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Abstract. Subsurface non-isothermal fluid injection is a
ubiquitous scenario in energy and water resource applica-
tions, which can lead to geochemical disequilibrium and
thermally driven solubility changes and reactions. Depend-
ing on the nature of the solubility of a mineral, the thermal
change can lead to either mineral dissolution or precipitation
(due to undersaturation or supersaturation conditions). Here,
by considering this thermo-hydro-chemical (THC) scenario
and by calculating the temperature-dependent solubility us-
ing a non-isothermal solution (the so-called Lauwerier so-
lution), thermally driven reactive transport solutions are de-
rived for a confined aquifer. The coupled solutions, here-
after termed the “reactive Lauwerier problem”, are devel-
oped for axisymmetric and Cartesian symmetries and addi-
tionally provide the porosity evolution in the aquifer. The
solutions are then used to study two common cases: (I) hot
CO2-rich water injection into a carbonate aquifer and (II) hot
silica-rich water injection into a sandstone aquifer, leading to
mineral dissolution and precipitation, respectively. We dis-
cuss the timescales of such fluid–rock interactions and the
changes in hydraulic system properties. The solutions and
findings contribute to the understanding and management of
subsurface energy and water resources, such as aquifer ther-
mal energy storage, aquifer storage and recovery and reinjec-
tion of used geothermal water. The solutions are also useful
for developing and benchmarking complex coupled numeri-
cal codes.

1 Introduction

The recharge or injection of fluids in constrained physical
and chemical states in geothermal systems and aquifers is
a common phenomenon in both natural and applied systems
(Phillips, 2009; Stauffer et al., 2013). In many instances, ther-
mal changes within these systems can shift the system from a
state of geochemical equilibrium to disequilibrium and lead
to chemical reactions over extensive distances determined
by the variations in temperature. These perturbations result
from the changes in the solubility of minerals in groundwa-
ter, which can become supersaturated or undersaturated in
response to thermal changes. These thermally driven reac-
tions cause progressive changes in the rock porosity and hy-
draulic properties that result from accumulation, removal, or
replacement of solid minerals and the accompanied volumet-
ric changes (Phillips, 2009; Woods, 2015). Such processes
are responsible for the natural transformations of rocks from
diagenesis and metamorphism (Jamtveit and Yardley, 1996;
Yardley et al., 2011) to the evolution of aquifers and reser-
voirs (Andre and Rajaram, 2005; Jones and Xiao, 2006) and
melt migration in the Earth’s mantle (Aharonov et al., 1995;
Kelemen et al., 1995). In applied systems, fluid–rock inter-
actions can significantly impact hydrothermal performance
at a timescale of years (Huenges et al., 2013; Pandey et al.,
2018).

Depending on the natural solubility of the minerals in the
system, an increase in temperature can induce either dis-
solution or precipitation. This is because mineral solubili-
ties can either increase with temperature (“prograde solubil-
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ity”) or decrease with it (“retrograde solubility”; Jamtveit and
Yardley, 1996; Woods, 2015). Flow and transport commonly
influence the state of saturation by continuously introduc-
ing thermally disequilibriated fluid, which subsequently be-
comes geochemically disequilibriated. This occurs because,
in many cases, advection serves as the dominant transport
mechanism, characterized by a shorter timescale (tA) com-
pared to diffusive heat (tC) or diffusive solute transport (tD).
These timescales are represented by tA = lA/u, tC = l2C/αb,
and tD = l

2
D/D , where lA, lC, and lD are characteristic

length scales of advection, heat conduction, and ionic diffu-
sion, respectively. Here, u denotes the characteristic Darcy
flux [L T−1], while αb and D are the bulk thermal diffu-
sivity and ionic diffusion coefficient, respectively. The ra-
tio of these timescales defines the thermal Péclet number
(PeT = tC/tA) and the solute Péclet number (Pes = tD/tA),
which are used to characterize the transport regime in these
systems. When PeT and Pes are high (i.e., � 1), advective
transport prevails (Ladd and Szymczak, 2021; Nield and Be-
jan, 2017; Roded et al., 2020).

The overall integrated action of these mechanisms re-
sults in a coupled thermo-hydro-chemical (THC) process
(Huenges et al., 2013; Pandey et al., 2018; Phillips, 2009;
Regenauer-Lieb et al., 2013). The tightly coupled feedbacks
in THC processes commonly render them highly nonlin-
ear. Fluid flow and diffusive heat and solute transport in-
duce chemical reactions, which alter the pore structure and
its transport properties, leading to further feedback on flow
and transport (Chaudhuri et al., 2013; Phillips, 2009; Woods,
2015). Studying these coupled feedback alterations improves
the understanding of reactive transport processes taking place
in the Earth’s upper crust. Specifically, these studies are in-
tegral to the sustainable planning and long-term manage-
ment of water resources (Andre and Rajaram, 2005; Phillips,
2009), geothermal energy systems (on the scale of tens of
years; Frick et al., 2011; Huenges et al., 2013; Pandey et
al., 2018), and CO2 geo-sequestration (Dávila et al., 2020;
Steefel et al., 2013; Tutolo et al., 2015).

In enhanced geothermal systems (EGSs) in particular,
channelized dissolution can create a short circuit and re-
duce the heat exchange between the rock and the fluid. Con-
versely, precipitation can significantly reduce permeability,
leading to reduced production and potentially sealing reser-
voirs (Huenges et al., 2013; Olasolo et al., 2016; Pandey et
al., 2018). Another challenge associated with geothermal uti-
lization is the risk of groundwater contamination, where ther-
mal changes can lead to the leaching of undesired chemical
species from the rocks. Specifically, contamination may arise
from the reinjection of fluids required to maintain reservoir
pressure from aquifer thermal energy storage (ATES) sys-
tems that leverage seasonal temperature fluctuations (Bonte
et al., 2014; Glassley, 2014; Possemiers et al., 2014). It may
also result from substantial injections of hotter or colder wa-
ter for groundwater management practices, such as aquifer

storage and recovery (ASR) (Maliva, 2019; Zheng et al.,
2021).

In terms of mineralogy, a range of thermally driven re-
actions occurs in the previously mentioned systems. Com-
monly reported precipitates accumulating in geothermal
plant piping loops and natural spring deposits include car-
bonates (e.g., calcite, dolomite, and siderite), sulfates (e.g.,
gypsum and baryte), and amorphous silica (Glassley, 2014;
Huenges et al., 2013). Particularly, geothermal systems com-
posed of sandstones and carbonates are ubiquitous in the
Earth’s crust and are prone to alterations (Goldscheider et
al., 2010; Pandey et al., 2018; Wood and Hewett, 1984). The
solubility of silica is proportional to temperature (i.e., pro-
grade solubility), and water pumping or injection can lead to
substantial changes in reservoir transmissivity that can affect
heat extraction (Pandey et al., 2018; Rawal and Ghassemi,
2014; Taron and Elsworth, 2009). In particular, silica pre-
cipitation can occur several orders of magnitude faster than
the dissolution of either quartz minerals or amorphous silica
(Rimstidt and Barnes, 1980). The exception is the dissolu-
tion of unconsolidated amorphous silica sediments (e.g., di-
atomite). Due to the high specific reactive surface area of the
material, these sediments can be intensely dissolved when
steam and hot water undersaturated with respect to silica are
injected (Bhat and Kovscek, 1998). In contrast to silica, car-
bonate minerals demonstrate an inverse relation (i.e., retro-
grade solubility), which is often strong and influenced by
CO2 content. Consequently, limestone and dolomite aquifers
and reservoirs subjected to geothermal flows, commonly rich
in CO2, can evolve at relatively short timescales. Either rapid
dissolution or rapid precipitation can occur in such sys-
tems depending on conditions (Andre and Rajaram, 2005;
Coudrain-Ribstein et al., 1998; Roded et al., 2023).

