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Abstract. The National Water Model (NWM) provides critical analyses and projections of streamflow that support
water management decisions. However, the NWM performs poorly in lower elevation rivers of the western United
States (US). The accuracy of the NWM depends on the fidelity of the model inputs and the representation and
calibration of model processes and water sources. To evaluate the NWM , we performed a water isotope (δ18O and
δ2H) mass balance using long term mean summer hydrologic fluxes between 2000 and 2019, and gridded precipitation5

and groundwater isotope ratios . We compared the
:::::::::::
performance

::
in
::::

the
:::::::
western

::::
US,

::::
we

:::::::::
compared

:::::::::::
observations

:::
of

::::
river

::::::
water

:::::::
isotope

:::::
ratios

::::::::::
(18O/16O

::::
and

:::::::

2H/1H
:::::::::
expressed

:::
in

:
δ
:::::::::

notation)
:::
to

:
NWM-flux-estimated (‘model’) river

reach isotope ratios to
::::::
(model)

:::::
river

::::::
reach

:::::::
isotope

::::::
ratios.

::::
The

::::::::
modeled

:::::::::
estimates

:::::
were

:::::::::
calculated

:::::
from

:::::
long

:::::
term

::::::::::
(2000-2019)

:::::
mean

::::::::
summer

::::::
(JJA)

::::::
NWM

:::::::::
hydrologic

::::::
fluxes

::::
and

:::::::
gridded

::::::
isotope

::::::
ratios

:::::
using

::
a

::::
mass

::::::::
balance

:::::::::
approach.

:::
The

:::::::::::::
observational

:::::::
dataset

:::::::::
comprised

:
4503 in-stream water isotope observations in 877 reaches across 5 basinsin the10

western US. A simple regression between observed and mass balance estimated
:::::::
modeled

:
isotope ratios explained

57.9% (δ18O) and 67.1% (δ2H) of variance, though observations were 0.5‰ (δ18O) and 4.8‰ (δ2H) higher, on
average, than mass balance estimates. The unexplained variance suggest that the NWM does not include all relevant
water fluxes to rivers. To infer possible missing water fluxes, we evaluated patterns in observation-model differences
using δ18Odiff (δ18Oobs−δ18Omod) and ddiff (δ2Hdiff −8∗δ18Odiff ). We detected evapoconcentration of observations15

relative to
::::::::
evidence

::
of

:::::::::::
evaporation

::
in

:::::::::::
observations

::::
but

:::
not

:
model estimates (negative ddiff and positive δ18Odiff ) at

lower elevation, higher stream order, arid sites. The catchment actual evaporation to precipitation ratio, the fraction
of streamflow estimated to be derived from agricultural irrigation, and whether a site was reservoir-affected were all
significant predictors of ddiff in a linear mixed effects model, with up to 15.1

:::
15.2% of variance explained by fixed

effects. This finding is supported by patterns in groundwater levels and groundwater isotope ratios, and suggests20

the importance of including irrigation return flows to rivers, especially in lower elevation, higher stream order, arid
rivers of the Western US.
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1 Introduction

1 Introduction

The western United States (US) is experiencing multidecadal drought Williams et al. (2022) and declining stream-25

flows Milly and Dunne (2020). Major rivers are running dry Kornfield (2022), lakes are shrinking Ramirez (2022);
Fergus et al. (2020, 2022), and water users are experiencing shortages and cuts Bureau of Reclamation, Department
of the Interior (2022). These decreases in streamflow and groundwater fluxes are projected to continue in coming
years Miller et al. (2021b, a)

::::::::::::::::::::
Miller et al. (2021a, b), with projected decreases in snowpack Mote et al. (2021); Siirila-

Woodburn et al. (2021) and increases in temperatures Hicke et al. (2022). Under drought and snow drought stress,30

as well as changing wintertime precipitation patterns, river flows may become more difficult to forecast Hammond
and Kampf (2020); Siirila-Woodburn et al. (2021). Yet, with decreasing water availability, water managers and
other stakeholders tasked with managing and responding to current and future water supply increasingly depend on
accurate streamflow predictions.

Fully routed, high spatial and temporal resolution streamflow models, like the National Oceanic and Atmospheric35

Administration’s National Water Model (NWM) which utilizes
:
is
:::

an
:::::::::::

application
:::
of

:::
the

:
Weather Research and

Forecasting (WRF) Hydro modeldata Gochis et al. (2018), provide short and medium term streamflow prediction
in the United States, as well as analyses of past stream discharge at ungaged locations. The accurate, detailed,
frequent results from the National Water Model may be used by emergency managers, reservoir operators, floodplain
managers, and farmers to aid in water use decision making and flood or pollution risk evaluation. The accuracy of40

predictions and current snapshots produced by the model depend on 1) inclusion and faithful representation of
relevant water sources and hydrologic processes 2) appropriate calibration of parameter estimations and 2) the
fidelity of the model inputs.

With respect to the faithful representation of water sources, the major water sources to streams in the moun-
tainous west include two broad water flux categories: runoff (also called quickflow,

::::
and

:::::
may

::::::::
comprise

:::::::
surface

:::
or45

:::::::::
subsurface

:::::::
waters) and groundwater discharge (also called baseflow). Runoff during the summer comes from late

season snowmelt, rain, and irrigation water. Groundwater discharge comes from shallow or deep in-ground water, typ-
ically recharged at high elevation by snowmelt. Rivers in the west derive the majority of their water from springtime
melt of high elevation wintertime snowpack Li et al. (2017); Hammond et al. (2023) and little water is contributed
to streams at lower elevations where there is minimal snowpack Miller et al. (2021b). Some of the melt water enters50

streams as
::::::
surface runoff during late spring and summer, while the remainder recharges shallow and deep groundwa-

ter and later in the season or in subsequent years enters the stream as groundwater discharge Barnhart et al. (2016);
Miller et al. (2021a); Brooks et al. (2021); Wolf et al. (2023). Rain contributes runoff to streamflow, but even in areas
receiving a substantial proportion of their total annual precipitation during summer in association with the North
American Monsoon, only a small proportion of the total precipitation makes it to the stream Solder and Beisner55

(2020); Tulley-Cordova et al. (2021); the remainder is evaporated from soils or transpired by plants Milly and Dunne
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(2020). Thus, lower elevation streams, particularly later in the summer, depend heavily on groundwater discharge
from higher elevations to sustain their flows Miller et al. (2016) and the majority of streams in lower elevation arid
areas are likely to lose water to shallow groundwater recharge Jasechko et al. (2021).

Within this hydrologic framework, human water use and management introduces complexity via reservoirs and60

managed release schedules, trans- and interbasin transfers, conveyances, and surface and groundwater withdrawals,
as well as irrigation for agricultural crop or turf grass growth. Turf irrigation in cities composes the majority of
household water use in most municipalities and agricultural irrigation can comprise up to 80% of total statewide
water use in Western US states Dieter et al. (2018). Water used for agricultural crop or turf grass growth locally
intensifies water balance fluxes, through increases in both water application and evapotranspiration in these se-65

lect tracts of land. Depending on the method, both agriculture and turf grass irrigation can contribute to local
groundwater recharge Grafton et al. (2018), with greater recharge coming from flood irrigation compared to sprin-
kler or drip irrigation methods. Water for irrigation can come from either surface or groundwater withdrawals. The
irrigation water source may have both direct and indirect influences on streamflows particularly during low flow sea-
sons Essaid and Caldwell (2017); Condon and Maxwell (2019)

:
,
:::
and

:::::
may,

:::::::::
depending

:::
on

::::::::::
conditions,

::::
may

:::::::::
contribute

:::
to70

:::::::::
streamflow

:::::::::
increases,

:::::::::
decreases,

::
or

::::::
delays

::
in

:::::::::
discharge

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Essaid and Caldwell (2017); Condon and Maxwell (2019); Ketchum et al. (2023)

. However, these processes and fluxes are not currently explicitly included in the NWM.
Past NWM evaluations have leveraged streamgage measurements Hansen et al. (2019); Towler et al. (2023);

Seo et al. (2021) and model evaluation using streamgage measurements is included in the NWM WRF-Hydro
workflow Gochis et al. (2018). Using measured discharge to evaluate the NWM is useful because the data are75

publicly available at high spatial and temporal resolution (e.g., dataset used in Towler et al. (2023)). However,
evaluation of streamflows with measured discharge 1) may allow modelers to get the correct total streamflow values
and temporal patterns at a reach for the wrong process reasons or 2) may suggest that the model could be improved
due to mismatches between measured and modeled data, but cannot provide information on the specific process(es)
or sources responsible for the errors.80

Among the climatic regions covered by the NWM, model streamflow evaluation metrics perform the most poorly
in the Western US in lower elevation reaches. Metrics like the Kling–Gupta efficiency (KGE) indicate pervasive
mismatches between measured and modeled streamflows and percent bias (PBIAS) results showed that simulated
streamflow volumes tend to be overestimated in the west Towler et al. (2023). Similarly, Hansen et al. (2019)
found that the NWM has difficulty estimating flows during drought or low flow years in the Colorado River Basin.85

In the low elevation stream reaches of the Western US, disagreement between the NWM flows and observations
within anthropogenically-altered reaches may come from incomplete representation of anthropogenic water sources
or processes in the NWM.

In the western US, low elevation waterways have moderate to high potential for anthropogenic alteration Fergus
et al. (2021). For example, rivers and surface water supplies are managed by dams, and a large proportion of90

total water use is allocated to irrigating agriculture Dieter et al. (2018). However, the NWM does not explicitly
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include surface water removal for agricultural irrigation nor subsurface return flows from irrigation in its streamflow
computations. Likewise, the NWM represents inflow and outflow of lakes and reservoirs as passive storage and
releases, with no active reservoir management. Both of these omissions may be contributors to the large errors
observed in the NWM in lower elevation areas where land use includes large amounts of along-river agriculture and95

streamflow is heavily managed through reservoir operations. Unfortunately, the effects of contributions of these two
water sources on streamflow are difficult to identify and quantify through evaluations of streamflow records alone.

Tracers, including the stable isotopes of water(16O, 18O and 1H, 2H), can be used
:::::::::
Elemental

::
or

:::::::
isotope

:::::
ratios

:::
in

:::::
media

::::::::::
associated

:::::
with

:::::::::
hydrologic

:::::::::
processes

:::::
(i.e.,

::::::
water,

::::::::
dissolved

:::::::
gasses,

::::::::::
suspended

::::::::::
sediments,

::::::::
dissolved

:::::
ions)

::::
are

::::
used

:::::
used to track the contributions of specific water sources (e.g., groundwaterfluxes, runofffluxes) that may be

:
,100

::::::
runoff)

:::
to

:::::
rivers

:::
or

:::::
other

:::::::
surface

::::::
waters

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Cook and Solomon (1995); Hall et al. (2016); Gabor et al. (2017)

:
.
:::::::
Tracers

:::
are

:::::
useful

::::::::
because

::::
they

:::::::
provide

:::::::::::
information

::::
that

::
is
:::::::::
otherwise

:
impossible to disentangle from comparisons with total

or instantaneous discharge. Stable isotopes of oxygen and hydrogen (
:::::
direct

:::::::::::::
measurements

:::
of

::::::::::
streamflow.

:

:::::
Stable

::::::
water

:::::::
isotopes

:::
(H

::::
and

::
O)

:::::
have

::::
been

:::::
used

::
to

::::::
extract

::::::::::
hydrologic

:::::::
process

::::::::::
information

::::::::::::::::::::::::::::::::::::::::
Jasechko et al. (2014); Evaristo et al. (2015)

:::
and

::::::::
diagnose

:::::::
process

::::::::::
limitations

:::
in

:::::
other

:::::::::
modeling

::::::::
contexts

:::::::::::::::::::::::::::::::::::::::::
Nusbaumer et al. (2017); Putman et al. (2019)

:
.
::::::
Water105

::::::::
comprises

::::::
three

:::::::::
commonly

:::::::::
measured

::::::
stable

:::::::::::::
isotopologues:

::::
the

:::::
most

::::::::::
abundant,

::::
light

:::::::::::::
atom-bearing

:::::::

1H16
2 O,

:::
as

::::
well

::
as

::
a

::::::
heavy

:::::::::
hydrogen

:::::::
bearing

:::::::::::
(1H2H16O)

::::
and

::
a
::::::
heavy

:::::::
oxygen

:::::::
bearing

:::::::::
(1H18

2 O)
:::::::::::::
isotopologues.

:::::::::::::
Measurements

:::
of

:::::
stable

::::::
water

:::::::
isotopes

::::
use

::::
the

::::
ratio

:::
of

:::
the

::::::
heavy

:::
to

:::::
light

:::::::::::
isotopologue

:::
for

:::::
each

:::::
atom

:::
(R

:::
=

::::

18O
:
/
::::

16O
:::

or
:::

2H
::

/
::::

1H

:::
and

::::
are expressed in delta notation , δ = 1000 ∗ ( Rsample−Rstandard

Rstandard
) , where R is the ratio of concentrations of the

heavy (2H and 18O) and light (1H
::::
δ18O

:
and 16O) isotopes)have diagnosed process limitations in other modeling110

contexts Nusbaumer et al. (2017); Putman et al. (2019), leveraging the fractionation occurring for stable isotopes of
waters during phase changes Bowen et al. (2019). The secondary parameter ,

:::::
δ2H),

::::::
where

::::::::::::::::::::::::::
δ = 1000 ∗ ( Rsample−Rstandard

Rstandard
)

:
).
::::::::
Samples

::::
with

::::::
higher

::::::
ratios

::::
may

::
be

:::::::::
described

::
as

:::::::::
‘enriched’

:::::
with

::::::
respect

:::
to

::
an

:::::::
isotope

:::::::
relative

::
to

::
a

::::::::
reference,

::::::::
whereas

:::::
those

::::
with

:::::
lower

::::::
ratios

::::
may

:::
be

:::::::::
described

::
as

:::::::::
‘depleted’

:::::
with

:::::::
respect

::
to

:::
an

:::::::
isotope

::::
and

:::::::
relative

::
to

::
a
:::::::::
reference.

:

:::
The

:::::::
utility

::
of

::::
any

::::::
tracer

:::::::
comes

:::::
from

:::::
their

::::::
spatial

:::::
and

::::::::
temporal

:::::::::::
variability.

::
In

::::
the

:::::
case

::
of

::::::
water

::::::::
isotopes

:::
as115

::::::
tracers,

:::::
these

:::::
arise

:::::
from

:::::::
isotopic

::::::::::::
fractionation,

::
a

:::::::::::::::::
physically-governed

::::::::
‘sorting’

::
of

::::::::::
heavy-atom

::::::::
bearing

:::::
water

:::::::::
molecules

:::::::::
(1H2H16O

:::::
and

::::::::

1H18
2 O)

:::::
from

:::::
those

::::::::
bearing

::::
only

:::::
light

:::::::
atoms

::::::::
(1H16

2 O)
:::::

that
::::::
occurs

:::::::
during

::::::
phase

::::::::
changes

:::::
(i.e.,

:::::::::::
evaporation,

::::::::::::
condensation,

::::::::::::
sublimation,

::::::::::
deposition)

::::::::::::::::::
Bowen et al. (2019).

