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Abstract. Subsurface non-isothermal fluid injection is a ubiquitous scenario in energy and water 

resources applications, which can lead to geochemical disequilibrium and thermally-driven solubility 10 

changes and reactions. Depending on the nature of the solubility of a mineral, the thermal change can lead 

to either mineral dissolution or precipitation (due to undersaturation or supersaturation conditions). Here, 

by considering this thermo-hydro-chemical scenario and by calculating the temperature-dependent 

solubility using a non-isothermal solution (the so-called Lauwerier solution), thermally-driven reactive 

transport solutions are derived for a confined aquifer. The coupled solutions, hereafter termed the 15 

“Reactive Lauwerier Problem”, are developed for axisymmetric and Cartesian symmetries, and 

additionally provide the porosity evolution in the aquifer. The solutions are then used to study two 

common cases: (I) hot CO2-rich water injection into carbonate aquifer; and (II) hot silica-rich water 

injection into sandstone aquifer, leading to mineral dissolution and precipitation, respectively. We discuss 

the timescales of such fluid-rock interactions and the changes in hydraulic system properties. The 20 

solutions and findings contribute to the understanding and management of subsurface energy and water 

resources, like aquifer thermal energy storage, aquifer storage and recovery and reinjection of used 

geothermal water. The solutions are also useful for developing and benchmarking complex coupled 

numerical codes.  

 25 
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1 Introduction 

The recharge or injection of fluids under constrained physical and chemical states in geothermal systems 

and aquifers is a common phenomenon in both natural and applied systems (Phillips, 2009; Stauffer et 

al., 2014). In many instances, thermal changes within these systems can shift the system from a state of 

geochemical equilibrium to disequilibrium and lead to chemical reactions over extensive distances 30 

determined by the variations in temperature. These perturbations result from the changes in the solubility 

of minerals in the groundwater, which can become supersaturated or undersaturated in response to thermal 

changes. These thermally-driven reactions cause progressive changes in the rock porosity and hydraulic 

properties resulting from accumulation, removal or replacement of solid minerals and the accompanied 

volumetric changes (Phillips, 2009; Woods, 2015). Such processes are responsible for the natural 35 

transformations of rocks from diagenesis and metamorphism (Jamtveit and Yardley, 1996; Yardley et al., 

2011) to the evolution of aquifers and reservoirs (Andre and Rajaram, 2005; Jones and Xiao, 2006) to 

melt migration in the Earth’s mantle (Aharonov et al., 1995; Kelemen et al., 1995). In applied systems, 

the fluid-rock interactions can significantly impact the hydrothermal performance at the timescale of years 

(Huenges et al., 2013; Pandey et al., 2018). 40 

Depending on the natural solubility of the minerals in the system, an increase in temperature can either 

induce dissolution or precipitation. This is because mineral solubilities can either increase with 

temperature (prograde solubility) or decrease with it (retrograde solubility; Jamtveit & Yardley, 1996; 

Woods, 2015). Flow and transport commonly influence the state of saturation by continuously introducing 

thermally-disequilibrated fluid, which subsequently becomes geochemically disequilibrated. This occurs 45 

because, in many cases, advection serves as the dominant transport mechanism, characterized by a shorter 

timescale (tA) compared to diffusive heat (tC) or diffusive solute transport (tD). These timescales are 

represented by tA = lA/u, tC = lC
2/αb, and tD = lD

2/D where lA, lC and lD are characteristic length scales of 

advection, heat conduction, and ionic diffusion, respectively. Here, u denotes the Darcy flux [L T-1], while 

αb and D are the bulk thermal diffusivity and ionic diffusion coefficient, respectively. The ratio of these 50 

timescales defines the thermal Péclet number (PeT = tC/tA) and the solute Péclet number (Pes = tD/tA), 

which are used to characterize the transport regime in these systems. When PeT and Pes are high (i.e., >> 
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1), advective transport prevails (Ladd & Szymczak, 2021; Nield & Bejan, 2017; Roded, Aharonov, 

Holtzman, et al., 2020).  