Investigating the multi-physical systems of THC processes
is complex and relies on numerical models facilitated by on-
going advancements in computational capabilities (Kolditz
et al., 2016; Pandey et al., 2018; Steefel et al., 2015). Over
recent decades, these models have improved the understand-
ing of subsurface processes (Niemi et al., 2017; Regenauer-
Lieb et al., 2013; Seigneur et al., 2019; Steefel et al., 2013);
however, the validity of such models remains questionable
if the results cannot be rigorously tested (Kolditz et al.,
2016; Nield and Bejan, 2017). Particularly, analytical so-
lutions allow for the establishment of functional relation-
ships between variables and physical properties and provide
robust reliability and accuracy tests for numerical models
(Bear and Cheng, 2010; Diersch and Kolditz, 2002; Nield
and Bejan, 2017). However, comprehensive testing of multi-
coupled THC codes is often mathematically cumbersome
and precluded by many different approaches. This limita-
tion arises because existing theoretical solutions focus solely
on scenarios related to heat and/or solute transport (Diersch
and Kolditz, 2002; Nield and Bejan, 2017; Stauffer et al.,
2013; Turcotte and Schubert, 2002) or reactive solute trans-
port (Bear and Cheng, 2010; Nield and Bejan, 2017) and
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because complete solutions that involve coupled THC pro-
cesses are scarce (White et al., 2018). To the best of the au-
thors’ knowledge, coupled THC solutions are limited to two
scenarios: thermally driven reactive front development (Jupp
and Woods, 2003, 2004) and thermal and/or solutal convec-
tion in a reactive medium (e.g., Rayleigh–Bénard equivalent
in a reactive porous medium; Al-Sulaimi, 2015; Corson and
Pritchard, 2017). Solutions for fundamental and practical sit-
uations in geothermal and groundwater systems, such as non-
isothermal injection into a reservoir and consequent matrix
modifications, are missing. This is despite the existence of
the so-called “Lauwerier solution” (Lauwerier, 1955), which
analytically predicts the thermal field resulting from hot (or
cold) fluid injection into a thin non-reactive confined layer
system. The Lauwerier solution has served as the basis for
the development of multiple modified heat transport solu-
tions, accounting for various boundary conditions and sys-
tem geometries, considering conduction and dispersion, and
even accommodating fractured media (Abbasi et al., 2017;
Chen and Reddell, 1983; Lin et al., 2019; Shaw-Yang and
Hund-Der, 2008; Voigt and Haefner, 1987; Yang et al., 2010;
Zhou et al., 2019; Ziagos and Blackwell, 1986; see review in
Stauffer et al., 2013).

In the present work, we present analytical solutions, in-
voking non-isothermal fluid injection from a point or planar
source into a thin confined aquifer (essentially the same sce-
nario as of the Lauwerier problem). However, in this study,
thermal changes drive the reactions and porosity evolution.
Here, we define and solve the coupled physics of the “re-
active Lauwerier problem”. To achieve this, we employ a
temperature-dependent solubility in a reactive-flow formu-
lation, while accounting for the thermal field following the
Lauwerier formulation. The equations are solved for radial
and planar flows, and the general solutions are applied to two
common scenarios: carbonate dissolution and silica precipi-
tation with respective permeability evolutions of each.

2 Mathematical analyses

2.1 Reactive Lauwerier scenario and the conceptual
model

We consider Lauwerier problem settings (Lauwerier, 1955;
Stauffer et al., 2013) involving the injection of hot (or cold)
fluid into a confined aquifer located between bedrock and
caprock, with lateral flow along the coordinate ϕ. The latter
can represent the radial coordinate in an axisymmetric setting
or x in Cartesian coordinates; i.e., ϕ = r or x. Figure 1 illus-
trates a summary of the problem, while Appendix F provides
a summary of the nomenclature.

Downstream, along the flow path away from the injection
point, heat is exchanged between the aquifer and the im-
permeable confining rock layers. Within the confining lay-
ers, heat is transported by conduction alone. The heat ex-

change and thermal variations in the aquifer induce changes
in the solubility of the minerals (i.e., saturation concentra-
tion, cs(T )), which in turn trigger undersaturation and disso-
lution reactions or, conversely, supersaturation and precip-
itation reactions that modify the aquifer porosity, θ . Both
removal or accumulation of minerals can occur depending
on the injection temperature (colder or warmer than am-
bient) and the prograde or retrograde nature of the reac-
tive minerals. Our radial setup pertains to injection from a
single well or mimics natural localized thermal upwelling
in fractured/faulted media of deep origin, discharging into
the shallower aquifer (Craw, 2000; Micklethwaite and Cox,
2006; Roded et al., 2013, 2023; Tripp and Vearncombe,
2004). The planar source setup simulates injection wells ar-
ranged in a straight line (Lauwerier, 1955).

2.2 Main model assumptions

Here, the THC conceptual model shown in Fig. 1 is math-
ematically described using conservation equations for heat
and reactive transport along with initial and boundary con-
ditions. The thermal Lauwerier solution and the mathemati-
cal model involve several simplifying assumptions, the major
ones of which are listed below. For a more comprehensive
overview, expanded versions of the conservation equations
are provided in Appendix A.

The underlying thermal assumptions include negligible
basal (background) geothermal heat flow and an initial
geothermal gradient compared to the heat input by the in-
jected fluid. The aquifer is located at a significant depth, pre-
venting heat transport to the surface; otherwise, greater heat
exchange would occur between the aquifer and the caprock.
This assumption regarding the depth also depends on the
timescale of interest: the thermal front, which ascends with
time, may not reach the surface on a short timescale. How-
ever, it may transport heat to the surface after a longer time
(which can be estimated using tC).

Heat transport in the layers confining the aquifer is de-
scribed by conduction and only in the vertical direction (z),
neglecting lateral (ϕ) heat conduction. This assumption lim-
its the applicability of the solution to scenarios involving
large injected fluid fluxes. To assess the validity of this as-
sumption, a thermal Péclet number, which compares heat
advection in the aquifer to lateral heat conduction, PeT =

ul/αb, is used. PeT involves a length scale, l, at which sub-
stantial temperature variation occurs (e.g., larger than 2 %
from the total temperature change, 1T ). An analysis using
the parameter values in Table 1 and the results in Sect. 3 (i.e.,
a posteriori inspection) confirm that PeT� 1 at all times.
Additionally, beyond the very early moments, the length
scale of l should be larger than the vertical dimension of the
aquifer, H , at which complete thermal mixing is assumed
(l�H ). This assumption may not be applicable if a thick
aquifer (i.e., large H ) is considered and substantial vertical
temperature gradients are expected to develop.
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Figure 1. Sketch of the reactive Lauwerier problem and the conceptual model for thermally driven reactive transport in geothermal systems
(the radial case). Hot (or cold) fluid is injected into a confined aquifer between aquiclude bedrock and caprock at a constant flow rate, Q,
and temperature, Tin. The initial temperature of the aquifer is T0, and its thickness is H . Downstream, along the flow path, heat is conducted
from the aquifer through the confining layers. Thermal variations in the aquifer (color gradients) induce a change in solubility, cs(T ), and
hence disequilibrium and reaction, which in turn drive the evolution of the porosity of the aquifer from its initial value, θ0. z represents the
vertical coordinate. In the main text, both polar and Cartesian geometries are considered, with ϕ = r or x, respectively. The origin of ϕ and
z is defined at the center of the injection well. The injection well exhibits either axial (as shown in the sketch) or planar symmetry if Cartesian
geometry is considered.

Furthermore, conduction and solute diffusion within the
aquifer groundwater are neglected because the respective
thermal (PeT) and solute (Pes) Péclet numbers are assumed
to be large. Fluid and solid properties, such as density and
heat conductivity, are considered constant and independent
of temperature. It is noted that for CO2 applications, the as-
sumption of constant density and incompressibility may not
be appropriate for a CO2-rich phase (supercritical or gas)
with moderate temperature changes (e.g., 1T > 40 °C).

Furthermore, the specific reactive surface area, As (L2 to
L−3 of the porous medium), is considered constant here and
assumed not to change as reaction progresses. In most in-
stances, this assumption does not weaken the applicability of
the solution since As may vary widely across different rock
lithologies, e.g., from 10−1 m−1 in fractured media (Deng
and Spycher, 2019; Pacheco and Van der Weijden, 2014) to
above 105 m−1 for porous rocks (Mostaghimi et al., 2013;
Noiriel et al., 2012; Seigneur et al., 2019) and can often only
be estimated very roughly (e.g., within an order of magnitude
accuracy). Furthermore, As can evolve with the reactive flow
in a way that is difficult to estimate (Noiriel, 2015; Seigneur
et al., 2019). If large porosity changes occur, the inherent as-
sumption of a constant As can limit the applicability of the
solutions.