:::::::
Spatial

::::
and

::::::::
temporal

::::::::
patterns

::
of

:::::
δ18O

::::
and

::::
δ2H

:::
are

::::
very

:::::::
similar,

::
as

:::::::::
evidenced

:::
by

:::
the

::::::
strong

::::::::::
correlations

::::::::
between

:::::
δ18O

:::
and

::::
δ2H

::
in

::::::::::::
precipitation

::::::::::::::::::::::::::::::::
Craig (1961); Putman et al. (2019)

:::
and

::
in

:::::
other

:::::::
waters,

::::::::
including

:::::
those

:::
in

:::
the

:::::::
ground,

:::::::
surface,

::::
and

:::
soil

:::::::::::::::::::::::::::::::::::::::::::::
Evaristo et al. (2015); Tulley-Cordova et al. (2021)120

:
.

::::::
Linear

:::::::::::
relationships

::::::::
between

:::::
δ18O

::::
and

::::
δ2H

::
in

:::::::::::::
precipitation,

::::
and

::::::
waters

:::::::
derived

:::::
from

:::::::::::
precipitation

:::::
(e.g.,

::::::::
ground,

:::::
river,

::::
lake,

:::::
soil)

:::
are

:::
the

:::::
basis

:::
for

::::
the

::::::::::
ubiquitous

:::::
water

::::
line

::::::
(WL)

::::::::::
framework,

::
in
::::::

which
::::
the

::::
best

:::
fit

::::
lines

:::
of

:::
the

:::::
form

:::::::::::::::
δ2H = βδ18O + I

:::
are

:::::::::
calculated

:::
for

::::::::
different

:::::
water

:::::
types

:::::
(e.g.,

::::::::
meteoric

::::::::
(MWL),

:::::::
ground

:::::::
(GWL),

:::::::
surface

:::::::
(SWL))

::::
and

:::
are

::::::
defined

::::::
either

:::
for

:::::::
specific

::::::
points

::::::
(local,

::::
e.g.,

::::::::
LMWL)

::
or

:::
for

::::::::
regional

::
or

::::::
global

::::::::
datasets

:::::
(e.g.,

::::::::
GMWL)

::::::::::
comprising125

:::::::
multiple

:::::::
points.

:::::::
Slopes

::::
and

::::::::::
intercepts

::
of

::::::
these

:::::
lines

:::::
have

::::::
useful

::::::::
physical

::::::::::::::
interpretations

:::::::::::::::::::
Putman et al. (2019)

:
,
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::::::::::
particularly

:::
as

::::
they

::::::
relate

::
to

:::
the

::::::
global

:::::::
average

::::::::::
conditions.

:::::::
Global

:::::::
average

:::::::::
conditions

::::
are

::::::::::
represented

:::
by

:::
the

:::::::
Global

::::::::
Meteoric

::::::
Water

:::::
Line

:::::::::
(GMWL),

::::::
which

::::
has

::
a
:::::
slope

:::
of

:
8
:::::

and
::::::::
intercept

:::
of

:::
10.

::::::::::
Differences

::::::::
between

::::::
δ18O

::::
and

:::::
δ2H,

::::::
relative

:::
to

:::
an

:::::::::
expected,

::::::
global

:::::::
average

::::::::::::
relationship

:::
are

::::::::::
calculated

:::::
using

::
a
:::::::::
secondary

::::::::::
parameter

::::::
called

:
deuterium

excess (defined as d = δ2H − 8 ∗ δ18O), is a reliable metric for detecting .
::::::::::

Deuterium
:::::::

excess
:::
(d)

::
is
:::::
used

:::
to

::::::
detect130

evaporation of precipitation and surface waters, evaporation under a vapor pressure gradient or non-equilibrium
condensation processes, like snow formation in mixed phase clouds or isotopic fractionation during the melting of
snow Putman et al. (2019); Bowen et al. (2018); Ala-aho et al. (2017).

Because hydrologic processes including groundwater recharge, discharge, and precipitation runoff do not cause
isotopic fractionation, we can use water fluxes from hydrologic models with estimates of the isotope ratios of those135

fluxes on the appropriate timescales to produce river water isotope estimates. This works well because the groundwa-
ter and runoff fluxes to summertime streamflow in the Western US have different, and often distinct ,

:::::::
distinct

:
stable

isotope ratios due to seasonal and spatial controls on precipitation isotope ratios. The signatures of groundwater
inflow and snowmelt tend to have the lowest isotope ratios of the water sources in the hydrologic system and tend
to be relatively temporally invariant Bowen (2008); Feng et al. (2009); Jasechko et al. (2014); Solder and Beisner140

(2020); Tulley-Cordova et al. (2021). In contrast, summer precipitation, which contributes runoff to streams, tends
to have higher isotope ratios than groundwater Jasechko et al. (2014); Tulley-Cordova et al. (2021).

Anthropogenic modifiers of streamflow that are not included explicitly in the NWM
::::
(i.e.,

::::::::
irrigation

::::
and

::::::::::
reservoirs)

may be expected to alter the isotopic signature of streamflow downstream of the river water source areas in the
headwaters. Agricultural irrigation can contribute both runoff to streams and recharge groundwater Essaid and145

Caldwell (2017); Gochis et al. (2018). This specific water source becomes isotopically enriched
:::::::::::
Evaporation

:::::::::
occurring

during conveyance and application both due to direct evaporation during conveyance and soil evaporation after
application

:::::::
increases

::::
the

:::::::
isotope

:::::
ratios

:::
in

::::::
water

:::::::::
recharged

:::
by

::::::::
irrigation

::::
and

:::::::::
decreases

::
d Craig and Gordon (1965);

Yang et al. (2019). The evaporated isotope signatures of agricultural soil waters are also evident in fruit water
::::
This

:::::::
isotopic

::::::::
signature

::
is
:::::::
passed

:::::
along

:::
to

:::
the

::::::
plants Oerter et al. (2017). Thus, irrigation return flows

::::::::::::::::
irrigation-sourced150

:::::::
recharge

:
(runoff or ground) associated with irrigation are much more evaporatively enriched, with lower d, than

:::::::
exhibits

:::
an

::::::::::
evaporated

::::::::
isotopic

:::::::::
signature

::::
that

:::
is

:::::::
distinct

:::::
from

:
naturally recharged groundwater or precipitation

runoff. The effects of evaporation on the isotope ratios of the return flows are expected to be greater in arid areas
with higher summer temperatures and higher vapor pressure deficits. Although lakes can be evapoconcentrated

::::::::::
isotopically

::::::::
enriched

:::::
with

:::::
lower

::
d
::::::::::::
(isotopically

::::::::::::::::::
evapoconcentrated) relative to other surface waters Bowen et al.155

(2018), we do not expect similar signals of evaporative
:::::::::::::::::
evaporation-driven

:::::::
isotopic

:
enrichment from reservoirs.

Relative to natural lakes across the US, evaporation rates from western lakes are low relative to inflow Brooks et al.
(2014). Instead, reservoirs may alter the isotope ratios of streamflow through retention of and later discharge of
spring snowmelt. Thus, reservoir outflow may have lower isotope ratios and higher d than the upstream rivers during
the summer months.160
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In this study, we performed
:::::::::
compared

::::::::::
hydrologic

::::::::::::::
model-informed

:::::::::
estimates

::
of

::::
long

:::::
term

:::::
mean

::::::::::
streamflow

:::::::
isotope

:::::
ratios

:::::
with

::::::
stream

::::::
water

:::::::
isotope

:::::::::::
observations

::::::
across

::::
the

:::::::
western

::::
US.

::::
The

:::::::::::::::
model-informed

::::::::
estimate

::
of

:::::
river

::::::
water

::::::
isotope

::::::
ratios

:::::
used

:
an isotope mass balance using the

::::::::::::
methodology

::::
that

:::::::::
combined

::::
the

:::::
long

:::::
term

:::::::
average

:
water

fluxes of the NWM and gridded water stable isotope datasets. We compared the isotope mass balance-derived long
term mean streamflow isotope ratios directly with stream water isotope observations. If the NWM constrains all165

water sources affecting streamflow, we expect the differences between the isotope mass balance results and isotopic
observations (observation-model differences) will be small and be uniformly positive or negative throughout each
basin. If we observe spatial and/or seasonal variability and structured patterns in observation-model differences
within basins (i.e., patterns with elevation, stream order, or aridity), particularly with respect to the sign of the
difference, we may infer that the NWM is incorrectly partitioning runoff and groundwater fluxes, or missing important170

water sources. We hypothesize that if we observe spatial variability and structured patterns in our observation-model
difference data, we will observe higher isotope ratios and lower d in more arid reaches reflecting the influence of
evapoconcentrated irrigation return flows

:
,
:::::
which

:::
we

:::::::
expect

::::
bear

:::
an

:::::::
isotopic

::::::
signal

::
of

:::::::::::
evaporation,

:
on streamflow as

compared to higher elevation, humid or seasonally snowy reaches with minimal anthropogenic influence.

2 Methods175

Using an isotope mass balance approach, we calculated the long term mean stable isotope ratios of river reaches in
the western US (Figure 1). Water

::::
This

::::::
study

:::::::
analyzes

:::::::
spatial

::::::::
patterns

::
in

:::::::::::::::::
observation-model

:::::::::
differences

:::
to

::::::::
evaluate

::::::
missing

:::::::
sources

:::
of

::::::::::
streamflow

::
in

:::
the

::::::
NWM

:::
in

:::
the

:::::::
western

::::
US.

::::
The

:::::::
‘model’

:::::::::
estimates

:::
are

:::::::::
produced

:::::
using

:::
an

:::::::
isotope

::::
mass

::::::::
balance

:::::::::
approach,

::::::
where

:::::
water

:
fluxes were supplied by NWM simulations of groundwater and

::::::
surface

:
runoff

fluxes National Oceanographic and Atmospheric Administration (2022) and isotope ratios came from gridded ground-180

water and precipitation stable isotope products Bowen (2022b); Bowen et al. (2022). We compared calculated river
isotope ratios to observations of isotope ratios. The data compiled and calculated data presented and analyzed in
this manuscript

::::::::::::::::::::::::::::::::
(Bowen (2022b); Bowen et al. (2022),

:::::::
Figure

::
1,
::::::::

Section
::::
2.3).

::::::
These

:::::
mass

::::::::
balance

:::::::::
estimates

:::::
were

::::::::
compared

:::
to

::
a

:::::
large

:::::::::
collection

::
of

::::::
stable

:::::
river

:::::
water

:::::::
isotope

::::::::::::
observations,

::::
and

:::::
both

::::
the

::::::::
compiled

::::::::::::
observations

::::
and

::::
mass

:::::::
balance

:::::::::
estimates

:
are publicly available Reddy et al. (2023)

::::::::::::::::::
(Reddy et al. (2023),

::::::
Figure

::
1,

:::::::
Section

::::
2.4). Differ-185

ences between observations and modeled data were compared in an error-partitioning framework . Where applicable,
results were interpreted in terms of the estimates of the influence of

:::::::
(Section

:::::
2.5),

::::
and

::
we

::::::
tested

::::
the

:::::::::
hypothesis

:::::
that

::::::
spatial

:::::::::
variability

:::
in

:::::::::::::::::
observation-model

::::::::::
differences

:::::::
contains

::
a
:::::::::
signature

:::
of agricultural water use in the upstream

area as well as the presence of impoundments on the river
:::::::
(Section

::::
2.6). A groundwater isotope ratio dataset and

a well water surface elevation relative to river surface elevation dataset from Jasechko et al. (2021) were used as190

independent lines of evidence supporting our analysis of observation- mass balance estimate differences
:::::::
(Section

::::
2.7).
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Figure 1. Diagram showing methods and datasets as described in Sections 2.4-2.6. Four datastreams were used to formu-
late the long isotope mass balance estimates of river isotope ratios: gridded precipitation isotope estimates Bowen (2022b),
gridded groundwater isotope estimates Bowen et al. (2022), gridded precipitation data University of East Anglia Climatic
Research Unit and Harris, I.C. and Jones, P.D. and Osborn, T. (2021) and NWM data National Oceanographic and At-
mospheric Administration (2022) . Three data categories contributed to the observational river isotope dataset: USGS U.S.
Geological Survey (2022), EPA U.S. Environmental Protection Agency (2016b, 2020), and literature datasets accessed from
the waterisotopesdb.org

:::::
Water

:::::::
Isotopes

::::::::
database Putman and Bowen (2019).
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2.1 Temporal domain

Our analysis was constrained to summer months (June, July, August) between 2000 and 2019. The specific months
chosen reflect those with greatest evapotranspiration and thus consumptive water use and correspond to the season
with the largest number of spatially distributed river water isotope observations.195

2.2 Spatial domain

We selected 5
:::::::::
hydrologic

::::
unit

::::::
2-digit

:::::
code

::
(HUC2

:
)
:::::
scale basins U.S. Geological Survey, National Geospatial Tech-

nical Operations Center (2023) in the Western US to compose our study area: the Upper Colorado (14), Lower
Colorado (15), Great Basin (16), Pacific Northwest (17), and California (18). All basins were characterized by rivers
sustained by wintertime snowpack mediated by groundwater infiltration and discharge. All basins also included wa-200

ter management through impoundments and substantial water use for agriculture. In a simplified Köppen climate
classification Rubel and Kottek (2010), the southern and central portions of the study area were characterized as
arid, whereas much of the northern and mountainous portions of the study area was classified as warm temperate
or seasonally snowy.

2.3 Data assimilation framework205

Various data types used in this analysis (point, raster, vector) were spatially joined to coarsened
::::
The

:::::::
spatial

::::::
domain

:::::
and

::::::::::
streamflow

:::::::
routing

:::::
were

:::::::::::
represented

:::
by

::
a

::::::::
network

::
of

::::::::
flowlines

:::::::::
(reaches)

::::
and

:
catchments (n=15787

:
,

:::
1:1

::::::::::::::::::
flowlines:catchments) derived from the National Hydrography Dataset Plus (NHDPlus, U.S. Geological Sur-

vey (2019), see Text S1 for details on catchment coarsening) . The full NHDPlus network was
:::::::
network

::::::::::
processing

::::::
details)

::::
and

:
clipped to the spatial domain of our study. Each catchment contained one reach. Coarsened catchments210

::::::::::
Catchments

:
had a median size of 51 km2 and a mean size of 221 km2, and flowlines had a median length of 20

km2 and a mean length of 32 km2. We also utilized some attributes provided with the NHDPlus , including the
:::
All

::::
data

:::::
used

::
in

::::
this

::::::::
analysis

::::
were

::::::::
spatially

::::::
joined

:::
to

::::
this

::::::::
network,

::::
and

:::
we

::::::::
retained

:::::::::
attributes

:::::::::
provided

:::
by

:::::::::
NHDPlus

::
for

::::::::
analysis,

:::::::::
including

:
catchment area, Strahler stream order, the reach length, minimum and maximum catchment

elevation, and the feature code, which denoted the flowline path type.215

2.3 Performing the
::::::
Using

:
isotope mass balance with NWM water fluxes and gridded water

::
to

::::::::
estimate

:::::
long

::::::
term

::::::
mean

::::::
river isotope ratios

Using estimates of long term mean groundwater and precipitation isotope ratios Bowen (2022b); Bowen et al. (2022)

:::::::::::::::::::::::::::::::
Bowen et al. (2022); Bowen (2022b), we applied an isotope mass-balance to the NWM groundwater and

::::::
surface

runoff fluxes to streams (Figure 1). The operational hydrologic model is based on inputs from
:::
the

::::::::::::
open-source,220

::::::::::
community

:::::::::
hydrologic

::::::
model

:
WRF-Hydro Gochis et al. (2020b, a)

:::::::::::::::::::::
Gochis et al. (2020a, b) and simulates and fore-

casts major water components (e.g., evapotranspiration, snow, soil moisture, groundwater, surface inundation, reser-
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voirs, and streamflow) in real time across the CONUS, Hawaii, Puerto Rico, and the US Virgin Islands. In the
NWM framework, surface and soil evaporation are wrapped into the evapotranspiration flux variable, and direct
evaporation from rivers and reservoirs are not considered in the NWM surface water balance. Thus, we did not apply225

any additional isotopic fractionation to the groundwater and
::::::
surface runoff isotopic fluxes. This approach produced

the ‘characteristic’
::
an

:::::::::
estimated

:
long term mean isotope ratio expected for river reaches in the western US. These

estimates were directly comparable to river water isotope observations.

