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Abstract. Compound flooding is a type of flood events caused by multiple flood drivers. The associated risk has usually 

been assessed using data-based statistical analyses or physics-based numerical models. This study proposes a compound 

flood (CF) risk assessment (CFRA) framework for coastal regions in the contiguous United States (CONUS). In this 

framework, a large-scale river model is coupled with a global ocean reanalysis dataset to (a) evaluate the CF exposure risk 

related to the coastal backwater effects on river basins, and (b) generate spatially distributed data for analyzing the CF hazard 10 

risk using a bivariate statistical model of river discharge and storm surge. The two kinds of risk are also combined to achieve 

a holistic understanding of the continental-scale CF comprehensive risk. The estimated CF risk shows remarkable inter- and 

intra-basin variabilities along the CONUS coast with more variabilities in the CF hazard risk over the US West and Gulf 

coastal basins. Different risk assessment methods present significantly different patterns in a few key regions, such as San 

Francisco Bay area, lower Mississippi River and Puget Sound. Our results highlight the needs to weigh different CF risk 15 

measures and avoid using single data-based or physics-based CFRAs. Uncertainty sources in these CFRAs include the use of 

gauge observations, which cannot account for the flow physics or resolve the spatial variability of risks, and 

underestimations of the flood extremes and the dependence of CF drivers in large-scale models, highlighting the importance 

of understanding the CF risks for developing a more robust CFRA. 

 20 
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1 Introduction 

Compound flooding is a type of multivariate flood events when various flood drivers occur concurrently in the same or 

adjacent regions (Santiago-Collazo et al., 2019). Specifically, over coastal regions, compound flooding is generally driven by 

fluvial and coastal processes. While an individual driver may not be extreme, the complex nonlinear interactions between 25 

fluvial and coastal processes can intensify the joint impact of multivariate drivers (Dykstra & Dzwonkowski, 2020), causing 

significant flood hazards (Mehran et al., 2017; AghaKouchak et al., 2018) and negative socio‐environmental impacts (Hinkel 

et al., 2014; Wahl et al., 2017). It is possible that a compound flood (CF) event is not caused by extreme weather (Couasnon 

et al., 2020) but rather occurs when the associated drivers exceed their respective thresholds (Zscheischler et al., 2020). 

https://doi.org/10.5194/hess-2023-31
Preprint. Discussion started: 2 February 2023
c© Author(s) 2023. CC BY 4.0 License.



2 
 

Assessing CF caused by co-occurring fluvial and coastal flooding is important for low-lying coastal regions where 680 30 

million people live globally and this number is projected to increase to over 1 billion by 2050 (Pörtner et al., 2019). Such 

flood hazard is intensified during “wet” storms by simultaneous rainfall and storm surge events and can be exacerbated by 

future sea level rise (Kulp and Strauss, 2019) and climate change (Bevacqua et al., 2019; Gallien et al., 2018; Gori & Lin, 

2022). To mitigate the CF risks, it is crucial to understand the driving processes and the related uncertainties in the risk 

assessment.  35 

Compound flood risk assessment (CFRA) is critical for flood planning, management, timely emergency response and 

decisions. CF risk has substantial spatial variabilities since the CF drivers and the CF risk dependence on the drivers are 

affected by the local conditions (Wahl et al., 2015), such as the characteristics of local basins that affect runoff generation, 

river routing (Hendry et al., 2019), synoptic weather systems, and storm characteristics (Seneviratne et al., 2012).  

At the regional scale, data-based CFRAs are used to assess the CF hazard risk which is defined as the frequency of a CF 40 

event. The CF hazard risk is usually represented by statistical dependence or co-occurrence rate of multiple flood drivers 

including discharge and surge (Moftakhari et al., 2017; Sadegh et al., 2018; Muñoz et al., 2020); precipitation and surge 

(Bevacqua et al., 2019); discharge, surge, and wave (Camus et al., 2021), etc. Data-based CFRAs perform statistical analyses 

using long-term data at paired gauges near the land-ocean interface. The data can be obtained either from large-scale 

numerical simulations (Eilander et al., 2020; Nasr et al., 2021) or gauge observations (Ward et al., 2018; Paprotny et al., 45 

2020). Bivariate or multivariate analyses are performed to examine the dependence structure among flood drivers (Nasr et 

al., 2021; Salvadori et al., 2007; Zscheischler et al., 2020) and joint exceedance probability when all drivers are above their 

predefined thresholds, e.g., 95th or 99th percentile (Kew et al., 2013, Salvadori et al., 2016).  

Data-based CFRAs can reveal critical regional variability in terms of the strength of individual drivers, their dependence 

structures, and joint occurrence, as well as the CF hotspots. Gauged observations provide a robust basis for large-scale risk 50 

assessments (Couasnon et al., 2020). The simple structure in statistical models facilitates the investigation of major CF 

drivers. However, the variability of CF risks is limited to the gauge level since data of the entire river basin is often not 

available. Consequently, the physical processes behind flood drivers and the influence of local basin characteristics and river 

topology cannot be fully explored.  

CF risk can vary substantially across rivers and estuaries (Xiao et al., 2021; Zhang et al., 2020) as a result of the impact of 55 

river topology and tidal variations (Bakhtyar et al., 2020; Gori et al., 2020) and the characteristics of drainage basins that 

regulate the river processes (Dykstra & Dzwonkowski, 2021). For example, river topology controls streamflow routing and 

backwater propagation through river networks (Bilskie & Hagen, 2018). Even if the data-based CFRA yields a high 

probability of CF event in a region, the CF exposure can be limited by a steep channel slope because the coastal backwater is 

not able to propagate upstream. Thus, the physical processes can influence the results of CFRA. Physics-based CFRAs have 60 

been applied to measure the population and property exposure to CF, i.e., the CF exposure risk, using spatially abundant 

observations (Dykstra & Dzwonkowski, 2020; Valle-Levinson et al., 2020), numerical models (Kumbier et al., 2018; Lian et 

al., 2013; Olbert et al., 2017; Ye et al., 2020), and the integration of both (Moftakhari et al., 2019; Muñoz et al., 2020; 
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Serafin et al., 2019). However, applications of physics-based CFRAs are mostly limited to basin scales because of the 

computational cost of high-resolution numerical models. 65 

Recent developments in large-scale river models (Feng et al., 2022; Ikeuchi et al., 2017; Luo et al., 2017) and global water 

level and storm surge reanalysis datasets (Muis et al., 2017, Muis et al., 2020) facilitate physics-based CFRA across rivers 

and estuaries. Large-scale river models can capture streamflow at fine temporal scales (Towner et al., 2019) and resolve 

backwater effects when coupled with the tide and surge induced water level (Feng et al., 2022; Muis et al., 2020). Such 

models offer an appropriate tool to evaluate spatially-varied flood drivers, flood extent and population exposure from basin 70 

to global scales over multiple decades.  