2.3 The basic conservation equations

Neglecting heat conduction in the radial direction, r , the heat
conduction equation in the rock confining the aquifer above

and below is given by

∂T

∂t
= αb

∂2T

∂z2

{
z ≤−H2 ,

z ≥ H
2 ,

(1)

where T represents temperature; t denotes time; z is the ver-
tical coordinate, with its origin at the center of the injection
well; and H is the aquifer thickness (see Fig. 1). The quan-
tity αb =Kb/Cpb is the thermal diffusivity [L2 T−1], where
the subscript b indicates bulk rock, K is the thermal con-
ductivity, and Cp is the volumetric heat capacity (Chen and
Reddell, 1983; Stauffer et al., 2013).

Assuming that heat transport in the fluid along the aquifer
is governed by advection and that complete mixing occurs
in the aquifer transverse direction (z), a depth-averaged heat-
transport equation can then be formulated for the aquifer re-
gion:

CpbH
∂T

∂t
=−CpfH

1
r

∂(ruT )

∂r
−2(r, t) for −

H

2
≤ z ≤

H

2
, (2)

where subscript f denotes fluid and u(r) is the radial superfi-
cial velocity (or Darcy flux), which can be determined from
the total volumetric flow rate, Q, using u=Q/(H2πr) (as-
suming u to be uniform along the z direction of the aquifer;
Andre and Rajaram, 2005; Lauwerier, 1955). Function2 ac-
counts for the heat exchange between the aquifer and the
confining rock located above and below, calculated using
Fourier’s law, with continuous temperature assumed at the
interfaces:

2=−2Kb
∂T

∂z

∣∣∣∣
z=H2 ,−

H
2

. (3)
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The factor of 2 accounts for the rock both above and below
the horizon (Stauffer et al., 2013).

The solute transport advection–reaction equation in the
aquifer is

0=−u
∂c

∂r
−�(r, t) for −

H

2
≤ z ≤

H

2
. (4)

Here, c is the solute concentration [M L−3] and � is the re-
action term (Chaudhuri et al., 2013; Szymczak and Ladd,
2012). Equation (4) is derived by neglecting transient and
diffusive terms in the advection–diffusion–reaction equation
(Eq. A3). The justification for the quasi-static approxima-
tion used when deriving Eq. (4) lies in the separation of
timescales between heat conduction (tC) in the confining
rocks and mineral alteration (tM) and the relaxation of solute
concentration (tA) (for in-depth analysis and discussion, see
Appendix B and, e.g., Detwiler and Rajaram, 2007; Ladd and
Szymczak, 2017; Lichtner, 1991; Roded et al., 2020; Sanford
and Konikow, 1989).

Here, we assume a surface-controlled reaction and first-
order kinetics:

�= Asλ3, (5)

where As is the specific reactive surface area and λ is the
kinetic reaction rate coefficient [L T−1], here assumed to be
constant (Dreybrodt et al., 2005; Seigneur et al., 2019). 3
is denoted as the solute disequilibrium and is defined as the
difference between the concentration of dissolved ions and
saturation (equilibrium) concentrations, cs,

3= c− cs(T ). (6)

Thus, the solute disequilibrium, 3, is negative for undersat-
uration and positive for supersaturation. cs is calculated as
follows:

cs(T )= cs (T0)+β (T − T0) . (7)

Here, T0 represents the initial temperature in the aquifer and
the parameter β = ∂cs/∂T . Equation (7) assumes a linear re-
lationship between cs and T , with a constant proportionality
factor, β, which is positive for minerals of prograde solu-
bility and negative for minerals of retrograde solubility (Al-
Sulaimi, 2015; Corson and Pritchard, 2017; Woods, 2015).

Given the reaction rate (Eq. 5), the change in porosity, θ ,
can be calculated as follows:
∂θ

∂t
=−

�

νcsol
for −

H

2
≤ z ≤

H

2
, (8)

where csol is the concentration of the soluble solid mineral
and ν accounts for the stoichiometry of the reaction. In the
case of planar flow and Cartesian coordinates, r can be re-
placed by x in the equations above, while Eq. (2) takes the
following form:

Cpb

∂(HT )

∂t
=−uCpfH

∂T

∂x
−2(x, t) for −

H

2
≤ z ≤

H

2
, (9)

where u here is the spatially uniform fluid velocity in the x
direction.

2.4 Initial and boundary conditions

The initial conditions involve a uniform value of tempera-
ture T0 throughout the medium. The boundary conditions at
the injection well (ϕ = 0) include a constant rate of fluid in-
jection at temperature Tin and initially zero solute disequilib-
rium, 3= 0 (Eq. 6). The caprock and bedrock thickness and
aquifer extent are assumed to be infinite.

2.5 Solution of the reactive Lauwerier problem

2.5.1 Axisymmetric (radial) flow

Aquifer temperature

The solution of Eqs. (1) and (2) for the temperature distribu-
tion in the aquifer (known as the Lauwerier solution) for the
radial case is given by

T (r, t)= T0+1T erfc
[
ζ(r, t)r2

]
. (10)

Here, erfc is the complementary error function, 1T = Tin−

T0 is the difference between injection and initial aquifer tem-
perature, and ζ is defined as

ζ(r, t)=
π
√
KbCpb

QCpf

√
t ′
. (11)

The time variable, t ′ = t − 2rCpb/(Cpfu), and the solution
given by Eq. (10) holds when t ′ > 0 (Stauffer et al., 2013).
We additionally assume long enough time and conditions
where t ′ ≈ t (see Appendix C for analysis of the validity of
this assumption). Furthermore, to simplify the equations, we
assume equal heat capacities for both the confining rocks and
the aquifer. To account for non-uniform heat capacities al-
ternative form of Eq. (10) can be used (refer to Eqs. 3.122
and 3.131 and associated definitions in Stauffer et al., 2013).

Reactive solute transport

We begin by substituting Eq. (6) into Eq. (4) to obtain

0=−u
(
∂3

∂r
+
∂cs

∂r

)
+�. (12)

The derivative ∂cs/∂r can then be expressed by differentiat-
ing the relationship in Eq. (7),

∂cs

∂r
=
−β∂T

∂r
, (13)

and further substituting Lauwerier solution (Eq. 10), which
provides

−β∂T

∂r
= 41T

βζr
√
π
e
(
−ζ 2r4)

. (14)
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Next, substituting Eq. (14) into Eqs. (13) and (12) results in
a linear inhomogeneous differential equation. Assuming sat-
uration conditions at the inlet and the boundary condition of
3(r = 0)= 0 leads to the following solution:

3=1Tβe

(
η2

4ζ2−ηr
2
)(

erf
[
ζ r2
−
η

2ζ

]
+ erf

[
η

2ζ

])
, (15)

where erf is the error function and η =HπAsλ/Q. Ap-
pendix D presents an approximation for Eq. (15) which is
useful for efficient computation and prevents integer over-
flow (Press et al., 2007).

Given the reaction rate (Eq. 5), the erosion and porosity
change can be calculated using the solid erosion equation
(Eq. 8)

∂θ

∂t
=−

�

νcsol
, (16)

where csol is the concentration of soluble solid material and
ν accounts for the stoichiometry of the reaction. Substituting
Eq. (15) into Eq. (16), integrating over time, and using the
initial condition of θ(t = 0)= θ0 results in a closed-form ex-
pression for the temporal and spatial evolution of porosity, θ :

θ(r, t)= θ0+ 4
ζ 2t

η2
λAs1Tβ

νcsol

(
−e

η/4
(
η

ζ2 −4r2
)

(
erf
[
ζ r2
−
η

2ζ

]
+ erf

[
η

2ζ

])
+

η

ζ
√
π
e−ηr

2

+erf
[
ζ r2

](
1− ηr2

)
−

η

ζ
√
π
e−ζ

2r4
+ ηr2

− 1
)
. (17)

2.5.2 Planar flow

In the Cartesian case, with injection along a line, the Lauw-
erier solution is

T (x, t)= T0+1T erfc[ω(x, t)x], (18)

where ω is defined as

ω(x, t)=

√
KbCpb

HCpfu
√
t ′
, (19)

and t ′ = t − xCpb/(Cpfu). Similarly, to the radial case, the
solution holds at sufficiently long times, for which t ′ ≈ t .