The overall integrated action of the mechanisms results in a coupled Thermo-Hydro-Chemical (THC) 55 

process (Huenges et al., 2013; Pandey et al., 2018; Phillips, 2009; Regenauer-Lieb et al., 2013). The 

tightly coupled feedbacks in THC processes commonly render them highly nonlinear. Fluid flow and 

diffusive heat and solute transport induce chemical reactions, which alter the pore structure and its 

transport properties, leading to further feedback on flow and transport (Chaudhuri et al., 2013; Phillips, 

2009; Woods, 2015). Studying these coupled feedback alterations improves the understanding of reactive 60 

transport processes taking place in the Earth’s upper crust . Specifically, these studies are integral to the 

sustainable planning and long-term management of water resources (Andre and Rajaram, 2005; Phillips, 

2009), geothermal energy systems (on the scale of tens of years; Frick et al., 2011; Huenges et al., 2013; 

Pandey et al., 2018), and CO2 geo-sequestration (Dávila et al., 2020; Steefel et al., 2013; Tutolo et al., 

2015).  65 

Particularly in Enhanced Geothermal Systems (EGS), channelized dissolution can create a short circuit 

and reduce the heat exchange between the rock and the fluid. Conversely, precipitation can significantly 

reduce permeability leading to reduced production and potentially sealing of reservoirs (Huenges et al., 

2013; Olasolo et al., 2016; Pandey et al., 2018). Another challenge associated with geothermal utilization 

is the risk of groundwater contamination, where thermal changes can lead to the leaching of undesired 70 

chemical species from the rocks. Specifically, contamination may arise from the reinjection of fluids 

required to maintain reservoir pressure, from Aquifer Thermal Energy Storage (ATES) systems that 

leverage seasonal temperature fluctuations (Bonte et al., 2014; Glassley, 2014; Possemiers et al., 2014), 

or from substantial injections of hotter or colder water for groundwater management practices such as 

Aquifer Storage and Recovery (ASR) (Maliva, 2019; Zheng et al., 2021).  75 

In terms of mineralogy, a range of thermally-driven reactions occurs in the previously mentioned systems. 

Commonly reported precipitates accumulating in geothermal plant piping loops and natural spring 

deposits include carbonates (e.g., calcite, dolomite, and siderite), sulfates (e.g., gypsum and barite), and 
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amorphous silica (Glassley, 2014; Huenges et al., 2013). Particularly, geothermal systems composed of 

sandstones and carbonates are ubiquitous in the Earth’s crust and are prone to alterations (Goldscheider 80 

et al., 2010; Pandey et al., 2018; Wood and Hewett, 1984). The solubility of silica is proportional to 

temperature (i.e., prograde solubility), and water pumping or injection can lead to substantial changes in 

reservoir transmissivity that can affect heat extraction (Pandey et al., 2018; Rawal and Ghassemi, 2014; 

Taron and Elsworth, 2009). In particular, silica precipitation can occur several orders of magnitude faster 

than dissolution of either rocks of quartz minerals or amorphous silica (Rimstidt and Barnes, 1980). The 85 

exception is the dissolution of unconsolidated amorphous silica sediments (e.g., diatomite). Due to the 

high specific reactive surface area of the material, these sediments can be intensely dissolved when steam 

and hot water undersaturated with respect to silica are injected (Bhat and Kovscek, 1998). In contrast to 

silica, carbonate minerals demonstrate an inverse relation (i.e., retrograde solubility), which is often 

strong and influenced by CO2 content. Consequently, limestone and dolomite aquifers and reservoirs 90 

subjected to geothermal flows, commonly rich in CO2, can evolve at relatively short timescales. Either 

rapid dissolution or rapid precipitation can occur in such systems, depending on conditions (Andre and 

Rajaram, 2005; Coudrain-Ribstein et al., 1998; Roded et al., 2023).  

