2 (Figure 1). The HRB has a typical humid and sub-humid 100 

monsoon climate. The average annual precipitation is 888 mm and increases from north to south. More than 60% 101 

of the annual precipitation occurs in four months, from June to September (Zhang et al., 2009). The annual 102 

evaporation ranges from 900 to 1500 mm and decreases from north to south. The HRB suffers from frequent floods 103 

and droughts due to the spatiotemporal variability of precipitation and evaporation. The main land cover types 104 

over HRB are rainfed croplands, followed by irrigated croplands, then woodlands and grasslands. Overall, the 105 

terrain of HRB is relatively flat, a large plain accounting for 90% of the area of the whole HRB.  106 

The HRB soil moisture network was deployed by the Ministry of Water Resources of the People’s Republic 107 

of China. It consists of 58 in situ stations and provides soil moisture measurements at 4 depths of 10 cm, 20 cm, 108 

40 cm and 100 cm. At each station, volumetric soil moisture measurements in unit of m3 m-3 are collected at 08:00 109 

AM local solar time using Frequency Domain Reflectometry ECH2O EC-TM probes. These probes are calibrated 110 

using gravimetric measurements sampled at four soil depths. The soil moisture measurements are quality 111 

controlled for filtering out unreliable data before using them for validating model-derived RZSM products. Among 112 

the 58 stations, 51 stations are located in the relatively flat Huaibei plain, mainly covered by rainfed crops, 5 113 

stations are located in the irrigated cropland area and 2 stations are located in the woodland area. Since this study 114 

aims to evaluate the accuracy of model-derived RZSM products (0-100 cm), the soil moisture measurements at 4 115 

depths are depths-weighted averaged for obtaining the 0-100 cm soil moisture data. 116 
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 117 

Fig. 1 Location of the study area and distribution of in-situ soil moisture stations. Fig. 1 (c) shows the land cover types 118 

of Huai River Basin (HRB) where the in situ stations are mainly covered by rainfed crop. 119 

China daily ground rainfall and air temperature gridded dataset V2.0 is provided by China Meteorological 120 

Administration (CMA) (http://data.cma.cn) at a spatial resolution of 0.5°×0.5°. These data are used to validate 121 

the meteorological forcing fields used in reanalysis and LDAS. The CMA gridded dataset is obtained by 122 

interpolating spatially using the method of partial thin-plate smoothing splines from 2474 national ground 123 

meteorological station observations after quality controls and corrections. The average coverage rate of gauging 124 

stations located in a grid cell is 38% across the whole China, but up to 77% in eastern part of China where the 125 

HRB is located. The dataset was comprehensively validated and has high quality. The rainfall data has mean 126 

RMSE of 0.49 mm/month and R of 0.93 significant at p < 0.01 (CMA, 2012). The mean yearly air temperature 127 

data has a mean bias of ±0.2°C and RMSE of 0.2-0.3°C (CMA, 2012).  128 

2.2 Soil map 129 

Currently, soil databases used in many global LSMs are derived from the FAO/UNESCO soil map of the 130 

World at 1:5 million scale. It took twenty years to complete this map which remained until recently the only global 131 

overview of soil resources (Shangguan et al., 2013). However, this soil map incorporated little soil information in 132 

many regions including China. Given these uncertainties of in soil properties, the variables simulated by LSMs 133 
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(e.g., RZSM) presented larger errors over China (Nachtergaele et al., 2009, Shangguan et al., 2013). Hence, the 134 

Harmonized World Soil Database (HWSD) with a resolution of 30 arc-second was produced by FAO and the 135 

International Institute for Applied Systems Analysis (IIASA) by combing recently collected regional and national 136 

updates of soil information with the FAO/UNESCO soil map of the world at 1:5 million scale. HWSD includes 137 

the soil map of China provided by the Institute of Soil Science, Chinese Academy of Sciences (ISSCAS) at 1:1 138 

million scale.  139 

The soil data set developed by Shangguan et al. (2013) is used in the CLDAS (Qin et al., 2017), which 140 

integrates the physical and chemical attributes of 8979 soil profiles and the Soil Map of China (Shangguan et al., 141 

2013). The data set contains soil properties information for eight layers (0-2.3 m) at the spatial resolution of 30×30 142 

arc-seconds. Due to the lack of the measured soil data, the soil properties information (sand and clay content, bulk 143 

density and soil organic matter) obtained from Shangguan et al. (2013) was used to validate the accuracy of that 144 

from FAO/UNESCO and HWSD.  145 

2.3. Model-derived RZSM products 146 

2.3.1 ERA5 147 

ERA5 is the ECMWF fifth generation atmospheric reanalysis of the global climate and weather. It covers the 148 

period from January 1950 to present, and substitutes for the ERA-Interim reanalysis. ERA5 is developed using 4-149 

Dimensional Variational (4D-Var) data assimilation with an underlying 10-member ensemble and model forecasts 150 

in CY41R2 of the ECMWF Integrated Forecast System (IFS), with 137 hybrid sigma/pressure model levels in the 151 

vertical and the top level at 0.01 hPa (Xu et al., 2021). The temporal and spatial resolutions of ERA5 dataset are 1 152 

hour and 31 km (regridded to a regular lat-lon grid of 0.25 degree), respectively. The 4D-Var data assimilation 153 

uses 12 hour windows from 0900 UTC to 2100 UTC and from 2100 UTC to 0900 UTC (the following day) 154 

(Albergel et al., 2018). 155 

2.3.2 MERRA-2 156 

MERRA-2 is the latest version of global atmospheric reanalysis for the satellite era produced by NASA Global 157 

Modeling and Assimilation Office (GMAO) using an upgraded version of Goddard Earth Observing System Model 158 

(GEOS-5) and the Gridpoint Statistical Interpolation assimilation system (Reichle et al., 2017). Owing to the fact 159 

that the MERRA data assimilation system was set in 2008 and could not integrate new data types, MERRA-2 was 160 

developed. In comparison with the MERRA reanalysis, MERRA-2 contains many updates and new fundamental 161 

developments in modeling and 3D-VAR data assimilation. It assimilates aerosol observations and other new 162 
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observational forcings enabling the land surface model to provide more stable land feedback processes (Gelaro et 163 

al., 2017). Moreover, the Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Global Daily 164 

Precipitation (CPCU) product and the CPC Merged Analysis of Precipitation (CMAP) product from the National 165 

Oceanic and Atmospheric Administration (NOAA) CPC are used in MERRA-2 precipitation corrections, which 166 

allows the observed precipitation to impact, via evapotranspiration, the near-surface air temperature and humidity, 167 

thereby yielding a more self-consistent near-surface meteorological dataset (Reichle et al., 2017). The dataset 168 

covers the period from 1980 to present with a latency of ~3 weeks after the end of a month and has a temporal 169 

resolution of 1 hour and spatial resolution of 0.5°×0.625°. The dataset was regridded to GLDAS-2_0.25 through 170 

bilinear interpolation with a regular latitude-longitude grid of 0.25 degree. 171 

2.3.3 NCEP CFSv2 172 

NCEP CFSv2 is a global, high resolution, coupled atmosphere-ocean-land surface-sea ice system designed 173 

to provide the best estimate of the state of these coupled domains. The Noah land surface model is used in both 174 

the coupled land surface-atmosphere-ocean model, and in the Global Land Data Assimilation System (GLDAS) 175 

