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Reviewer 3 
Reviewer Comments:  

The paper assesses compound flooding for CONUS based on a statistical analysis of compound flood 
drivers and an analysis of population exposed to flooding from coastal backwater. It also investigates the 
skill of the model to represent observed peak timing as well as the correlation between, and (joint) 
exceedance probabilities of surge and discharge. The paper potentially provides an interesting 
contribution to current literature. However, I have some major comments that I would like to see 
addressed before the paper is accepted for publication. 

Author Response:  

We would like to sincerely thank the reviewer for the valuable comments and recommendations. We have 
carefully addressed the reviewer’s suggestions as follows. Excerpts of the revised manuscript are provided 
to explain our responses to the review comments, as HESS does not allow us to share our revised 
manuscript at this stage of the review process. 

 

R3C1: 

The paper would really benefit from a comparison, both in the introduction and discussion on results, 
with other large-scale coupled river-coast models (e.g. Ikeuchi et al., 2017 and Eilander et al., 2020), 
CONUS flood risk models (e.g. Bates et al., 2021) and statistical CF analysis (e.g. Wahl et al., 2015 and Nasr 
et al., 2021). 

Author Response:  

We appreciate the valuable comment and references. This work is not only inspired by and but also builds 
upon these studies that either proposed the statistical approaches or performed large-scale simulations 
to quantify the CF risk from basin to global scales. Although these studies have already been 
acknowledged in our literature review, we agree with the reviewer that more thorough discussions should 
be provided in the introduction to compare the existing studies and in the discussion to better explain the 
difference of the resulting CF risks when using different approaches.  

In the introduction of the revised manuscript, we first elaborated on the literature review of the statistical 
approaches with a brief comparison of the listed studies: 

“At regional and global scales, statistics-based CFRAs consider the CF hazard as statistical dependence or 
co-occurrence rate of multiple flood drivers including discharge and surge (Moftakhari et al., 2017; Sadegh 
et al., 2018; Muñoz et al., 2020), precipitation and surge (Bevacqua et al., 2019), discharge, surge, and 
wave (Camus et al., 2021), etc. Statistics-based CFRAs perform statistical analysis using long-term data at 
paired gauges near the land-ocean interface. The data can be obtained either from large-scale numerical 
simulations (Eilander et al., 2020; Nasr et al., 2021) or gauge observations (Ward et al., 2018; Paprotny et 



al., 2020). Bivariate or multivariate analyses are performed to measure the CF hazard in terms of the joint 
occurrence of event extremes (Salvadori et al., 2007; Zscheischler et al., 2020). The CF hazard is 
determined either using the extreme dependence among multiple CF drivers or the likelihood of their 
joint occurrence. The dependence structure can be assessed from correlation and/or tail dependence 
coefficients (Wahl et al., 2015; Nasr et al., 2021). The co-occurrence rate may be calculated as the joint 
exceedance probability when a single or multiple drivers are above their predefined thresholds 
(Moftakhari et al., 2017), e.g., 95th or 99th percentile (Kew et al., 2013), which are defined respectively 
as “OR” and “AND” hazard scenarios by Salvadori et al., 2016.”  

We elaborated the existing studies of large-scale models and acknowledged a particular contribution from 
the large-scale coupled river-coast models.  

“Such models offer the capability to evaluate spatiotemporally varied CF drivers, flood extent and 
population exposure to CF events from basin to global scales over multiple decades (Ikeuchi et al., 2017; 
Eilander et al., 2020; Eilander et al., 2023).” 

The existing CFRA studies in the CONUS domain was briefly discussed in the last paragraph of the 
introduction. We elaborated this part with more details added. in the discussion.  

“The contiguous United States (CONUS) (Fig. 1) consists of 48 states, with coastal counties occupying 
about 10% of the total area. There are 17 major port cities, and ~40% of the US population residing in 
coastal counties are subject to high coastal flooding risks (Hanson et al., 2011). A high-resolution analysis 
study including pluvial, fluvial, and coastal flooding, projected a significant changing pattern of the flood 
risk in CONUS under future climate scenarios (Bates et al., 2021). Particularly, the CF risk was previously 
evaluated for the CONUS coastline or major US coastal cities using statistics-based CFRAs in terms of the 
dependence between storm surge and precipitation (Wahl et al., 2015), seasonable dependence among 
multiple CF drivers (Nasr et al., 2021), and the joint probability in “OR” hazard scenarios in response to 
sea level rise (Moftakhari et al., 2017).” 