Investigating the multi-physical systems of THC processes is complex and relies on numerical models 

facilitated by ongoing advancements in computational capabilities (Kolditz et al., 2016; Pandey et al., 95 

2018; Steefel et al., 2015). Over recent decades, these models have improved the understanding of 

subsurface processes (Niemi et al., 2017; Regenauer-Lieb et al., 2013; Seigneur et al., 2019; Steefel et al., 

2013); however, the validity of such models remains questionable if the results cannot be rigorously tested 

(Kolditz et al., 2016; Nield and Bejan, 2017). Particularly, analytical solutions allow the establishment of 

functional relationships between variables and physical properties and provide robust reliability and 100 

accuracy tests for numerical models (Bear and Cheng, 2010; Diersch and Kolditz, 2002; Nield and Bejan, 

2017). However, comprehensive testing of multi-coupled THC codes is often mathematically 

cumbersome and precluded by many approaches. This limitation arises because existing theoretical 

solutions focus solely on scenarios related to heat and/or solute transport (Diersch and Kolditz, 2002; 

Nield and Bejan, 2017; Stauffer et al., 2014; Turcotte and Schubert, 2002) or reactive solute transport 105 

(Bear and Cheng, 2010; Nield and Bejan, 2017) and complete solutions coupling THC processes are 
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scarce (White et al., 2018). To the best of the authors’ knowledge, coupled THC solutions are limited to 

two scenarios: thermally-driven reactive front development (Jupp and Woods, 2003, 2004) and thermal 

and/or solutal convection in a reactive medium (e.g., Rayleigh–Bénard equivalent in a reactive porous 

medium; Al-Sulaimi, 2015; Corson & Pritchard, 2017). Solutions for fundamental and practical situations 110 

in geothermal and groundwater systems, such as non-isothermal injection into a reservoir and consequent 

matrix modifications, are missing. This is despite the existence of the so-called Lauwerier solution 

(Lauwerier, 1955), which analytically predicts the thermal field resulting from hot (or cold) fluid injection 

into a thin non-reactive confined layer system.  

The Lauwerier solution has served as the basis for the development of multiple modified heat transport 115 

solutions, accounting for various boundary conditions and system geometries, considering conduction 

and dispersion, and even accommodating fractured media (Abbasi et al., 2017; Chen & Reddell, 1983; 

Lin et al., 2019; Shaw-Yang & Hund-Der, 2008; Voigt & Haefner, 1987; Yang et al., 2010; Zhou et al., 

2019; Ziagos & Blackwell, 1986; see review in Stauffer et al. (2014)). In the present work, we present 

analytical solutions, invoking non-isothermal fluid injection from a point or planar source into a thin 120 

confined aquifer (essentially the same scenario as of the Lauwerier problem). However, in this study, 

thermal changes drive the reactions and porosity evolution. Here we define and solve the coupled physics 

of the reactive Lauwerier problem. To achieve this, we employ a temperature-dependent solubility in a 

reactive-flow formulation, while accounting for the thermal field following the Lauwerier formulation. 

The equations are solved for radial and planar flows, and the general solution is applied to two common 125 

scenarios: carbonate dissolution and silica precipitation with respective permeability evolutions of each.  

2 Mathematical Analyses 

2.1 Reactive Lauwerier Scenario and the Conceptual Model 

We consider Lauwerier problem settings (Lauwerier, 1955; Stauffer et al., 2014) involving the injection 

of hot (or cold) fluid into a confined aquifer located between bedrock and caprock with lateral flow along 130 

the coordinate, φ. The latter can represent the radial coordinate in an axisymmetric setting or x in Cartesian 
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coordinates, i.e., φ= r or x. Figure 1 illustrates a summary of the problem, while Table 1 provides a 

summary of the nomenclature.  