(Saha et al., 2014). Compared to NCEP reanalyses 1 and 2 (R1, R2), CFSv2 involves several upgrades: improved 176 

forecast model and data assimilation scheme, finer spatial resolution, assimilation of satellite radiances rather than 177 

retrievals, simulation of four soil levels (0-10 cm, 10-40 cm, 40-100 cm and 100-200 cm) rather than two soil 178 

levels (0-10 cm and 10-200 cm) (Lu et al., 2005). 179 

2.3.4 GLDAS_NOAH 180 

GLDAS_NOAH Version 2.1 provides global, 3-hourly, 0.25-degree resolution of estimates covering the 181 

period from 1 January 2000 to present. The Noah land surface model simulates four soil levels, including 0-10 cm, 182 

10-40 cm, 40-100 cm, 100-200 cm and uses the Modified IGBP MODIS 20-category vegetation classification and 183 

the soil properties based on the Hybrid STATSGO/FAO datasets (Bi et al., 2016). GLDAS drives the Noah model 184 

by ingesting observation-based data NOAA/Global Data Assimilation System (GDAS) atmospheric analysis fields, 185 

the disaggregated Global Precipitation Climatology Project (GPCP) V1.3 Daily Analysis precipitation fields and 186 

the Air Force Weather Agency’s AGRicultural METeorological modeling system (AGRMET) radiation fields) 187 

(Rui et al., 2021). 188 

2.3.5 GLDAS_CLSM 189 

GLDAS_CLSM Version 2.2 is based on the CLSM forced with the meteorological analysis fields from the 190 

operational ECMWF Integrated Forecasting System (Rui et al., 2021). The Catchment model uses the Mosaic land 191 
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cover classification, together with soils, topographic, and other model-specific parameters that are derived in a 192 

manner consistent with that of the GEOS-5 climate modeling system. Alternatively, the Daily Catchment model 193 

simulations use the University of Maryland (UMD) land cover classification, with the rest of parameters from the 194 

GEOS-5 system. Compared with GLDAS-2.0 and GLDAS-2.1 (open-loop, i.e., no data assimilation), GLDAS-195 

2.2 assimilates the total terrestrial water anomaly observations from Gravity Recovery and Climate Experiment 196 

(GRACE). GLDAS_CLSM 2.2 provides global, daily, 0.25-degree resolution estimates covering the period from 197 

1 February 2003 to present. 198 

2.3.6 CLDAS 199 

The CLDAS-2.0 product is developed and released by CMA based on a multi-LSMs operational system 200 

consisting of CLM, CoLM, and Noah-MP, with a spatial coverage of 0-60° N and 70-150° E. The production of 201 

CLDAS-V2.0 includes the following three processes. Firstly, nearly 40000 automatic meteorological stations 202 

measurements, ECMWF and NCEP numerical analysis/forecast product, satellite-derived precipitation (FY2) and 203 

Digital Elevation Model (DEM) are used to produce 0.0625°, hourly estimates of meteorological forcing data by 204 

operating the Space-Time Multi-Scale Analysis System (STMAS) (Shi et al., 2014, Wang et al., 2021). Meantime, 205 

the meteorological forcing is validated using national automatic station observations (more than 2400 stations). 206 

Secondly, the meteorological forcing is used to drive the multi-LSMs system for obtaining a multilayer soil 207 

moisture estimates ensemble. Finally, ensemble-average is applied to each soil layer to generate a soil moisture 208 

ensemble analysis product.  209 

2.3.7 SMAP L4 210 

The SMAP Level-4 soil moisture (L4-SM) is produced by assimilating SMAP radiometer level-1C brightness 211 

temperature observations into CLSM and provides global, 3-hourly, 9-km resolution estimates of SSM (0-5 cm) 212 

and RZSM (0-100 cm) (Reichle et al., 2019). The Goddard Earth Observation System, version 5, LDAS (GEOS-213 

5 LDAS) is based on a spatially distributed ensemble Kalman filter (EnKF) and CLSM (Rienecker et al., 2008). 214 

The GEOS-5 CLSM is driven by surface meteorological data (precipitation, radiation, etc.) from GEOS-5 Forward 215 

Processing (FP) system. Large amounts of observations are assimilated into a global atmospheric model and CPCU, 216 

0.5-degree, daily precipitation observations are used for correcting the GEOS-5 precipitation. The EnKF has a 3-217 

hourly update time step and is used to interpolate and extrapolate the brightness temperature and model estimates 218 

in time and space (Reichle et al., 2017).  219 
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2.3.8 SMOS L4 220 

The SMOS L4 soil moisture product is produced by SMOS CATDS and provides global, daily estimates of 221 

RZSM (0–100 cm) over a 25-km EASE-2 grid from January 2010 to present. The SMOS L4 RZSM is derived 222 

from SMOS L3 3-day SM product (descending orbit, 06:00 PM) and other ancillary datasets, such as MODIS 223 

observations and climate data from the NCEP and an upgraded FAO/UNESCO soil properties map, using a 224 

modified exponential filter linking the characteristic time length T (the transfer time for water from surface layer 225 

to root zone layer) to the soil properties (Pablos et al., 2018). The soil column is divided into three layers (layer1: 226 

0-5 cm, layer2: 5-40 cm, layer3: 40-100 cm) in a water bucket model. The scaled 0-5 cm soil moisture is modified 227 

using a logarithmic function and applied to the water bucket model to obtain 5-40 cm soil moisture combined with 228 

T1 from layer1 to layer2. Then the scaled 5-40 cm soil moisture and T2 from layer2 to layer3 are applied to the 229 

water bucket model to obtain 40-100 cm soil moisture. Finally, the RZSM (0-100 cm) is computed based on a 230 

depth-weighted average of the three layers’ soil moisture (Al Bitar et al., 2021).  231 

The eight model-derived RZSM products evaluated in this study are summarized in Table 1. 232 
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Table 1 Description of global (regional) RZSM products from model-based land surface states in the study. 233 

Dataset 

Land surface 

model 

Time period 

Temporal 

resolution 

Spatial resolution Soil layers Data access 

ERA5 

(Global) 

HTESSEL January 1, 

1979-present 

Hourly 31km×31km 

(0.25°×0.25° 

regridded) 

0-7 cm, 7-28 cm, 

28-100 cm, 100-289 cm 

ERA5 reanalysis datasets 

Hourly 0.25 x 0.25 degree| ECMWF 

MERRA-2 

(Global) 

CLSM January 1, 

1980-present 

Hourly 0.5°×0.625° 

(0.25°×0.25° 

regridded) 

0-5 cm, 0-100 cm GES DISC Dataset: MERRA-2 

tavg1_2d_lnd_Nx (M2T1NXLND 

5.12.4) (nasa.gov) 

NCEP CFSv2 

(Global) 

Noah January, 

2011-present 

6-Hourly 0.20°×0.20° 0-10 cm, 10-40 cm, 

40-100 cm, 100-200 cm 

CISL RDA: NCEP Climate 

Forecast System Version 2 (CFSv2) 

6-hourly Products (ucar.edu) 

GLDAS_NOAH 

(Global) 

Noah January 1, 

2000-present 

3-Hourly 0.25°×0.25° 0-10 cm, 10-40 cm, 

40-100 cm, 100-200 cm 

GES DISC Dataset: GLDAS 

Noah Land Surface Model L4 3 

hourly 0.25 x 0.25 degree V2.1 

(nasa.gov) 

GLDAS_CLSM 

(Global) 

CLSM February 1,  

2003-present 

Daily 0.25°×0.25° 0-2 cm, 0-100 cm GES DISC Dataset: GLDAS 

Catchment Land Surface Model L4 

daily 0.25 x 0.25 degree GRACE-

DA1 V2.2 (nasa.gov) 

CLDAS 

(Asia) 

CLM 

CoLM 

Noah-MP 

January 1, 

2008-present 

Hourly 0.0625°×0.0625° 0-5 cm, 0-10 cm, 

10-40 cm, 40-100 cm, 

100-200 cm 

China Meteorological 

Administration Land Data 

Assimilation System (CLDAS v2.0) 