2.3.1 National Water Model data

We accessed the groundwater ‘bucket’ (qBucket, m3 s−1) runoff (
:::::
lateral

:::::::
surface

::::::
runoff

:::::::
(NWM

::::::::
variable

:
qSfcLa-230

tRunoff, m3 s−1) , and streamflow (streamflow
:::
and

::::::::::::
groundwater

:::::::::
(qBucket, m3 s−1) fluxes from the NWM v 2.1

Analysis Assimilation dataset National Oceanographic and Atmospheric Administration (2022) . We used runoff
and groundwater fluxes for our mass balance estimates (Figure 2), and retained streamflow

::
1).

:::::
The

::::::
NWM

::::::
runoff

::::
term

:::::::::::::::
(qSfcLatRunoff)

::::
only

::::::::
includes

::::::
surface

::::::
runoff

::::
and

::::
does

::::
not

:::::::
include

:::::::::
subsurface

:::::::
runoff.

:::::::
Instead,

::::::::::
subsurface

::::::
runoff

:
is
:::::::
routed

::::
from

:::
the

:::::::
bottom

::
of

::::
the

:::
soil

:::::
layer

::
to

:::
the

::::::::::::
groundwater

::::::
bucket

:::::::::::::::::
(qBtmVertRunoff).

:::
We

::::
also

::::::::
accessed

::::::::::
streamflow235

:::::::::::
(streamflow,

:::
m3

:::::
s−1)

:::::
fluxes

:
as a reach scale quantity to be included in data analyses. These variables

:::
the

:::::::
results

::::::::
analyses.

:::
All

:::::::
NWM

::::::::
variables

:::
we

:::::
used

:
are available at the NHDPlus reach scale on an hourly timestep between

2000 and 2019. We subset these variables to the summer months (June, July, and August) and calculated the mean
water fluxes to each reach for the summer season of each year. The interannual variability in the summer fluxes was
leveraged as an estimate of the uncertainty of the long term mean summer water fluxes.240

2.3.2 Gridded precipitation and groundwater isotope data

The precipitation and groundwater stable isotope ratios (δ2H, δ18O) that we used to perform the isotope mass balance
came from two different publicly available gridded products. Both represent long term means or climatologies and
provide estimates of uncertainty.

We obtained monthly precipitation isotope ratio climatological predictions and uncertainty estimates (1 standard245

deviation) for both H and O from Bowen (2022b). The monthly USA grids were available at 1 km, and were
produced with the OIPC v3.2 database Bowen (2022a) following methods described in Bowen et al. (2005). Monthly
grids have been adjusted for consistency with annual values (see version notes for OIPC2.0 Bowen (2006)).

::
In

:::::::
general,

::::::::
isoscape

::::::::
accuracy

::::::::
depends

:::
on

::::
the

:::::::
spatial

::::
and

::::::::
temporal

:::::::::
coverage

::
of

::::::
point

::::::::
datasets

::::::::
available

:::
to

::::::::
produce

:::
the

::::::::
isoscape.

::::
The

:::::::::::::::
Bowen (2022b)

:::::::
product

::
is

:::
the

:::::::
highest

::::::::::
resolution

:::::::
gridded

:::::::
product

:::::::::
available

:::
for

:::
the

:::::::::::::
conterminous250

::::::
United

:::::::
States,

:::
and

:::
in

:::::::
contrast

:::
to

:::::
other

::::::
global

::
or

::::::::
regional

:::::::
gridded

:::::::
isotope

:::::::::
products,

::
is

:::::::::
produced

:::::
using

::::::::::::
precipitation

::::::
isotope

:::::
ratio

::::
data

:::::
from

::::
not

::::
only

::::
the

::::::
Global

::::::::
Network

::
of

::::::::
Isotopes

::
in

::::::::::::
Precipitation

::::::::
(GNIP),

::::
but

::::
also

:::
the

::::
US

::::::::
Network

::
of

::::::::
Isotopes

::
in

:::::::::::::
Precipitation,

::::
and

:
a
:::::

host
::
of

::::::
other

::::::::::::
precipitation

:::::::
samples

:::::::::
collected

::::
and

::::::
stored

::
in

::::
the

::::::
Water

::::::::
Isotopes

::::::::
Database

::::::::::::::::::::::::
Putman and Bowen (2019)

:
.
::
In

::::
our

:::::
input

::::::::
dataset,

:::
the

:::::::
median

:::::::::
standard

:::::::::
deviations

:::
of

::::
both

:::::
δ2H

::::
and

:::::
δ18O
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:::
are

::::::
about

:::::::
0.12‰,

::::
but

::::
may

:::
be

:::
as

:::::
large

:::
as

::::::
2-3‰,

::::::::::
depending

:::
on

::::
the

::::::
region

::::
and

:::::::
isotope,

::::::
based

:::
on

::
a
::::
N-1

::::::::
jacknife255

::::::::
approach

::
to

:::::
error

::::::::::
estimation

:::::::::::::::::::::::::::
Bowen and Revenaugh (2003).

:

We calculated the precipitation-weighted long term mean summer (June, July, August) and winter (December,
January, February) seasonal isotope ratio climatologies with long term monthly mean precipitation climatologies
calculated from the Climatic Research Unit (CRU) mean monthly precipitation amounts Harris et al. (2020); Uni-
versity of East Anglia Climatic Research Unit and Harris, I.C. and Jones, P.D. and Osborn, T. (2021) for the260

period 2000-2020. The precipitation weighted mean seasonal climatology error was calculated analytically from the
timeseries.

The groundwater isoscapes used in this analysis were produced by Bowen et al. (2022) for 7 depth intervals
ranging from 1 to 1000m. The groundwater isoscapes were not temporally resolved.

::::
The

:::::::
authors

:::::::
report

::::::
errors

::::::
smaller

:::::
than

::::
0.71

::::
and

:::::::
1.07‰

::
in

:::::
δ18O

::::
and

:::::
δ2H

:::::::::
estimates,

::::::::::::
respectively,

:::::
based

:::
on

::
a
::::::::::::::
cross-validation

::::::::::
approach.

::::
The265

::::::::
approach

::::
was

::::::::
validated

::::::
using

::
an

::::::::::::
independent

:::::::
dataset

:::
and

::::::
found

::::
that

::::::::
variance

::
in

::::
the

::::::::
modeled

:::::::::::
groundwater

::::::::
predicts

::::
92%

::
of

:::
the

::::::::
variance

::
in

:::
the

::::::::::
validation

:::::::
dataset,

::::
with

:::
no

:::::
bias.

::::
The

:::::::
authors

:::::::
suggest

::::
that

:::::::
because

::::
the

::::::::
approach

:::::::::
estimates

:::::::::::
groundwater

::::::::
isoscapes

:::
at

::::::::
different

:::::
depth

::::::::
intervals

::
it
:::::::::
produces

:::::
more

::::::::
accurate

:::::::::
estimates

::::
than

::::::::
methods

:::
for

::::::::::
producing

::::
bulk

:::::::::::
groundwater

::::::::::
isoscapes.

Because this project focuses on groundwater discharge to streams, we preferentially utilized the 1-10m depth270

interval. However, this layer contained some data gaps where insufficient well data were present to perform an
estimate. Where available, we filled these data gaps using method outlined

:::::
either

:::::
other

::::::::::::
groundwater

:::::::
depths

:::
or

:::::
mean

::::::
winter

::::::::::::
precipitation

::::::
(DJF)

:::
as

:::::::::
described in Text S2. The groundwater isotope ratio data included estimates

of uncertainty, which were retained for the characterization of uncertainty around the mass balance isotope ratio
estimates.275

The gridded precipitation and groundwater isotope datasets and their uncertainties were assimilated to the NHD-
Plus spatial framework. Because the raster data grid sizes were larger than the catchment sizes we employed a
distance minimization approach using the centroid of the catchment and the centroids of the grid cells.

2.3.3 Calculating mass-balance-derived long term mean surface water isotope ratios

To estimate the long term mean surface water isotope ratio (Rsw,r) at each reach (r) in the spatial domain (Equa-280

tion 1), we accumulated the groundwater (gw) and
::::::
surface

:
runoff (ro) isotope fluxes (i.e., the isotope ratio multiplied

by the water flux, R ∗ F ) for all reaches (i) from the headwaters downstream to the reach. The isotope ratio for

::::::
surface

:
runoff (Rro) came from the summer mean gridded precipitation isotope ratios and the isotope ratio for the

groundwater flux (Rgw) came from the gridded groundwater isotope ratios (see Section 2.3.2). The summed isotope
fluxes were divided by the summed

::::::
surface

:
runoff and groundwater fluxes.285

Rsw,r =
∑r

i=0 Rgw,i ∗ Fgw,i + Rro,i ∗ Fro,i∑r
i=0 Fgw,i + Fro,i

(1)
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Because
:::
Our

:::::
long

:::::
term

:::::
mean

:::::::::
estimates

:::
of

:::::
Rsw,r::::

are
:::::::
subject

:::
to

::::::::::
uncertainty

:::::
from

:::
1)

::::::::::::
internannual

:::::::::
variations

:::
in

:::
the

:::::
mean

::::::::
summer

:
volumetric contributions of groundwater and

::::::
surface

:
runoff to streamflow in each reach varied

with year, and
:::
and

:::
2) because the long term mean estimates of the groundwater and precipitation isotope ratios

include estimates of uncertainty , we evaluated the potential for uncertainty in our estimates of Rsw,r. We used the290

interannual variabilityin the mean summer water fluxes as characteristic of the
::
are

:::::::
subject

::
to

:::::::::::
uncertainty

::::::
arising

:::::
from

:::::::::
underlying

:::::
data

::::::::
coverage

::
as

::::
well

::
as

:::::::::::
interannual

::::::::::
variability.

::
To

:::::::::
constrain

:
uncertainty in our estimate of our long term

mean water fluxes, and used the uncertainty estimates provided with the isotope ratio products as representative of
the uncertainty in the isotope ratios. We performed

::::::::
estimates

::
of

::::::
Rsw,r,

:::
we

::::::::::
calculated

:::
200

:::::::::
estimates

::
of

::::
Rsw::::

per
:::::
reach

::
by

::::::
taking

:
10 random draws of

::::
from the isotope ratio distributions

:::::::::
(assuming

::
a

::::::
normal

:::::::::::::
distribution), for each of the295

20 years of record, which gave a total of 10 estimates of Rsw per year over 20 years of record, or 200 total estimates
of Rsw per reach.

:::::
This

:::::::::
approach

::::
uses

:::::::::::
interannual

:::::::::
variability

:::
in

::::::
surface

::::::
runoff

::::
and

::::::::::::
groundwater

:::::
fluxes

:::
to

:::::::::
constrain

:::
the

:::::::::
variability

:::
in

::::
the

:::::
water

:::::
flux

::::::::::
component

::
of
::::

the
:::::::::::
calculation,

::::
and

:::::::::::
uncertainty

::
in

::::
the

:::::::
isotope

:::::
ratio

:::::::::
estimates

:::
to

::::::::
constrain

:::
the

:::::::::::
uncertainty

::
in

::::
the

:::::::
isotope

:::::
ratio

::::::::::
component

::
of

::::
the

::::::::::
calculation. Joint distributions (of either H and O,

or isotopes with water fluxes), were not used because information about how the isotope ratios might covary was300

not available from the gridded isotope datasets and no assumptions were made about how the isotopes might vary
with interannual variability in climatic conditions. Similarly, no assumptions were made that the precipitation and
groundwater isotope ratios covaried in time. These 200 estimates were used to calculate a long-term mean estimated
isotope ratio for river water in each reach of the network and to evaluate uncertainty in our estimates.

2.4 Compilation of river isotope observations305

The results of the mass balance were compared with observations of stable water isotope ratios from rivers collected
between 2000 and 2021, during the growing season months of June, July, August and September. We included two
additional years (2020 and 2021) as well as data from the month of September beyond the temporal constrains of
the NWM model domain in our set of observations. This decision as

:::
was

:
made to maximize the amount of data and

number of unique river reaches in the spatial domain that are available for analysis, and reflects the assumption that310

the long term mean river isotope ratios calculated from the mass balance approach will be insensitive to inclusion
or exclusion of a small number of additional years or an additional growing season month.

We compiled surface water stable isotope (δ2H, δ18O) measurements from various sources including the Environ-
mental Protection Agency (EPA), the United States Geological Survey (USGS) National Water Information System
(NWIS, U.S. Geological Survey (2022)), and published datasets assimilated in the Water Isotopes Database Putman315

and Bowen (2019). Not all reaches had one or more stable water isotope observations, and river reaches with multi-
ple stable water isotope ratio observations were sometimes, but not always, from the same sampling site within the
catchment.

The EPA surface water stable isotope data came from the National Rivers and Streams Assessments (NRSA, U.S.
Environmental Protection Agency (2016b, 2020)) and the National Lakes Assessment (NLA, U.S. Environmental320
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Protection Agency (2009, 2016a)). These data were collected once or twice per summer on a five year rotating
basis as part of routine sampling campaigns. Over the time period of our analysis, we obtained three collections
of NRSA samples (2008-2009, 2013-2014, and 2018-2019). Sites were sometimes but not always resampled among
the campaigns. Sampling was stratified based on Strahler stream order and by state ensuring that all orders were
sampled within each state in the assessments U.S. Environmental Protection Agency (2016b, 2020). This means that325

higher order reaches are less frequently sampled than medium or low order reaches.
The USGS surface water stable isotope data for rivers were downloaded through the NWIS API U.S. Geological

Survey (2022) and the literature data came from published and unpublished sources that are publicly available
through the Water Isotopes Database Putman and Bowen (2019). Stable isotope collections are not part of routine
measurements for the USGS, but rather are collected by specific USGS projects. Thus, stable isotope data collections330

from the USGS and literature datasets tended to be spatially and temporally clustered.

2.5 Comparing the isotope mass balance results with observations

The relationship of the NWM isotope mass balance (modeled) to the river isotope observations were evaluated using
correlation and simple regression analyses, where the modeled isotope ratio (either δ2H or δ18O) values are used
to predict the observed isotope ratios. We evaluated the results with all unaveraged observations and mean isotope335

ratio at river reaches with multiple observations. A Pearson correlation analysis was performed using the ‘corr()’
function of python’s ‘pandas’ package Wes McKinney (2010); The pandas development team (2020). Regression
analysis was performed using the ordinary least squares (OLS) function in the python ‘statsmodels’ package Seabold
and Perktold (2010).