Finally in the result discussion (the end of Section 3.2.1), we provided a comparison of the risk assessments 
between ours and other statistics-based CFRAs. We highlighted that the CF risk could vary significantly 
when considering different CF drivers or using different statistical approaches.  

“The CF hazard computed in this study shows both similarities and notable differences with previous 
statistics-based CFRAs (Eilander et al., 2020; Nasr et al., 2021; Wahl et al., 2015). For example, our analysis 
reveals several localized hotspots of the CF hazard characterized by a strong dependence between 𝑄 and 
𝑆𝑆  in the Northwest and Gulf coasts (Fig. 12), as indicated by Eilander et al. (2020). However, the 
calculated 𝜏 values in our study are generally lower than those computed using annual maxima sampled 
from 𝑄 and 𝑆𝑆 observations in the East coast (Nasr et al., 2021). Also, our 𝜏 values are higher than that 
derived from the dependence of 𝑄 and precipitation along the West coast, which study also demonstrates 
substantial variations in 𝜏 at specific locations when using different sampling approaches for the two CF 
drivers (Wahl et al., 2015). These differences result from variations in the sampling of extreme events, the 
specific CF drivers considered, the statistical methods employed, as well as other uncertainty sources 
discussed in Section 2.2.1. Despite the variations observed among different frameworks, each study 
provides unique insights into the understanding and addressing the complexities associated with CF risks. 
The choice of a specific CFRA depends on the local characteristics of the study area and the specific 
requirements of local flood planning and management.” 



 

R3C2: 

The difference between "data-based CFRA" (line 40) and "physics-based CFRA" (line 60) is not clear but 
essential to understand the introduction. It would help to start with defining both concepts before 
discussion pros and cons of both approaches. My first guess was that physics-based would refer to 
numerical models and data-based to observations, but models are also mentioned under data-based 
CFRAs (line 45) and observations under the physics-based approach (line 61). Also, the approach of Ikeuchi 
et al. 2017 and Eilander et al. 2020 are basically similar (analysis of simulated estuarine water levels in a 
coupled CaMa-Flood and GTSM model) but here mentioned as different approaches. 

Author Response:  

Thanks for the comment.  

According to the suggestion from another reviewer, we changed the classification of CFRAs from “data-
based” and “physics-based” to “statistics-based” and “dynamics-based” throughout the revised 
manuscript. As “statistics-based” CFRA better pertains to the approaches that rely on the statistical 
analysis and data interpretation to understand the CF risk, where data can be either from observations or 
numerical models. "Dynamics-based" refers to the CFRA that, as the reviewer pointed out, is based on 
numerical simulations that could represent how systems change over time and how various factors 
interact to determine the risk patterns. 

As suggested by this comment, we have clearly defined both concepts before discussing the details of the 
two approaches:   

“CFRA can be classified into statistics-based and dynamics-based approaches. Statistics-based CFRAs rely 
on statistical modeling and define the CF hazard as the frequency of a CF event. Dynamics-based CFRAs 
use numerical simulations that can represent the spatiotemporal variabilities of CF drivers and how 
various CF drivers interact.” 

Yes. Ikeuchi et al. 2017 and Eilander et al. 2020 used similar modeling approaches as we introduced in this 
work. This study is inspired by their great work. We classify Ikeuchi et al. 2017 into dynamics-based CFRAs 
as their work mainly focuses on the dynamics of inundation simulated using the coupled numerical 
models. And we consider Eilander et al. 2020 as a key reference in which data used in statistical analysis 
can be sourced from large-scale numerical simulations, as in their work the dependence among CF drivers 
is assessed using the modeled variables.  

 

R3C3: 

The terms "hazard risk" and "exposure risk" (line 73) are confusing in my opinion as risk is usually referred 
to as the combination of hazard, exposure and vulnerability. "hazard risk" seems to only consider the 
hazard and seems similar to what Couasnon et al. (2020) call "compound flood potential". In short, I think 
usage of the term "risk" here is confusing and the term "comprehensive risk" (line 98) is even a bit 
misleading. 