 

Figure 1: Sketch of the reactive Lauwerier problem and the conceptual model for thermally-driven reactive 135 

transport in geothermal systems (the radial case). Hot (or cold) fluid is injected into a confined aquifer between 

aquiclude bedrock and caprock at a constant flow rate, Q, and temperature, Tin. The initial temperature of the aquifer 

is T0 and its thickness is H. Downstream, along the flow path, heat is conducted from the aquifer through the 

confining layers. Thermal variations in the aquifer (color gradients) induce changes in solubility, cs(T), and hence 

disequilibrium and reaction, which in turn drives evolution of the porosity of the aquifer from its initial value, θ0. 140 

z represents the vertical coordinate. In the main text both polar and Cartesian geometries are considered, with φ = 

r or x, respectively. The origin of φ and z is defined at the center of the injection well. The injection well exhibits 

either axial (as shown in the sketch) or planar symmetry if Cartesian geometry is considered.  

Downstream, along the flow path away from the injection point, heat is exchanged between the aquifer 

and the impermeable confining rock layers. Within the confining layers, heat is transported by conduction 145 

alone. The heat exchange and thermal variations in the aquifer induce changes in the solubility of the 

minerals (i.e., saturation concentration, cs(T)), which in turn trigger undersaturation and dissolution 

reactions, or conversely, supersaturation and precipitation reactions that modify the aquifer porosity, θ. 

Both the removal or accumulation of minerals can occur, depending on the injection temperature (colder 

or warmer than ambient) and the prograde or retrograde nature of the reactive minerals. Our radial setup 150 

pertains to injection from a single well or mimics natural localized thermal upwelling in fractured/faulted 



7 
 

media of deep-origin, discharging into the shallower aquifer (Craw, 2000; Micklethwaite and Cox, 2006; 

Roded et al., 2013, 2023; Tripp and Vearncombe, 2004). The planar source setup simulates injection wells 

arranged in a straight row (Lauwerier, 1955). 

2.2 Main Model Assumptions 155 

Here, the THC conceptual model of Fig. 1 is described mathematically using conservation equations for 

heat and reactive transport along with initial and boundary conditions. The thermal Lauwerier solution 

and the mathematical model involve several simplifying assumptions, the major ones of which are listed 

below. For a more comprehensive overview, expanded versions of the conservation equations are 

provided in Appendix A.  160 

The underlying thermal assumptions include negligible basal (background) geothermal heat flow and an 

initial geothermal gradient compared to the heat input by the injected fluid. The aquifer is located at a 

significant depth preventing heat transport to the surface, otherwise, greater heat exchange would occur 

between the aquifer and the caprock. This assumption regarding the depth also depends on the timescale 

of interest: the thermal front, which ascends with time, may not reach the surface on a short timescale. 165 

However, it may transport heat to the surface after a longer time (which can be estimated using tC).  

Heat transport in the layers confining the aquifer is described by conduction, and only in the vertical 

direction (z), neglecting lateral (φ) heat conduction. This assumption limits the applicability of the 

solution to scenarios involving large, injected fluid fluxes. To assess the validity of this assumption, a 

thermal Péclet number, which compares heat advection in the aquifer to lateral heat conduction, PeT = 170 

ul/αb, is used. PeT involves a length scale, l, at which substantial temperature variation occurs (e.g., larger 

than 2 % from the total temperature change, ∆T). Analysis using the parameter values from Table 2 and 

the results of section 3 (i.e., a posteriori inspection) confirms PeT >> 1 at all times. Additionally, beyond 

very early moments, the length scale l should be larger than the vertical dimension of the aquifer, H, at 

which complete thermal mixing is assumed (l >> H). This assumption may not be applicable if a thick 175 

aquifer (i.e., large H) is considered and substantial vertical temperature gradients are expected to develop.  
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Furthermore, conduction and solute diffusion within the aquifer groundwater is neglected because the 

respective thermal (PeT) and solute (Pes) Péclet numbers are assumed to be large. Fluid and solid 

properties, such as density and heat conductivity, are considered constant and independent of temperature. 