Following the analogous steps as in the radial case, the
solution is derived by

3=1Tβe

(
σ2

4ω2−σx
)(

erf
[
ωx−

σ

2ω

]
+ erf

[ σ
2ω

])
, (20)

and

θ(x, t)= θ0+ 4
ω2t

σ 2
λAs1Tβ

νcsol

(
−e

σ/4
(
σ

ω2−4x
)

(
erf
[
ωx−

σ

2ω

]
+ erf

[ σ
2ω

])
+

σ

ω
√
π
e−σx

+erf[ωx](1− σx)−
σ

ω
√
π
e−ω

2x2
+ σx− 1

)
, (21)

where σ = Asλ/u.

3 Thermally driven reactive flow in geothermal
systems

In this section, we use the radial solutions presented in the
previous section to examine two common scenarios: (I) in-
jection of CO2-rich hot water into a carbonate aquifer and
(II) injection of silica-rich hot water into a sandstone aquifer.
These scenarios result in cooling-induced calcite dissolution
and silica precipitation, respectively. The subsequent poros-
ity evolution within these systems (Eqs. 16 and 20) is then
used to estimate the evolution of aquifer permeability. These
scenarios are pertinent, for instance, in aquifer thermal stor-
age, reinjection of geothermal water at shallow depths, or ap-
plications of groundwater storage and recovery (Diaz et al.,
2016; Fleuchaus et al., 2018; Maliva, 2019).

3.1 Aquifer properties and injection conditions

Here, we discuss conditions for thermally induced reactivity
in carbonates and sandstone aquifers and the parameter val-
ues assigned in the simulations (Table 1). Regarding the de-
scription of the kinetics of these systems, calcite dissolution
can often be complex, involving various chemical species
and reactions of varying orders (Dreybrodt, 1988; Plummer
et al., 1978). However, for a wide range of pH values, it can
be simplified and described by assuming a linear dependence
on undersaturation or acid concentration. Specifically, first-
order kinetics are commonly employed to study natural karst
formations (pH∼ 6; Dreybrodt et al., 2005; Palmer, 1991),
and dissolution under the acidic conditions common in en-
gineering applications (pH∼ 3; Hoefner and Fogler, 1988;
Peng et al., 2015) or in geothermal systems of high CO2 par-
tial pressure, PCO2 (pH∼ 5; Coudrain-Ribstein et al., 1998;
Lu et al., 2020; Roded et al., 2023). Silica precipitation can
be well described by first-order kinetics (Carroll et al., 1998;
Ji et al., 2023; Pandey et al., 2015; Rimstidt and Barnes,
1980).

We also exploit approximately linear temperature–
solubility dependence over the temperature range studied
here (between T0 = 20 °C and Tin = 60 °C) and assign a
constant value to β (Eq. 7; Andre and Rajaram, 2005;
Glassley, 2014; Rimstidt and Barnes, 1980; Roded et al.,
2023). Additionally, it should be noted that in carbon-
ates, the temperature–solubility relation strongly depends on
PCO2: higher PCO2 values result in larger increases in cs
as the water cools (i.e., the magnitude of β is larger; see
Fig. 2b in Roded et al., 2023, and Andre and Rajaram, 2005;
Palmer, 1991). Here, in accordance with typical conditions
in geothermal systems, we consider injection of water with
PCO2= 0.03 MPa (Coudrain-Ribstein et al., 1998; Lu et al.,
2020).

In the simulations, we assign characteristic porosity (θ )
and reactive surface area (As) for the different aquifer types.
In accordance with common field observations, we consider
a carbonate aquifer in which flow and dissolution are fo-
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Table 1. Parameter values used in the simulations.

Aquifer thickness H = 4 m
Initial porosity θ0 = 0.05 and 0.2
Total volumetric flow ratea Q= 500 m3 s−1

Initial aquifer temperatureb T0 = 20 °C
Injection temperatureb Tin = 60 °C
Fluid volumetric heat capacityb Cpf = 4.2× 106 J m−3 °C−1)
Rock volumetric heat capacityb Cpb = 3.12× 106 J m−3 °C−1

Rock thermal conductivityb Kb = 3 W m−1 °C−1

Calcite rate coefficientc λ= 10−6 m s−1

Silica rate coefficientd λ= 5× 10−10 m s−1

Fractured carbonates specific reactive surface areae As = 10 m−1

Porous sandstones specific reactive surface areaf As = 104 m−1

Calcite mineral concentrationc csol = 2.7× 104 mol m−3

Silica mineral concentrationd csol = 3.7× 104 mol m−3

Solubility change parameter for calciteg β =−0.075 mol m−3 °C−1

Solubility change parameter for silicaa β = 0.04 mol m−3 °C−1

Stoichiometry coefficientc,d ν = 1
Exponent of θ–k relatione n= 2–20

a Glassley (2014). b Huenges and Ledru (2011). c Palmer (1991). d Rimstidt and Barnes (1980). e See text.
f Hussaini and Dvorkin (2021) and Lai et al. (2015). g Roded et al. (2023).

cused in the permeable fracture network and a porous sand-
stone aquifer characterized by high intergranular permeabil-
ity (Bear and Cheng, 2010; Jamtveit and Yardley, 1996).
The different aquifer characteristics are reflected in signifi-
cant differences in θ and As for the different aquifer types.
Specifically, carbonates are often characterized by perme-
ability contrasts spanning orders of magnitudes between the
fractures and the rock matrix (Dreybrodt et al., 2005; Lucia,
2007). Consequently, transport in the matrix occurs mostly
by slow diffusion, and the reaction within the matrix can be
neglected. Hence, only the reactive surface area, As, of the
fractures effectively participates in the reaction (Deng and
Spycher, 2019; Maher et al., 2006; Pacheco and Alencoão,
2006; Seigneur et al., 2019). In this case, θ can be mini-
mal (Lucia, 2007) and As is orders of magnitude smaller
compared to its value in porous sandstones (Hussaini and
Dvorkin, 2021; Lai et al., 2015; Pacheco and Alencoão,
2006; Pacheco and Van der Weijden, 2014; Seigneur et
al., 2019). This disparity can lead to substantial differences
in characteristic alteration rates and Damköhler numbers
in these systems (Ladd and Szymczak, 2021; Lucia, 2007;
Seigneur et al., 2019).

Specifically, in the case of fractured rocks as described
above, we calculate the reactive surface area using As =

2 ·κ ·RF, where κ is the fracture density (defined as the num-
ber of fractures per unit volume), the factor of 2 accounts for
the presence of two surfaces, and RF is the roughness factor
(Deng et al., 2018). Assuming κ = 1/33 m−3 and RF= 1.35
results in As = 0.1 m−1. Typical values of κ and fracture
spacing can span a substantial range and may be higher or
lower (Narr and Suppe, 1991; Scholz, 2019). Here, it is fur-

ther assumed that the fracture density is high and the network
is of high connectivity, allowing it to be treated as a con-
tinuum (Anderson et al., 2015; Sahimi, 2011). We consider
here an injection flow rate of Q= 500 m3 d−1, which falls
within the typical range of flow rates observed in relevant
applications, such as geothermal systems (Glassley, 2014) or
groundwater storage and recovery (Maliva, 2019). The in-
jection temperature is set to Tin = 60 °C, and aquifer ambi-
ent temperature is set to T0 = 20 °C (1T = 40 °C). To obtain
the results, in this section, the solutions were implemented in
MATLAB code (MATLAB, 2022). Appendix D details the
use of the approximated Eq. (D2) in calculating the results in
Figs. 2 and 3.