The CF hazard risk and exposure risk evaluated separately by the aforementioned data-based or physics-based CFRAs may 

produce inconsistent results (K. Xu et al., 2022). The risk determined based on either CFRA can cause biased judgments. For 

example, for high-gradient and sparsely populated regions, high CF hazard risk will not result in high CF exposure risk. 

Instead of advocating for either method, this study proposes a CFRA framework that analyzes both hazard and exposure 75 

risks, as well as the CF comprehensive risk that combines the two types of risks (Kron, 2005). We identify the strengths and 

limitations of each framework and highlight the possible uncertainties within the CFRA framework.   

A robust CFRA should consider the uncertainties associated with flood frequency and possible flood damages and provide a 

thorough understanding of the uncertainties related to the risk analysis (Apel et al., 2004). Uncertainty analysis is 

challenging due to various uncertainty sources and has drawn significant attention in risk assessments in the fields of coastal 80 

flooding (Hinkel et al., 2014; Vousdoukas et al., 2018; Parodi et al., 2020), fluvial flooding (Apel et al., 2004; Egorova et al., 

2008), and compound flooding (Dung et al., 2015; Sadegh et al., 2017; Sadegh et al., 2018; Zhang et al., 2020).    

The contiguous United States (CONUS) (Fig. 1) consists of 48 states, with coastal counties occupying about 10% of the total 

area. There are 17 major port cities, and ~40% of the US population residing in coastal counties are subject to high coastal 

flooding risks (Hanson et al., 2011). The CF hazard risk in CONUS has been assessed previously via statistical modeling for 85 

CF drivers’ dependence (Wahl et al., 2015; Nasr et al., 2021) and joint probability (Moftakhari et al., 2017; Ghanbari et al., 

2021) using data-based CFRAs. However, none of the existing studies have accounted for the variability in the fluvial 

process and river topology, the coastal backwater effects, as well as the associated uncertainty. The CF exposure risk is also 

poorly understood. To fill this gap, we develop a new CFRA framework based on both statistical analyses and a large-scale 

river model that is coupled with a global ocean model reanalysis product. We provide a holistic hazard and exposure risk 90 

assessment of the compounding fluvial and coastal flooding along the CONUS coastline, focusing on understanding the 

uncertainties in both data-based and physics-based CFRAs.  

2 Methodology 

This section describes the new CFRA framework and provides details of the statistical and river modeling approaches. We 

also describe the methods to identify uncertainties within the CFRA. 95 
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2.1 The CFRA framework 

The CFRA framework (Fig. 1) provides estimates of CF hazard, exposure, and comprehensive risks (Maskrey et al., 2011). 

The CF hazard risk refers to the temporal frequency of CF events and is derived from the bivariate statistical modeling of 

river discharge and storm surge. The CF exposure risk is defined as the exposed population within the CF backwater extent, 100 

which is modeled using a large-scale river model, the Model for Scale Adaptive River Transport (MOSART) (Li et al., 

2013). Correspondingly, the CF comprehensive risk is the combination of the hazard and exposure risks.  

MOSART is a physics-based river routing model at the basin to global scales. The model routes the total runoff from 

hillslope to river outlet through river networks with floodplain inundation represented using a macroscale inundation scheme 

(Luo et al., 2017). In this study, MOSART simulation is performed on the CONUS domain using a 1/8° grid from 1979 to 105 

2018, with the first year excluded as model spin-up time. For more detailed descriptions of the model, please refer to Li et 

al., 2022. In this study, the channel slope is derived from the 15 arcsec digital elevation model (DEM) of the HydroSHEDS 

and river vector data (Lehner et al., 2008, Lehner & Grill, 2013). The runoff forcing is from Global Reach-level Flood 

Reanalysis (GRFR) (Yang et al., 2021), a bias-corrected offline simulation from a high-resolution VIC land surface model 

forced with precipitation from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) (Beck et al., 2019) and other 110 

climatic forcings from ECMWF Reanalysis v5 (ERA5) (Hersbach et al., 2018). The downstream boundary is enforced at the 

river outlets for rivers with a drainage area >1000 km2 (169 in total). We apply two types of boundary condition (BC): (1) 

Time-varying storm surge (𝑆𝑆) level obtained from the third-generation Global Tide and Surge Model (GTSM) (Muis et al., 

2022), and (2) fixed mean sea level (MSL). For small river basins, we apply the normal depth boundary at their outlets (Feng 

et al., 2022), which is MOSART’s default setting. The GTSM is a global hydrodynamic model with a coastal resolution of 115 

~2.5 km (~1.25 km in Europe). Driven by the ERA5 atmospheric reanalysis dataset, the GTSM produces time series of the 

total water level and storm surge at global coasts from 1979 to 2018 (Muis et al., 2020), which have been validated globally 

(Dullaart et al., 2020, Muis et al., 2020).  

We run the statistical model with simulated streamflow from MOSART simulation forced by the dynamic GTSM BC. The 

MOSART simulated streamflow is validated at 61 USGS gauges (Fig. 2), which are selected based on the following criteria: 120 

(1) These gauges are located at the mainstem of the rivers and within 80 km of the corresponding river outlets; (2) the 

corresponding river reaches have upstream drainage areas larger than 1,000 km2; and (3) the gauge data have a temporal 

coverage longer than 10 years. The MOSART accuracy is evaluated using Kling-Gupta efficiency (KGE) (Gupta et al., 

2009) and coefficient of determination (𝑟!). MOSART shows reasonable accuracy in simulating daily streamflow (Fig. S1), 

with both 𝑟! and KGE generally over 0.6. The model performance is lower at a few gauges, likely caused by the coarse grid 125 

resolution (1/8°), approximations of river geometry in MOSART, and uncertainty in the GRFR runoff data. The GTSM 

simulated water level along the CONUS coastline is validated against the NOAA measurements at 34 tidal gauges (Rashid et 

al., 2019) that have 80% or more data available over the simulation period (Fig. 2). The GTSM modeled water level achieves 
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satisfactory performance along the CONUS coast when measured by 𝑟! and root mean squared error (RMSE) (Fig. S2): 𝑟! is 

generally over 0.75 and RMSE is below 0.5 m. There are only two exceptions on the East coast with either low 𝑟! or high 130 

RMSE, because the GTSM grid of the two gauges does not resolve the corresponding estuaries. Overall, the MOSART and 

GTSM model results are adequate for our goals which are to construct a new CFRA framework at the continental scale and 

study the associated uncertainties (Towner et al., 2019).  