We calculated the likelihood that an observation and the model result came from the same distribution, based340

on the variance in the model estimate, and variance associated with river water isotope observations (Text S3)
using a two-tailed t-test. We reported p-values, where p<0.1 indicated that the isotope mass balance estimate was
statistically different from the observed surface water isotope ratio for the specific element (H or O).

2.5.1 Calculating observation-model differences

We calculated the observation (obs)-model estimate (mod) differences in both δ18O and δ2H, by subtracting the345

model estimate from the observation (δ18Odiff = δ18Oobs−δ18Omod; δ2Hdiff = δ2Hobs−δ2Hmod). Using both isotope
systems, we established a framework for interpretation of our results (Figure 2) that utilizes movement along or
deviation from the global mean δ2H : δ18O ratio of 8 that is used to represent fractionation that occurs at equilibrium
and defines the slope of the Global Meteoric Water Line (GMWL Craig, 1961)

::::::::::::::::::::
(GMWL, Craig, 1961).

Observation-model differences may arise from either 1) incorrect model source representation (i.e., missing water350

sources or incorrect fluxes of established sources) or 2) errors in the isotope ratio datasets used for the isotope
mass balance calculation. Thus, for positive or negative values of δ18Odiff and δ2Hdiff that exhibit a δ2Hdiff :
δ18Odiff ratio of 8, we infer either errors in NWM with respect to the proportions of

::::::
surface runoff and groundwater
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contributed, or errors in the gridded isotope ratios (likely groundwater, due to its disproportionate contributions
::
to

:::::::::
streamflow). For positive or negative δ18Odiff and δ2Hdiff with δ2Hdiff : δ18Odiff ratios different from 8, we infer355

that the NWM is missing uncharacterized water sources with isotope values bearing a signature of non-equilibrium
fractionation. We quantify differences of δ2Hdiff : δ18Odiff ratios from 8 using a metric of similar to d (Equation 2).

ddiff = δ2Hdiff − 8 ∗ δ18Odiff (2)

We can interpret combinations of δ18Odiff and ddiff together, as well as ddiff independently to infer the un-
characterized sources responsible for the observation-model difference. This framework is useful because the ratios360

of δ2H to δ18O of the isotopic inputs to the isotope mass balance tend to be close to 8 Bowen (2022b); Bowen
et al. (2022) whereas those from the observations more often differ from 8 U.S. Environmental Protection Agency
(2016b, 2020). This means that all non-zero ddiff values can be used to identify omitted water sources and where
they are important

::::
with

:::::::::::::::
non-equilibrium

::::::::::::
fractionation

::::::
signals

:::::
and

:::
can

:::
be

:::::
used

:::
to

::::::::
diagnose

::::::
where

::::::
these

:::::::
sources

::::
may

:::::::::
contribute

:
to streamflow.

::::
The

:::::::::
conditions

:::
of

::::
this

::::::
study,

:::::
based

:::
on

::::
the

::::
data

::::
and

:::::::::
approach,

::::::
mean

::::
that

::::
the

:::::
mass365

:::::::
balance

::::::::
approach

::::::::::
represents

::
a

::::
null

::::::::::
hypothesis

::::
that

:::
all

:::::::::
processes

::::
and

:::::::
sources

::::::::::::
contributing

::
to

::::::::::
streamflow

::::::
carry

:::
an

:::::::
isotopic

:::::
signal

:::
of

::::::::::
equilibrium

::::::::::::
fractionation

:::::
(i.e.,

::::::::::::
precipitation,

::::::::::::
groundwater,

:::::::::
routing).

::
In

:::::
other

:::::::::
instances,

::::::
where

::::
the

:::::::
modeled

:::::::::
approach

:::::
could

:::::::
reflect

:
a
::::::::::::

combination
::
of

:::::::::::
equilibrium

::::
and

:::::::::::::::
non-equilibrium

:::::::::
processes,

:::
the

:::::::::::::
interpretation

:::
of

::::::::::::::::
observation-model

::::::::::
differences,

:::::::::::
particularly

::
in

::::::
terms

::
of

::::
the

:::::
ddiff ::::

axis,
:::::
may

:::::::
change.

:

2.6 Evaluating modes of variability in observation-model differences370

We evaluated interannual, seasonal, and spatial modes of variability in our

2.6
:::::::::::
Evaluating

:::::::::::
variability

:::
in

:::::::::::::::::::
observation-model

:::::::::::
differences

::::::::
Following

::::
the

:::::::
spatial

::::::::
strength

:::
of

:::
our

::::::::
dataset,

::::::
which

::::::
relies

:::::::
heavily

:::
on

::::
the

:::::
EPA

::::::
NRSA

:::::::::
datasets,

:::
we

::::::::
focused

:::
on

:::::::::
evaluation

::
of

:::::::
spatial

:::::::::
variability

::
in
:

observation-model differences. The interannual variability was assessed to ensure
that patterns in the other modes of variability did not arise due to the timescale difference between our isotope375

mass balance estimates (long term mean) and observations (instantaneous).The seasonal and spatial variability were
investigated to understand the reasons for observation-model differences in our dataset.

2.6.1 Evaluating interannual variability in observation-model differences

To assess the influence of interannual variability on unexplained variance in our observation-model comparison,
we utilized the years (2008, 2009, 2013, 2014, 2018, 2019)where sampling was conducted by the EPA NRSA,380

because these years are likely to have the most representative and consistent spatial distribution of samples. Every
NRSA-sampled year had over 250 observations and represented more than 100 river reaches. No other years exhibited
this spatial representation. We calculated the mean and standard deviation of the observation-model differences,
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Schematic for
interpretations of observation model differences utilizing dual isotope space and assumptions about the expected

relationships between δ18Odiff and δ2Hdiff . The annotations associated with ‘NWM’ specify the sort of hydrologic model
error (i.e. water source apportionment) that could produce the observation-model comparison result, if all isotope data
supplied to the isotope mass balance are correct. The annotations associated with ‘Data’ specify the sort of error in the

gridded isotope datasets that could produce the observation-model result if all NWM water source contributions are
assumed to be correct.

Figure 2.
::::::::
Schematic

::::
for

:::::::::::::
interpretations

::
of

:::::::::::
observation

::::::
model

:::::::::
differences

::::::::
utilizing

:::::
dual

::::::
isotope

:::::::::
difference

::::::
space

::::
and

::::::::::
assumptions

:::::
about

:::
the

::::::::
expected

::::::::::
relationships

:::::::
between

::::::::
δ18Odiff :::

and
::::::::
δ2Hdiff .

:::
The

::::::::::
annotations

:::::::::
associated

::::
with

:::::::
‘NWM’

::::::
specify

:::
the

:::
sort

:::
of

:::::::::
hydrologic

:::::
model

:::::
error

::::
(i.e.

:::::
water

::::::
source

:::::::::::::
apportionment)

::::
that

:::::
could

:::::::
produce

:::
the

::::::::::::::::
observation-model

::::::::::
comparison

:::::
result,

::
if

:::
all

::::::
isotope

::::
data

::::::::
supplied

::
to

:::
the

:::::::
isotope

:::::
mass

::::::
balance

::::
are

::::::
correct.

::::
The

::::::::::
annotations

:::::::::
associated

:::::
with

:::::
‘Data’

:::::::
specify

:::
the

:::
sort

:::
of

::::
error

::
in
::::

the
:::::::
gridded

::::::
isotope

:::::::
datasets

::::
that

:::::
could

::::::::
produce

:::
the

:::::::::::::::
observation-model

::::::
result

:
if
:::

all
::::::
NWM

:::::
water

::::::
source

:::::::::::
contributions

:::
are

:::::::
assumed

::
to

:::
be

:::::::
correct.

:::
The

:::::::::::::
interpretations

::
of

:::
the

:::::::::
secondary

:::::
mode

::
of

:::::::::
variability,

::::::::
captured

::
by

:::::
ddiff ,

:::::::
depend

::
on

:::
the

:::::::
‘model’

::::::::
producing

::::::
results

::::
that

::::::
reflect

::::::::::
equilibrium

::::::::::
relationships

::::::::
between

::::
δ18O

::::
and

::::
δ2H.

:
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and performed a regression on the differences (e.g., as described for all data in Section 2.5.1). The EPA method
is sufficiently standardized Theobald et al. (2007) that the regression results for each year are unlikely to primarily385

reflect spatial variability in sampling locations.

2.6.1 Evaluating variability in observation-model differences across the growing season

To assess how the observation model difference may change over the growing season, we obtained all sites-year
combinations where there were at least three observations during at least three of the four months (Jun-Sep) of the
growing season. We required one of the months be the month of June to form the basis for comparison. From the June390

value(s) of δ18Odiff and ddiff for a site-year combination, we subtracted the δ18Odiff and ddiff values calculated
for other months at the same site and from the same year. We evaluated the distribution of the aggregate results,
as well as the distributions at the HUC2 basin scale by comparing their means and interquantile ranges

:::::::::
differences

::
in

:::
our

::::::::
dataset.

:::
We

:::::::::
evaluated

:::::::::
temporal

:::::::::
variability

:::
to

::
1)

:::::::
support

::::::::
findings

:::::
from

:::
our

::::::::
analysis

::
of

::::::
spatial

::::::::::
variability

::::
and

::
2)

:::::::::
determine

::::::::
whether

:::::
there

::::
may

:::
be

:::::::::::::::
spatial-temporal

::::::::::
covariance

:::::
which

:::::::::
influences

::::
our

::::::
results.395

2.6.1 Evaluating sources of spatial variability in observation-model differences

Spatial structure in the observation-model differences were evaluated graphically by comparison of δ18Odiff and
ddiff with catchment mean elevation, Strahler stream order, and Köppen climate class Rubel and Kottek (2010).
The former two variables were retained from the NHDPlus catchment dataset U.S. Geological Survey (2019). The
former was joined to the spatial framework as described in Text S4.400

Spatial structure in the observation-model differences were evaluated statistically with linear mixed effects mod-
eling using the basin (HUC2) as a random variable using the python ‘statsmodels’ module and the ‘mixedlm()’
function Seabold and Perktold (2010). Linear mixed effects modeling with basin as the random (grouping) variable
was selected for the analysis method because water in streams at low elevations is likely to be more isotopically
similar to water in the basin headwaters than a nearby stream in a different basin with different water source re-405

gions. Thus, we assume the groups are likely to have different mean values reflecting their hydrologic and climatic
differences. Although we also expect that the relationship of the response variable ddiff to the explanatory variables
may differ among basins, both our response and explanatory variables contain substantial scatter as well as small
numbers of high leverage points in each basin, such that a more nuanced analysis

:::
that

::::::::
includes

:::::::::
temporal

::::::
aspects

:::
of

:::::::::
variability

:
would be likely to produce misleading results.410

Using the linear mixed effects approach, we tested the statistical relationship between ddiff and the ratio of
actual evaporation to precipitation ( ETa

P , Text S4), catchment mean elevation, fraction of streamflow estimated to
come from agricultural return flows (Text S5), and a categorical variable indicating influence of large reservoirs
(capacity >50,000 acre-feet, Text S5.2). We performed statistical analysis on all sites on streams not categorized as
intermittent, ditches, or canals.415
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::
To

::::::
assess

::::
how

:::
the

:::::::::::::::::
observation-model

:::::::::
difference

::::
may

::::::
change

:::::
over

:::
the

:::::::
growing

:::::::
season,

::
in

::::::
which

:::
the

:::::::
relative

::::::::
fraction

::
of

::::::::::
agricultural

::::::
water

::
in

::
a

::::::::
waterway

:::::
may

:::::::
increase

::::
due

::
to

::::
low

:::::
flows

:::
and

:::::::::
increased

:::::
water

::::
use,

:::
we

::::::::
obtained

:::
all

:::::::::
sites-year

::::::::::::
combinations

:::::
where

:::::
there

:::::
were

::
at

:::::
least

:::::
three

::::::::::::
observations

::::::
during

::
at

:::::
least

:::::
three

::
of

::::
the

::::
four

:::::::
months

:::::::::
(Jun-Sep)

::
of

::::
the

:::::::
growing

:::::::
season.

:::
We

::::::::
required

:::
one

:::
of

:::
the

:::::::
months

:::
be

:::
the

::::::
month

::
of
::::::
June.

:::::
From

:::
the

:::::
June

:::::::
value(s)

:::
of

::::::::
δ18Odiff ::::

and
:::::
ddiff

::
for

::
a
::::::::
site-year

::::::::::::
combination,

:::
we

::::::::::
subtracted

::::
the

::::::::
δ18Odiff::::

and
:::::
ddiff::::::

values
::::::::::

calculated
:::
for

:::::
other

::::::::
months

::
at

::::
the

:::::
same420

:::
site

::::
and

:::::
from

:::
the

:::::
same

:::::
year.

::::
We

:::::::::
evaluated

:::
the

:::::::::::
distribution

::
of
::::

the
:::::::::
aggregate

:::::::
results,

::
as

:::::
well

::
as

:::
the

::::::::::::
distributions

:::
at

:::
the

::::::
HUC2

:::::
basin

:::::
scale

:::
by

:::::::::
comparing

:::::
their

::::::
means

::::
and

::::::::::::
interquantile

:::::::
ranges.

::::::::::
Interannual

::::::::::
variability

::::
was

::::
also

:::::::
assessed

::::::
(Text

::::
S6)

::
to

::::::
ensure

:::::
that

::::::::
patterns

::
in

::::
the

:::::
other

::::::
modes

:::
of

:::::::::
variability

::::
did

:::
not

::::
arise

::::
due

::
to

::::::
either

:::::::::::
covariability

:::
in

::::::
spatial

::::
and

::::::::
temporal

::::::::
patterns

::
of

:::::::::
sampling,

::
or

::::
the

::::::::
timescale

:::::::::
difference

::::::::
between

:::
our

:::::::
isotope

:::::
mass

:::::::
balance

:::::::::
estimates

:::::
(long

:::::
term

::::::
mean)

::::
and

:::::::::::
observations

:::::::::::::::
(instantaneous).425

2.7 Evaluation of independent lines of evidence supporting signature of agricultural water use in
rivers

Because it is difficult to disentangle the effects of elevation and aridity from the effects of human water use and
management due to their spatial covariance, we utilized analyses of independent datasets to support the results of
our statistical inference. The analyses evaluated relationships between land use or cover and groundwater isotope430

ratios and the fraction of well water levels that are below the nearby river level in catchments across the western
US.

2.7.1 Associating groundwater stable isotope observations with land use / land cover types

Estimates of the isotopic evapoconcentration of groundwater associated with different land use and land cover classes
supports our inferences from observation-model differences. We made the associations between groundwater isotope435

ratios and land use classes at a HUC12 scale U.S. Geological Survey, National Geospatial Technical Operations
Center (2023).

We considered five land use type categories that were aggregations of two or more National Land Cover Database De-
witz and U.S. Geological Survey (2021) categories. The ‘desert’ category was composed of barren land (NLCD
code=31), shrub/scrub (52), and grasslands/herbaceous (71) land classes. The ‘forest’ category was composed of440

evergreen, deciduous and mixed forests (41-43). The ‘developed’ category was composed of all the ‘developed’ classes,
including open (21-24). The ‘agriculture’ category was composed of pasture/hay (81) and cultivated crops (82). The
final category, ‘water and wetlands’ included all other land types, which include open water (11), perennial ice/snow
(12), woody wetlands (90) and emergent herbaceous wetlands (95). We assigned the dominant land use/land cover
category for each HUC12 using data based on the land use type with the greatest fractional coverage.445

We compiled groundwater stable isotope (δ18O, δ2H) measurements from the USGS NWIS U.S. Geological Sur-
vey (2022), and published datasets assimilated in the Water Isotopes Database Putman and Bowen (2019).