Product Dataset (cma.cn) 

SMAP Level 4 

(Global) 

CLSM March 31, 

2015-present 

3-Hourly 9 km×9 km 0-5 cm, 0-100 cm SMAP L4 Global 3-hourly 9 km 

EASE-Grid Surface and Root Zone 

Soil Moisture Analysis Update, 

Version 5 | National Snow and Ice 

Data Center (nsidc.org) 

SMOS Level 4 

(Global) 

Exponential 

filter 

(no LSM) 

January 14, 

2010-present 

Daily 0.25°×0.25° 0-100 cm L4 Land research 

products - Centre Aval de 

Traitement des Données 

SMOS (CATDS) 

234 
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3 Methods 235 

3.1 Statistical metrics 236 

Four widely used statistical metrics were used to quantitatively evaluate the performance of RZSM products 237 

against in situ measurements. The Pearson correlation coefficient (R) measures the degree of linear correlation 238 

between the in situ measurements and model-derived RZSM, Mean Bias Error (MBE) reflects the mean systematic 239 

deviation of model simulations relative to the measurements, Root Mean Square Error (RMSE) and ubRMSE 240 

measure standard deviation of random error (Zheng et al., 2022). In addition, Probability of Detection (POD), 241 

False Alarm Ratio (FAR) and Critical Success Index (CSI) are used to assess the ability of model-derived rainfall 242 

to reproduce the measured rainfall (Su et al., 2019). The statistical metrics and corresponding formulas are listed 243 

in Table 2. 244 

3.2 Calculation and validation of RZSM 245 

Since the in situ measurements are available at several specific depths (10 cm, 20 cm, 40 cm and 100 cm), 246 

the RZSM is calculated with a depth-weighted average of the four layers soil moisture. The equation is as follows: 247 

𝜃𝑅𝑍𝑆𝑀 =
2𝜃1𝐿1+(𝜃1+𝜃2)𝐿2+⋯(𝜃𝑛−1+𝜃𝑛)𝐿𝑛

2(𝐿1+𝐿2+𝐿3+⋯𝐿𝑛)
        (1) 248 

where 𝜃𝑅𝑍𝑆𝑀 refers to the RZSM in the 0-100 cm (m3 m-3), 𝜃𝑛 is the volumetric soil moisture at the 𝑛𝑡ℎ observation 249 

depth (m3 m-3), and 𝐿𝑛 is the soil layer thickness between adjacent observation depths (m). 250 

For the model-derived RZSM products, apart from the GLDAS_CLSM, MERRA-2, SMAP L4 and SMOS 251 

L4 directly providing the 0-100 cm RZSM, other RZSM products are provided in different soil layers, NCEP 252 

CFSv2, CLDAS and GLDAS_NOAH (𝜃0−10 cm, 𝜃10−40 cm, 𝜃40−100 cm), ERA5 (𝜃0−7 cm, 𝜃7−28 cm, 𝜃28−100 cm). 253 

For instance, the GLDAS_NOAH RZSM can be calculated as: 254 

𝜃𝑅𝑍𝑆𝑀 = 0.1 × 𝜃0−10 cm + 0.3 × 𝜃10−40 cm + 0.6 × 𝜃40−100 cm      (2) 255 

In this study, the model-derived soil moisture is directly compared with point-scale observations for each 256 

station located within the model grid cell. If there are more than one in-situ station in a grid cell, the average soil 257 

moisture observations of all stations in a grid cell is used to compare with model-derived grid value. 258 

 259 
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Table 2 List of the statistic metrics for evaluating RZSM products and corresponding precipitation forcing data 260 

using in situ measurements. 261 

Note: n is the observations number (1827) of each in situ station (58 stations in total). 𝜃𝑒𝑠𝑡,𝑖 and 𝜃𝑜𝑏𝑠,𝑖 are model-derived 262 

RZSM products and in situ measurements (m3 m-3), respectively ; 𝜃𝑒𝑠𝑡,𝑖
̅̅ ̅̅ ̅̅  and 𝜃𝑜𝑏𝑠,𝑖

̅̅ ̅̅ ̅̅ ̅ are the mean of 𝜃𝑒𝑠𝑡,𝑖  and 𝜃𝑜𝑏𝑠,𝑖 across the 263 

entire research period; H is the number of rainfall events that are recognized by model and in-situ measurements; M is the 264 

number of measured rainfall events that are not recognized by model product; F is the number of model-based rainfall events 265 

that are not recognized by in situ measurements. 266 

3.3 Seasonal anomaly 267 

Soil moisture products may exhibit large differences across timescales (e.g., sub-seasonal, mean seasonal and 268 

inter-annual) (Draper and Reichle, 2015, Gruber et al., 2020). In order to avoid seasonal effects, the soil moisture 269 

products are commonly decomposed into different frequency components (e.g., the raw soil moisture and monthly 270 

soil moisture anomaly). In this study, monthly anomaly time-series of root-zone soil moisture are calculated based 271 

on the moving-average decomposition method. The difference to the mean is divided by the standard deviation 272 

(stdev) for a moving-average window of five weeks (Rüdiger et al., 2009, Albergel et al., 2012). The moving 273 

window F is defined as follow, for each RZSM estimate or observation at day (t), F=[t-17:t+17]. If there are at 274 

Statistic metrics Unit Equation Optimal 

value 

correlation coefficient (R) - R =
∑ (𝜃𝑒𝑠𝑡,𝑖 − 𝜃𝑒𝑠𝑡,𝑖

̅̅ ̅̅ ̅̅ )(𝜃𝑜𝑏𝑠,𝑖 − 𝜃𝑜𝑏𝑠,𝑖
̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1

√∑ (𝜃𝑒𝑠𝑡,𝑖 − 𝜃𝑒𝑠𝑡,𝑖
̅̅ ̅̅ ̅̅ )

2𝑛
𝑖=1

√∑ (𝜃𝑜𝑏𝑠,𝑖 − 𝜃𝑜𝑏𝑠,𝑖
̅̅ ̅̅ ̅̅ ̅)

2𝑛
𝑖=1

 1 

Mean Bias Error (MBE) m3 m-3 Bias =
∑ (𝜃𝑒𝑠𝑡,𝑖 − 𝜃𝑜𝑏𝑠,𝑖)

𝑛
𝑖=1

𝑛
 0 

Root Mean Square Error 

(RMSE) 

m3 m-3 RMSE = √∑ (𝜃𝑒𝑠𝑡,𝑖 − 𝜃𝑜𝑏𝑠,𝑖)
2𝑛

𝑖=1

𝑛
 0 

unbiased Root Mean 

Square Error (ubRMSE) 

m3 m-3 

ubRMSE

=
√∑ ((𝜃𝑒𝑠𝑡,𝑖 − 𝜃𝑒𝑠𝑡,𝑖

̅̅ ̅̅ ̅̅ ) − (𝜃𝑜𝑏𝑠,𝑖 − 𝜃𝑜𝑏𝑠,𝑖
̅̅ ̅̅ ̅̅ ̅))

2
𝑛
𝑖=1

𝑛
 

0 

Probability of Detection 

(POD) 

- POD =
𝐻

𝐻 + 𝑀
 1 

False Alarm Ratio (FAR) - FAR =
𝐹

𝐻 + 𝐹
 0 

Critical Success Index 

(CSI) 

- CSI =
𝐻

𝐻 + 𝑀 + 𝐹
 1 

https://doi.org/10.5194/hess-2023-33
Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