The CF hazard risk is derived from the bivariate statistical modeling. The analysis is performed for the MOSART coastal 

cells which are defined as the grid cells within seven upstream cells from the corresponding river mouths. It is assumed that 135 

coastal processes have no impacts on the regions beyond this extent. The simulated daily streamflow (𝑄) at each selected cell 

is paired with the coastal storm surge (𝑆𝑆) level from the GTSM reanalysis dataset at the grid cell nearest to the outlet. The 

CF hazard risk is calculated by the following procedure:  

(a) storm surge event selection: identifying the extremes using the peak-over-threshold (POT) method and using an 

event selection scheme to extract all 𝑆𝑆 events with the 𝑆𝑆 level over 95th percentile of the corresponding station (Feng et 140 

al., 2022); 

(b) univariate analysis: fit the selected 𝑆𝑆  and 𝑄  into their marginal distributions and calculate the marginal 

exceedances, i.e., the probability of exceeding the 95th percentile of the respective marginal distributions;  

(c) dependence assessment: determine if the bivariate variables are dependent of each other based on Kendall’s rank 

correlation coefficient (𝜏) (Kendall, 1938);  145 

(d) bivariate analysis: calculate the joint exceedance probability based on the marginal distributions and the 

dependence structure.  

As the first step, the event selection only samples positive 𝑆𝑆 from the time series data, which facilitates the fitting of 

marginal distributions. The threshold of 0.95 ensures that at least 50 pairs of 𝑄 and 𝑆𝑆 data points are available for bivariate 

modeling. The occurrence probability of the storm surge events (𝑃(𝑆𝑆)) is calculated for each river basin as the ratio of the 150 

duration of all SS events divided by the simulation period.  

In the univariate analysis, the marginal distributions of 𝑄  and 𝑆𝑆  (𝑓"  and 𝑓## ) are selected based on the AIC (Akaike 

Information Criterion) statistics from 8 candidate distributions:  Gamma, Generalized Pareto, Pearson Type III, Lognormal, 

Generalized Extreme Value, Generalized Logistic, Log-gamma and Gumbel. The fitted distributions are tested using the 

Kolmogorov-Smirnov and chi-square tests for goodness of fit. The marginal exceedance probabilities of 𝑄 and 𝑆𝑆 (𝑃" and 155 

𝑃##)  are 

𝑃" = 𝐹"(𝑞∗),                                                                                        (1) 

𝑃## = 𝐹##(𝑠𝑠∗),                                                                                        (2) 

where 𝑞∗ and 𝑠𝑠∗ represent the 95th percentile values. 

The dependence between 𝑄 and 𝑆𝑆 is assessed for each MOSART cell by calculating the Kendall’s correlation (𝜏). The 160 

significance level is set as 0.05. We consider 𝑄 and 𝑆𝑆 to be dependent of each other when they display a significant positive 
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correlation (p-value<0.05). Although assessed in extensive CF literature, the dependence structure alone does not represent 

the CF hazard risk. For example, in a case when 𝑄 and 𝑆𝑆 are highly dependent, the CF risk can still be low if both drivers 

do not show frequent extremes. Thus, the joint exceedance probability is calculated based on the “AND” hazard scenarios 

(Salvadori et al., 2016), which assumes both 𝑄 and 𝑆𝑆 exceed their corresponding thresholds. 165 

The joint exceedance probability (𝑃",##) is given as   

𝑃",## = 1 − 𝐹"(𝑞∗) − 𝐹##(𝑠𝑠∗) + 𝐹".##(𝑞∗, 𝑠𝑠∗),                                                                        (3) 

where 𝐹",## is the cumulative joint distribution which is a function of the cumulative marginal distributions, 𝐹"  and 𝐹##. 

When 𝑄 and 𝑆𝑆 are independent, 𝐹".##(𝑞∗, 𝑠𝑠∗) is simply the product of the marginal exceedance probability: 

𝐹".##(𝑞∗, 𝑠𝑠∗) = 𝐹"(𝑞∗) ∙ 𝐹##(𝑠𝑠∗).                                                                                                       (4) 170 

When 𝑄 and 𝑆𝑆 are dependent, the joint distribution is expressed using a copula function as (Grimaldi & Serinaldi, 2006): 

𝐹".##(𝑞∗, 𝑠𝑠∗) = 𝐶",##(𝐹"(𝑞∗) ∙ 𝐹##(𝑠𝑠∗)),                                                                                     (5) 

where 𝐶",## is the bivariate copula function that allows the analytical formulation of the dependence structure. For each 

MOSART cell where 𝑄 and 𝑆𝑆 are dependent, the copula function is selected based on AIC from 24 candidates (Moftakhari 

et al., 2017) using an R-package (Kojadinovic & Yan, 2010). The selected copula function is then tested using the Cramer-175 

von Mises goodness-of-fit test. The marginal exceedance probabilities (𝑃" and 𝑃##) and their joint exceedance probability 

(𝑃",##) are conditioned on the occurrence of the storm surge events as they are calculated from the SS data sampled in Step 

(a). These probabilities are multiplied by 𝑃(𝑆𝑆) to obtain the unconditional probabilities.   

The CF exposure risk is defined as the accumulated population (𝑊') over the coastal backwater flooded region during CF 

events when 𝑄 > 𝑞∗ and 𝑆𝑆 > 𝑠𝑠∗. To calculate 𝑊', we use the 1000-m resolution Global Human Settlement Layer (GHSL) 180 

population data that is updated every five years from 1975 to 2020 (Schiavina et al., 2019). We aggregate the data to the 1/8° 

MOSART grid and linearly interpolate the data over the simulation period. The backwater flooded fraction caused by CF is 

identified by comparing the simulations with the two different downstream BCs:   

∆𝑓(𝑡, 𝑖) = 𝑓()#*(𝑡, 𝑖) − 𝑓*#+(𝑡, 𝑖),                                                              (6) 

where 𝑓 represents the simulated flooded fraction of each grid cell, 𝑡 is the model output time step during CF and 𝑖 is the 185 

grid cell index of the MOSART coastal cells. During a single CF event, human exposure in a grid cell is the product of the 

corresponding population and ∆𝑓. Thus, the CF exposure risk is the accumulated human exposure over all CF events during 

the simulation period.  