3.2 Carbonate aquifer dissolution by cooling water

In Fig. 2, the results of CO2-rich hot water injection into a
carbonate aquifer at successive times since the beginning of
the injection are shown (Eqs. 10, 17, and D2 are solved for
t = 0.2, 10, and 100 kyr). During the radial flow within the
aquifer, the hot fluid cools by transferring heat into the con-
fining layers, which heat up with time, resulting in the grad-
ual advancement of the thermal front downstream (Fig. 2a).
The cooling induces solute disequilibrium (3) associated
with undersaturation (note that 3 is negative for undersatu-
ration and positive for supersaturation; see Eq. 6). The mag-
nitude of 3 in the aquifer is small compared to the absolute
solubility change in the system,1cs = |cs(Tin)−cs(T0)|, i.e.,
between cs(Tin) at the injection point and cs(T0) at ambient
conditions (|3|/1cs� 1 %; see Fig. 2b). The small mag-
nitude of disequilibrium is associated with relatively high
PCO2 considered here (0.03 MPa) and rapid kinetics under
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Figure 2. Carbonate aquifer dissolution by cooling hot water. Temperature, T ; solute disequilibrium, 3; and porosity, θ , in the aquifer are
plotted as functions of the radial position, r , at different times (computed using Eqs. 10, 17, and D2). (a) The hot flow cools gradually as it
travels through the aquifer, transferring heat to the confining rocks, thereby causing them to warm over time and the thermal front to progress
downstream. (b) Cooling induces undersaturation (negative disequilibrium, 3; see Eq. 6), which is of a relatively small magnitude due to
the rapid kinetics of calcite dissolution. 3 is normalized by the total solubility change in the system, 1cs (refer to the text for the definition
of 1cs). The water is hot and saturated at the inlet, c = cs(Tin). Undersaturation quickly develops near the inlet (r ≈ 20 m, as shown in the
magnification) and then gradually diminishes due to dissolution reactions further along the flow path (3 approaches zero). As the thermal
front propagates over time, and thermal gradients diminish, the 3 curves also flatten. (c) Corresponding to 3 variations, a porosity profile
develops over time (see the magnification for the inlet-adjacent region).

these conditions. The quasi-equilibrium conditions may al-
low for the simplification and calculation of the local reaction
rate from transport processes alone, regardless of kinetics,
referred to as the so-called “equilibrium model” (Andre and
Rajaram, 2005; Bekri et al., 1995; Golfier et al., 2002; Licht-
ner, 1991), which will be the subject of a future research.

Although the magnitude of disequilibrium, 3, is small, it
controls the alteration of the aquifer and the evolution of its
properties. Significantly, because the water at the inlet is hot
and saturated with calcite, c = cs(Tin), disequilibrium, and
reaction rate are zero at the inlet, leading to no change in
the porosity there (see Figs. 2b and 3c and their magnifi-
cations). Disequilibrium (undersaturation) sharply develops
downstream of the injection site, first forming a small mini-
mum (at r ≈ 20 m) and gradually increasing to zero at greater
distances. Undersaturation and dissolution along the flow
path are controlled by the interplay of three processes: (I) dis-
solution reducing undersaturation (i.e., 3 becomes closer
to zero), (II) progressive cooling increasing undersaturation,

and (III) advection–transport–reaction products (i.e., calcium
ions) radially outward from the well, helping maintain un-
dersaturation. Here, the effect of fluid velocity and advection
decays with a distance of 1/r .

High advection and cooling rates near the inlet result in the
abrupt formation of undersaturation (i.e., negative 3). Fur-
ther downstream, undersaturation diminishes due to disso-
lution reactions. As the thermal front advances downstream
over time and the temperature gradients diminish along the
aquifer, the 3 curve flattens and becomes more elongated
(see curves for t = 10 and 100 kyr in Fig. 2b). Due to the dis-
equilibrium, porosity grows with time. The porosity sharply
increases near the inlet and then gradually decreases down-
stream (Fig. 2c). The porosity changes are extensive and take
place over an aquifer area of ∼ 30 km2 within a relatively
short geological timescale of 100 kyr, resulting in the addi-
tion of significant void space of thousands of cubic meters
(∼ 5× 103 m3).
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Figure 3. Silica precipitation in a sandstone aquifer by cooling hot water. The calculated solute disequilibrium, 3, and porosity, θ , as
functions of the lateral position, r , are shown at different times since the beginning of the injection (calculated using Eqs. 17 and D2; the
temperature profile is given in Fig. 2a). The reactive transport processes in this case are similar to the carbonate dissolution system shown in
Fig. 2, with insets Fig. 2b and c being approximately mirror images of panels (a) and (b), showing supersaturation and porosity reduction.
(a) As a result of cooling, solute disequilibrium corresponding to supersaturation (3; Eq. 6) develops, which is of a small magnitude due to
the high reaction rates (3 is scaled by the total solubility change in the system, 1cs; refer to the text for the definition of 1cs). The water
enters hot and saturated at the inlet, c = cs(Tin), and, subsequently,3 increases rapidly and then gradually diminishes downstream due to the
reaction. The advancement of the thermal front over time and lower gradients lead to the flattening of 3 curves. (b) In accordance with 3,
an extensive porosity profile develops over time.

An essential assumption underlying the solutions in Sect. 2
and the results depicted in Fig. 2 is the assumption of spatial
uniformity and symmetry of reactive flow. In practical sce-
narios, however, dissolution instabilities can emerge at the
reaction front. These instabilities, owing to the positive feed-
back between reaction and transport, may evolve into disso-
lution channels, often referred to as wormholes (Aharonov et
al., 1997; Budek and Szymczak, 2012; Chadam et al., 1986;
Ortoleva et al., 1987; Roded et al., 2018, 2021). The worm-
holes concentrate reactive flow, resulting in heterogeneous
flow fields that cannot be accurately represented by assum-
ing symmetry and uniformity. In such a case, the results of
Fig. 2 can only be regarded as an average solution, which is
not accurate locally.

Isothermal dissolution, driven by undersaturation of the in-
coming solution is known to be unstable in the radial geom-
etry for a large-enough solute Péclet number, Pes, and inter-
mediate Damköhler numbers. The Damköhler number here
is given by Da = AsλlA/u and represents the ratio between
advective and reactive timescales (Daccord, 1987; Grodzki
and Szymczak, 2019; Kalia and Balakotaiah, 2007; Xu et
al., 2020). However, in our case, the cooling of the solution
renews its aggressiveness, hence extending the penetration
length in the system which may influence the stability of the
reactive front (Xu et al., 2020). The effect of renewed aggres-
siveness by considering solubility gradients was studied for
planar reactive flow in Aharonov et al. (1997) and Spiegel-
man et al. (2001) but requires further investigation for radial
flow and taking into account coupling with heat transfer.

3.3 Silica precipitation by cooling water

Here, we consider the injection of hot silica-rich water that
cools, becoming supersaturated and leading to silica precipi-
tation, consequently reducing void space and permeability.
While the previous case involved dissolution, this one in-
volves precipitation; however, the thermal and reactive trans-
port processes are similar in both cases (with approximately
mirror-image 3 and θ profiles; see Figs. 2b, c and 3a, b).

Similarly to the previous section, the low magnitude of 3
suggests that the reaction rate (Eq. 5) is relatively high com-
pared to transport processes, effectively reducing disequilib-
rium,3. It is noted that the reaction rates are high in both sys-
tems despite the orders-of-magnitude differences in the ki-
netic rate coefficient (λ= 10−6 m s−1 for calcite dissolution
compared to 5× 10−10 m s−1 for silica precipitation). How-
ever, this difference is largely compensated by the contrast
between the reactive surface area of the porous sandstone
and fractured carbonate aquifers (As = 104 m−1 compared
to 10 m−1, respectively). It should also be noted that while
precipitation of crystalline and non-crystalline (amorphous)
silica is characterized by relatively high rates, dissolution of
quartz and silica polymorphs is typically slower by several
orders of magnitude (Rimstidt and Barnes, 1980).

While the reaction rates are high in both systems, differ-
ences exist in the absolute magnitude of porosity change re-
sulting from the injection. For example, the maximal porosity
change in the aquifer due to silica precipitation is approx-
imately 1θmax ≈ 0.03, whereas for the carbonate case it is



10 R. Roded et al.: Solutions and case studies for thermally driven reactive transport and porosity evolution

around 1θmax ≈ 0.08 (where 1θmax = |θmax(t = 100kyr)−
θ0| and θmax denote the maximal porosity change along the
profile). The predicted lower porosity change in silica arises
mostly due to its lower total solubility change, 1cs, and the
reduced dependence of mineral solubility on temperature, ex-
pressed here by the β parameter (see Table 1). This conclu-
sion is further supported by the fact that no disequilibriated
fluid exits the system: the fluid flows out from the system at
r = 3000 m at a temperature that is close to the ambient tem-
perature, T0 (Fig. 2a), and chemically equilibrated (3= 0;
Figs. 2b and 3a).

3.4 Permeability evolution of the aquifers

The porosity changes affect the aquifer hydraulics. Here, we
calculate the effective aquifer permeability, keff, within a dis-
tance, R, around the well. keff is calculated based on the re-
lationship between the local porosity and permeability, uti-
lizing the power-law relation k(r)/k0 = (θ(r)/θ0)

n, where
k0 and θ0 are the initial permeability and porosity (the steps
for the calculation of keff are presented in Appendix E). The
exponent n depends on various factors, such as medium mi-
crostructural details and the nature of the alteration processes
(Seigneur et al., 2019; Steefel et al., 2015; Vafaie et al.,
2023). The limited predictive capabilities of k–θ relations,
including instances where counter trends of porosity and per-
meability changes occur (Garing et al., 2015), have been pre-
viously noted (e.g., Sabo and Beckingham, 2021). Here, it
is applied to evaluate general trends, which, with the excep-
tion of unique cases, remain valid regardless of the porosity–
permeability relation used.