::::
The

:::::::::::
groundwater

:::::::
isotope

:::::
ratio

:::::::::::
observations

:::::
were

::::::::
spatially

::::::
joined

::
to

::::
the

:::::::::
hydrologic

::::::
units.

:
We did not place temporal or
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well depth constraints on the samples used in our analysis. Not imposing well depth constraints may contribute to
scatter associated with differences in water sources recharging shallow groundwater compared to deeper confined450

aquifers. The groundwater isotope ratio observations were spatially joined to the hydrologic units.

2.7.2 Evaluation of NWM groundwater discharge with well level fractions

The Jasechko et al. (2021) dataset compared river surface elevations with river-side well water elevations within
catchments. The approach produced the fraction of wells in a catchment whose water surface levels were lower than
the water surface level of the nearby river. In catchments where most well water levels are below the river water455

level (scores close to 1), we expect the river to lose water to shallow groundwater recharge under the right geologic
conditions (e.g., permeability). In contrast, in catchments where most well water levels are above the river water
level (scores close to 0), we expect groundwater discharge to streams.

We predicted the long term mean summer NWM ‘qBucket’ magnitude using the Jasechko et al. (2021) dataset
using a simple linear regression. This approach tests the hypothesis that if NWM accurately represents groundwater460

discharge to streams, the relationship of well water elevations to river surface elevation would predict the summer
mean NWM groundwater discharge flux (assuming a linear relationship between the two quantities), with some
scatter to account for subsurface permeability and spatial variability in groundwater discharge rates. We then
evaluated the effect of agricultural irrigation in a catchment on the relationship between NWM ‘qBucket’ (binned
by to the 0-20th, 20th-40th, 40th-60th, 60th-80th, and 80th-100th percentiles) and the Jasechko et al. (2021) dataset.465

The evaluation was split into reaches influenced by irrigation sourced from groundwater and irrigation sourced from
surface water, as well as reaches uninfluenced by irrigation water. Irrigation contributions and irrigation water sources
were determined using the methods for estimating irrigation water use described in Text S5.1

:::
and

:::::
used

::::::::
elsewhere

:::
in

:::
our

:::::::
analysis.

3 Results and discussion470

3.1 Evaluation of the isotope mass balance approach for estimating surface water isotope ratios

The
::::
Our analysis evaluated 4503 stream stable isotope observations in 877 unique river reaches across the western

United States relative to NWM-driven isotope mass-balance-derived estimates (hereafter, ‘modeled’) of the river
isotope ratios. Of these, 448 reaches had more than one observation (often all at the same sampling site in the
catchment, but sometimes at multiple sites, Figure S1), and up to 571 observations in a catchment (Figure S1 and475

S2). On average, across all data, the observations were significantly greater than the modeled values by 0.537 ±
0.033 ‰ and 4.81 ± 0.222 ‰ for δ18O and δ2H, respectively (Figure 3). For δ18O we observed a standard deviation
of 3.16‰ for the observed data and 2.96‰ for the modeled data (for all data averaged by catchment). For δ2H we
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::::::
Surface

:::::
water

:::::
lines:

:
β
:::
(±

::::
s.e.)

:
I
::
(±

::::
s.e.)

: ::
R2

::::::::::::
Model-derived

:::
8.12

:::
(±

::::::
0.010)

:::
8.06

:::
(±

:::::
0.14)

:::::
99.3%

::::::::::
Observations

: :::
7.57

:::
(±

:::::
0.02)

:::
1.23

:::::::
(±0.32)

: :::::
96.1%

:::::::
Meteoric

:::::
water

:::::
lines:

:::::::::::::::
βmin, βmax (βavg)

::::::::::::::
Imin, Imax (Iavg)

:

:::::
Global

::::::::
Meteoric

::::::
Water

::::
Line

:
8
: ::

10

::::
Arid

:::
and

::::::::::
Temperate

:::
dry

:::::::
summer

:::::::
LMWLs

: ::::
6.56,

::::
8.02

:::::
(7.57)

: ::::
-10.5,

::::
9.85

::::::
(3.02)

:::::::::
Temperate

:::::
humid

::::
and

::::::::::
Continental

:::::::
LMWLs

: ::::
7.34,

::::
7.64

:::::
(7.49)

: ::::
-3.82,

::::
3.31

::::::
(0.62)

Table 1.
::::::
Surface

::::::
water

::::
line

::::::
slopes

::::
and

:::::::::
intercepts

:::::::::::::::
(δ2H = δ18O + I)

:::::::::
compared

:::
to

::::
the

:::::::
Global

::::::::
Meteoric

::::::
Water

:::::
Line

:::
and

:::::::::
published

:::::::::::
precipitation

::::::
water

:::
line

:::::::
ranges

:::::::::
(LMWLs)

:::::
from

:::::::
different

:::::::
climate

::::::::::::
classifications

:::
in

::::::
North

:::::::
America

::::::
(data

::::
from

:::::::::::::::::
Putman et al. (2019)

::
).

:::::::
Because

::
all

::::::::::
regressions

:::
are

:::::
highly

::::::::::
significant,

::
no

:::::::
p-values

:::
are

::::::
shown.

observed a sample standard deviation of 25.4‰ for the observed data and 24.4‰ for the modeled data (for all data
averaged by catchment, Figure 3).480

:::
We

::::::::::
calculated

:::::::
surface

:::::
water

:::::
lines

:::::::
(SWL)

:::
for

:::::
both

::::
the

::::::::
modeled

:::::
and

::::::::
observed

:::::::
results

:::::
using

:::
all

:::::::::
available

:::::
data

::::::
(Figure

:::
3).

::::
The

::::::::::::
observations

::::::
yielded

::
a
:::::
SWL

::::
with

::
a
:::::
slope

::
of

:::::
7.570

:::
(±

::::::
0.023),

::::
and

::::::::
intercept

:::
of

::::::
1.2301

:::
(±

::::::
0.320),

::::::
which

:::
was

:::::::::::
significantly

:::::::::
different

::::
from

::::
the

:::::
slope

:::
of

:::
the

::::::::
GMWL

:::::
slope

::
of
::

8
::::
and

:::::::::
intercept

::
of

:::
10

::::
and

::::
was

:::::::
within

:::
the

::::::
range

::
of

::::
local

:::::::
MWLs

:::::::::
(LMWL)

::::::
slopes

:::
for

:::::::
western

::::::
North

::::::::
America

:::::::
(6.5-8)

:::::::::::::::::::
Putman et al. (2019),

::::::::
reported

:::
in

:::::
Table

:::
1.

::::
The

:::::
model

:::::::
results

::::::
yielded

::
a
:::::::
surface

:::::
water

::::
line

::::
with

::
a
:::::
slope

::
of

:::::
8.12

::::::::
(±0.010)

::::
and

::
an

:::::::::
intercept

::
of

::::
8.06

:::
(±

:::::
0.14)

::::::
which

::::
was485

::::
more

:::::::
similar

:::
to,

::::
but

:::
still

:::::::::::
statistically

::::::::
different

:::::
from

:::
the

:::::::
GMWL

::::
and

::::::::
differed

::::
from

::::::::
LMWLs

:::
for

::::
the

:::::
region

:::::::
(Table

:::
1).

::::::::::
Comparison

:::
of

::::
the

:::::::::::
observation

::::
and

::::::::
modeled

:::::
data

::::::::::::
distributions

::::
and

:::::
water

:::::
lines

:::::::
reveals

::::::::
evidence

::::
for

:::::::::::
evaporation

::
of

:::::::
surface

::::::
waters

::
in

::::
the

::::::::::::
observations

:::
but

::::
not

:::
in

:::
the

:::::::
isotope

:::::
mass

::::::::
balance

::::::
results

::::::::
(Figure

:::
3).

::::
This

:::
is

:::::::
because

::::
the

:::::::
primary

::::::
source

:::
of

::::::::::
streamflow

::
in

::::
the

::::::::
modeling

:::::::::::
framework,

::::
high

:::::::::
elevation

::::::::::::
groundwater

:::::::::
discharge,

:::::
does

:::
not

:::::
bear

:::
an

::::::::::::::::
evapoconcentrated

:::::::
isotopic

:::::::::
signature

::
in

:::
our

::::::
input

::::::::
datasets,

:::
and

:::::
lower

:::::::::
elevation

:::::
water

:::::::
sources

::::::::::::
(groundwater

::
or

:::::::
surface490

::::::
runoff)

::::
that

::::::
could

::::
bear

:::
an

:::::::
isotopic

:::::::::
signature

::
of

::::::::::::
evaporation,

:::::::::
depending

:::
on

::::
the

::::::
region,

::::
are

::::::::::
considered

::
by

::::
the

::::::
model

::
to

:::
be

:::::
minor

::::::::::::
contributors

::
to

::::::::::
streamflow

::::
over

::::
the

:::::::::
timescale

:::::::::
integrated

:::
by

:::
our

::::::
study.

:

The

:::::::
Despite

:::
the

::::::::::
differences

::
in

:::
the

:::::
data

::::::::::::
distributions,

:::
the

:
modeled isotope ratios and observed isotope ratios were well

correlated (Table 2, Figures S4-7), with correlation coefficients between 0.761 and 0.866, depending on the isotopo-495

logue and whether individual observations or catchment means were considered. These correlations translated to
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Figure 3. The distribution of the catchment mean observation (obs, blue) and isotope mass balance estimates (mod, gray)
(n=448) with the Global Meteoric Water line (dotted) and the two datasets

:
’ surface water lines (solid lines).

:::
See

:::::
Table

::
1

::
for

:::::
water

::::
line

::::::::
statistics.

:
Data distributions, including mean and two standard deviations of each data type (dotted lines),

are shown in the plot margins. Observations plotting below the GMWL indicate evapoconcentration
::::::::::
evaporation,

:::::
while

:::::
those

::::::
plotting

::::::
above

:::
the

::::::
GMWL

::::
may

:::::::
indicate

::::::
mixed

:::::
phase

::::
cloud

::::::::
processes

::
or
:::::
other

::::::::::::::
non-equilibrium

::::::::::
condenation

::::::::
processes Putman

et al. (2019).
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Statistical model n Corr.
coef

β (± s.e.) I (± s.e.) R2

δ18Oobs ∼ δ18Omod + I 4503 0.761 0.917 (± 0.012)* -0.645 (± 0.168)* 57.9%
δ18Oobs,avg ∼ δ18Omod,avg+I 448 0.820 0.879 (± 0.029)* -0.891 (± 0.414)* 67.3%
δ2Hobs ∼ δ2Hmod+I 4503 0.819 0.937 (± 0.010)* -1.90 (± 1.06)* 67.1%
δ2Hobs,avg ∼ δ2Hmod,avg+I 448 0.866 0.905 (± 0.025)* -3.10 (± 2.66) 75.1%
δ2Hdiff ∼ δ18Odiff +I 4503 0.959 6.54 (± 0.029)* 1.30 (± 0.065)* 91.9%
δ2Havg,diff ∼ δ18Oavg,diff +I 448 0.958 6.70 (± 0.094)* 1.46 (± 0.190)* 91.9%

Table 2. Correlation and regression results for observation-model comparisons. Regressions were performed on all data (n
= 4503), as well as on the mean values in a subset of the reaches with more than one observation (n=448). An asterisk (*)
indicates the coefficient is significant at p<0.1.

statistically significant simple linear regressions where the modeled isotope ratios were used to explain the observed
isotope ratios (Table 2). Depending on the isotopologue and whether individual observations or means were con-
sidered, the model explained between ∼ 58% and 75% of the variance in the observations. The model explained
more variance for δ2H than δ18O, and more variance for catchment mean values relative to individual observations.500

For all regressions, the slopes ranged from 0.879 to 0.937, with catchment mean slopes tending to be lower than
slopes calculated from all observations. Intercepts for all regressions were close to, but less than 0, with lower in-
tercepts associated with regressions calculated from catchment mean values, relative to regressions calculated from
all observations. The statistically significant slopes of less than 1 and statistically significant intercepts arise in all
observation-model comparison regressions because the observations tended to exhibit higher isotope ratios than the505

model estimated at the lower end of the isotopic distribution (Figures S4-7). Many of the catchments characterized
by this pattern were in more arid locations.

We calculated surface water lines (SWL, similar to a meteoric water line (MWL), but instead of being calculated
from precipitation, they are calculated with isotope ratios from surface water samples in an area) for both the
modeled and observed results using all available data (Figure 3). The observations yielded a surface water line with510

a slope of 7.570 (± 0.023), and intercept of 1.2301 (± 0.320), which was significantly different from the slope of
the GMWL slope of 8 and intercept of 10 and was within the range of local MWLs (LMWL) slopes for western
North America (6.5-8) Putman et al. (2019), reported in Table 1. The model results yielded a surface water line 8.12
(±0.010) and an intercept of 8.06 (± 0.14) which was more similar to, but still statistically different from the GMWL
and differed from LMWLs for the region (Table 1). Comparison of the observation and modeled data distributions515

and water lines reveals evidence for evapoconcentration of surface waters in the observations but not in the isotope
mass balance results (Figure 3). This is because the primary source of streamflow in the modeling framework, high
elevation groundwater discharge, does not bear an evapoconcentrated isotopic signature in our input datasets, and
lower elevation water sources (groundwater or runoff) that could bear a signature of evapoconcentration, depending
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on the region, are considered by the model to be minor contributors to streamflow over the timescale integrated by520

our study.

3.2 Model-observation differences

Of 4503 observations, 1763 δ18O and 3306 δ2H observations were significantly different from the long term mean
isotope mass balance NWM estimate at p<0.1. Of these, 1756 observations indicated significant differences in both
isotopologues

::
for

:::::
both

:::::
δ18O

::::
and

:::::
δ2H. This corresponded to a median absolute difference of 2.2‰ for δ18O and525

9.7‰ for δ2H. For both, a larger proportion of the distribution indicated positive significant differences and those
differences tended to be greater in absolute magnitude than the negative significant differences.

We used an observation-model difference interpretation framework (Figure 2) to interpret differences between the
observations and the isotope mass balance estimates. The differences may contain

::::
gain

:
process information that

can be used to improve our understanding of terrestrial water balance and process inclusion in the NWM. The530

observation-model differences in δ18O and δ2H were correlated (Figure 4) and yielded similar results for analyses
performed with all data as compared to means of reaches with multiple observations (Table 2). Correlations between
δ18Odiff and δ2Hdiff were about 0.96. Simple linear regressions, where variance in δ18Odiff explained variance in
δ2Hdiff , with all data and catchment mean data both explained about 92% of the variance, were significant and
exhibited slopes of less than 8 (Table 2), suggesting the presence of errors arising from NWM omission of water535

sources that bear signatures of non-equilibrium processes.
In our dataset, model estimates do not deviate much from the GMWL, and deviate less than the observations

(Figure 3).
::::
The

::::::
model

:::::::::
estimates

::::::
reflect

::
an

:::::::::::
assumption

::::
that

::::::
water

:::::::
sources

:::::::::::
contributing

:::
to

::::::::::
streamflow

:::::
were

:::::::
subject

::::
only

::
to

:::::::::::
equilibrium

::::::::
fraction,

::::::::
whereas

::::::::::::
observations

:::::::
indicate

:::::::::::::
contributions

::
of

:::::::
waters

:::::::::
influenced

:::
by

:::::::::::::::
non-equilibrium

:::::::::
processes. This information is quantified using ddiff (Figure 2). Positive values of δ18Odiff tended to be associated540

with negative values of ddiff (Figure S8). The shape of the relationship between the two quantities is non-linear,
with a stronger relationship between δ18Odiff and ddiff among data from arid reaches compared to humid reaches.