The CF comprehensive risk is represented by a risk index (C𝐹𝑅𝐼), defined as the product of the CF exposure risk and the CF 

hazard risk (Judi et al., 2018; Kalyanapu et al., 2015; Phongsapan et al., 2019): 190 

𝐶𝐹𝑅𝐼 = 10 × 𝐶𝐹𝐻𝐼 × 𝐶𝐹𝐸𝐼,                                                                            (7) 

where 10 is the scaling factor that upscales the risk index to better visualize the results, and the CF hazard index (𝐶𝐹𝐻𝐼) and 

the CF exposure index (𝐶𝐹𝐸𝐼) are obtained by normalizing 𝑃",## and 𝑊' with their corresponding 95th percentile values. We 

do not use the maximum value as the normalizing constant because the maximums can be too extreme and likely 
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concentrates on the river outlets where 𝐶𝐹𝐸𝐼 is high. The use of such a normalization would shadow the 𝐶𝐹𝑅𝐼s at upstream 195 

regions. Our approach transforms the probability of occurrence into a direct measure of human exposure. However, it should 

be noted that the combination of different types of risks, despite providing a comprehensive estimation of the CF risk, is 

subjective and may affect the risk assessment results. 

2.2 Uncertainty analysis in CFRA 

In this section, we investigate the uncertainty sources in the large-scale CFRAs. Then, we examine the spatial variability in 200 

streamflow and storm surge and the relative impacts of riverbed elevations on the physics-based CFRA. The uncertainties in 

the data-based and physics-based CFRAs are also assessed by comparing the risk estimates at paired observation gauges. 

While it is challenging to accurately quantify such uncertainties in the CFRAs, we aim to highlight the significance of 

different uncertainty sources. 

2.2.1 CFRA uncertainty sources 205 

The uncertainty in CFRA can generally be classified into epistemic uncertainty and aleatory uncertainty. Aleatory 

uncertainty is inherent to the intrinsic variability in natural and anthropogenic systems (Hall, 2003). Epistemic uncertainty is 

due to limited knowledge of natural systems and can be reduced with an improved understanding of the systems (Ferson & 

Ginzburg, 1996; Uusitalo et al., 2015). Herein we list and classify the possible uncertainty sources in the CFRA (Table 1). 

This classification may be subjective because sometimes the distinction between incomplete knowledge of the systems and 210 

natural variabilities cannot be easily identified (Apel et al., 2004).  

In data-based CFRAs, aleatory uncertainties are related to the spatial variabilities of the fluvial processes and river topology 

that are not well represented in gauge data (Fan et al., 2021) and the stationary assumption of statistical models (Ghanbari et 

al., 2021). It is widely known that the CF risk is nonstationary due to the changing climate. Additionally, the flood drivers 

vary significantly depending on the local topology (Sun et al., 2021), which is usually not accounted for in data-based 215 

CFRAs. The timing of peak floods changes from an upstream gauge to the outlet and the storm surge varies between an 

offshore tidal gauge and the river mouth. Although the data-based CFRAs use a time window of 1~5 day (Ward et al., 2018; 

Wu et al., 2021) to account for this time lag, this procedure inevitably increases the possibility of falsely matching two 

independent events when distant observation gauges are used. Epistemic uncertainties in statistical models can include 

measurement errors and model structure uncertainty. Although the errors of the water level measurements at National 220 

Oceanic and Atmospheric Administration (NOAA) tidal gauges are usually small (O(1mm)) (Asher et al., 2019), the quality 

of the U.S. Geological Survey (USGS) measured streamflow varies significantly. For example, it was found that the USGS 

streamflow errors can reach over 8% (Turnipseed & Sauer, 2010), and be even much larger during extreme events as the 

measurements are not sufficiently continuous to cover many extremes (Kiang et al., 2018). Moreover, USGS gauges may not 

be installed exactly at the river-ocean interface, which cannot capture the river discharge to the ocean. The statistical analysis 225 

of CF risks based on these measurements will inevitably be biased. Moreover, model structure uncertainties always exist in 
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statistical models, such as the selection of marginal distribution functions and dependence models. The latter is critical for 

computing the joint exceedance probability of CF (Fan et al., 2021).  

Numerical models used in both data-based and physics-based CFRAs also have many uncertainties. Intrinsically, there is 

uncertain climate change that modifies climatological and societal systems (Bouwer, 2013). For numerical models, the 230 

epistemic uncertainty can be classified into uncertainties in model parameters, structure, and input data. The parameter 

uncertainty and the data uncertainty are caused by uncertain model parameters (e.g., channel roughness coefficient), 

uncertain river topology, and channel geometry, respectively. In large-scale river models, the hydraulic physics are usually 

simplified to guarantee computational efficiency, such as using an empirical formulation of floodplain inundation (Yamazaki 

et al., 2012), approximations in flood wave physics (Hodges, 2013). In addition, coarse mesh resolutions used by large-scale 235 

river models can cause unresolved river networks and topology (Parodi et al., 2020). All these uncertainties could be related 

to inaccurate assessments of the event extremes (Muis et al., 2017) and flood drivers’ dependence (Nasr et al., 2021). 

2.2.2 Impact of riverbed elevation 

The riverbed elevation determines the extent of coastal backwater propagation. To understand its impacts on CF risks, a 

random forest analysis (Breiman, 2001) is performed to evaluate the relative importance of riverbed elevation against 𝑄 and 240 

𝑆𝑆 to the backwater effects. 