The wide range of heterogeneous microstructures in rocks
and sediments and their response to different reactive-flow
regimes lead to a large variability in the exponent n val-
ues. For example, for relatively uniform spatial dissolution,
n can range from ∼ 3 to a few dozen for the early stages of
flow or when wormholes develop (Hao et al., 2013; Roded
et al., 2020; Vafaie et al., 2023). For precipitation, n typi-
cally ranges from∼ 2 up to above 10 (Aharonov et al., 1998;
Hommel et al., 2018; Seigneur et al., 2019).

Figure 4 shows keff evolution over time for representative
exponent values within a distance of R = 3 km. The rapid in-
crease in carbonate aquifer permeability indicates (in agree-
ment with previous works, Agar and Geiger, 2015; Andre
and Rajaram, 2005; Dreybrodt et al., 2005) that keff can
be substantially altered within relatively short geological
timescales. Specifically, the results suggest that keff can even
increase by several tens of percents within tens to hun-
dreds of years. Conversely, significant keff alterations due to
silica precipitations (10 %–50 % reduction) involve typical
timescales of tens of thousands of years. These findings are
consistent with previous observations of dissolution and pre-
cipitation driven by a solubility gradient (e.g., Aharonov et
al., 1997), emphasizing differences between these processes,
as embodied in the exponent n. Moreover, under constant

Figure 4. Evolution of aquifer effective permeability due to disso-
lution and precipitation. The effective permeability is keff, and t is
time; red and blue curves designate carbonate dissolution and sil-
ica precipitation, respectively. keff is calculated within a radius of
R = 3 km from the well and is normalized by its initial value, k0.
The power-law θ–k relation is used to determine keff from the local
porosity, θ(r), and permeability, k(r), with typical exponent values
of n= 3–20 for dissolution and n= 2–8 for precipitation. keff can
be substantially altered in carbonate aquifers due to dissolution even
within tens to hundreds of years, while tens of thousands of years
are required for similar magnitudes of change caused by silica pre-
cipitation.

pressure (instead of constant flux) boundary conditions, this
effect will be enhanced due to a positive (negative) feedback
during dissolution (precipitation) (Aharonov et al., 1997).

4 Summary and conclusions

In this paper, we considered non-isothermal injection into
a confined aquifer and the settings and solution of the so-
called Lauwerier problem to derive coupled thermally driven
reactive transport solutions (reactive Lauwerier problem).
The presented solution is among the very limited number of
analytical solutions available in the field of thermo-hydro-
chemical (THC) flows in porous media. The THC scenarios
considered here involved geochemical disequilibrium and re-
actions induced by thermally driven solubility changes, lead-
ing to mineral dissolution or precipitation. In the first sec-
tion, solutions were derived for the evolution of solute con-
centration in radial and planar cases. These derivations uti-
lized the non-isothermal Lauwerier solution to calculate the
temperature-dependent solubility, which was then substituted
into the reactive transport equation. Subsequently, the ob-
tained concentration closed-form solutions were used to de-
rive expressions for the porosity change in the aquifer.

In the second section, these solutions were employed to
study two common cases in geothermal and water resource
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systems, exhibiting opposite feedback on porosity evolution:
(I) injection of hot CO2-rich water into a fractured carbonate
aquifer, leading to cooling and dissolution, and (II) injection
of hot silica-rich water into a sandstone aquifer, leading to
silica precipitation. The resulting porosity profiles were then
used to calculate the hydraulic changes and effective aquifer
permeabilities. The results show that the timescale of poros-
ity development in these systems is on the order of thousands
to tens of thousands of years depending on the THC con-
ditions (in agreement with previous works, Andre and Ra-
jaram, 2005; Roded et al., 2023). Despite the often faster
kinetics of carbonate dissolution compared to silica precip-
itation, similar timescales are observed in both systems. This
is attributed to the high specific reactive surface area of sand-
stones, which enhances the reaction rate, compensating for
the differences in kinetics between carbonate dissolution and
silica precipitation. However, substantial hydraulic changes
occur much faster in dissolving carbonate aquifers, possibly
within tens to hundreds of years, primarily due to the rapid
enhancement of permeability resulting from dissolution and
a flow-enhanced feedback.

It is worth noting that under the typical conditions consid-
ered, the reaction rates are high and the geochemical disequi-
librium in these systems is minimal (i.e., quasi-equilibrium).
In such conditions, the equilibrium assumption, which sim-
plifies calculations in the reactive Lauwerier problem and
comprises an ongoing area of inquiry, may be applied. The
solutions and analyses provided contribute to the understand-
ing of natural and engineered hydrothermal systems, such as
aquifer storage and recovery (ASR) and thermal energy stor-
age (ATES) applications. Additionally, these solutions can
aid in the development and benchmarking of coupled numer-
ical models.

Appendix A: An extended form of the conservation
equations

A1 Aquifer temperature

Assuming radial symmetry and that heat transport through
the rocks confining the aquifer is governed by conduction,
the heat equation in polar coordinates becomes

∂T

∂t
=
αb
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∂r
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∂r
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where T is the temperature; t is time; r and z are the radial
and vertical coordinates, respectively, with their origin at the
injection well center; and H is aquifer thickness (see Fig. 1).
The quantity αb =Kb/Cpb is the thermal diffusivity, where
the subscript b denotes bulk rock, K is the thermal conduc-
tivity, and Cp is the volumetric heat capacity (Stauffer et al.,
2013).

Assuming that heat transport in the fluid within the aquifer
is governed by advection and conduction, the heat-transport

equation can then be expressed as
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where subscript f denotes fluid and u(r) is the radial superfi-
cial velocity (or Darcy flux) and can be calculated from the
total volumetric flow rate, Q, using u=Q/(H2πr) (assum-
ing uniformity of u along the z direction of the aquifer; Andre
and Rajaram, 2005; Chaudhuri et al., 2013).

Assuming complete thermal mixing in the transverse di-
rection (z) of the aquifer allows us to establish the depth-
averaged Eq. (2) in the main text. In this case, the heat ex-
change between the aquifer and the confining rocks is inte-
grated within the heat exchange term (2).

A2 Reactive transport

Similarly, the solute transport advection–diffusion–reaction
equation in the aquifer is
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∂t
=− u

∂c

∂r
+D

(
1
r

∂

∂r

(
r
∂c

∂r

)
+
∂2c

∂z2

)
−�(r, t)

for −
H

2
≤ z ≤

H

2
, (A3)

where c is the solute concentration [M L−3], D is the molec-
ular diffusion coefficient, and � is the reaction term (Chaud-
huri et al., 2013; Szymczak and Ladd, 2012). The equations
describing the reaction term, �; saturation concentration,
cs ; dependence on the temperature; and porosity change are
given in Sect. 2.3 in the main text (Eqs. 5, 7, and 8, respec-
tively).

In the case of planar flow and Cartesian coordinates,
Eqs. (A1)–(A3) above take the following form:
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and
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Here u is the constant velocity in the x direction.
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Appendix B: Timescale analysis to validate the
quasi-static assumption

In our reactive transport calculations and Eq. (4) used for de-
veloping the solutions in Sect. 2, we adopt the quasi-static
approach (Detwiler and Rajaram, 2007; Ladd and Szym-
czak, 2017; Lichtner, 1991; Roded et al., 2020; Sanford and
Konikow, 1989) and neglect the transient term (present in
Eqs. A3 and A6). However, it is noted that temporal varia-
tions may take place due to changes in the temperature field
and their effect on the solubility, as arises from Eq. (7).

The justification for the quasi-static assumption lies in the
significant separation of characteristic timescales in the sys-
tem. There are three important timescales in our problem:
(I) the timescale governing reactant transport (tA), (II) the
timescale of mineral chemical alteration (tM), and (III) the
characteristic timescale of conductive heat transport (tC). The
latter affects the solubility of aquifer minerals, thus influenc-
ing reaction and solute transport. Specifically, the conditions
for the validity of quasi-static assumption are that tC and
tM are several orders of magnitude larger compared to reac-
tant transport relaxation time, tA (i.e., tA� tM and tA� tC).