Table 1. Nomenclature  

Roman T Temperature, °C 

As Specific reactive surface area, m2/m3 u Fluid velocity, m/s 

c Solute concentration, mol/m3 x Coordinate, m 

cs Saturation concentration, mol/m3 y Coordinate, m 

csol Concentration of soluble solid, mol/m3 z Coordinate, m 

Cp Volumetric heat capacity, J/(m3 °C)  Greek 

D Diffusion coefficient, m2/s α Thermal diffusivity, m2/s 

Da Damkӧhler number β Solubility change parameter, mol/(m3
 °C) 

erf Error function γ  Acid capacity number 

erfc Complementary error function δθ Small change of porosity 

Err Error ∆ Total difference 

H Aquifer thickness, m η Parameter group, m -2 

k Permeability, m2 θ Porosity 

keff Effective permeability, m2 Θ Heat exchange term, W/m2 

K Thermal conductivity, W/(m °C)  κ  Fracture density 

l Characteristic length scale, m λ Reaction rate coefficient, m/s 

lA Characteristic length scale of advection, m Λ  Solute disequilibrium, mol/m3  

lC Characteristic length scale of conduction, m μ Fluid viscosity, Pa s 

lD Characteristic length scale of diffusion, m ν Stoichiometric coefficient 

n Exponent of θ-k relation ζ Parameter group, m -2 

p Fluid pressure, Pa ρ Density, kg/m3 

Pes Solute Péclet number σ Parameter group, m -1 

PeT Thermal Péclet number φ Lateral coordinate, φ = r or x, m 

Q Total volumetric flow rate, m3/s ω Parameter group, m -1 

r Coordinate, m Ω Reaction rate, mol/(m3 s) 

R Effective permeability radius, m  Subscripts  

RF Roughness factor  Apr Approximated value 

t Time, s b Bulk rock 

tA Characteristic timescale of advection, s Ext Exact value 

tC Characteristic timescale of conduction, s f Fluid 

tD Characteristic timescale of diffusion, s in Inlet 

tM Characteristic timescale of mineral alteration, s max Max 

t’ Time parameter, s 0 Initial average quantity 
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It is noted that for CO2 applications, the assumption of constant density and incompressibility may not be 180 

appropriate for a CO2-rich phase (supercritical or gas) under moderate temperature changes (e.g., ∆T > 

40oC). 

Also, the specific reactive surface area, As, (L2 to L−3 of porous medium) is considered constant here and 

assumed not to change as reaction progresses. In most instances, this assumption does not weaken the 

applicability of the solution, since As may vary widely across different rock lithologies, e.g., from 10-1 m-185 

1 in fractured media (Deng and Spycher, 2019; Pacheco and Van der Weijden, 2014) to above 105 m-1 for 

porous rocks (Mostaghimi et al., 2013; Noiriel et al., 2012; Seigneur et al., 2019) and can often only be 

estimated very roughly (e.g., within an order of magnitude accuracy). Furthermore, As can evolve with 

the reactive flow in a way that is difficult to estimate (Noiriel, 2015; Seigneur et al., 2019). However, if 

large porosity changes are considered, the inherent assumption of constant  As can limit the applicability 190 

of the solutions.       

2.3 The Basic Conservation Equations 

Neglecting heat conduction in the radial direction, r, the heat conduction equation in the rock confining 

the aquifer above and below is given by:  

 
𝜕𝑇

𝜕𝑡
= 𝛼b

𝜕2 𝑇

𝜕𝑧2 ,                {
𝑧 ≤ −

𝐻

2

𝑧 ≥
𝐻

2

,                                                                                                           (1) 195 

where T represents temperature, t denotes time, z is the vertical coordinate with its origin at the center of 

the injection well and H is the aquifer thickness (see Fig. 1). The quantity αb = Kb/Cpb is the thermal 

diffusivity  [L2 T-1], where the subscript b indicates bulk rock, K is the thermal conductivity, and Cp is the 

volumetric heat capacity (Chen and Reddell, 1983; Stauffer et al., 2014). 