Random forest models are widely used to assess the relative importance of predictors with respect to a response variable 

(Breiman, 2001; Woolway et al., 2021). Here, the predictor variables are 𝑄, 𝑆𝑆 and the riverbed elevation. For each coastal 

grid cell, we use the MOSART simulated 𝑄, the GTSM simulated 𝑆𝑆 at the river outlet, and the grid cell elevation. The 

response variable is the backwater-induced water volume change (∆𝑉): 245 

∆𝑉(𝑡, 𝑖) = @ℎ()#*(𝑡, 𝑖) − ℎ*#+(𝑡, 𝑖)B𝐿(𝑖)𝑊(𝑖) + (𝑓𝑣()#*(𝑡, 𝑖) − 𝑓𝑣*#+(𝑡, 𝑖)),                                                          (8) 

where ℎ is the channel water depth at the 𝑖-th grid cell and the time t, 𝐿 is the main channel length of the 𝑖-th cell and 𝑊 is 

the corresponding width, and 𝑓𝑣 is the floodplain water volume. The predictor and response variables are normalized to [0,1] 

before fitting into the random forest model. We fit independent random forest models for every coastal river basin, with sizes 

varying from ~10 grid cells to >100 cells. 250 

2.2.3 Impact of fluvial processes 

The impact of complex fluvial processes on streamflow is significant. The shift in streamflow peaks from an upstream 

location to the river outlet will cause biases in the CFRA if the upstream 𝑄 measurements are used in the CF risk analysis. 

To identify the associated uncertainty, we compute the time-averaged shift of modeled 𝑄  or 𝑆𝑆  peaks between the 

observation gauges and the corresponding river outlets over the simulation period. The calculation of the shift in peaks 255 

includes the following steps: (i) for a USGS or NOAA gauge, we first locate the MOSART or GTSM grid cell nearest to the 

corresponding river outlet and extract the 𝑄 or 𝑆𝑆 extreme events of the grid cell; (ii) we then identify the peak date of each 
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extreme event and define a time window of ±5 days; (iii) over the defined time window, we search for the date of the peak 

simulated 𝑄 or 𝑆𝑆 at the MOSART or GTSM grid cell where the USGS or NOAA gauge is located and calculate the 

difference between the two peak dates. If no peaks are identified for the gauge grid cells, we assume that the difference is 260 

five days.  

We also compute the flow time over the river basins, defined as the time that terrestrial runoff takes to travel from an 

upstream cell to the outlet via the river network. The flow time is determined by the basin characteristics, such as channel 

geometry, meandering and riverbed elevation. A longer flow time typically implies a larger time shift in streamflow peaks. 

In this study, the calculated flow time of each grid cell is averaged over the simulation period. 265 

2.2.4 Model-data comparison 

Lastly, we also evaluate the uncertainty caused by using measured versus modeled 𝑄 and 𝑆𝑆 for analysis. For this, we 

compare the statistical metrics of 𝑃", 𝑃##, 𝜏 and 𝑃",## for the modeled and measured pairs of 𝑄 and 𝑆𝑆 at 24 river basins 

(Table S1), where a USGS gauge paired with a neighboring NOAA tidal gauge can be found. We consider three 

combinations of  𝑄 and 𝑆𝑆: a) MOSART modeled 𝑄 and GTSM modeled 𝑆𝑆 at the river outlet, b) MOSART modeled 𝑄 at 270 

the USGS gauge and GTSM modeled 𝑆𝑆 at the NOAA gauge, and c) USGS measured 𝑄 and NOAA measured 𝑆𝑆. The 

comparison between the combinations (a) and (c) represents the uncertainty due to fluvial processes and river topology. The 

comparison between the combinations (b) and (c) represents the uncertainty from the numerical modeling.  

3 Results 

3.1 Uncertainty in CFRA 275 

3.1.1 The relative importance of riverbed elevation 

Our result shows the crucial role of the riverbed elevation in determining the CF risks in the river basins, which contrasts 

with previous studies that mostly focused on the dynamics of 𝑄 and 𝑆𝑆 (Fig. 3). In particular, the elevation effect dominates 

in the Northwest coast (Fig. 3a), where the large elevation gradient of the riverbed impedes the propagation of coastal 

backwaters so the areas of high CF risks are restricted to the coastline. In the other regions, the relative importance of 𝑄 and 280 

𝑆𝑆 varies, which also depends on the riverbed elevation. The 𝑆𝑆 impact is limited along the West coast due to the elevated 

river channels but exceeds the impact of 𝑄 in the low-lying East and Gulf coasts (Fig. 3d). The importance of the riverbed 

elevation to CF risks identified in this study is consistent with findings from some local studies (Bilskie & Hagen, 2018, Gori 

et al., 2020). In brief, the relative importance of the CF drivers varies depending on local basin characteristics. 
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3.1.2 Shift in peaks 285 

The shifted peak days in 𝑄 and 𝑆𝑆 from the USGS or NOAA gauges to the corresponding river outlet show that the data-

based CFRA may have large uncertainties (Fig. 4). The averaged time shift in the 𝑄 peaks varies from 1 to 5 days, depending 

on the local topology. In the northwestern and northeastern river basins, where the elevation gradient is large, the flow time 

is ~ 1 day and the resulting shifts are small (~ 1±1 day). In contrast, the shifts and the flow time are much larger (~ 3±1 

days) in the low-gradient regions of the East and Gulf coasts. The time shifts in the 𝑆𝑆 peaks generally depend on the 290 

distance between the tidal gauges and river mouth. In CONUS, the shifts are generally small (~ 1 day) with lower 

variabilities. Our results show that the combined shifts in the peaks of the two flood drivers in some locations can be greater 

than five days, a duration used by many previous studies as the time window to identify extreme CF events (Ward et al., 

2018; Wu et al., 2021).   

3.1.3 Model-data comparison 295 

We compare the marginal exceedance probabilities of discharge and storm surge (𝑃" and 𝑃##), the Kendall’s rank correlation 

coefficient (𝜏) and the joint exceedance probability (𝑃",##) computed from the three combinations of 𝑄 and 𝑆𝑆 described in 

Section 2.2.3 at 26 river basins (Fig. 5). For the same river basin, these statistical metrics can differ significantly among the 

combinations, indicating substantial uncertainties due to fluvial processes and river topology, as well as from the numerical 

modeling. Generally, 𝑃## is more consistent among the three combinations, because the time shifts in the 𝑆𝑆 peaks are small 300 

(Fig. 4). In contrast, 𝑃", 𝜏 and 𝑃",## show greater variations.  