14 

 

least five measurements available in this period, the moving-average value and standard deviation of root-zone 275 

soil moisture are calculated. The anomaly is given as following equation: 276 

𝑅𝑍𝑆𝑀𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑡) =
𝑅𝑍𝑆𝑀(𝑡)−𝑅𝑍𝑆𝑀(𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑠𝑡𝑑𝑒𝑣(𝑅𝑍𝑆𝑀(𝐹))
        (3) 277 

where 𝑅𝑍𝑆𝑀(𝑡) and 𝑅𝑍𝑆𝑀𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑡) denote raw RZSM and seasonal anomaly of RZSM at day t, respectively. 278 

Equation (3) is applied to model-derived and in situ RZSM for comparison.  279 
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4 Results 280 

4.1 Comparison between model-derived and in situ RZSM 281 

Figure 2 shows time series and scatterplots of stations-averaged model-derived RZSM products (ERA-5, 282 

MERRA2, NCEP CFSv2, GLDAS_CLSM, CLDAS_NOAH, CLDAS, SMAP L4, SMOS L4) against the in situ 283 

measurements over the HRB, from 1 April 2015 to 31 March 2020. Generally speaking, all RZSM products capture 284 

the rapid temporal variations of in situ soil moisture observations, except for SMOS L4, which shows less rapid 285 

changes (left panel of Fig. 2). The in situ soil moisture exhibits a variation that ranges from 0.1 to 0.4 m3 m-3. The 286 

range of NCEP CFSv2 and SMAP L4 RZSM is similar to the observed RZSM range (Fig. 2a and 2e). ERA5 and 287 

CLDAS present larger RZSM values, ranging from 0.2 to 0.5 m3 m-3 (Fig. 2a and 2c). MERRA-2, GLDAS_CLSM 288 

and GLDAS_NOAH RZSM values range from 0.2 to 0.4 m3 m-3 (Fig. 2a and 2c). This is a smaller interval than 289 

for the other products. SMOS L4 displays the smallest RZSM values, ranging from 0.1 to 0.3 m3 m-3 (Fig. 2e). The 290 

right panel of Fig. 2 demonstrates the marked overestimation of in situ observations by ERA5 and CLDAS, and 291 

the underestimation by SMOS L4. In terms of correlation and ubRMSE, GLDAS_CLSM (R = 0.69, ubRMSE = 292 

0.018 m3 m-3, respectively) outperforms the other RZSM products while SMAP L4 presents the lowest RMSE and 293 

the lowest bias (0.03 and 0.04 m3 m-3, respectively). SMOS L4 presents the worst performance in terms of 294 

correlation with R = 0.35. 295 

 296 

Fig. 2 Stations-averaged RZSM (0-100 cm) comparison between model-derived RZSM and in situ soil moisture 297 

observations spanning the period from April 1, 2015 to March 31, 2020, including the time series (left panel) and 298 

scatterplots (right panel). The gray-shaded areas in the left panel represent the standard deviation of in situ stations 299 

observations within the HRB. 300 
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Figure 3 shows the statistical distribution of the scores of the eight RZSM products across all in situ stations 301 

in the HRB for three time periods of the seasonal cycle: the full annual cycle, the wet season from June to 302 

September, and the dry season from October to May. The median and standard deviation values of the scores are 303 

listed in Table 3. For the full annual cycle, the SMOS L4 RZSM presents a negative median bias of -0.050 m3 m-304 

3 (equivalent to a soil moisture deficit of 50 kg m-2) compared with the in situ measurements. All the other 305 

products overestimate RZSM, from 0.033 m3 m-3 to 0.117 m3 m-3 (SMAP L4 and ERA5, respectively). All 306 

temporal series of RZSM products correlate to the in situ measurements and correspond well to the precipitation 307 

events. However, SMOS L4 time series are smoother than the observations and present the smaller correlation 308 

(R = 0.21). The best correlation is obtained by GLDAS_CLSM (R = 0.50). This product also presents the 309 

smallest ubRMSE value: 0.031 m3 m-3 against 0.048 m3 m-3 for SMOS L4. The reanalysis RZSM products 310 

(ERA5, MERRA-2, NCEP CFSv2) tend to overestimate the in situ measurements. Among the three products, 311 

MERRA-2 performs better with better average R and ubRMSE values (0.43 and 0.036 m3 m-3, respectively) than 312 

ERA5 (R = 0.40, ubRMSE = 0.045 m3 m-3) and NCEP CFSv2 (R = 0.39, ubRMSE = 0.048 m3 m-3). ERA5 313 

presents a large bias of 0.104 m3 m-3. The GLDAS_NOAH, GLDAS_CLSM, CLDAS and SMAP L4 products 314 

also show an overestimation. GLDAS_CLSM outperforms CLDAS, GLDAS_NOAH and SMAP L4 with a 315 

higher R value of 0.50 and a lower ubRMSE of 0.031 m3 m-3, followed by CLDAS (R = 0.44, ubRMSE = 0.035 316 

m3 m-3), SMAP L4 (R = 0.37, ubRMSE = 0.039 m3 m-3) and GLDAS_NOAH (R = 0.35, ubRMSE = 0.043 m3 m-317 

3). CLDAS shows the largest wet bias value (0.116 m3 m-3) followed by ERA5 (0.104 m3 m-3). Because of the 318 

large bias, CLDAS and ERA5 display the largest RMSE values (0.113 and 0.122 m3 m-3, respectively) among all 319 

the RZMS products. SMAP L4 (R = 0.37, ubRMSE = 0.039 m3 m-3) performs better than SMOS L4 (R = 0.21, 320 

ubRMSE = 0.048 m3 m-3). Overall, GLDAS_CLSM performs best among the eight RZSM products in terms of 321 

R, ubRMSE and bias, followed by MERRA-2, CLDAS, SMAP, ERA5, NCEP CFSv2, GLDAS_NOAH, SMOS 322 

L4. SMAP L4 presents the smallest bias. 323 

It can be seen that the score values vary considerably across single stations in Fig. 3. In terms of correlation, 324 

ERA5, MERRA-2, NCEP CFSv2 and GLDAS_NOAH all show their best R values varying from 0.59 to 0.67 over 325 

the Xianghongdiankuxia station (number: 50701303) and SMAP L4 has its highest R value of 0.62 over the 326 

Guanting station (number: 5042471). Both stations are located in the south of HRB where precipitation events are 327 

more frequent. GLDAS_CLSM, CLDAS and SMOS L4 show their highest R values (0.67, 0.66 and 0.53, 328 

respectively) over the Dahu, Youhe, and Baoji stations (numbers: 50701303, 50830439, and 50924801, 329 

respectively), all of them located in the center of the HRB. In terms of bias, ERA5, MERRA-2, NCEP CFSv2, 330 
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GLDAS_NOAH, GLDAS_CLSM and CLDAS present smaller values in the north of HRB than in the south. 331 

However, SMOS L4 has its smallest bias values in the south of HRB. 332 

 333 

Fig. 3 Single-station RZSM comparison between model-derived RZSM and in situ soil moisture observations for 334 

different periods, including the Full period (from 1 April 2015 to 31 March 2020), Wet period (from June to 335 

September) and Dry period (from October to May). Each outlier “+” represents an in situ station. The boxplot is 336 

represented by the nonoutlier minimum (𝑸𝟏 − 𝟏. 𝟓 × (𝑸𝟑 − 𝑸𝟏)), lower quartile Q1 (25th percentile), median Q2 337 

(50th percentile), upper quartile Q3 (75th percentile), nonoutlier maximum (𝑸𝟑 + 𝟏. 𝟓 × (𝑸𝟑 − 𝑸𝟏)), respectively. 338 

In order to eliminate the seasonal effects and to investigate the capacity of the products to represent the day-339 

to-day variability of RZSM, a moving-average window of five weeks is used to calculate the monthly anomaly 340 

time-series of RZSM. Figure 4 displays a comparison of the scores on soil moisture anomalies. It can be seen 341 

that statistical metrics based on in situ validation for monthly anomaly time-series of RZSM generally display 342 

similar trends to that of in situ validation for raw RZSM time-series in terms of R and ubRMSE. However, some 343 

differences can be observed. Anomaly R values are larger than raw R values for ERA5, MERRA-2, NCEP 344 