Assuming that heat transport in the fluid along the aquifer is governed by advection and that complete 200 

mixing occurs in the aquifer transverse direction (z), a “depth-averaged” heat-transport equation can then 

be formulated for the aquifer region:  
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𝐶pb
𝐻

𝜕𝑇

𝜕𝑡
= −𝐶pf

𝐻
1

𝑟

𝜕(𝑟𝑢𝑇)

𝜕𝑟
− Θ(𝑟, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
,                                                        (2) 

where subscript f denotes fluid and u(r) is the fluid velocity (or Darcy flux), which can be determined 

from the total volumetric flow rate, Q, using u = Q/(H2πr) (assuming u to be uniform along the z direction 205 

of the aquifer; Andre & Rajaram, 2005; Lauwerier, 1955). The function Θ accounts for the heat exchange 

between the aquifer and the confining rock located above and below, calculated using Fourier’s law with 

continuous temperature assumed at the interfaces: 

Θ = −2𝛫b

𝜕𝑇

𝜕𝑧
|
𝑧=

𝐻
2

,−
𝐻
2

.                                                                                                                              (3) 

The factor of two accounts for the rock both above and below the horizon (Stauffer et al., 2014).  210 

The solute transport advection-reaction equation in the aquifer is:  

0 = −𝑢
𝜕𝑐

𝜕𝑟
− Ω(𝑟, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
.                                                                                        (4) 

Here c is the solute concentration [M/L3] and Ω is the reaction term (Chaudhuri et al., 2013; Szymczak 

and Ladd, 2012). Eq. 4 is derived by neglecting transient and diffusive terms in the advection-diffusion-

reaction equation (Eq. A.3 in Appendix A). The justification for the quasi-static approximation used in 215 

deriving Eq. 4, lies in the separation of timescales between heat conduction (tC) in the confining rocks 

and mineral alteration (tM), and the relaxation of solute concentration (tA) (for in-depth analysis and 

discussion see Appendix B and e.g., Detwiler & Rajaram, 2007; Ladd & Szymczak, 2017; Lichtner, 1991; 

Roded, Aharonov, Holtzman, et al., 2020; Sanford & Konikow, 1989). 

Here, we assume surface-controlled reaction and first-order kinetics  220 

Ω = 𝐴s𝜆Λ,                                                                                                                                                       (5) 

where As is the specific reactive surface area and λ is the kinetic reaction rate coefficient [L T-1], here 

assumed constant (Dreybrodt et al., 2005; Seigneur et al., 2019). Λ is denoted as the solute disequilibrium 
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and is defined as the difference between the concentration of dissolved ions and saturation (equilibrium) 

concentrations, cs,  225 

Λ = 𝑐 − 𝑐s(𝑇).                                                                                                                                               (6) 

Thus, the solute disequilibrium, Λ, is negative for undersaturation and positive for supersaturation. cs is 

calculated as:  

𝑐s(𝑇) = 𝑐s(𝑇0) + 𝛽(𝑇 − 𝑇0).                                                                                                                     (7) 

Here, T0 represents the initial temperature in the aquifer and the parameter β = ∂cs/∂T. Eq. 7 assumes a 230 

linear relationship between cs and T, with a constant proportionality factor β, which is positive for minerals 

of prograde solubility and negative for minerals of retrograde solubility (Al-Sulaimi, 2015; Corson and 

Pritchard, 2017; Woods, 2015).  

Given the reaction rate (Eq. 5), the change in porosity, θ, can be calculated as: 

𝜕𝜃

𝜕𝑡
= −

Ω

𝜈𝑐sol
,     for     −

𝐻

2
≤ 𝑧 ≤

𝐻

2
,                                                                                                    (8) 235 

where csol is the concentration of soluble solid mineral and ν accounts for the stoichiometry of the reaction. 