There are significant differences of 𝑃", 𝜏 and 𝑃",## between the combinations of the modeled 𝑄 and 𝑆𝑆 at the interface and at 

the observation gauges, particularly in the West coast (black vs. blue bars in Fig. 5). As discussed in Section 2.2.3, this 

indicates the spatial variabilities of the CF risk within the river basins and the associated uncertainty in the data-based 

CFRA. The uncertainty in 𝑃",## varies along the CONUS coast and is more distinct in several basins (e.g., 14243000 and 305 

11530500) due to the larger variability in 𝑃" and higher 𝜏. 

There are also significant differences of 𝑃", 𝜏 and 𝑃",## between the combinations of modeled and measured 𝑄 and 𝑆𝑆 at 

observation gauges across all CONUS coasts (blue vs. red bars in Fig. 5). As mentioned in Section 2.2.3, the differences 

indicate the uncertainty within the numerical models that could influence the assessment of the CF risk. The values of 𝑃" and 

𝑃##  calculated from the modeled 𝑄 and 𝑆𝑆 are generally smaller than those calculated from observations. This is likely 310 

because the MOSART and GTSM models underestimate the 𝑄 and 𝑆𝑆 extremes, a well-known uncertainty in large-scale 

models (Muis et al., 2017; Yang et al., 2021). It should be noted that the USGS reported streamflow peaks are likely 

uncertain because USGS derives streamflow based on the stage-discharge relationship, but the data used for the derivation 

are rarely collected during extreme events (Turnipseed & Sauer, 2010). Besides the uncertainties mentioned above, we find 

that the use of modeled  𝑄 and 𝑆𝑆 could lead to underestimation of the dependence (𝜏) and thus the joint risk (𝑃",##), 315 
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particularly in the West and Northeast coasts (Fig. 5). The uncertainties in 𝑃" and 𝜏 are more important in determining the 

uncertainty in 𝑃",## in the West and East coasts, respectively.  

We provide a few example basins to demonstrate the various types of uncertainties (Figs. S3-S7). Figures S3 and S4 show 

the epistemic uncertainty caused by inappropriate in-situ locations. In Figure S3, the streamflow measured at the tributary of 

a mainstem is much lower and cannot represent the river discharge at the outlet. In Figure S4, 𝑆𝑆 has a different probability 320 

distribution than that modeled at the river-ocean interface. Gauge 9419750, despite being close enough to the river outlets, is 

blocked by man-made barrier islands, thus presenting a different 𝑆𝑆 signal. Figure S5 shows the aleatory uncertainty due to 

the variability in 𝑄 between the USGS gauge and the river outlet. While the probability distributions of 𝑄 and 𝑆𝑆 are similar 

among the three cases, 𝑄 at the upstream gauge typically yields smaller peaks in correspondence to the 𝑆𝑆 peaks, resulting in 

lower 𝜏. The epistemic uncertainties in Figures S6 and S7 are caused by the GTSM and MOSART models, respectively. In 325 

both examples, the dependence between 𝑄 and 𝑆𝑆 is underestimated because GTSM and MOSART underestimate the peaks 

in 𝑆𝑆  and 𝑄 , respectively. In particular, the MOSART performance is poor in Figure S7, which yields a different 𝑄 

distribution.  

The uncertainty analyses underscore the uncertainties in both data-based and physics-based CFRAs, which should be made 

aware of in applications. Importantly, while the uncertainty in the physics-based CFRA may be reduced by improving the 330 

numerical models, it is not possible for the data-based CFRA to account for the physical processes and the variability at the 

basin scale, such as the varied streamflow and backwater propagation extent. 

3.2 CFRA 

This section shows the CFRA framework that provides spatially distributed CF risk estimates based on the modeled 𝑄 and 

𝑆𝑆 and captures the impacts of fluvial processes and riverbed elevation. The CF comprehensive risk combines the CF hazard 335 

risk derived from statistical models and the CF exposure risk simulated by the coupled MOSART and GTSM. 

3.2.1 CF hazard risk 

The CF hazard risk is represented by the joint exceedance probability of 𝑄 and 𝑆𝑆 (𝑃",##), which depends on their respective 

marginal exceedance probability (𝑃"  and 𝑃## ) and the dependence structure (Fig. 6). The spatial map shows larger 𝑃" 

variations in the West and Gulf coasts but a more uniform 𝑃" pattern in the East coast. The highest 𝑃" (~ 3.0%) is observed 340 

in the Northwest coast (Fig. 6), where the corresponding 𝑃##  is low (~ 1.0%). The variability in 𝑃##  is much smaller 

compared to that of 𝑃". The values of 𝑃## are high (~ 2.0%) in the western Gulf coast in correspondence with the moderate 

𝑃" of the same basins (~ 2.5%). Moreover, 𝑃" shows critical intra-basin variability within several basins, with a standard 

deviation of up to 1%. The marginal probability provides the basis to derive the drivers’ dependence structure, copula 

functions, and joint probability.  345 
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The result of the Kendall’s rank correlation coefficient (𝜏) shows large inter- and intra-basin variabilities of 𝜏 in CONUS 

(Fig. 7). The highest dependence is observed along the Northwest coast, where 𝜏 is approximately 0.2. The other coastal 

regions generally have a lower 𝜏 (0~0.1) and the 𝜏 value normally decreases upstream within the river basins. The intra-basin 

variability of 𝜏 is the greatest in the West coast.  

Lastly, we compute 𝑃",## for the river basins along the CONUS coast (Fig. 8). The value of 𝑃",## shows larger variabilities 350 

than that of 𝑃" , 𝑃,,  and 𝜏  as it includes uncertainties in the marginal distribution and dependence structure as well as 

uncertainty of the copula function selection.  The highest 𝑃",## (~0.4%) is observed in the Northwest and Gulf coasts, while 

that in the East coast is generally less than 0.3%. The greater variability of 𝑃",##  in the West and Gulf coast basins is 

consistent with the spatial pattern of the marginal exceedance probability and dependence (Figs. 6 and 7). Interestingly, in 

several basins (Fig. S8), 𝑃",## differs significantly between the mainstem and tributaries. 355 

3.2.2 CF exposure risk 

The cumulative population exposed to CF over the simulation period is computed to represent the CF exposure risk (Fig. 9). 