The relationship between δ18Odiff and ddiff , as well as our regression (Table 2) and surface water line analyses
(Table 1) indicate that the modeling approach for estimating long term isotope ratios of rivers produce results
that are similar to, but on average, lower and exhibit less variability than observations. The strongest signal in our545

data is that of evaporation, evidenced by combinations of positive δ18Odiff and negative ddiff in arid regions. We
also observe evidence of non-equilibrium condensation processes in reaches characterized by negative δ18Odiff and
positive ddiff . Surface water lines: β (± s.e.) I (± s.e.)Model-derived 8.12 (± 0.010) 8.06 (± 0.14) Observations
7.57 (± 0.02) 1.23 (±0.32)Meteoric water lines: βmin, βmax (βavg) Imin, Imax (Iavg) Global Meteoric Water Line 8
10Arid and Temperate dry summer LMWLs 6.56, 8.02 (7.57) -10.5, 9.85 (3.02) Temperate humid and Continental550

LMWLs 7.34, 7.64 (7.49) -3.82, 3.31 (0.62) Surface water line slopes and intercepts (δ2H = δ18O + I) compared
to the Global Meteoric Water Line and published precipitation water line ranges (LMWLs) from different climate
classifications in North America (data from Putman et al. (2019)).
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Figure 4. The relationship of observation (obs) - isotope mass balance (mod) estimation differences for δ18O and δ2H.

::::::::::::
Interpretations

::
of

:::
the

::::::::::
scatterplot

:::::
follow

:::
the

:::::::::
framework

::::::::
indicated

::
in

::::::
Figure

::
2.

:
The catchment mean value is plotted, and only

sites with at least two observations are shown (n=448). The equilibrium line with slope 8 is plotted for context (dotted line),
and data are colored by their site’s the ratio of actual evaporation to precipitation. Data distributions are shown for both
δ18Odiff and δ2Hdiff in the margins, along with the mean differences indicated as a solid line. No difference (0) is marked
with a dotted line for reference.
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We suggest that patterns in δ18Odiff and ddiff contain useful model diagnostic information that can be useful for
improving the NWM and our understanding of the terrestrial water balance. The

::::::::
However,

::::
the

::::::::::::
observational

:::::::
dataset555

:
is
::::::::::

composed
::
of

::
a
:::::::::::
non-uniform

:::::::::::
compilation

:::::
that

::::::::
contains

:::::::
spatial,

::::::::
seasonal,

::::
and

:::::::::::
interannual

:
modes of variabilitywe

evaluate include 1) interannual 2) monthly and 3) spatial. The first is to evaluate the effect of comparing long term
mean mass balance estimates with sample collection . The second and third modes of variability provide information
about the presence of possible

:
.
::::
Due

::
to

::::
the

::::::::::
underlying

:::::::
sample

::::::::
collection

:::::::::::
approaches,

::::
the

::::::::
strength

::
of

::::
our

:::::::
dataset

::
is

:::::::::
evaluating

::::::
spatial

::::::::::
variability,

::
so

:::
we

:::::
focus

::::
our

:::::::
analysis

:::
on

::::
that

:::::
mode

:::
to

::::
gain

:::::::::::
information

:::::
about

:
missing water sources560

to
::::
that

::::
may

:::::::::
influence the model. Additional sources of variability are discussed in Text S6.

3.3 Interannual variability in observation-model differences

The annual mean δ18Odiff and ddiff values for NRSA collection years were statistically indistinguishable from the
mean differences calculated with the whole dataset (Figure ??). Though all observation-model difference regression
slopes were less than 8, and all intercepts were greater than 0, the observation-model difference regression slopes565

and intercepts were significantly different from one another and the regression calculated from all available data.
We interpret the year to year similarity in the regression slopes and intercepts as indicating the pervasive presence

of evapoconcentrated observations in the region. We interpret the variability in the slopes and intercepts as arising
from interannual differences in climate. Such interannual differences may include variability in snowpack isotope
ratios and the proportion of runoff from rain or snowmelt in the stream relative to groundwater. We suggest that570

the year to year variability in slopes and intercepts is more likely to derive from climatic differences than differences
in sampling distribution.

Interannual variability in observation-model comparisons using data from years with at least 250 samples in 100
different reaches (NRSA years). (a) The annual mean (blue points) and 95% confidence intervals (solid vertical lines)
of δ18Odiff compared to the mean (solid horizontal line) and 95% confidence intervals (dotted horizontal lines) of575

all data. (b) The annual mean and 95% confidence intervals of ddiff compared to the mean and 95% confidence
intervals of all data. (c) The slope of δ2Hdiff ∼ δ18Odiff and 95% confidence intervals compared to the slope and
95% confidence intervals of calculated from all data. (d) The regression intercept of δ2Hdiff ∼ δ18Odiff and 95%
confidence intervals compared to the regression intercept and 95% confidence intervals of calculated from all data.
In all subplots, the all-data mean and 95% confidence interval are plotted for reference580

3.3 Seasonal variability in observation-model differences

There are systematic patterns in δ18Odiff and ddiff when examined across the
::
We

::::::::
support

:::
our

::::::::
findings

:::::
using

::::
the

::::::::
temporal

:::::::::
evolution

::
of

:::::
water

:::::::::::
throughout

:::
the

:
growing season. For example, δ18Odiff tends to be greater during the

latter months of the growing season relative to the mean δ18Odiff value for the month of June for that site and
year (Figure 9 a) in most basins and months. The pattern is especially evident in the Great Basin and California.585

Likewise, ddiff , is lower in July, August, September relative to June (Figure 9 b), but only in the Great Basin

23



and California. The contrast between basins with both increased δ18Odiff and decreased ddiff (Great Basin and
California) and those with only increased δ18Odiff and little change in ddiff (Upper and Lower Colorado and Pacific
Northwest) suggests that two different mechanisms may drive isotopic change during the growing season.

:::::
Based

:::
on

::
an

:::::::
analysis

:::
of

:::
the

::::::::::
interannual

::::::::::
variability

:::::
(Text

:::
S6)

:::
we

:::::::
suggest

::::
that

::::
the

::::::
spatial

::::
and

::::::::
temporal

:::::::::
structure

::
of

:::
our

:::::
data

:::
are590

:::::::::
sufficiently

:::::::
robust

:::
and

:::::::
evenly

::::::::::
distributed

::::
with

:::::::
respect

:::
to

::::::::::
interannual

::::::::::
variability

::
to

:::::::
support

::::
the

::::::::
analysis.

::::::::::
Additional

::::::
sources

:::
of

:::::::::
variability

:::
are

:::::::::
discussed

::
in

:::::
Text

:::
S7.

:

In California and the Great Basin, which are characterized by larger 18O-enrichment and d decrease over the
growing season, we suggest increased contributions of evapoconcentrated waters to rivers later in the growing season.
In California, this may reflect the water use in the Central Valley.595

In the Upper and Lower Colorado, and Pacific Northwest, where we observe small 18O enrichment in the absence
of a notable change in d the second case, we suggest sustained dependence on the same water source regions
throughout the growing season. In the Pacific Northwest and parts of the Upper Colorado, the relative invariability
may indicate the sustained dependence on groundwater discharge from high elevations to streamflow during the
growing season Miller et al. (2016); McGill et al. (2021); Windler et al. (2021). In lower parts of the Upper Colorado600

and the Lower Colorado, where rivers are characterized by large reservoirs, the seasonal invariance may reflect that
the primary ‘water source’ regions for these reaches are reservoirs, which retain snowmelt from early in the season
and discharge it later in the season. In this way, the primary ‘water source’ for the streams in many areas of these
basins may remain constant throughout the growing season.

Evaluation of seasonal variability in observation-model comparisons. Data include all reaches and years with605

collections in the month of June as well as two of the 3 other months of the summer season. (a) The distribution of
month-specific differences from June δ18Odiff by basin. (b) The distribution of month-specific differences from June
ddiff .

3.3 Spatial distribution of observation - model differences

If the NWM fully constrained all relevant water sources, we expect to observe similar values of δ18Odiff and ddiff610

throughout each basin, irrespective of the location of the observation in the basin.
::::
This

::
is
::::::::
because

:::
the

::::::::
majority

:::
of

:::::
water

::::::::::
discharged

::
to

::::::::
streams

::
in

:::::
these

:::::::
basins

::::::
comes

::::
from

::::::
upper

:::::::::
elevation

:::::
water

:::::::
source

:::::
areas,

::::
and

:::::
little

::::::::
addition

:::
or

:::::::::::
modification

::
of

::::
river

:::::::
waters

:
is
::::::::
expected

:::::::::::
downstream

:::
of

:::::::::
headwater

:::::::::::
catchments.

:::::
Thus,

:::
we

::::::
expect

:::
the

:::::::::::::::::
observation-model

:::::::::
differences

::::::::::
calculated

::
in

:::::::::
headwater

::::::
areas

:::::
would

::::::::::
propagate

::
to

:::::
lower

:::::::::
elevation

:::::
areas

::
in

::::
the

:::::::
absence

::
of

:::::::::
additions

:::::
from

::::::::::::
unconstrained

::::::
water

:::::::
sources

::::::
and/or

:::::
river

::::::
water

::::::::::::
modifications

:::::
from

::::::::::::
unconstrained

::::::::::
processes.615

Instead, we observed spatial variability (Figures 5 and S9), where smaller magnitude δ18Odiff values occurred in
the highest elevation, lowest stream order, and least arid reaches, and larger magnitude, often positive δ18Odiff ,
values occurred in lower elevation, arid or intermittent flow reaches (Figure S10). ddiff tended to exhibit higher values
in higher elevation, lower stream order reaches, and lower values in lower elevation, more arid, higher stream order
reaches (Figure 6). We observed a greater range in the absolute magnitudes of δ18Odiff and ddiff in higher order,620
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lower elevation reaches (Figures 6 and S10). Notably, the pattern was similar across basins, suggesting the importance
of within-basin processes in determining δ18Odiff an d

::::::::
δ18Odiff :::

an ddiff , as opposed to absolute relationships of
δ18Odiff and ddiff to elevation, stream order, or climate classification.

The spatial pattern in ddiff (Figure 5) was similar to the pattern observed for the KGE and other metric evalua-
tions of the NWM Towler et al. (2023). Areas with negative ddiff tended to correspond to areas with poor NWM625

performance Towler et al. (2023). However, the isotopic evaluation of NWM and the Towler et al. (2023) datasets
could not be directly compared due to a there being only a small number of reaches with both isotope observations
and daily discharge measurements.

The spatial structure of our results was statistically well explained by the the ratio of actual evaporation to
precipitation ( ETa

P ) in a linear mixed effects model with basin as the grouping variable (Table 3). Variability among630

basins explained 16.2% of the variance in ddiff , while the fixed effect of aridity explained 13.9% of the variability in
the dataset. The regression slope associated with the fixed effects of aridity was negative (-7.87± 0.78) and significant
(p<0.001

:::
.01), indicating that sites with higher aridity indices tended to exhibit more negative ddiff . This regression

was stronger than a linear mixed effects model with elevation predicting ddiff , where the fixed effects of elevation
explained 4.7% of the variability in ddiff .635

Analysis of the spatial variability in our results suggest that 1) higher elevation, lower stream order, perennial,
warm temperate or seasonally snowy reaches had small δ18Odiff and positive ddiff values and 2) lower elevation,
higher stream order, arid and sometimes intermittant stream reaches had larger and more positive δ18Odiff val-
ues and more negative ddiff values. The first point suggests errors associated with the challenges of providing
input values at appropriate temporal resolutions, whereas the second point suggests the model is missing critical640

evapoconcentrated water sources in more arid, lower elevation areas of each basin.
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Figure 5. The spatial distribution of mean catchment ddiff (δ2Hdiff −8∗δ18Odiff ) in reaches with more than one observation
(n=448). Locations of reservoirs are marked by yellow stars, with the star size proportional to the reservoir capacity. Redder
colors indicate more evapoconcentrated

:::::::
symbols

:::::::::
correspond

::
to
:

waters
:::
with

::::::::
stronger

::::::::::
evaporation

::::::
signals than expected based

on the model estimate. Map data
:
is

::::
from

:
©OpenStreetMap contributors

:::
2023, available

:::::::::
distributed

:
under the Open

::::
Data

::::::::
Commons

:::::
Open

:
Database License (http://www.openstreetmap.org/copyright

:::::
ODbL)

:::
v1.0, accessed through Stamen Open-

Source Tools (https://stamen.com/open-source/). HUC2 basins come from WBD U.S. Geological Survey, National Geospatial
Technical Operations Center (2023) and rivers are modified from the NHDPlus streamline network U.S. Geological Survey
(2019).
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Figure 6. Relationship of elevation, Strahler stream order, and Köppen climate classification Rubel and Kottek (2010), and
stream persistence to ddiff in each basin. We observe higher ddiff in perennial, lower order streams at middle and higher
elevations in each basin. Lower ddiff is associated with higher order streams at lower elevations in each basin. This effect was
greater in catchments classified as arid or seasonally snowy compared to those classified as warm temperate. This pattern was
generally true in each basin, irrespective of the absolute elevation or stream order, suggesting the importance of accumulated
effects within a basin on ddiff .
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3.3.1 Observation-model differences in headwater reaches reflect groundwater isotope ratio
estimates

We observe statistically significant reach-scale δ18Odiff and ddiff ::::::
values

::::
that

::::
are

::::::::::
statistically

:::::::::
different

::::
from

::
0
:
in

higher elevation, low stream order, low aridity, temperate or seasonally snowy reaches in our dataset (Figures 6,645

S10). These differences tend to be smaller than than the full dataset mean δ18Odiff and ddiff . At most of these
reaches we also observe positive ddiff values (Figures 5, 6).