Author Response:  



We appreciate the reviewer comment. Our intention of categorizing the CF risk into the hazard risk and 
exposure risk was because previous studies only focused on one particular type of the risk and we were 
trying to distinguish the two categories and propose the idea of integrating them into a single measure. 
Although flood exposure risk and flood hazard risk are defined elsewhere in the literature, we agree with 
the reviewer that such terminology is used less frequently than simply “flood exposure” and “flood 
hazard”. Similar to flood potential, flood hazard is commonly used to define the risk associated with the 
frequency of a flood event.  

As the reviewer mentioned, flood risk usually refers to the combination of hazard, exposure and 
vulnerability. However, it is sometimes challenging to quantify vulnerability as it subjectively depends on 
a few factors (e.g. exposure, sensitivity, adaptive capacity and resilience) and the availability of such data 
is usually limited in large-scale domains. Thus, we consider the CF risk as a combination of hazard and 
exposure, similar to the risk defined as flood exceedance probability and damage in Judi et al., 2018 and 
Kalyanapu et al., 2015.  

In response to this comment, we replaced “CF hazard risk” and “CF exposure risk” with “CF hazard” and 
“CF exposure” throughout the revised context. “CF comprehensive risk” is changed to “CF risk”.    

 

R3C4: 

The computation of the "risk" metrics is not entirely clear due several ambiguities in the methods section. 
Specifically for the sampling of events for the calculation of both metrics, see specific comments below. 

Author Response:  

We apologize for the confusion. Please see the responses to the following comments where we provided 
a clearer description of the methodology.   

 

R3C5: 

The Figures with maps and the overlying bars or dots are very difficult to read (Fig 3, 4 & 6).In Fig 6, 7 and 
8 the color bars don't have a title or unit and there is no legend for the colors or x-axis label for the 
subplots. 

Author Response:  

We apologize for the unclear figures. The original intention of overlaying bars/dots on contour maps is to 
help readers visualize relevant information in a single figure. But we agree with the reviewer that 
condensing too much information in one figure will only make it harder to read. 

In the revised manuscript, each of Figure 3, 4 and 6 is split into two separate figures. We also removed 
the subplot d (i.e., the overview of the CONUS domain) as this information is already presented in Figure 
2. The original Figure 3 is divided into Figure 3 and 4. Figure 3 shows the spatial map of the riverbed 
elevation and Figure 4 shows the histogram of relative importance of the three CF drivers. The numbers 
representing river basins are marked in Figure S3 of the supplement. The original Figure 4 is divided into 
Figure 5 and 6. Figure 5 shows the spatially-varied flow time and Figure 6 shows the bars that represent 



the shifted days in 𝑄 and 𝑆𝑆 peaks. The numbers representing the observation gauges are marked in 
Figure S4 of the supplement. The original Figure 6 is divided into Figure 8 and 9. Figure 8 is the marginal 
exceedance probability 𝑷𝑸 computed for all MOSART coastal cells and Figure 9 is the marginal exceedance 
probability 𝑷𝑺𝑺 computed from the GTSM cells nearest to the corresponding outlets. The color scheme of 
the spatial maps is changed to a perceptually uniform one. State names are added to Figure 2, 3 and 5.  

In Figures 8~11, we added labels to the color bars and x- and y- axis labels to the subplots, as well as more 
detailed description in the caption.  

 
Figure 3: The relative riverbed elevation along the (a) West coast, (b) East coast and (c) Gulf coast. The river networks 
within the MOSART coastal cells are shown as black solid lines. 



 

Figure 4: The relative importance of 𝑸 (red), 𝑺𝑺 (blue) and relative riverbed elevation (gray) provided in the counter-
clockwise order of the river basins along the West, Gulf and East coastlines. The numbers representing individual river 
basins correspond to those in Figure S3. 

 

Figure S3. The numbers representing individual river basins corresponding to those in Figure 4. 



 

Figure 5: The flow time at the MOSART coastal cells along the (a) West coast, (b) East coast, and (c) Gulf coast.  



 

Figure 6: The shifted days in the 𝑸 and 𝑺𝑺 peaks between the observation gauges and the corresponding river outlets 
provided in the counter-clockwise order of gauges along the West, Gulf and East coastlines. The rectangular box represents 
the averaged shift over the simulation period and the error bar represents the standard deviation. The numbers 
representing observation gauges correspond to those in Figure S4.  