The human exposure to CF varies from 0 to 10,000 people and is restricted to the coastline. This is not unexpected because 

the CF-impacted riverine regions are governed by the river topology and the amplitude of 𝑆𝑆 at the river outlets. Overall, this 

CF exposure risk is low because (a) the backwater extent is limited to the low-gradient regions, and (b) the occurrence of CF 360 

events is low over the 40-year period. Although the CF exposure for the West coast is only observed at the river outlets 

because of the large riverbed elevation impact (Fig. 7), it can extend several cells (O(10- m)) upstream in several river 

basins of the East and Gulf coasts. Also, the CF exposure risk has a spatial variability very different from the CF hazard risk, 

for example in the Northwest coast. These findings demonstrate the necessity to account for the impacts of river topology 

and calculate spatially distributed risks in CFRA. 365 

3.2.3 CF comprehensive risk 

The CF comprehensive risk is derived based on the CF hazard and exposure risks (Fig. 10). The CF comprehensive risk 

varies significantly along the CONUS coast and is the highest at the river outlets although the risk can be present to a much 

larger extent over most river basins of the East and Gulf coasts due to the upstream propagation of backwaters. This pattern 

is consistent with the flood exposure risk. In a few low-lying regions of the East and Gulf coasts, the CF risk extends several 370 

cells upstream from the river-ocean interface. In addition, we identify a few hotspots ranked using the 𝐶𝐹𝑅𝐼 averaged over a 

river basin (Table 2). Table 2 shows that the coastal area of San Joaquin River and Hudson River where Silicon Valley and 

New York City are located, respectively, are particularly vulnerable to CF. The total exposed population and the maximum 

exceedance probability (𝑃",##) are also provided. Although the three metrics correspond to different types of CF risks, these 

hotspots require extra attention in CF management. They also provide target regions where the computational mesh should 375 

be refined to improve model accuracy. Overall, the comprehensive risk accounts for the occurrence rate of CF events, the 
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impacts of basin characteristics and population density. The proposed CFRA avoids the biased risk estimation made by 

either data-based or physics-based CFRA alone and can capture the minimum risk from their respective aspect. 

4 Discussions 

4.1 Differences between CFRAs 380 

We examined the CF risk along the CONUS coast using different approaches based on the co-occurrence probability of a 

fluvial flood and a storm surge event, the human exposure to the CF events, as well as their combined impacts. The 

comparison shows that the different CFRA approaches result in significantly different CF risk estimates. The difference is 

remarkable in a few key regions. For example, in the San Francisco Bay area, while the CF hazard risk is low, the CF 

exposure risk is high due to the dense population and flat topology. In contrast, although the lower Mississippi River basin is 385 

endangered by backwater flooding, the probability of a CF event is low over the 40-year period. The difference in the 

estimated risks could be partially explained by whether more detailed physical processes and topological factors are 

considered. However, the CF comprehensive risk is also valuable. For example, we find that although the Northwest coast 

(e.g., Puget Sound) has a high CF hazard risk, such risk is only restricted to the coastline and does not extend to the upstream 

regions. In summary, CFRA should not rely on any single method;  more comprehensive thinking is needed considering the 390 

different characteristics among the different risk types.  

The proposed CFRA also draws attention to the CF risk in upstream river basins which are usually ignored in the large-scale 

data-based CFRA. Typically, the flood risks related to coastal hazards (e.g., storm surge) are limited to the land-ocean 

interface. However, through the river networks, the backwater effects can propagate upstream by hundreds of kilometers in 

low-lying watersheds (Lamb et al., 2012). Our results show the CF risks extending upstream over several river basins (Fig. 9 395 

and 10). Considering climate change impacts, we expect the CF risk will move further upstream due to the elevated sea level 

(Kulp and Strauss, 2019) and more frequent storm surge events (Camelo et al., 2020).  

4.2 Limitations and Future work 

The CFRA framework provides an effective tool to support large-scale CF risk management in CONUS. However, this study 

has a few limitations that warrant further improvements. First, the 40-year time series is relatively short for deriving robust 400 

extreme statistics, as extreme events can have much longer return periods (Apel et al., 2004). This type of epistemic 

uncertainty can be reduced by using data that covers a longer period. The simulation period is determined by the available 

large-scale runoff forcing (Yang et al., 2021) and the GTSM reanalysis dataset (Muis et al., 2022). Thus, long-term forcing 

dataset is desired for the CF modeling and analysis. Second, we only consider two CF drivers and neglect their complex 

interactions. The storm surge-induced backwater effects are prescribed by the time series at the MOSART boundary. 405 

However, the actual CF is driven by the interactive processes between multiple drivers, including precipitation, land surface 

runoff and inundation, river discharge and coastal storm surge and wave (Nasr et al., 2021). Such interactions can be 
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simulated using Earth System Models (ESMs) with fully coupled land, river and ocean modeling components. Interactive 

coupling has been developed within the Energy Exascale Earth System Model (E3SM) (Feng et al., 2022; D. Xu et al., 2022) 

for further CFRA developments. Third, the MOSART simulated floodplain inundation could be a sensitive factor when 410 

estimating the CF exposure risk, as MOSART employs a macro-scale inundation scheme (Luo et al., 2017) and the model 

has limited resolution for evaluating risk in high population density areas. Validation of the floodplain inundation over 

coastal river basins is challenging because the CF inundation data is limited and such data does not differentiate coastal 

inundation and river floodplain inundation. Last but not least, the uncertainty sources identified in this study are undoubtedly 

only “the tip of the iceberg”. There are many other uncertainties related to parameterization and structural errors of data and 415 

physical models. For example, the 1/8° MOSART grid is appropriate for continental-scale multi-decadal simulations. The 

mesh resolution is insufficient to resolve the distributed risk within a grid cell, as neither human residence nor topology can 

be resolved to represent the flood exposure. The input data, such as surface runoff and digital elevation models (DEMs), 

have uncertainties that should be quantified. This is a well-acknowledged challenge in large-scale modeling (Cook & 

Merwade, 2009; Van de Sande et al., 2012). 420 

5 Conclusion 

This research proposes a CFRA framework to investigate the CF risk along the CONUS coast. This framework includes both 

data-based and physics-based CFRAs and assesses the CF hazard, exposure and comprehensive risks using a bivariate 

statistical model of river discharge and storm surge and the large-scale MOSART river model coupled with the global 

GTSM reanalysis dataset. The resulting CF risks show substantial variabilities at the inter- and intra-basin scales. In 425 

particular, the variability is significant in the CF hazard risk and along the West and Gulf coasts. More importantly, the three 

risk measures show very different spatial patterns and hotspots depending on the local settings. The high occurrence 

probability of a CF event does not necessarily pose high CF exposure risks. Thus, it is important to understand the different 

risk types and avoid biased risk estimation using either data-based or physics-based assessment methods singly. Using the 

new CF comprehensive risk index, we identify that the coastal area of San Joaquin River and Hudson River where Silicon 430 

Valley and New York City are located, respectively, are particularly vulnerable to CF.  