The presence of both negative and positive values of δ18Odiff likely reflect interannual variability in the iso-
tope ratios of actual groundwater and snowmelt discharged to rivers in high elevation headwater areas. Although
groundwater’s contribution to streams is conceptualized in this study to be constant in magnitude and isotope ra-650

tio , in reality, the isotope ratios of both groundwater and snowmelt fluxes vary spatially and interannually. The
groundwater flux magnitudes vary interannually based on variations in snowpack magnitudes, antecedent hydrologic
conditions, Brooks et al. (2021); Wolf et al. (2023)

::::::::::::::::::::::::::::::::::
Brooks et al. (2021); Wolf et al. (2023)

:
, and hydrogeologic Gen-

tile et al. (2023) controls including hydrologic residence times. Snowpack isotope ratios vary in response to climate
patterns and local conditions Anderson et al. (2016). The observed variability of δ18Odiff , which does not exhibit a655

uniform tendency towards positive or negative values, .
:::::
This

:
suggests the mean groundwater isotope ratios used in

this study are reasonably representative of the long term mean estimates of the isotope ratios of water contributed
at high elevation water source areas by groundwater and snowmelt fluxes. Though

:
,
:::::::
though improvements may be

made by using interannually varying estimates of the isotope ratios of groundwater and snowmelt. However, the
systematic positive ddiff result cannot be explained by the timescale of the isotope input.660

Higher d streamflow relative to weighted mean precipitation values have been documented in other studies Nickolas
et al. (2017). This may be because higher d is associated with lower precipitation δ18O that falls during the cold
season in mid-latitude regions, particularly in areas near open water Putman et al. (2019); Corcoran et al. (2019);
Aemisegger and Sjolte (2018). Secondarily, high d in rivers relative to precipitation or groundwater may be attributed
to fractionation occuring during melt. The snow melt process has been demonstrated to begin with preferential melt665

of water molecules bearing lighter isotopologues, and to exhibit higher d earlier in the melt season Ala-aho et al.
(2017); Beria et al. (2018); Carroll et al. (2022). The higher d of the snow and initial meltwater may be passed along
to the rivers via direct

::::::
surface

:
runoff to streams or through shallow groundwater recharge and rapid discharge to

streams (see the relatively higher upper bound on d values for forested land use types in Figure 7).
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Figure 7. Distributions of groundwater d grouped by the dominant land type from NLCD Dewitz and U.S. Geological Survey
(2021) in the HUC12 U.S. Geological Survey, National Geospatial Technical Operations Center (2023) of the observation. The

::::
data

:::
are

:::::::
displayed

:::
as

:::::::::
letter-plots

:::::::::::::::::::::::::::::
Heike Hofmann and Kafadar (2017)

:
,
:::::
where

:::
the

::::::
central

:::
line

::
is
:::
the

::::
data

:::::::
median,

:::
the

:::::::::
innermost

:::
box

:::::::
contains

::::
50%

::
of

:::
the

:::::
data,

:::
the

::::::::
remaining

:::::
boxes

::::
each

:::::::
contain

::::
50%

::
of

:::
the

::::::::
remaining

:::::
data,

:::
and

::::
thus

::
a
::::::::::
diminishing

:::::::::
proportion

:
of
::::

the
::::
total

::::
data

::::
(i.e.,

:::::
25%,

::::::
12.5%,

::::::
6.25%,

::::
etc).

::::
The

::::
black

:::::::::
diamonds

::::::::
represent

:::::::
outliers.

:::
The

::::
plot

:::::::
contain

:::::::
between

::
85

::::
and

::::
95%

:
of
::::

the
::::
data

::::::::
available

:::
for

::::
each

::::
land

:::::
type

::::
and

::::
thus

:::::::::
reasonably

:::::::::
represents

:::
the

:::::::::::
distribution

::
of

::
d

::::::::
associated

:::::
with

:::::::::::
groundwater

::::
from

::::
each

::::
land

::::
use

::::
type,

:::::
even

::::::
though

:::::::
samples

:::::
with

::::
very

:::
low

::
d
:::
are

::::
not

::::::
shown.

::::
The

:
desert land class includes barren land

(often playas or dried lakebeds), shrub/scrub, grasslands/herbaceous. The agricultural land class includes pasture/hay and
cultivated crops. The developed land class includes developed land of any intensity. Forest includes evergreen, deciduous and
mixed forest. The wetlands/open water land class category any type of wetland as well as open water. The distribution of
our 4303 river samples is also shown for context.

29



3.3.2 Evapoconcentration
::::::::
Isotopic

:::::::
signals

:::
of

::::::::::::
evaporation

:
at low elevations suggests contributions670

of irrigation return flows to streamflow

Greater spatial and temporal variability in both δ18Odiff and ddiff in lower elevation, higher stream order, arid
reaches suggests the importance of various spatially and temporally heterogeneous processes and water sources that
may alter streamflow isotope ratios relative to upstream values. Positive values of δ18Odiff and negative values
of ddiff in more arid regions of each basin suggests that evapoconcentrated

::::::::::
evaporated

:
waters compose a large675

:::::::::
non-trivial

:
fraction of streamflow in these areas (Figures 5, 6, S9 and S10), especially in the later part of the growing

season (Figure 9) when streams depend more heavily on groundwater fluxes. We observed evidence of surface water
evapoconcentration

::::::
isotopic

::::::::
evidence

::
of
:::::::::::::
contributions

::
of

::::::::::
evaporated

::::::
waters

:::
to

:::::
rivers

:
in all basins (Figure 6), though

it was most apparent in Lower Colorado River Basin, lower elevation regions of the Upper Colorado River Basin,
California’s Central Valley, near Great Salt Lake in the Great Basin and throughout the Snake River Plain (Figures 5680

and S9).
The isotope ratios and d we observe in low elevation, high stream order arid reaches are similar to those we would

expect to observe in highly evaporative contexts, like within lakes Bowen et al. (2018), intermittent flow rivers, or
downstream of wetlands. Yet the majority of rivers in our study are perennial, and most are not characterized by
substantial wetlands. The evapoconcentration in our dataset is unlikely to arise from river or reservoir evaporation685

because both evaporation of reservoirs and evaporation to inflow ratios in the region tend to be low, especially for deep
man-made reservoirs Brooks et al. (2014); Friedrich et al. (2018). Instead, isotopic evidence of evapoconcentration
occurs in waterways likely to be affected by anthropogenic hydrologic alteration Fergus et al. (2021) and characterized
by larger fractions of ‘young water’ Jasechko et al. (2014); Burt et al. (2023); Xia et al. (2023).

We tested the hypothesis that the spatial pattern in
:
of

:
isotopically-inferred evapoconcentration

:::::::::::
evaporation690

could arise from contributions of irrigation return flows to streams and reservoir releases. Within each basin, on
mean

::::::
average, ddiff was most negative at sites with the highest proportion of total inflows attributed to agricultural

return flows and highest at sites with no apparent contributions of agricultural return flows (Figure 8). Reservoir
influence was associated with low ddiff more often where dams are used for water management and water supply
(e.g., Upper Colorado, Lower Colorado, Great Basin, and California) and were associated with high ddiff in the695

Pacific Northwest, where dams are more often used for hydropower. Intermittent streams and canals in arid regions
were sometimes associated with low ddiff as well, even when no water was contributed by agricultural irrigation.

We demonstrated the relationships of agricultural and reservoir influence on ddiff statistically in a linear mixed
effects model (Table 3). The fraction of streamflow estimated to come from agricultural irrigation return flows and
a categorical variable delineating reservoir influence together explained 7.7

:::
8.0% of the variance in ddiff , with the700

whole model (including random group effects) explaining 14.5
::::
14.3% of the variance in the dataset. Both explanatory

variables were significant (p<0.001
::
.01), and, as expected, exhibited negative slopes indicating that greater agriculture

and reservoir influences tended to produce lower, more evapoconcentrated ddiff values. When we also include
::::::::
included
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Figure 8. Relationship of aridity to ddiff , by water use categories and basins. Natural waters are not estimated to be
influenced by agricultural irrigation. Fractions of agricultural irrigation contributing to streamflow are estimated using water
use data and land cover data and do not account for losses to evapotranspiration. Reaches

:::
We

::::::::
identified

::::::
reaches

:
affected by

large reservoirs and reaches categorized as intermittent or as canals or ditches are indicated
::::
with

:::::::::
additional

:::::::::
symbology.

the ratio of actual evaporation to precipitation with these explanatory variables, all three are significant (p<0.01)
and explain 15.1

::::
15.2% of the variance through fixed effects, and 23.4

::::
23.0% of the variance overall (fixed and random705

effects). Among the linear mixed effects models tested, it exhibited the highest log likelihood value, explained the
greatest amount of variance using fixed effects, and reduced the amount of variance attributed to random within-basin
effects.

While this statistical model performance is not substantially better at explaining variance in ddiff than the model
that uses aridity alone, the findings do suggest that both agricultural activity and reservoirs influence the isotope710

ratios of streamflows across the Western US. The low variance explained by these models is expected, due to the
difficulty estimating a true long term mean agricultural return fluxes with the available data and the

::::
flux

::::
with

::::
the

::::::
spatial

::::
and

::::::::
temporal

:::::::::
resolution

:::
of

:::
the

::::::::
available

:::::
data,

::::
the

:::::::::::
confounding

:::::::::
influences

::
of

::::::
season

::::
and

:::::
year

::
on

::::
the

::::::::
response

:::::::
variable,

::::
the

:
potential for isotopically heterogeneous reservoir effects, as well as the covariance of both irrigation

return flows and the presence of reservoirs with aridity and elevation. However, our findings are well supported by715
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Statistical model β (± s.e.) I (± s.e.) HUC2
Var

::::::
(group)

Cond. R2 Fixed R2 Log like-
lihood

ddiff ∼ Elev + I Elev: 0.001 (0.00)* -1.93 (1.01) 4.33 20.9% 4.4% -2254
ddiff ∼ ET

P
+ I ET

P
: -7.85 (0.77)* 4.86 (1.08)* 4.37 30.2% 13.9% -2209

ddiff ∼ Firr + Res + I Firr: -3.49 (0.49
:::
0.48)*

0.92
:::
0.95

(0.59)
1.464

:::
1.43

14.3%
7.9

:::
8.0% -2225

::::
-2224

Res: -1.76
::::
-1.75

(0.45)*
ddiff ∼ ET

P
+ Firr + I ET

P
: -6.53 (0.83

::::
-6.50

::::
(0.88)* 4.40 (0.35

:::
4.39

::::
(0.83)*

1.942

::::
1.941

22.7
::::
22.8% 14.7

::::
14.8% -2203

::::
-2204

Firr: -1.61
::::
-1.60

(0.54)*

ddiff ∼ ET
P

+ Firr + +Res + I

:::::::::::::::::::::::
ddiff ∼ ET

P
+ Firr + Res + I

ET
P

: -6.11
::::
-6.08 (0.88)*

4.33
:::
4.32

(0.82)*

1.861 23.0% 15.2%
-2199

::::
-2200

Firr: -1.68
::::
-1.67

(0.54)*
Res: -1.22 (0.44)*

Table 3. Results of linear mixed effects models with 764 observations and 5 groups. The minimum and maximum group sizes
were 48 and 387, respectively. The models do not include any samples from reaches characterized as an intermittent stream
or canal or where NWM indicates that the maximum streamflow is 0 m3 s−1. Random effects apply only to the intercepts. An
asterisk indicates that a regression coefficient is statistically significant at p<0.01. Conditional R2, which gives the total model
variance explained, are reported alongside the fixed R2, which gives the variance explained by fixed effects (i.e., explanatory
variables) and the log-likelihood, which can be used to evaluate the relative performance of different models.

studies of irrigation-based contributions to streamflow, an analysis of groundwater evapoconcentration by land use,
comparison of the Jasechko et al. (2021) dataset with NWM groundwater contributions to streams in the context of
patterns in agricultural irrigation

:
,
:::
and

::::
the

::::::::
spatially

:::::::
variable

:::::
effect

::
of

:::::::::
irrigation

::
on

:::::::::::
streamflows

::::::::::::::::::::
Ketchum et al. (2023)

.

3.4
:::::::::
Seasonal

:::::::::
patterns

:::
in

:::::::::::::::::::
observation-model

:::::::::::
differences

:::::::::
support

::::::::::
irrigation

::::::::::::::
contributions

:::
to720

:::::::::::
streamflow

:::::
There

::::
are

::::::::::
systematic

::::::::
patterns

::
in

:::::::::
δ18Odiff ::::

and
:::::
ddiff :::::

when
:::::::::
examined

::::::
across

::::
the

::::::::
growing

::::::
season

::::
that

::::::::
support

::::
our

::::::
spatial

::::::::::
assessment

::
of

:::
the

:::::::::::::
contributions

::
of

::::::::
irrigation

:::
to

::::::::::
streamflow.

::::
For

::::::::
example,

::::::::
δ18Odiff::::::

tends
::
to

:::
be

::::::
greater

:::::::
during
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:::
the

:::::
latter

:::::::
months

::
of
::::

the
:::::::
growing

:::::::
season

:::::::
relative

::
to

::::
the

:::::
mean

::::::::
δ18Odiff:::::

value
:::
for

::::
the

::::::
month

::
of

:::::
June

:::
for

::::
that

::::
site

::::
and

::::
year

:::::::
(Figure

::
9

::
a)

::
in

:::::
most

::::::
basins

::::
and

::::::::
months.

::::
The

:::::::
pattern

:::
is

:::::::::
especially

:::::::
evident

::
in

::::
the

:::::
Great

::::::
Basin

::::
and

::::::::::
California.725

::::::::
Likewise,

:::::
ddiff ::

is
:::::
lower

::
in

:::::
July,

::::::::
August,

:::::::::
September

:::::::
relative

:::
to

:::::
June

:::::::
(Figure

:
9
:::
b),

:::
in

:::
the

::::::
Great

:::::
Basin

::::
and

::::::::::
California.

:::
The

::::::::
contrast

::::::::
between

::::::
basins

:::::
with

:::::
both

:::::::::
increased

::::::::
δ18Odiff ::::

and
:::::::::
decreased

:::::
ddiff:::::::

(Great
::::::
Basin

::::
and

::::::::::
California)

::::
and

:::::
those

::::
with

:::::
only

:::::::::
increased

::::::::
δ18Odiff ::::

and
:::::
little

::::::
change

:::
in

:::::
ddiff:::::::

(Upper
::::
and

::::::
Lower

:::::::::
Colorado

::::
and

::::::
Pacific

:::::::::::
Northwest)

:::::::
suggests

::::
that

::::
two

::::::::
different

:::::::::::
mechanisms

:::::
may

:::::
drive

:::::::
isotopic

:::::::
change

::::::
during

:::
the

::::::::
growing

:::::::
season.

::
In

:::::::::
California

::::
and

::::
the

::::::
Great

::::::
Basin,

::::::
which

:::
are

:::::::::::::
characterized

:::
by

::::::::
δ18Odiff:::::::::

increases
::::
and

:::::
ddiff :::::::::

decreases
::::
over

::::
the730

:::::::
growing

::::::
season

:::::::
relative

::
to

:::::
June,

:::
we

:::::::
suggest

:::::::::
increased

::::::::::::
contributions

::
of

::::::::::
evaporated

::::::
waters

::
to

:::::
rivers

:::::
later

::
in

:::
the

::::::::
growing

::::::
season.

:::
In

::::::::::
California,

::::
this

::::
may

::::::
reflect

::::
the

::::::
water

:::
use

::::
and

:::::::::
irrigation

::::::
return

:::::
flows

::::::::::::
contributing

::
to

:::::::::::
streamflow

::
in

::::
the

:::::::
Central

::::::
Valley.