 

Figure S4. The numbers representing USGS gauges (red) and NOAA gauges (blue) corresponding to those 
in Figure 6. 
 



 

Figure 8: The marginal exceedance probability 𝑷𝑸 along the (a) West coast, (b) East coast and (c) Gulf coast. The basin-
averaged 𝑷𝑸 is provided in the counter-clockwise order of the basins along the US coast in the lower left insert of subplot 
(b) where the error bars represent the corresponding standard deviation. 



 

Figure 9: The marginal exceedance probability 𝑷𝑺𝑺 located at the GTSM cells nearest to the corresponding outlets. 



 

Figure 10: The Kendall's correlation coefficient (𝝉) computed for each MOSART coastal cell using the corresponding 𝑸 
and 𝑺𝑺 (Section 2.1). The insert in subplot (b) is the basin-averaged value of 𝝉 provided in the counter-clockwise order of 
the river basins along the West, Gulf and East coastlines with the error bars representing the corresponding standard 
deviation.  



 
Figure 11: The joint exceedance probability (𝑷𝑸,𝑺𝑺) computed for each MOSART coastal cell using Eq. 3 (Section 2.1). The 
insert in subplot (b) is the basin-averaged value of 𝑷𝑸,𝑺𝑺 provided in the counter-clockwise order of the river basins along 
the West, Gulf and East coastlines with each error bar representing the corresponding standard deviation. 

 

Specific comments 

R3C6: 

line 28: "A CF event [...] occurs when the associated drivers exceed their respective thresholds 
(Zscheischler et al., 2020)."  Zscheischler et al. (2020) actually argue that not all associated drivers need 
to exceed their respective thresholds to have large impact CF events. I suggest to rephrase this sentence. 

Author Response:  

We apologize for the confusion. We tried to express the same concept as explained by the reviewer. This 
sentence is now rephrased as: “It is possible that a compound flood (CF) event is not caused by extreme 



weather (Couasnon et al., 2020) but rather occurs when one or multiple flood drivers exceed their 
respective thresholds (Zscheischler et al., 2020).” 

In our analysis, a CF event is identified when both drivers (i.e., 𝑄  and 𝑆𝑆  in our case) exceed their 
thresholds because it is otherwise difficult to identify the CF events in a large-scale analysis. We appreciate 
the reviewer’s remark. To further acknowledge this limitation, more discussions have been added to 
Section 4.2.  

“Second, we quantify the CF impacts using the SS-induced backwater effects without considering the 
complex interactions between the two flood drivers or the possibility of a CF event induced by an 
individual extreme driver. CF does not necessarily require all drivers to exceed their corresponding 
thresholds (Zscheischler et al., 2020).” 

 

R3C7: 

line 78: Do you mean "A robust CFRA should provide a thorough understanding of the uncertainties 
related to the risk analysis such as uncertainties associated with flood frequency and possible flood 
damages" ? Would it be possible to make this more specific for *Compound Flood* Risk Analyses? 

Author Response:  

Thanks for the insightful suggestion. This sentence is rewritten to highlight uncertainty analysis for CFRA.  

“A robust CFRA should consider the uncertainties associated with frequency and possible damages of 
compound flooding and provide a thorough understanding of the uncertainties related to the risk analysis 
(Apel et al., 2004). The uncertainty can stem from various sources in both statistics-based and dynamics-
based CFRAs, such as measurement errors and approximations in numerical models. A comprehensive 
understanding of the uncertainty sources in CFRA is crucial for managing and predicting CF risks and will 
provide valuable insights for guiding future improvements.” 

 

R3C8: 

line 89: Please clarify what is meant by "variability in the fluvial process". 

Author Response:  

By “variability in the fluvial process”, we refer to the variations in the characteristics or behaviors of rivers 
over time and space. More specifically in this study, the variability is represented by the spatiotemporally 
varied streamflow.  

Thanks for the suggestion. We elaborated this sentence to increase clarity.  

“However, most existing studies rely on the flood driver measured/modeled at a single site and have not 
accounted for the dynamic change of river flow, such as the spatiotemporally varied streamflow, as well 
as river topology, coastal backwater effects and the associated uncertainties.” 