CFSv2, CLDAS and SMAP L4 products. On the other hand, GLDAS_NOAH, GLDAS_CLSM and SMOS L4 345 

products present lower anomaly R values than raw R values (Table 3). In general, the overall performance of the 346 
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eight RZSM products is better during the wet season than for the full annual cycle and the dry season.347 

 348 

Fig. 4 Same as Fig. 3, but for the monthly anomaly. 349 
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Table 3 Statistical metrics of eight RZSM products validated by in-situ measurements from April 1, 2015 to March 31, 2020: Median (Std). 350 

Dataset 
Soil Layer 

(cm) 

Period 
In situ validation (raw)   In situ validation (anomaly) 

R ubRMSE  

(m3 m-3) 

Bias  

(m3 m-3) 

 R  

(anomaly) 

ubRMSE 

(anomaly) 

Bias (anomaly) 

ERA-5 0-100 Full  0.40 (0.10) 0.045 (0.005) 0.104 

(0.047) 

 0.41 (0.08) 0.94 (0.07) -0.00 (0.01) 

  Wet 0.45 (0.10) 0.047 (0.006) 0.089 

(0.048) 

 0.49 (0.11) 0.91 (0.09) -0.02 (0.02) 

  Dry 0.43 (0.10) 0.038 (0.006) 0.117 

(0.046) 

 0.33 (0.08) 0.97 (0.06) 0.01 (0.01) 

MERRA-2 0-100 Full  0.43 (0.10) 0.036 (0.007) 0.044 

(0.036) 

 0.51(0.11) 0.89 (0.09) -0.00 (0.01) 

  Wet 0.58 (0.09) 0.032 (0.006) 0.026 

(0.035) 

 0.61 (0.14) 0.81 (0.12) -0.03 (0.02) 

  Dry 0.42 (0.12) 0.035 (0.008) 0.055 

(0.038) 

 0.42 (0.10) 0.94 (0.07) 0.02 (0.01) 

NCEP CFSv2 0-100 Full  0.39 (0.11) 0.048 (0.008) 0.056 

(0.052) 

 0.43 (0.10) 0.92(0.08) -0.01 (0.01) 

  Wet 0.48 (0.09) 0.045 (0.006) 0.038 

(0.051) 

 0.51 (0.12) 0.88 (0.10) -0.03 (0.02) 

  Dry 0.36 (0.14) 0.047 (0.010) 0.069 

(0.053) 

 0.36 (0.09) 0.96 (0.08) 0.01 (0.02) 

GLDAS_NOAH 0-100 Full  0.35 (0.12) 0.043 (0.007) 0.075 

(0.038) 

 0.31 (0.08) 1.02 (0.07) -0.01 (0.01) 

  Wet 0.45 (0.11) 0.041 (0.006) 0.059 

(0.040) 

 0.40 (0.11) 0.97 (0.11) -0.02 (0.02) 

  Dry 0.31 (0.15) 0.042 (0.008) 0.084 

(0.038) 

 0.22 (0.06) 1.05 (0.06) -0.01 (0.01) 

GLDAS_CLSM 0-100 Full  0.50 (0.09) 0.031 (0.007) 0.061 

(0.051) 

 0.49 (0.12) 0.91 (0.10) -0.01 (0.01) 

  Wet 0.60 (0.11) 0.031 (0.007) 0.055 

(0.050) 

 0.58 (0.15) 0.84 (0.13) -0.03 (0.02) 

  Dry 0.47 (0.12) 0.029 (0.007) 0.067 

(0.052) 

 0.42 (0.11) 0.96 (0.086) 0.00 (0.01) 

CLDAS 0-100 Full  0.44 (0.12) 0.035 (0.008) 0.116 

(0.032) 

 0.53 (0.12) 0.862 (0.10) -0.01 (0.01) 

  Wet 0.54 (0.11) 0.033 (0.007) 0.105 

(0.032) 

 0.65 (0.16) 0.76 (0.14) -0.02 (0.02) 

  Dry 0.40 (0.14) 0.033 (0.009) 0.125 

(0.033) 

 0.44 (0.10) 0.93 (0.08) 0.00 (0.01) 

SMAP L4 0-100 Full  0.37 (0.10) 0.039 (0.007) 0.033 

(0.049) 

 0.49 (0.11) 0.90 (0.08) 0.00 (0.01) 

  Wet 0.50 (0.08) 0.037 (0.007) 0.025 

(0.049) 

 0.60 (0.14) 0.81 (0.11) -0.02 (0.02) 

  Dry 0.35 (0.12) 0.038 (0.008) 0.041 

(0.049) 

 0.41 (0.09) 0.95 (0.07) 0.02 (0.01) 

SMOS L4 0-100 Full  0.21 (0.13) 0.048 (0.007) -0.050 

(0.030)  

 0.06 (0.06) 1.14 (0.05) -0.00 (0.03) 

  Wet 0.15 (0.13) 0.047 (0.007) -0.045 

(0.030) 

 0.07 (0.07) 1.16 (0.06) -0.01 (0.05) 

  Dry 0.19 (0.16) 0.045 (0.007) -0.053 

(0.032) 

 0.05 (0.08) 1.14 (0.06) 0.01 (0.04) 

Note: Bold values denote the optimal values for each period (full, wet and dry periods). (Std) denotes the standard deviation.351 
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4.2 Intercomparison of eight RZSM products 352 

Figure 5 displays the comparison in pairs of the eight RZSM products for grid cells located over the in situ 353 

stations. Overall, all RZSM products show good consistency, except for SMOS L4. The correlation coefficient R 354 

with any of the seven other RZSM products varies from 0.30 (MERRA-2 vs. SMOS L4) to 0.95 (SMAP L4 vs. 355 

MERRA-2), with an average value of 0.71. The mean bias varies from -0.067 m3 m-3 (MERRA-2 minus CLDAS) 356 

to 0.165 m3 m-3 (ERA5 minus SMOS L4) with an average value of 0.037 m3 m-3. The ubRMSE varies from 0.010 357 

m3 m-3 (MERRA-2 vs. SMAP L4) to 0.040 m3 m-3 (NCEP CFSv2 vs. SMOS L4) with an average value of 0.024 358 

m3 m-3. SMOS L4 differs most from the other products. The correlation coefficient R between SMOS L4 and the 359 

other seven RZSM products varies from 0.30 (MERRA-2 vs. SMOS L4) to 0.41 (GLDAS_NOAH vs. SMOS L4) 360 

with an average value of 0.35, and the mean bias varies from 0.077 m3 m-3 (SMAP L4 minus SMOS L4) to 0.165 361 

m3 m-3 (ERA5 minus SMOS L4) with an average value of 0.112 m3 m-3. The ubRMSE varies from 0.023 m3 m-3 362 

(GLDAS_CLSM versus SMOS L4) to 0.400 m3 m-3 (NCEP CFSv2 vs. SMOS L4) with an average value of 0.031 363 

m3 m-3. 364 

 365 

Fig. 5 Comparison of different RZSM products (volumetric water content, m3 m-3) with each other. The scatterplots 366 

and their corresponding statistics are located on opposite sides of each other, that is, the scatterplot of the data pair 367 