:

::
In

:::
the

:::::::
Upper

::::
and

::::::
Lower

::::::::
Colorado

::::
and

:::::::
Pacific

::::::::::
Northwest,

::::::
where

:::
we

::::::::
observe

:::::
small

::::::::
δ18Odiff:::::::::

increases
::::
and

:::::
little

::::
ddiff:::::::

change
:::::::
relative

:::
to

:::::
June,

:::
we

:::::::
suggest

:::::::::
sustained

:::::::::::
dependence

:::
on

::::::::::::
groundwater

:::::::::
discharge

::::
from

:::::
high

:::::::::
elevations

:::
to735

:::::::::
streamflow

:::::::
during

:::
the

:::::::
growing

::::::
season

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
Miller et al. (2016); McGill et al. (2021); Windler et al. (2021)

:
.
::
In

:::::::::::
downstream

:::::::
sections

::
of

::::
the

::::::
Upper

:::::::::
Colorado

::::
and

:::
the

:::::::
Lower

:::::::::
Colorado,

::::::
where

:::::
rivers

::::
are

::::::::::::
characterized

:::
by

::::::::::
discharges

:::::
from

:::::
large

:::::::::
reservoirs,

:::
the

::::::::
seasonal

:::::::::
invariance

::::
may

::::::
reflect

::::
that

::::
the

:::::::
primary

::::::
‘water

:::::::
source’

::::::
regions

:::
for

:::::
these

:::::::
reaches

:::
are

::::::::::
reservoirs,

:::::
which

::::::
retain

:::::::::
snowmelt

::::
from

:::::
early

:::
in

:::
the

::::::
season

::::
and

:::::::::
discharge

::
it

:::::
later

::
in

:::
the

:::::::
season.

:
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Figure 9.
::::::::
Evaluation

:::
of

:::::::
seasonal

:::::::::
variability

:::
in

:::::::::::::::
observation-model

:::::::::::
comparisons.

:::::
Data

:::::::
include

:::
all

::::::
reaches

::::
and

:::::
years

:::::
with

::::::::
collections

:::
in

:::
the

::::::
month

::
of

::::
June

::
as
::::

well
:::
as

:
2
::
of

:::
the

::
3
:::::
other

::::::
months

:::
of

:::
the

:::::::
summer

::::::
season.

:::
(a)

::::
The

::::::::::
distribution

:::::::::::
(represented

::
by

::::::::
boxplots)

:::
of

::::::::::::
month-specific

:::::::::
differences

:::::
from

::::
June

::::::::
δ18Odiff:::

by
:::::
basin.

:::
(b)

::::
The

:::::::::::
distribution

::::::::::
(represented

:::
by

::::::::
boxplots)

:::
of

::::::::::::
month-specific

:::::::::
differences

::::
from

:::::
June

:::::
ddiff .

::::
The

::::::::
boxplots

::::
show

::::
the

:::::::
median,

::::
25th

::::
and

::::
75th

:::::::::
percentiles

:::
as

:::
the

::::
box,

::::::::
whiskers

:::::
extend

:::
to

:::::
points

::::
that

:::
lie

::::::
within

:::
1.5

:::::
IQRs

::
of

:::
the

:::::
lower

::::
and

:::::
upper

::::::::
quartile,

:::
and

:::::::::::
observations

::::
that

:::
fall

:::::::
outside

:::
this

::::::
range

:::
are

:::::::
displayed

:::
as

:::::::::
diamonds.
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3.4.1 Literature and datasets support isotopic inference of irrigation return flows contributing to740

streamflow

Numerous prior studies have investigated the influence of irrigation on streamflow. Estimates suggest that, depend-
ing on the irrigation type, as much as 50% of applied water may recharge groundwater

:::::
and/or arrive at surface

waters through shallow groundwater infiltration and subsequent discharge to streams Grafton et al. (2018). Like-
wise, irrigation has been demonstrated to increase streamflows during low flow periods Fillo et al. (2021); Essaid745

and Caldwell (2017), if the applied water comes from surface water diversions.
Local contributions of groundwater to streams from irrigation-based recharge are supported by the d values of

groundwater in agricultural regions. Groundwater from regions influenced by agricultural irrigation exhibited lower
mean d relative to deserts, including dried terminal lakes and playas, developed areas which may include turf
grass irrigation, forested regions, wetlands or open waters and surface waters (Figure 7). Some contribution of this750

:::::
Based

:::
on

:::
the

:::::::
isotope

::::::
ratios

::
of

::::::::::::
groundwater

::
in

::::::::
irrigated

::::::
areas

:::
and

:::::
prior

::::::::
isotopic

::::::::
inference

:::::::::::::::::::
Windler et al. (2021)

:
,
:::
we

::::::::::
hypothesize

:::::
that

::::::::
inclusion

:::
of

:
irrigation-recharged groundwater to streams via return flows

::::::::
discharge

:::
as

:
a
:::::::

source

::
of

:::::
water

:::
to

::::::::
streams

::
in

::::::
NWM

:
would decrease the difference between the modeled and observed isotope ratios in

our dataset, and is supported by conclusions from prior isotopic inference of water sources in the Snake River
plain Windler et al. (2021).755

The isotopic inference that irrigation return flows are an important missing process in the NWM is supported by
an independent statistical comparison of the NWM groundwater discharge with the Jasechko et al. (2021) well water
level comparison to stream level dataset and the agricultural water use data.

:::
The

::::::::::::::::::::
Jasechko et al. (2021)

::::
data

::
is
::::
the

:::::::
fraction

::
of

::::
well

::::::
water

::::::
levels

::::
that

:::
lie

::::::
below

:::
the

:::::::::
proximal

:::::
river

:::::
water

:::::
level

::
in

::
a
::::::::::
catchment

::::
and

::::::::
provides

:::::
some

:::::
idea

::
of

::::::::
hydraulic

:::::
head

::::
and

:::::::::
direction

::
of

:::::::::::::::::::::::
groundwater-surfacewater

:::::::::
exchange.

::::::
When

::::
the

:::::::
fraction

::
is

:::::
high,

::::
the

::::
river

:::::::
(under760

::::::
correct

::::::::::::
permeability

::::::::::
conditions)

::::::
would

:::
be

::::::::
expected

::
to

::::
lose

::::::
water

::
to

::::::::::::
groundwater,

::::::::
whereas

:::::
when

::::
the

:::::::
fraction

::
is

::::
low

:::
the

::::
river

::::::
would

:::
be

::::::::
expected

:::
to

::::
gain

::::::
water

::::
from

::::::::::::
groundwater

:::::::::
discharge.

:

We hypothesize that if NWM accurately represents groundwater discharge to streams, the Jasechko et al. (2021)
well water level comparison to stream water level dataset should be able to predict the summer mean NWM ground-
water discharge flux with a large proportion of variance explained. However, the Jasechko et al. (2021) data (expressed765

as the fraction of well water levels that lie below the proximal river water level) weakly , though significantly
::::::
weakly

(R2 = 0.028, p<0.001
::::
0.01) predict the NWM groundwater discharge rates in a simple linear regression. The regres-

sion relationship between the variables is negative, as expected, where river reaches with a greater proportion of their
well water levels above proximal river water levels correspond to reaches with greater groundwater discharge fluxes
(Figure S11). Though the regression is significant, it has almost no predictive capacity, contrary to what we expectif770

the well water level comparison to steam level dataset was a good predictor of the NWM groundwater discharge to
streams.
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The weakness of the statistical relationship between thewell water level comparison to river water level
:::::::::::::::::::::
Jasechko et al. (2021)

::::::
dataset

:
and the NWM groundwater discharge flux may be related to shallow aquifers, which are not considered by

NWM, and/or agricultural irrigation, as well as the water source (surface or ground water) used for that irrigation775

(Figure S12). We did not assess the potential for NWM groundwater discharge to reflect the presence of shallow
aquifers. However, we do observe that the influence of irrigation on groundwater levels is non-stationary, depending
on both the groundwater discharge level

:::::::::
magnitude

:
as well as the source of irrigation water. For this reason the

relationship is difficult to assess statistically. In river reaches where NWM indicates little groundwater discharge
(0th to 20th percentile qBucket), irrigation sourced from surface water is associated with a larger

::::::
smaller

:
fraction780

of well water levels above river water level in a catchment
:::::
below

:::::
river

::::
level

::::::::
(smaller

::
y
:::::
value

:::
in

::::::
Figure

:::::
S12)

:
than

those without irrigation. Conversely, in river reaches with substantial groundwater discharge (80th to 100th per-
centile qBucket), agricultural irrigation with water from either surface or groundwater tends to be associated with
a smaller

:::::
larger fraction of well water levels above river level in the catchment

:::::
below

:::::
river

:::::
level

::::::
(larger

::
y
:::::
value

:::
in

:::::
figure

::::
S12)

:
compared to reaches without any agricultural irrigation. Based on these patterns we suggest that in dry785

areas, irrigation from surface water appears to contribute to groundwater recharge, whereas in wet areas, irrigation
appears to contribute to decreased water table elevations. Surface water irrigation tends to contribute to

::
At

:::
all

:::::::::::
groundwater

:::::::::
discharge

:::::::::::
percentiles,

::::::
surface

::::::
water

:::::::::
irrigation

:::::::::::
contributes

::
to

:
higher water tables, whereas irrigation

from groundwater tends to contribute to
::::::::::
contributes

::
to

:
lower water tables.

Some part of this signal is regional. Reaches from more arid basins compose a greater proportion of the lower790

percentile qBucket reaches, and reaches from humid or seasonally snowy basins compose a greater proportion of the
higher percentile qBucket reaches. However, when evaluated by basin, the relationships are similar. The finding is
consistent with modeling studies, which showed lower stream discharge when irrigation water came from groundwater,
and greater stream discharge when irrigation water came from surface water Essaid and Caldwell (2017). Our analysis
suggests that agricultural irrigation is likely to influence groundwater levels and groundwater discharge on a landscape795

scale and produces gaining streams and contributes to streamflow in otherwise arid, losing reaches of rivers.

3.5 Implications of including irrigation return flows into NWM calculations

Our evaluation of the NWM-driven isotope mass balance calculations suggest that the NWM accuracy would be
improved by including agricultural return flows in the water sources sustaining streamflow in the NWM. In effect,
agricultural return flows are simply groundwater fluxes to streams that occur at lower elevations than the majority800

of the groundwater discharge sustaining streams. Based on magnitudes of ddiff , these lower elevation groundwater
fluxes can sometimes be large. Because the NWM is calibrated to actual streamflows which contain these return flows,
these fluxes are currently being misallocated in the model. Inaccuracies in any model terms or fluxes influence the
model’s capacity to project accurate streamflows, particularly under non-stationary hydrologic conditions. Accurate
model water source inclusion, particularly at low elevations where water use and availability is most critical, thus805

has implications for the model’s utility to stakeholders, including water managers and users.
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Under current conditions, agricultural return flows may be critical for sustaining streamflow late in the growing
season (August or September) or during drought periods. Sustained streamflow in certain reaches is critical for 1)
water access for surface water diversions and 2) water availability for species’ use. For example, protected fish species
survival requires that waterways meet thresholds of water quality, temperature, and depth for survival Dibble et al.810

(2020). Water managers make decisions about water allocations and reservoir releases in part to meet these habitat
needs Bruckerhoff et al. (2022). Agricultural return flows have the capacity to help sustain streamflow Fillo et al.
(2021), but with potentially negative effects on water quality, through agriculture-associated salinization Miller et al.
(2017); Thorslund et al. (2021), increased concentrations of nitrate Lin et al. (2021), and other nutrients Stets et al.
(2020), contributions of pesticide and fertilizers, or alterations to water temperature profiles. These contributions815

of agricultural waters contribute to sustaining flow but threaten water availability. Thus, inclusion of groundwater
return flows from irrigation to rivers in the Western US supports improved assessments of water availability both
through improved modeling of streamflows and enhanced ability to model water quality.

Explicit inclusion of irrigation return flows will assist the NWM in better projecting streamflows during periods of
hydrologic non-stationarity, as are likely to characterize the hydroclimatic elements of climate change. Non-stationary820

processes include hydrologic changes arising from the ongoing mega-drought of the southwestern US Williams et al.
(2022),

:::::::::
associated

:::::::
changes

:::
in

:::::
water

::::
use

:::
for

:::::::::
irrigation

::::::::::::::::::::
Ketchum et al. (2023),

:
intense precipitation events like mon-

soons or major storm events that are observed to be increasing in intensity with climate change Pfahl et al. (2017);
Demaria et al. (2019), and projected changes to future snowpack depth and melt timing Siirila-Woodburn et al.
(2021); Hammond et al. (2023). The ongoing aridification of the southwestern US is characterized by increased825

evapotranspiration Milly and Dunne (2020), and changes to groundwater recharge and discharge associated with
decreases in snowpack and changes to snowpack melt patterns Hammond et al. (2023). Understanding the ground-
water flux contributions of areas with shallow water tables to streamflow during major precipitation events will help
better characterize areas at risk for flooding and inform appropriate water management strategies.

3.6 Conclusions830

4 Conclusions

The isotope mass balance evaluation of the NWM revealed similarities between the isotope mass balance estimated
isotope ratios (modeled) and observed isotope ratios. The mass balance approach captured

::::::::::
represented as much

as 75% of the variance in the observations, depending on the water isotopologue evaluated. This suggests that, on
mean, during the summer, the NWM correctly represents the relative proportions of groundwater and

::::::
surface

:
runoff835

fluxes sustaining streamflow, and the gridded isotope datasets are appropriate for the analysis.
The observation-model differences exhibited spatial and seasonal structure, suggesting that the NWM is missing

important additional water sources that contribute to streamflow. Specifically, the observation-model differences that
plot above the equilibrium line (Figure 2) suggest the importance of direct contributions of snowmelt to streamflow in
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humid areas. Those that plot below the equilibrium line suggest the importance of groundwater sources characterized840

by evapoconcention
::::::::::
evaporation

:
in arid areas. We tested the hypothesis that agricultural irrigation return flows

are the missing , isotopically evapoconcentrated
::::::::::
evaporated water source in arid regions, and found them to be a

significant predictor of observation-model differences. This finding is supported by multiple lines of evidence including
land use pattern influence on isotopic evapoconcentration of

::
the

:::::::::::
relationship

:::
of

::::
land

::::
use

:::
to

:::::::
isotopic

:::::::
signals

:::::
(d)of

::::::::::
evaporation

:::
in groundwaters, a comparison of NWM groundwater discharge and

::::
with

:
an independent assessment845

of the potential for groundwater discharge and other isotopic inferences and modeling studies
::::::
isotopic

::::
and

:::::::::
modeling

:::::
study

::::::::::
conclusions

:::::
from

:::
the

:::::::::
literature.

Our findings suggest that the NWM accuracy would be improved by including agricultural return flows
::::::::
irrigation

:::::
fluxes

:
into the NWM water sources. Agricultural return flows function

::::::::
irrigation

:::::::::
recharged

::::::::::::
groundwater

:::::::::
functions

as lower elevation baseflow fluxes, and are likely to be critical for sustaining streamflow during drought periods or850

late in the growing season. Inclusion of this specific source into the more general groundwater fluxes would thus
improve the ability to meet water manager and water user NWM data needs. Specifically, water managers use
predictions of reach-specific flows at lower elevations during summer precipitation events and monsoons to assess
flood risk, or to inform dam releases (if dam releases are incorporated into the NWM) to assess the volume of
water required to achieve specific management goals like fish species preservation or dam water level maintenance855

for hydropower production. Likewise, explicit inclusion of irrigation return flows in NWM calculations will assist
in accurately predicting and projecting streamflows in heavily managed sections of river in the event of changing
irrigation practices, increased evapotranspiration, or water supply reductions and fallowing of agricultural fields,
which would change or halt irrigation groundwater fluxes. Finally, our findings have implications for areas at risk for
diminished water availability due to issues of quality, arising from the entrainment of fertilizer and pesticides and as860

well as dissolution and delivery of salts.
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