 



R3C9: 

line 103-118 (CFRA model framework): could you provide some more details of the models. I.e. what is 
the temporal resolution of the MOSART and GTMS model outputs used here?  How are the channel 
widths, depth and lengths defined? What equations are solved in the model (Full Saint-Venant, Local 
inertial, other)? 

Author Response:  

We appreciate the reviewer comment.  

The statistical analysis uses daily streamflow from MOSART and daily maximum 𝑆𝑆 from GTSM. This is 
specified as: “The simulated daily streamflow (𝑄) at each selected cell is paired with the daily maximum 
storm surge (𝑆𝑆) level from the GTSM reanalysis dataset at the grid cell nearest to the outlet.” 

The temporal resolutions of MOSART and GTSM model outputs are daily and hourly, respectively. This 
information has been added to the revision:  

“The model is run at an hourly time step from 1979 to 2018 and daily outputs are archived for analysis.” 

“Driven by the ERA5 atmospheric reanalysis dataset, the GTSM produces time series of hourly total water 
level and storm surge at global coasts from 1979 to 2018 (Muis et al., 2020),” 

We agree with the reviewer that MOSART configuration and channel parameters are critical for the 
simulation. This study uses similar configuration in the same domain from a few previous studies and this 
information was specified as  

“For more detailed descriptions of the model, please refer to Li et al., 2022.”   

We only described the specific changes in model configuration that are different from this reference, 
including the implementation of a macro-scale inundation scheme (Luo et al., 2017) and the updated river 
channel slope derived from a higher resolution DEM, and the downstream boundary conditions.  We did 
not provide more details because we considered the focus of this study as risk assessment and uncertainty 
analysis.  

In response to this comment, we added more details in model configuration and provide more references:   

“MOSART is a physics-based river routing model at the basin to global scales. The model takes the total 
runoff generated by a land surface model and routes the surface runoff from hillslope to tributary 
subnetworks, which along with the subsurface runoff are discharged to river outlets through the main 
channels. In this study, kinematic wave method is used for overland flow routing, whereas diffusive wave 
method is applied in the river channels to represent the coastal backwater effects (Feng et al., 2022). The 
MOSART simulation is performed on the 1/8° resolution CONUS grid. The MOSART configuration on the 
same grid has been validated and applied to flow and sediment simulations (Li et al., 2015a; Li et al., 2022). 
The model parameters are available globally with more detailed descriptions in previous studies (Li et al., 
2013; Li et al., 2015b). The model is run at an hourly time step from 1979 to 2018 and daily outputs are 
archived for analysis. The first-year simulation is excluded for analysis due to model spin-up. The 
floodplain inundation is represented using a macroscale inundation scheme (Luo et al., 2017).” 

 



R3C10: 

line 107: Is the slope of a 15 arcsec DEM (~25km) adequate to estimate the channel river slope? 

Author Response:  

We appreciate the reviewer’s comment. We note the resolution of 15 arc-seconds is approximately 500 
meters at the equator, which is adequate for resolving topology in the 1/8° MOSART grid.   

 

R3C11: 

line 133: Towner et al. (2019) study the skill of several GFMs (not including MOSART or GTSM) for peak 
flows in the Amazon, how does that relate to the skill of your model framework? 

Author Response:  

We apologize for any confusion.  

We are aware that Towner’s study is applied to a different domain using different GHMs. This study has 
performed a comprehensive skill assessment of various GHMs, providing reasonable guidance for 
evaluating the GHM performance in large-scale simulations. We used this reference to support that the 
MOSART performance is reasonable in the large-scale simulation as the skill metrics meet the standards 
proposed in Towner et al. 2019.  

In the revision, this sentence is rewritten and the reference is deleted to avoid confusion:  

“In the context of constructing a new CFRA framework within the CONUS domain and investigating the 
associated uncertainties, the performance of MOSART and GTSM models is deemed satisfactory in large-
scale simulations.” 

 

R3C12: 

line 139 (step a): The sampled events should be independent. How is this ensured? 

Author Response:  

We apologize for the typo and the missing information regarding this comment. 