SMOS L4-ERA5 is in the top left-hand corner, while the respective statistical values are found in the bottom right-hand 368 

corner. Darker regions show a higher density of data point. 369 

Figure 6 shows the histograms of normalized RZSM of the eight model-derived products and of in situ 370 

observations. The relative frequency distribution corresponded to normalized soil moisture interval varies 371 

considerably across different RZSM datasets. All soil moisture datasets are almost normally distributed with one 372 
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clear peak. However, the observed RZSM distribution is skewed towards low values and the most frequent 373 

normalized RZSM class ranges between 0.3 and 0.4. The MERRA-2, GLDAS_CLSM, SMAP L4, and ERA5 374 

products display the same behavior. On the other hand, SMOS L4, NCEP CFSv2 and CLDAS have a relative 375 

frequency peaking at a range of 0.4-0.5. GLDAS_NOAH even peaks at 0.5-0.6, and is clearly skewed toward the 376 

wet end. 377 

 378 

Fig. 6 Histograms showing the relative frequency (vertical axis) of the various normalized RZSM datasets and in situ 379 

observations.380 
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5 Discussions 381 

5.1 What is the impact of uncertainties of meteorological forcing data? 382 

The meteorological forcing considered as one of the most important and direct factors influences the accuracy 383 

of LSM simulations, especially precipitation and air temperature (Reichle et al., 2012, Yang et al., 2020, Zeng et 384 

al., 2021). Precipitation and air temperature global forcing data are used in the generation of all RZSM products 385 

except for SMOS L4. These forcing data were compared with reference data derived from in situ observations, 386 

extracted from the China ground rainfall and air temperature gridded dataset. Figure 7 and Figure 8 show the 387 

difference between global and ground-based precipitation. A daily precipitation amount less than 1 mm is 388 

considered as a no-rain criterion. During the period from 1 April 2015 to 31 March 2020, the mean yearly 389 

precipitation amount of global products (SMAP: 1024 mm yr-1, GLDAS_NOAH: 988 mm yr-1, GLDAS_CLSM: 390 

986 mm yr-1, MERRA-2: 974 mm yr-1, NCEP CFSv2: 951 mm yr-1, ERA5: 880 mm yr-1) overestimates the ground-391 

based observations (840 mm yr-1) by 22, 18, 17, 16, 13, and 5 %, respectively. In addition, the mean frequency of 392 

rainy days (131, 114, 114, 113, 114, 126 d yr-1) is larger than observed (97 d yr-1) due to the drizzle effect often 393 

produced by AGCM (Piani et al., 2010, Velasquez et al., 2020). For precipitation events exceeding a daily 394 

precipitation amount of 50 mm d-1, the global precipitation products tend to underestimate the in situ precipitation 395 

observations (Fig. 7). 396 

 397 

Fig. 7 Stations-averaged daily precipitation and cumulative precipitation time series comparison between model-398 

derived precipitation and in situ precipitation observations. 399 
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The larger precipitation amount and frequency could be a reason of the overestimation of soil water storage 400 

by RZSM products generated by LSMs. We also quantitatively evaluated the model-derived precipitation by 401 

comparing them with ground-based precipitation, to investigate the impacts of precipitation accuracy on the 402 

performance of RZSM products (Fig. 8). It can be seen that, overall, the precipitation products are consistent with 403 

observed precipitation, with R values generally above 0.4 (left panel of Fig. 8). MERRA-2, ERA5, 404 

GLDAS_CLSM, SMAP L4, and ERA5 show strong precipitation detection ability with POD value above 0.6 (the 405 

right panel of Fig. 8). The R value between model-derived and ground-based precipitation is not directly related 406 

to the POD value. For example, NCEP CFSv2 does not perform as well as ERA5 in terms of POD but presents 407 

better R values. In terms of R, RMSE, CSI, POD and FAR, the precipitation of MERRA-2 and GLDAS_CLSM 408 

performs best among all products. This may explain the relatively better agreement of MERRA-2 and 409 

GLDAS_CLSM RZSM with in situ data in terms of anomaly correlation (Fig. 4). For most reanalysis products, 410 

the precipitation used to drive different LSMs was generated by AGCMs through the assimilation of atmospheric 411 

temperature, humility and wind observations (Reichle et al., 2017). In addition, MERRA-2 model-generated 412 

precipitation was corrected with two gauge-based precipitation observations before driving the land surface water 413 

budget: (1) the NOAA CPCU gauge-based analysis of global daily precipitation product at 0.5° spatial resolution 414 

and (2) the CMAP precipitation product based on merging gauge-based observations with satellite-derived 415 

estimates at 2.5° spatial resolution. The MERRA-2 model-generated precipitation correction was implemented in 416 

the coupled land-atmosphere reanalysis system, which may contribute to the high consistency with the ground-417 

based precipitation. 418 
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 419 

Fig. 8 Summary of error metrics of model-derived precipitation data against in situ precipitation observations (left 420 

panel), right panel shows the detection ability of model-derived precipitation to reproduce the observed precipitation. 421 

The blue histogram represents the median and black error bar represents the standard deviation. 422 

Unlike the global products mentioned above, CLDAS (806 mm yr-1) underestimates the yearly precipitation 423 

amount by 13 %, and the precipitation frequency (99 days yr-1) is close to the ground-based observation. Hence, 424 

the CLDAS multi-LSMs should have produced smaller RZSM values being driven by CLDAS precipitation than 425 

by the ground-based precipitation, but the CLDAS RZSM product overestimates the in situ observations by 426 

0.116 m3 m-3 (Table 3). Therefore, precipitation may be not the dominant factor for the overestimation of RZSM 427 

for CLDAS (Bi et al., 2016, Qin et al., 2017). Apart from precipitation, the performance of model-generated 428 

RZSM products was also affected by uncertainties on air temperature, soil properties, soil stratification, model 429 

parameterizations, etc. 430 

Air temperature is another key factor after precipitation determining the accuracy of LSM simulations by 431 

controlling soil evaporation and plant transpiration. In order to investigate the impacts of air temperature on the 432 

performance of RZSM simulations, we evaluated the air temperature data derived from ERA5, MERRA-2, NCEP 433 

CFSv2, GLDAS_CLSM, CLDAS, GLDAS_NOAH and SMAP L4 by comparing them with the in situ 434 

observations of daily air temperature. Figure 9 shows the model air temperature captures the observed temporal 435 

variation with R values above 0.96. However, all of them show underestimation with negative bias values ranging 436 

from -4.0 to -5.2 K. This issue was illustrated in previous studies (Wang and Zeng, 2012, Yang et al., 2020). 437 

Generally speaking, the lower air temperature used to generate RZSM products triggers less evapotranspiration, 438 

and more soil water storage. This is consistent with the overestimation of in situ observations by LSM-based 439 
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RZSM products (Bi et al., 2016, Yang et al., 2020). Comparing with precipitation, air temperature has better overall 440 

correlation with in situ observations. 441 

 442 

Fig. 9 Same as Fig. 2, but for the air temperature. 443 

5.2 Are soil properties correctly represented? 444 

Soil properties data (e.g., porosity) are key and time-invariant model parameter for LSM, because they 445 

determine the physical structure of soil in the vadose zone, which controls the partition of precipitation into surface 446 

runoff and infiltration. Previous studies have shown that FAO/UNESCO soil properties are affected by 447 

uncertainties in different regions (Shangguan et al., 2013, Bi et al., 2016), Yang et al. (2020), (Xing et al., 2021, 448 

Zheng et al., 2022). Here, four soil properties indicators, including clay and sand content, soil organic carbon 449 

content and bulk density were chosen to investigate the difference among the FAO/UNESCO soil map of World, 450 