Moreover, we identify the uncertainty sources in the existing CFRAs. Even though data-based CFRA is widely used in 

continental and global domains, the estimated CF risks based on such CFRAs could be too high because flow physics, such 

as complex fluvial processes and the backwater propagation, are neglected. The physics-based CFRA is more appropriate for 

analyzing the spatially-distributed risk but the large-scale numerical models likely underestimate the flood extremes and the 435 

dependence structure among the CF drivers. A more robust CFRA requires improved performance in large-scale modeling.  

In the future, we plan to apply the land-river-ocean fully coupled E3SM on a coastal-refined mesh to better represent the 

interactive CF physics and develop a more robust CFRA. 
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Code and data availability 

The streamflow measurements are downloaded from USGS website (https://waterdata.usgs.gov/nwis) (U.S. Geological 440 

Survey, 2016). The water level observation along the CONUS coastline is obtained from NOAA tides & currents website ( 

https://tidesandcurrents.noaa.gov/) (NOAA, 2022). The GTSM storm surge (𝑆𝑆) simulation is available from the Copernicus 

Climate Change Service (C3S) Climate Data Store (Yan et al., 2022). The MOSART source code and the statistical analysis 

code of the compound flood risk assessment are available on Zenodo (https://doi.org/10.5281/zenodo.7588256, Feng, 2023). 
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Figure 1: The CFRA framework. Data, numerical modeling, statistical modeling, and risk calculation are represented by green, 
orange, gray, and blue colors, respectively. 

 
Figure 2: Study domain and observations overlaid on the USGS 3D elevation. The map is created using the free and open source 720 
QGIS on the USGS 3D Elevation Program (3DEP) Hillshade elevation map (U.S. Geological Survey, 2019). The red and blue 
circles represent the USGS and NOAA gauges, respectively. The gauges used for identifying uncertainties are labeled with the 
gauge ID. The black solid lines are the coastal river network that consists of at most seven cells from each river outlet.  
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Figure 3: The relative importance of 𝑸 (red), 𝑺𝑺 (blue) and relative riverbed elevation (gray) along the (a) West coast, (b) East 725 
coast, (c) CONUS, and (d) Gulf coast. The river networks within the MOSART coastal cells are presented using black solid lines. 
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Figure 4: The flow time at the MOSART coastal cells and the shifted days in the 𝑸 and 𝑺𝑺 peaks between the observation gauges 
and the corresponding river outlets along the (a) West coast, (b) East coast, (c) CONUS, and (d) Gulf coast. The rectangular box 
represents the averaged shift over the simulation period and the error bar represents the standard deviation. The gray box is used 730 
as a reference of 3 days for comparison. 
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Figure 5: The comparison of 𝑷𝑸, 𝑷𝑺𝑺, 𝝉 and 𝑷𝑸,𝑺𝑺 computed from the modeled 𝑸 and 𝑺𝑺 at the river outlet (black), modeled 𝑸 and 
𝑺𝑺 at the observation gauges (blue), measured 𝑸 and 𝑺𝑺 at the observation gauges (pink). The number on top of each bar is the 
percentage of the data coverage.    735 
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Figure 6: The marginal exceedance probability 𝑷𝑸 is represented by the contour map and 𝑷𝑺𝑺 is represented by the colored circles 
located at the GTSM cells nearest to the corresponding outlets. The basin-averaged 𝑷𝑸 is provided in the counter-clockwise order 
of the basins along the US coast in the lower left subplot of (b) where the error bars represent the standard deviation of 𝑷𝑸 in each 
basin. 740 
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Figure 7: The Kendall's correlation coefficient (𝝉). The subplot in (b) is the basin-averaged 𝝉 with each error bar representing the 
standard deviation. 
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Figure 8: The joint exceedance probability (𝑷𝑸,𝑺𝑺). The subplot in (b) is the basin-averaged 𝑷𝑸,𝑺𝑺 with each error bar representing 745 
the standard deviation. 
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Figure 9: The accumulated population exposed to CF over the simulation period. 
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Figure 10: The CF comprehensive risk (CFRI) along the CONUS coast. 750 
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Table 1: Uncertainty sources in CFRA. Sources in boldfaces are considered in the analysis. 

Module Aleatory uncertainty Epistemic uncertainty 

Statistical  

models 

 

Spatial variability in fluvial processes and river 
topology 

Measurement uncertainty (e.g., 
measurement errors, inappropriate in-
situ locations, and limited data 
coverage or partial time series) 

  

Non-stationarity  

Model structure uncertainty (e.g., 
selection of probability distribution 
functions and selection of dependence 
models) 

  

Numerical models 

Future climate change Parameter uncertainty 

 
Data uncertainty (e.g., uncertain river 
topology and channel geometry data) 

 

Model structure uncertainty (e.g., 
simplified flood wave physics, uncertain 
runoff generation schemes, and coarse 
spatial resolutions) 

  
 
 

 765 
Table 2: Top ten rivers with high CF risk. The locations are shown in Figure 10. CFRI represents the averaged CF comprehensive 
risk index (Eq (7)) in the river basin. Population exposure is the total population exposed to CF over the simulation period. 

No. River name River outlet Location CFRI 

Population 

exposure 

[person] 

Maximum CF 

probability (%) 

1 Ogeechee River, GA 31.9375, -81.1875 38.617 4,617 0.158 

2 Cooper River, SC 32.8125, -79.9375 36.468 11,096 0.264 

3 San Joaquin River, CA 38.0625, -122.3125 33.182 19,621 0.075 

4 Pearl River, MS 30.1875, -89.8125 19.829 103,314 0.131 

5 Hudson River, NY 40.6875, -74.0625 19.516 22,542 0.151 
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6 White Oak River, NC 34.6875, -77.0625 19.076 1,849 0.283 

7 Biloxi River, MS 30.4375, -88.9375 12.414 2,261 0.253 

8 Siletz River, OR 44.9375, -124.0625   11.467 2,438 0.278 

9 Columbia River, WA 47.6875, -122.4375   10.323 1,567 0.310   

10 Taunton River, MA 41.6875, -71.1875   9.528  3,795 0.186 
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