The first step in calculating the CF hazard should be referred as “CF event selection” instead of “storm 
surge event selection”. In the sampling CF events, we first extract 𝑆𝑆 events using the event selection 
scheme proposed in Feng et al., 2022. This scheme uses a peak detection algorithm to filter independent 
𝑆𝑆 events. Within each selected 𝑆𝑆 event, a CF event is identified if 𝑄 is over the predefined threshold of 
95th percentile.  The advantage of this method is that it allows a more realistic representation of a 𝑆𝑆 
event than defining a time window around the peak, as 𝑆𝑆 may last longer than a few days.  

This method also ensures that the selected 𝑆𝑆 events are independent as the sign of water level is always 
changed even between two adjacent events that are close to each other. While this method does not 



ensure the independence of 𝑄 , the frequency of a 𝑆𝑆  event is generally smaller than that of fluvial 
flooding.  

In response to this comment and R3C13, we elaborated on the description of step (a) in the CF hazard 
calculation and explanations of independence to increase clarity.   

“(a) CF event selection: use a 𝑆𝑆 event selection scheme (Feng et al., 2022) to extract all 𝑆𝑆 events with 
the 𝑆𝑆 level over 95th percentile and then in the selected SS events identify them as CF events if river 
discharge of the corresponding station during these events is also over 95th percentile;” 

“As the first step, our event selection scheme samples independent 𝑆𝑆 events from the time series data, 
which avoids dependence in the extremes and does not require declustering. We assume that the 𝑄 
extreme within each 𝑆𝑆 event is independent as both frequency and duration of 𝑆𝑆 are generally smaller 
than that of fluvial flooding.” 

 

 

R3C13: 

line 142 (step b): How are Q events sampled? These are not mentioned under step a. 

Author Response:  

Please see the response to R3C12.  

 

R3C14: 

line 144 (step c): It is not clear how bivariate variables are defined. Is this based on AND or OR sampling 
of the variables? And do you allow for any time lag between the variables? Please clarify. 

Author Response:  

We appreciate this comment. 

The bivariate variables are defined based on the “AND” hazard scenario (Salvadori et al., 2016). This may 
be implied by Equation 3. We have it clearly defined in the revised manuscript: 

“(d) bivariate analysis: calculate the joint exceedance probability based on “AND” hazard scenario 
(Salvadori et al., 2016) that accounts for both marginal distributions and dependence structure.” 

We acknowledge that the duration of a fluvial flood event may not precisely align with the duration of 𝑆𝑆 
during a compound flood (CF) event. It is possible there is small overlapping between a 𝑆𝑆 event and the 
corresponding fluvial flooding event. But we don’t allow any lag for Q because the CF exposure is 
measured as the extent where 𝑆𝑆-induced backwater matters. Such effects are dominated by 𝑆𝑆 and will 
only be significant during the selected 𝑆𝑆 events. This discussion is added to the revision.  



“While it is possible that the duration of a fluvial flood event does not precisely align with a 𝑆𝑆 event, we 
don’t include any time lag between 𝑄 and 𝑆𝑆 in the consideration as this study specifically quantifies the 
CF impact based on the 𝑆𝑆-driven backwater effects.”  

 

R3C15: 

line 179-184 (exposure risk): The exposure risk metric accounts not only for surge but also tide as the 
'baseline' downstream boundary conditions is based on MSL only (and not MSL+tide). This has several 
consequences on the analysis in my opinion which are not included nor discussed. For instance, the tidal 
amplitude is in many locations probably an important predictor of backwater volumes (section 2.2.2) but 
not accounted for. It could also explain some of the differences between both CF metrics which is not 
discussed (section 3.2.2). And it should not be referred to as "surge-induced backwater effects" (line 405). 

Author Response:  

Thanks for the comment. Tide is excluded from our simulations. As defined in Section 2.1, at the 
downstream boundary of MOSART only the time series of storm surge are applied.  

“We apply two types of boundary condition (BC): (1) time-varying storm surge (𝑆𝑆) level and (2) fixed 
mean sea level. Both are obtained from the third-generation Global Tide and Surge Model (GTSM) (Muis 
et al., 2022). The 𝑆𝑆 -induced backwater effects in this study are quantified by comparing the two 
simulations which use the first and second BCs, respectively (Feng et al., 2022).” 