HWSD and the reference soil data set developed by Shangguan et al. (2013). The soil properties data used in the 451 

eight RZSM products are all derived from the FAO/UNESCO soil map of World except for CLDAS which used 452 

the soil data developed by Shangguan et al. (2013). Figure 10 shows the reference dataset and HWSD generally 453 

present similar characteristics, except for the slightly higher organic carbon content and lower sand content of the 454 

reference dataset. Both of them differ from FAO/UNESCO soil properties data. FAO/UNESCO overestimates the 455 

clay content for the top (0-30 cm) and subsurface (30-100 cm) soil layers. The sand content is also overestimated 456 

for the subsurface layer but it is underestimated for the top layer. Generally speaking, the ability of soil to retain 457 

water is related to the soil texture, because water molecules are more tightly attached to the soil particles of fine-458 

textured clay than coarse-textured sand. So, the clay has stronger water retention capacity and higher water content 459 

stored in the soil than the sand at the same matric potential. In addition, the organic carbon content also influences 460 
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the water holding capacity of the soil. Commonly, high soil organic carbon content is related to high soil porosity 461 

and to low bulk density. As a result, water can infiltrate more rapidly and more water flows through the soil and 462 

can be held in the soil (Bot and Benites, 2005, Reichle et al., 2017). Moreover, increasing porosity may increase 463 

the specific surface area of soil particles, which further increases the water holding capacity of the soil, and more 464 

water content can be retained in the soil. Therefore, the inaccurate FAO/UNESCO soil properties data used in 465 

LSMs can explain the overestimation of soil moisture by various RZSM products relative to the ground-based 466 

observations. It is promising to observe that the accuracy of LSM-based RZSM can be improved using HWSD 467 

rather FAO/UNESCO soil properties data. 468 

 469 

Fig. 10 Soil properties data produced FAO used in (ERA5, MERRA2, NCEP CFSv2, GLDAS_NOAH, GLDAS_CLSM, 470 

SMAP and SMOS), HWSD and reference soil properties data Shangguan et al. (2013) used in CLDAS. The histogram 471 

(gray: 0-30 cm; white: 30-100 cm) represents the median and black error bar represents the standard deviation. 472 

Soil stratification may affect the accuracy of LSM-based RZSM through impeding the water transfer from 473 

the surface layer to the root zone layer. The soil column in the Huaibei plain can basically be divided into three 474 

layers, including the plough layer (0–16.6 cm), black soil layer (16.6–49.3 cm) and lime concretion layer (49.3–475 

138.3 cm). The discrepancy for soil properties data between the plough layer and black soil layer is higher than 476 

that of black soil layer and lime concretion layer (see Fig. S1). The fine-textured clay content and coarse-textured 477 

sand content of plough layer is obviously less and slighter higher than that of black soil layer, respectively. Due to 478 

long-term human activity, the physicochemical characteristics of the soil plough layer has been changed 479 

considerably. The agricultural activity (fertilization and plough) significantly increases the soil organic carbon 480 

content and porosity of plough layer relative to the black soil layer and lime concretion layer. High porosity leads 481 
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to high hydraulic conductivity and infiltration capacity (Zha et al., 2015). Therefore, there exists a relative 482 

impermeable interface due to the fact that the infiltration rate of plough layer is higher than that of black soil layer. 483 

Under the circumstances, when the water content of upper soil layer reaches field capacity, the subsurface flow 484 

emerges. As rainfall accumulates, the subsurface water may either flow in the horizontal direction or accumulate 485 

in the vertical direction with weak lateral drainage condition and evaporate. These processes may be not well 486 

represented by LSMs. 487 

5.3 Why are MERRA-2 and SMAP L4 RZSM highly correlated? 488 

The very good correlation and low ubRMSE between MERRA-2 and SMAP L4 shown in Fig. 5 may be 489 

partly attributed to the fact that SMAP L4 and MERRA-2 share the same surface meteorological forcing generated 490 

from GEOS-5. Moreover, the SMAP L4 precipitation data generated by NASA GEOS-5 is corrected with the 491 

NOAA CPCU gauge-based analysis of global daily precipitation product. The MERRA-2 precipitation data are 492 

also corrected with CPCU but the Climate Prediction Center Merged Analysis of Precipitation (CMAP) product 493 

is used too. Since precipitation is the dominant driver of the land surface water cycle, this can explain the large R 494 

value between SMAP L4 and MERRA-2 RZSM products. In addition, both SMAP L4 and MERRA-2 use the 495 

CLSM. 496 

5.4 How do different LSMs parameterizations affect model-derived RZSM? 497 

The accuracy of model-generated RZSM may depend on uncertainties in model parameterizations (Reichle 498 

and Koster, 2003). Regarding the water and energy balance represented in different LSMs, the partitioning of net 499 

radiative energy into latent heat flux, sensible heat flux and ground heat fluxes, the partitioning of the precipitation 500 

into interception, evaporation, infiltration and runoff as well as the transfer and exchange of water and heat in the 501 

vadose zone vary considerably (Koster et al., 2000, Chen et al., 2013, Xia et al., 2014, Reichle et al., 2017). For 502 

instance, NOAH LSM, HTESSEL and CLM have 4-, 4- and 10-layer vertical levels for soil moisture and 503 

temperature, respectively (Oleson et al., 2004, Rui et al., 2021). CLSM represents vertical levels for soil moisture 504 

in surface layer (0-2 cm) and root zone layer (0-100 cm) but has six layers for soil temperature (Rui et al., 2021). 505 

The computational unit in CLSM is hydrological catchment, and the adjacent catchments have no fluxes exchange 506 

such as groundwater or runoff (Koster et al., 2000, Reichle and Koster, 2003). The computational unit in CLM is 507 

grid cell, where the spatial heterogeneity of land surface is represented by three nested subgrid hierarchy (Oleson 508 

et al., 2004). NOAH LSM describes the incomplete hydrological cycle process at the grid scale, and it neglects the 509 

heterogeneity of soil, which has great effect on infiltration and the generation and convergence of runoff (Wang 510 
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and Chen, 2013). HTESSEL also calculates the water and energy balance at the grid scale and neglects lateral 511 

exchange of soil water between adjacent grid cells. Regarding the surface runoff parameterizations, CLM adopts 512 

a conceptual form of the original TOPMODEL to configure the runoff parameters. The surface runoff is calculated 513 

through saturated and unsaturated fractions combined with the sum of the melt water from snowpack and liquid 514 

precipitation falling to the land surface (Oleson et al., 2004). A Simple Water Balance (SWB) model is used to 515 

parameterize surface runoff obtained from precipitation minus the maximum infiltration in the NOAH LSM, and 516 

the process of runoff generation is considered only in the vertical direction. HTESSEL also adopts the SWB model 517 

to calculate surface runoff with an additional snowmelt item, but different maximum infiltration schemes were 518 

adopted in HTESSEL and NOAH LSM, respectively. CLSM accounts for topography on the spatial variability of 519 

soil water and its effect on evaporation and runoff into account using TOPMODEL. In each catchment, CLSM 520 

incorporates different parameterization schemes describing the energy budget processes in specific hydrological 521 

regimes into each hydrological catchment model depicting the redistribution of water based on topography, which 522 

results in reliable estimates of evaporation and runoff (Ducharne et al., 2000, Koster et al., 2000)In fact, the range 523 

of runoff generation area changes in the horizontal direction when precipitation occurs (Wang et al., 2016). 524 

Therefore, the different parameterizations of infiltration and runoff generation lead to the differences in model-525 

derived RZSM products. 526 

5.5 How does the mismatch of spatial scale affect the evaluation results? 527 

Except for the model- and the observation-generated soil moisture errors, the mismatch of spatial scale 528 

between grid-scale soil moisture simulations and point-scale observations also introduces additional errors. As the 529 

statistical metrics shown in section 4.1, it can be seen that the R and ubRMSE between regionally-averaged RZSM 530 

products and stations-averaged in situ observations overall outperforms that between RZSM grid value and point-531 

scale observations at each in situ station located within the model grid cell. For the latter, grid-based RZSM has 532 

poor representativeness of soil moisture within a grid cell exhibiting high spatial variability due to the effect of 533 

different characteristics of underlying surface and meteorological forcing. The latter comparison will introduce the 534 

representativeness error (Xia et al., 2014, Bi et al., 2016). By contrast, the former comparison improves the 535 

representativeness of the grid-based RZSM and reduces the spatial noise (Wang and Zeng, 2012, Xia et al., 2014, 536 