For example, in relatively fast-reacting natural carbonate
systems, the doubling of initial pore size or fracture aper-
ture due to dissolution typically occurs over a timescale of
months to years. In silicate minerals, these timescales are
of the order of thousands of years (Dove and Crerar, 1990;
Ladd and Szymczak, 2021; Szymczak and Ladd, 2012; Zhu,
2005). Similarly, the characteristic timescale for the conduc-
tion processes in the confining rocks (tC) is commonly sev-
eral orders of magnitude longer than the relaxation time for
reactant transport (tA), which essentially maintains a steady
state throughout the aquifer evolution. These timescales are
given by

tA =
lA

u
, tC =

l2C
αb
, and tM =

δθ

γAsλ
, (B1)

where lA and lC are characteristic length scales of advec-
tion and heat conduction, respectively, u denotes the Darcy
flux [L T−1], αb is the bulk thermal diffusivity, δθ represents
a minute change in porosity,As stands for the specific surface
area of the reacting mineral [L2 L−3], and λ is the kinetic re-
action rate coefficient [L T−1]. Here, γ =1cs/csolν, where
csol is the mineral concentration in the solid, ν accounts for
the stoichiometry of the reaction, and 1cs is the variation in
solubility induced by thermal changes along the flow path.
1cs is calculated here using the difference between the in-
jected saturated fluid concentration, c(ϕ = 0)= cs(Tin), and
the downstream saturation at the background aquifer temper-
ature, c = cs(T0) (i.e., 1cs = |cs(Tin)− cs(T0)|). γ is often
referred to as the acid capacity number, representing the ra-
tio between (I) under(super)-saturation created when cooling
or heating the solution from Tin to T0 and (II) the number of
molecules in a unit volume of a mineral, csol (see parameter

values in Table 1; Ladd and Szymczak, 2017; Roded et al.,
2020).

In the calculation of timescale tA, the characteristic length
scale, lA, can be set to be equal to the reactive front length,
which in turn is affected by the thermal front length along the
aquifer (ϕ direction). The length scale, lC (used in tC calcu-
lation) corresponds to the thermal front that develops in the
confining insulating layers in the z direction, which elongates
over time. In practice, the timescale separation between tA
and tM and tC can also be validated a posteriori. Under a
large set of conditions, the reaction rate is limited solely by
advective transport (i.e., regardless of kinetics), which leads
to small geochemical disequilibrium (Andre and Rajaram,
2005). In such conditions, the actual timescale of matrix de-
formation will be much longer than predicted by the expres-
sion given above for tM.

Appendix C: Lauwerier solution validity
assuming t ′ ≈ t

In this Appendix, the solution of Eq. (10) is compared to
its approximated solution, when t ′ ≈ t is assumed (Fig. C1).
The results demonstrate that for times longer than 100 years,
the differences between the solutions diminish, with a max-
imal error of 1.5 %, where the error is defined as err=
100 · (|TExt− TApr|)/1T , with TExt and TApr being the exact
and approximated solutions. These results confirm the valid-
ity of the assumption of t ′ ≈ t and the derived solutions for
times longer than 100 years under the conditions considered.

Figure C1. Comparison of the full and approximate solution for
the temperature profile. The approximate solution considers t ′ = t
(Eq. 10). The results demonstrate that for times longer than 100
years, the differences between the solutions diminish, with a maxi-
mal error of 1.5 % (see text).
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Appendix D: Asymptotic expansion for the
disequilibrium solutions

To obtain a solution by computational means and prevent
an integer overflow (Press et al., 2007), it is useful to de-
rive an approximate solution for Eq. (15) using the first-
order asymptotic expansion of erfc. Substituting this expan-
sion into Eq. (15) leads to
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and after further rearrangement, we finally arrive at
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(
ηr2
−ζ 2r4)

η
2ζ − ζ r

2 −
2ζ
η

)
. (D2)

For the planar injection case, we obtain the following from
Eq. (20):

3=
1Tβ
√
π
e(−σx)

(
e
(
σx−ω2x2)
σ

2ω −ωx
−

2ω
σ

)
. (D3)

To avoid integer overflow errors, Eq. (D2) is used to obtain
the undersaturation profiles in Figs. 2b and 3a and is numer-
ically iterated to solve for the porosity profile at later times
(t ≈ 100 kyr). The accuracy of the approximation of Eq. (D2)
was verified by comparing it to the full solution in Eq. (15),
which can be solved for early times (t ≈ 1 yr). Furthermore,
the accuracy of Eq. (D2) and the iterative solutions was fur-
ther confirmed by solving for the porosity profile and com-
paring these results to those obtained using the full solution
in Eq. (17) for t = 10 kyr.

Appendix E: Permeability of an aquifer with
non-uniform porosity profile

Using Darcy’s law, we calculate an effective permeabil-
ity, keff, for the aquifer around the well within a radius of
r = R. The Darcy’s law under these conditions is

u(r)=−
k(r)

µ

dp
dr
, (E1)

where p and µ are the fluid pressure and viscosity and k the
permeability. Integrating Eq. (E1) between r = 0 and r = R
leads to

u(R)=−
R

µ
R∫
0

dr
k(r)

(
1p

R

)
, (E2)

and the effective permeability is

keff =
R

R∫
0

dr
k(r)

, (E3)

which is calculated by numerical integration over the poros-
ity profile and the power law given in Sect. 3.4.
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Appendix F: Nomenclature

Roman T Temperature [°C]
As Specific reactive surface area [m2 m−3] u Fluid velocity [m s−1]
c Solute concentration [mol m−3] x Coordinate [m]
cs Saturation concentration [mol m−3] y Coordinate [m]
csol Concentration of soluble solid [mol m−3] z Coordinate [m]
Cp Volumetric heat capacity [J m−3 °C−1] Greek
D Diffusion coefficient [m2 s−1

] α Thermal diffusivity [m2 s−1]
Da Damköhler number β Solubility change parameter [mol m−3 °C−1]
erf Error function γ Acid capacity number
erfc Complementary error function δθ Small change in porosity
err Error 1 Total difference
H Aquifer thickness [m] η Parameter group [m−2]
k Permeability [m2] θ Porosity
keff Effective permeability [m2] 2 Heat exchange term [W m−2]
K Thermal conductivity [W m−1 °C−1] κ Fracture density
l Characteristic length scale [m] λ Reaction rate coefficient [m s−1]
lA Characteristic length scale of advection [m] 3 Solute disequilibrium [mol m−3]
lC Characteristic length scale of conduction [m] µ Fluid viscosity [Pa s]
lD Characteristic length scale of diffusion [m] ν Stoichiometric coefficient
n Exponent of θ–k relation ζ Parameter group [m−2]
p Fluid pressure [Pa] ρ Density [kg m−3]
Pes Solute Péclet number σ Parameter group [m−1]
PeT Thermal Péclet number ϕ Lateral coordinate ϕ = r or x [m]
Q Total volumetric flow rate [m3 s−1] ω Parameter group [m−1]
r Coordinate [m] � Reaction rate [mol m−3 s−1])
R Effective permeability radius [m] Subscripts
RF Roughness factor Apr Approximated value
t Time [s] b Bulk rock
tA Characteristic timescale of advection [s] Ext Exact value
tC Characteristic timescale of conduction [s] f Fluid
tD Characteristic timescale of diffusion [s] in Inlet
tM Characteristic timescale of mineral alteration [s] max Max
t ′ Time parameter [s] 0 Initial average quantity

Code and data availability. The MATLAB codes
and data produced in this study are available at
https://doi.org/10.5281/zenodo.12531720 (Roded, 2024).

Author contributions. EA, RR, and PS: theoretical analysis. RR,
EA, and PS: conceptualization. RR: numerical analysis and writ-
ing (original draft). RR, BL, and LED: geochemical modeling. RR,
EA, LED, PS, MV, and BL: writing (review and editing).

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This research has been supported by the
Israel Science Foundation (ISF; grant no. 910/17 awarded to
Einat Aharonov) and the National Science Centre (NCN, Poland)
under CEUS-UNISONO grant no. 2020/02/Y/ST3/00121 awarded
to Piotr Szymczak. The author thanks Atefeh Vafaie and an addi-
tional anonymous referee for their constructive comments.

https://doi.org/10.5281/zenodo.12531720


R. Roded et al.: Solutions and case studies for thermally driven reactive transport and porosity evolution 15

Financial support. This research has been supported by the Israel
Science Foundation (grant no. 910/17) and the Polish National Sci-
ence Centre (CEUS-UNISONO grant no. 2020/02/Y/ST3/00121).