We have not accounted for tide because: (a) the higher-frequency variability of tides compared to river 
discharge and storm surge poses challenges in quantifying tide as a CF driver along with the other two; 
(b) our sampling algorithm is only able to extract the low-frequency 𝑆𝑆 but not tides; and (c) we previously 
showed storm surge dominates the backwater effects in a low-lying river basins (Feng et al., 2022). Thus, 
this study only considers the 𝑆𝑆-induced backwater effects. But we agree with the reviewer that tide and 
its nonlinear interaction with storm surge could be an important predictor in many locations. This 
limitation is now acknowledged in Section 4.2.  

“The backwater effects are driven in MOSART by prescribing the 𝑆𝑆  time series at the downstream 
boundary. However, the actual CF is driven by the interactive processes between multiple drivers, 
including precipitation, land surface runoff and inundation, river discharge and coastal tide, storm surge 
and wave (Nasr et al., 2021), as well as their nonlinear interactions. For example, the interaction between 
flooded water and channel flow, groundwater and surface water, river discharge and upstream 
propagation of ocean tides and storm surge will likely attenuate the hydrograph, intensify inland flooding 
or affect the backwater propagation, particularly in low-lying watersheds. Such interactions contribute to 
another layer of complexity and uncertainty at the terrestrial and aquatic interface and should be 
simulated using ESMs with fully coupled land, river and ocean modeling components.” 

 

R3C16: 



line 193: "the CF hazard index (CFHI) and the CF exposure index (CFEI) are obtained by normalizing Pq,ss 
and Wp with their corresponding 95th percentile values". How are the 95th percentile values calculated?  
If I understand correctly, both indicators are a single value per cell right? 

Author Response:  

Yes. The 95th percentile value is calculated from every grid cell. This is clarified in the revision: 

“the CF hazard index (𝐶𝐹𝐻𝐼) and the CF exposure index (𝐶𝐹𝐸𝐼) are obtained by normalizing 𝑃#,%% and 𝑊& 
with their corresponding 95th percentile values at every grid cell.” 

 

R3C17: 

line 196: "Our approach transforms the probability of occurrence into a direct measure of human 
exposure." Could you explain how? 

Author Response:  

This sentence is rephrased to: 

“Our approach integrates measures of risks that consider both the probability of occurrence and human 
exposure.” 

 

R3C18: 

line 239-250 (Impact of riverbed elevation): Is this analysis done per cell or per basin? And where does 
the riverbed elevation data come from? (see also earlier comment on the CFRA framework) 

Author Response:  

This analysis is performed for every cell. This is explained as “For each coastal grid cell, we use the MOSART 
simulated 𝑄, the GTSM simulated 𝑆𝑆 at the river outlet, and the grid cell elevation.” 

The riverbed elevation is derived from the 15 arcsec digital elevation model (DEM) of the HydroSHEDS, 
which has been clarified: 

“the channel slope and the riverbed elevation are derived from the 15 arcsec digital elevation model 
(DEM) of the HydroSHEDS and river vector data.” 

 

R3C19: 

line 384: "In summary, CFRA should not rely on any single method; more comprehensive thinking is 
needed considering the different characteristics among the different risk types." How does the CF 
comprehensive risk metric compare to an actual risk analysis (i.e., combining the hazard and its potential 
consequences to derive e.g., annual expected losses or people exposed) 

Author Response:  



We appreciate the reviewer’s insight. This study does not intend to critique any existing approaches. 
Rather, we build on their success and aim to demonstrate that more factors can be integrated to provide 
a comprehensive understanding of the CF risk.  

This sentence is rephrased to: “to comprehensively understand the complex CF risk, it is critical for CFRAs 
to integrate multiple risk factors based on the available approaches.” 

Based on our experience, the actual flood risk analysis is a real-time or near real-time assessment in 
specific areas that updates risk factors based on the latest available data. Such analysis typically has a 
different focus from ours. While the goal of the actual risk analysis is to provide timely and accurate 
information to emergency responders, the framework proposed in this study aims to assess the risk at the 
continental scale to understand the spatial variability and uncertainty within different risk factors, and 
can help, e.g., “provide target regions where the computational mesh should be refined to improve model 
accuracy.” Instead of delving into excessive details of comparing metrics, we acknowledge in Section 2.1 
that “the combination of different types of risks, despite providing a comprehensive estimation of the CF 
risk, is subjective and may affect the risk assessment results.” 
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