Bi et al., 2016, Zheng et al., 2022). Moreover, it is promising to reduce the uncertainty of spatial resampling by 537 

upscaling the sparse ground-based observations match to the footprint-scale satellite soil moisture retrievals or 538 

model grid scale through time stability concepts, block kriging, field campaign data or LSM and further improve 539 

the reliability of soil moisture validation (Crow et al., 2012).  540 
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5.6 Why is SMOS L4 RZSM underestimated? 541 

The SMOS L4 RZSM was obtained through SMOS L3 3-day SSM combined with modified exponential filter 542 

(Pablos et al., 2018). Figure 11 shows the comparison of SMOS L3 SSM and L4 RZSM against the in situ soil 543 

moisture observations. It can be observed that that both SMOS L3 SSM and L4 RZSM are smaller than the in situ 544 

observations with average bias value of -0.069 and -0.047 m3 m-3, respectively. Meanwhile, a previous study (Ford 545 

et al., 2014) has pointed that the error between in situ observations and estimation is far more than the error caused 546 

by the exponential filter model by partitioning the total error composed of the exponential filter model and inherent 547 

SMOS in situ differences. The underestimation of in situ observations by SMOS L3 SSM has been reported in 548 

previous studies (Djamai et al., 2015, Cui et al., 2017, Pablos et al., 2018, Ma et al., 2019, Wang et al., 2021). 549 

Therefore, it can be inferred that the underestimation of in situ observations by SMOS L3 SSM propagates to 550 

SMOS L4 RZSM. The microwave signal at L-Band is sensitive to soil moisture, to soil temperature and to the 551 

Vegetation Optical Depth (VOD) (Kerr et al., 2012). Using the L-band Microwave Emission of the Biosphere (L-552 

MEB) model (Wigneron et al., 2007), SMOS L3 soil moisture and Vegetation Optical Depth (VOD) can be 553 

simultaneously retrieved using multi-angular (~0-60°) and dual-polarization TB measurements from several orbits 554 

(Al Bitar et al., 2017). Soil temperature, VOD, SSM and soil roughness are the most sensitive parameters in the 555 

radiative transfer model (Wang et al., 2016, Fernandez-Moran et al., 2017). Among the four variables, VOD and 556 

soil temperature are often used to investigate the accuracy of SMOS L3 soil moisture retrievals (Cui et al., 2017, 557 

Wang et al., 2021, Zheng et al., 2022). Figure S2 shows that the model-generated soil temperature captures the 558 

temporal variation of the ground-based observations very well with R values above 0.97 except for NCEP CFSv2 559 

and SMOS L4 R values smaller than 0.9. Except for CLDAS (bias = 1.3 K), all model-generated temperature 560 

products show an underestimation with a mean bias value ranging from -9.8 to -1.9 K. The SMOS L4 RZSM is 561 

derived from SMOS L3 SSM (descending orbit, 06:00 PM), so the SMOS L3 soil temperature was compared with 562 

the in situ surface temperature observations at 06:00 PM and shows the negative bias value of -9.8 K, which is 563 

consistent with the conclusion drawn in previous studies (Cui et al., 2017, Ma et al., 2019, Wang et al., 2021, 564 

Zheng et al., 2022). In the SMOS L3 retrieval algorithm, underestimating soil temperature will cause the 565 

overestimation of soil emissivity, which finally may lead to the underestimation of soil moisture retrievals (Wang 566 

et al., 2021). VOD is also an important factor determining the accuracy of satellite-derived L4 soil moisture 567 

retrievals. In the study, the SMOS L3 SSM was found to be positively correlated with VOD with average R value 568 

of 0.28 (Fig. S3). Previous studies have illustrated that the VOD retrievals from SMOS may be noisy, which could 569 

be attributed to the effect of radio frequency interferences. Several authors showed that high VOD retrievals lead 570 
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to high soil moisture retrievals (Cui et al., 2017, Wang et al., 2021, Zheng et al., 2022). However, it cannot be 571 

inferred whether the VOD retrievals from SMOS lead to the overestimation or underestimation of SMOS L3 SSM. 572 

 573 

Fig. 11 Comparison of time series (left panel) and scatterplots (right panel) of SMOS L3 SSM vs. in situ SSM (Fig. 11a 574 

and b), SMOS L3 SSM vs. SMOS L4 RZSM (Fig. 11c and d) and SMOS L4 RZSM vs. in situ RZSM (Fig. 11e and f).575 
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6 Conclusion 576 

In this study, eight RZSM products were quantitatively evaluated against observations from 58 in situ soil 577 

moisture stations over the HRB in China. Statistical metrics of R, mean bias, RMSE and ubRMSE were used to 578 

quantify the performance of different RZSM products. The impact of several potential perturbing factors on the 579 

uncertainty of model-derived RZSM products was investigated. These factors included meteorological forcing 580 

variables (precipitation and air temperature), soil properties (organic matter, clay and sand content), soil 581 

stratification, model parameterizations and spatial scale mismatch. The main conclusions drawn in this study were 582 

as follows: 583 

(1) GLDAS_CLSM performed best among the RZSM products based on LSMs over the HRB in terms of R, 584 

ubRMSE and mean bias, followed by MERRA-2, CLDAS, SMAP, ERA5, NCEP CFSv2, and GLDAS_NOAH. 585 

The SMOS L4 product presented the lowest performance. All LSM-based products overestimated RZSM with 586 

median bias values ranging from 0.033 m3 m-3 (SMAP L4) to 0.116 m3 m-3 (CLDAS). On the other hand, SMOS 587 

L4 underestimated RZSM with a median bias value of -0.050 m3 m-3. ERA5 and CLDAS showed the largest bias 588 

values of 0.104 m3 m-3 and 0.116 m3 m-3, respectively.  589 

(2) The correlation coefficient R between any two of the seven LSM-based RZSM products varied from 0.68 590 

(ERA5 vs. CLDAS) to 0.95 (SMAP L4 vs. MERRA-2). The higher R value between SMAP L4 and MERRA-2 591 

RZSM was attributed to the fact that SMAP L4 and MERRA-2 are both based on CLSM and on the same surface 592 

meteorological forcing generated from the NASA GEOS-5 in which precipitation was corrected with the gauge-593 

based CPCU precipitation product. SMOS L4 did not correlate well with the other seven RZSM products with R 594 

ranging from 0.30 (MERRA-2) to 0.41 (GLDAS_NOAH) and with a negative bias ranging from -0.165 m3 m-3 595 

(SMOS L4 minus ERA5) to -0.077 m3 m-3 (SMOS L4 minus SMAP L4).  596 

(3) Precipitation could be the most important factor determining the accuracy of LSM-based RZSM. Apart 597 

from CLDAS, the various precipitation datasets all show an overestimation of the total precipitation amount and 598 

precipitation frequency (excessive number of occurrences of drizzle events). This may explain the overestimation 599 

of the in situ soil moisture observations by various RZSM products but not for CLDAS. Air temperature used to 600 

drive LSMs presented a cold bias ranging from -4.0 K (CLDAS) to -5.19 K (SMAP L4), which tended to decrease 601 

evapotranspiration and increase RZSM. 602 

(4) The underestimation of RZSM SMOS L4 can be related to the underestimation of SMOS L3 SSM.  603 

  604 
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