Review statement. This paper was edited by Alberto Guadagnini
and reviewed by Atefeh Vafaie and one anonymous referee.

References

Abbasi, M., Khazali, N., and Sharifi, M.: Analytical model for
convection-conduction heat transfer during water injection in
fractured geothermal reservoirs with variable rock matrix block
size, Geothermics, 69, 1–14, 2017.

Agar, S. M. and Geiger, S.: Fundamental controls on fluid flow in
carbonates: current workflows to emerging technologies, Geol.
Soc. Lond. Spec. Publ., 406, 1–59, 2015.

Aharonov, E., Whitehead, J. A., Kelemen, P. B., and
Spiegelman, M.: Channeling instability of upwelling
melt in the mantle, J. Geophys. Res.-Solid, 100, 20433,
https://doi.org/10.1029/95JB01307, 1995.

Aharonov, E., Spiegelman, M., and Kelemen, P.: Three-dimensional
flow and reaction in porous media: Implications for the Earth’s
mantle and sedimentary basins, J. Geophys. Res.-Solid, 102,
14821–14833, 1997.

Aharonov, E., Tenthorey, E., and Scholz, C. H.: Precipitation sealing
and diagenesis: 2. Theoretical analysis, J. Geophys. Res.-Solid,
103, 969–981, 1998.

Al-Sulaimi, B.: The energy stability of Darcy thermosolutal convec-
tion with reaction, Int. J. Heat Mass Transf., 86, 369–376, 2015.

Anderson, M. P., Woessner, W. W., and Hunt, R. J.: Applied ground-
water modeling: simulation of flow and advective transport, Aca-
demic Press, ISBN 978-0-12-058103-0, 2015.

Andre, B. J. and Rajaram, H.: Dissolution of limestone
fractures by cooling waters: Early development of hy-
pogene karst systems, Water Resour. Res., 41, W01015,
https://doi.org/10.1029/2004WR003331, 2005.

Bear, J. and Cheng, A. H.-D.: Modeling groundwater flow and
contaminant transport, Springer Science & Business Media,
https://doi.org/10.1007/978-1-4020-6682-5, 2010.

Bekri, S., Thovert, J. F., and Adler, P. M.: Dissolution of porous
media, Chem. Eng. Sci., 50, 2765–2791, 1995.

Bhat, S. and Kovscek, A.: Permeability modification of
diatomite during hot fluid injection, in: SPE Western
Regional Meeting, Bakersfield, California, May 1998,
https://doi.org/10.2118/46210-MS, 1998.

Bonte, M., Stuyfzand, P. J., and Breukelen, B. M. van: Reactive
transport modeling of thermal column experiments to investigate
the impacts of aquifer thermal energy storage on groundwater
quality, Environ. Sci. Technol., 48, 12099–12107, 2014.

Budek, A. and Szymczak, P.: Network models of dis-
solution of porous media, Phys. Rev. E, 86, 056318,
https://doi.org/10.1103/PhysRevE.86.056318, 2012.

Carroll, S., Mroczek, E., Alai, M., and Ebert, M.: Amorphous silica
precipitation (60 to 120 °C): Comparison of laboratory and field
rates, Geochim. Cosmochim. Ac., 62, 1379–1396, 1998.

Chadam, J., Hoff, D., Merino, E., Ortoleva, P., and Sen, A.: Reactive
infiltration instabilities, IMA J. Appl. Math., 36, 207–221, 1986.

Chaudhuri, A., Rajaram, H., and Viswanathan, H.: Early-stage hy-
pogene karstification in a mountain hydrologic system: A cou-
pled thermohydrochemical model incorporating buoyant convec-
tion, Water Resour. Res., 49, 5880–5899, 2013.

Chen, C. and Reddell, D. L.: Temperature distribution around a well
during thermal injection and a graphical technique for evaluat-
ing aquifer thermal properties, Water Resour. Res., 19, 351–363,
1983.

Corson, L. T. and Pritchard, D.: Thermosolutal convection in an
evolving soluble porous medium, J. Fluid Mech., 832, 666–696,
2017.

Coudrain-Ribstein, A., Gouze, P., and de Marsily, G.: Temperature-
carbon dioxide partial pressure trends in confined aquifers,
Chem. Geol., 145, 73–89, 1998.

Craw, D.: Fluid flow at fault intersections in an active oblique col-
lision zone, Southern Alps, New Zealand, J. Geochem. Explor.,
69, 523–526, 2000.

Daccord, G.: Chemical Dissolution of a Porous Medium by a Reac-
tive Fluid, Phys. Rev. Lett., 58, 479–482, 1987.

Dávila, G., Dalton, L., Crandall, D. M., Garing, C., Werth, C. J.,
and Druhan, J. L.: Reactive alteration of a Mt. Simon Sandstone
due to CO2-rich brine displacement, Geochim. Cosmochim. Ac.,
271, 227–247, https://doi.org/10.1016/j.gca.2019.12.015, 2020.

Deng, H. and Spycher, N.: Modeling reactive transport processes in
fractures, Rev. Mineral. Geochem., 85, 49–74, 2019.

Deng, H., Molins, S., Trebotich, D., Steefel, C., and DePaolo,
D.: Pore-scale numerical investigation of the impacts of sur-
face roughness: Upscaling of reaction rates in rough fractures,
Geochim. Cosmochim. Ac., 239, 374–389, 2018.

Detwiler, R. L. and Rajaram, H.: Predicting dissolution patterns
in variable aperture fractures: Evaluation of an enhanced depth-
averaged computational model, Water Resour. Res., 43, W04403,
https://doi.org/10.1029/2006WR005147, 2007.

Diaz, A. R., Kaya, E., and Zarrouk, S. J.: Reinjection in geothermal
fields- A worldwide review update, Renew. Sustain. Energ. Rev.,
53, 105–162, 2016.

Diersch, H.-J. and Kolditz, O.: Variable-density flow and transport
in porous media: approaches and challenges, Adv. Water Resour.,
25, 899–944, 2002.

Dove, P. M. and Crerar, D. A.: Kinetics of quartz dissolution in
electrolyte solutions using a hydrothermal mixed flow reactor,
Geochim. Cosmochim. Ac., 54, 955–969, 1990.

Dreybrodt, W.: Processes in karst systems: physics, chemistry,
and geology, Springer Verlag, Berlin, New York, xii, 288 pp.,
https://doi.org/10.1007/978-3-642-83352-6, 1988.

Dreybrodt, W., Gabrovšek, F., and Romanov, D.: Processes of
speleogenesis: A modeling approach, Carsologica, edited by:
Gabrovšek, F., Založba ZRC, Ljubljana, 375 pp., ISBN 961-
6500-91-0, 2005.

Fleuchaus, P., Godschalk, B., Stober, I., and Blum, P.: Worldwide
application of aquifer thermal energy storage – A review, Renew.
Sustain. Energ. Rev., 94, 861–876, 2018.

Frick, S., Regenspurg, S., Kranz, S., Milsch, H., Saadat,
A., Francke, H., Brandt, W., and Huenges, E.: Geo-
chemical and process engineering challenges for geother-
mal power generation, Chem. Ing. Tech., 83, 2093–2104,
https://doi.org/10.1002/cite.201100131, 2011.

Garing, C., Gouze, P., Kassab, M., Riva, M., and Guadagnini, A.:
Anti-correlated porosity–permeability changes during the disso-

https://doi.org/10.1029/95JB01307
https://doi.org/10.1029/2004WR003331
https://doi.org/10.1007/978-1-4020-6682-5
https://doi.org/10.2118/46210-MS
https://doi.org/10.1103/PhysRevE.86.056318
https://doi.org/10.1016/j.gca.2019.12.015
https://doi.org/10.1029/2006WR005147
https://doi.org/10.1007/978-3-642-83352-6
https://doi.org/10.1002/cite.201100131


16 R. Roded et al.: Solutions and case studies for thermally driven reactive transport and porosity evolution

lution of carbonate rocks: experimental evidences and modeling,
Transp. Porous Media, 107, 595–621, 2015.

Glassley, W. E.: Geothermal energy: renewable energy and the en-
vironment, CRC Press, https://doi.org/10.1201/b17521, 2014.
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