In the case of planar flow and Cartesian coordinates, r can be replaced by x in the equations above, while 

Eq. 2 takes the following form, 

 

𝐶pb

𝜕(𝐻𝑇)

𝜕𝑡
= −𝑢𝐶pf

𝐻
𝜕𝑇

𝜕𝑥
− Θ(𝑥, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
.                                                             (9) 240 

2.4 Initial and Boundary Conditions 

The initial conditions involve a uniform temperature T0 throughout the medium. The boundary conditions 

at the injection well (φ = 0) include a constant rate of fluid injection at temperature Tin and initially zero 
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solute disequilibrium, Λ = 0 (Eq. 6). The caprock and bedrock thickness and aquifer extent are assumed 

to be infinite. 245 

2.5 Solution of the Reactive Lauwerier problem 

2.5.1 Axisymmetric (Radial) Flow 

Aquifer temperature. The solution of Eqs. 1 and 2 for the temperature distribution in the aquifer (known 

as the Lauwerier solution) for the radial case is given by:  

𝑇(𝑟, 𝑡) = 𝑇0 + ∆𝑇erfc[𝜁(𝑟, 𝑡)𝑟2].                                                                                                          (10) 250 

Here, erfc is the complementary error function, ΔT = Tin – T0 is the difference between injection and initial 

aquifer temperature, and ζ is defined as: 

𝜁(𝑟, 𝑡) =
𝜋√𝐾b𝐶pb

𝑄𝐶pf √𝑡′
.                                                                                                                                   (11) 

The time variable t’ = t – 2rCpb/(Cpfu), and the solution given by Eq. 10 holds when t’ > 0 (Stauffer et 

al., 2014). We additionally assume long enough time and conditions where t’ ≈ t (see Appendix C for 255 

analysis of the validity of this assumption). Furthermore, to simplify the equations, we assume equal heat 

capacities for both the confining rocks and the aquifer. To account for non-uniform heat capacities 

alternative definition of Eq. 10 can be used (refer to Eqs. 3.122 and 3.131 and associated definitions in 

Stauffer et al. (2014)).  

Reactive solute transport. We begin by substituting Eq. 6 into 4 to obtain:  260 

0 = −𝑢 (
𝜕Λ

𝜕𝑟
+

𝜕𝑐s

𝜕𝑟
) + Ω.                                                                                                                          (12) 

The derivative ∂cs/∂r can then be expressed by differentiating the relationship in Eq. 7, 

𝜕𝑐s

𝜕𝑟
=

−𝛽𝜕𝑇

𝜕𝑟
,                                                                                                                                              (13) 
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and further substituting Lauwerier solution (Eq. 10), which provides:  

−𝛽𝜕𝑇

𝜕𝑟
= 4∆𝑇

𝛽𝜁𝑟

√𝜋
𝑒(−𝜁2𝑟4 ).                                                                                                                      (14) 265 

Next, substituting Eq. 14 into Eqs. 13 and 12 results in a linear inhomogeneous differential equation. 

Assuming saturation conditions at the inlet and the boundary condition of Λ(r=0) = 0, leads to the solution 

Λ = ∆𝑇𝛽𝑒
(

𝜂2

4𝜁2−𝜂𝑟2 )
(erf [𝜁𝑟2 −

𝜂

2𝜁
] + erf [

𝜂

2𝜁
]),                                                                              (15) 

where erf is the error function and η = HπAsλ/Q. Appendix D presents an approximation for Eq. 15 which 

is useful for efficient computation and prevents integer overflow (Press et al., 2007).  270 

Given the reaction rate (Eq. 5), the erosion and porosity change can be calculated based on the solid 

erosion equation 

𝜕𝜃

𝜕𝑡
= −

Ω

𝜈𝑐sol
,                                                                                                                                              (16) 

where csol is the concentration of soluble solid material and ν accounts for the stoichiometry of the 

reaction. Substituting Eq. 15 into Eq. 16, integrating over time, and using the initial condition of θ(t=0) 275 

= θ0, results in a closed-form expression for the temporal and spatial evolution of porosity, θ, 

𝜃(𝑟, 𝑡) = 𝜃0 + 4
𝜁2𝑡

𝜂2

𝜆𝐴s∆𝑇𝛽

𝜈𝑐sol
(−𝑒

𝜂/4(
𝜂
𝜁2−4𝑟2 )

(erf [𝜁𝑟2 −
𝜂

2𝜁
] + erf [

𝜂

2𝜁
]) +

𝜂

𝜁√𝜋
𝑒−𝜂𝑟2

+ erf[𝜁𝑟2](1 − 𝜂𝑟2) −
𝜂

𝜁√𝜋
𝑒−𝜁2𝑟4

+ 𝜂𝑟2 − 1) .                                                   (17) 

2.5.2 Planar Flow 

In the Cartesian case, with injection along a line, the Lauwerier solution is, 280 

𝑇(𝑥, 𝑡) = 𝑇0 + ∆𝑇erfc[𝜔(𝑥, 𝑡)𝑥],                                                                                                           (18) 
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where ω is defined as: 

𝜔(𝑥, 𝑡) =
√𝐾b𝐶pb

𝐻𝐶pf
𝑢√𝑡′

,                                                                                                                                 (19) 

and t’ = t – xCpb/(Cpfu). Similarly, to the radial case, the solution holds at sufficiently long times, for 

which t’ ≈ t.  285 

Following the analogous steps as in the radial case, the solution is derived as:  

Λ = ∆𝑇𝛽𝑒
(

𝜎2

4𝜔2 −𝜎𝑥)
(erf [𝜔𝑥 −

𝜎

2𝜔
] + erf [

𝜎

2𝜔
]),                                                                              (20) 

and 

𝜃(𝑥, 𝑡) = 𝜃0 + 4
𝜔2𝑡

𝜎2

𝜆𝐴s∆𝑇𝛽

𝜈𝑐sol

(−𝑒
𝜎/4(

𝜎
𝜔2 −4𝑥)

(erf [𝜔𝑥 −
𝜎

2𝜔
] + erf [

𝜎

2𝜔
]) +

𝜎

𝜔√𝜋
𝑒−𝜎𝑥

+ erf[𝜔𝑥](1 − 𝜎𝑥) −
𝜎

𝜔√𝜋
𝑒−𝜔2 𝑥2

+ 𝜎𝑥 − 1),                                                      (21) 290 

where σ = Asλ/u. 

3 Thermally-driven Reactive Flow in Geothermal Systems 

In this section, we use the radial solutions presented in previous section, to examine two common 

scenarios: (I) injection of CO2-rich hot water into a carbonate aquifer and (II) injection of silica-rich hot 

water into a sandstone aquifer. These scenarios result in cooling-induced calcite dissolution and silica 295 

precipitation, respectively. The subsequent changes in porosity within these systems are then used to 

estimate the evolution of aquifer permeability. These scenarios are pertinent, for instance, in aquifer 

thermal storage, reinjection of geothermal water at shallow depths, or applications of groundwater storage 

and recovery (Diaz et al., 2016; Fleuchaus et al., 2018; Maliva, 2019).  
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3.1 Aquifer Properties and Injection Conditions 300 

Here, we discuss conditions for thermally-induced reactivity in carbonates and sandstone aquifers and the 

parameter values assigned in the simulations (Table 2). Regarding the description of the kinetics of these 

systems, calcite dissolution can often be complex, involving various chemical species and reactions of 

varying orders (Dreybrodt, 1988; Plummer et al., 1978). However, for a wide range of pH values, it can 

be simplified and described by assuming a linear dependence on undersaturation or acid concentration. 305 

Specifically, first-order kinetics are commonly employed to study natural karst formations (pH ~ 6; 

Dreybrodt et al., 2005; Palmer, 1991), dissolution under the acidic conditions common in engineering 

applications (pH ~ 3; Hoefner and Fogler, 1988; Peng et al., 2015), or in geothermal systems of high CO2 

partial pressure, PCO2 (pH ~ 5; Coudrain-Ribstein et al., 1998; Lu et al., 2020; Roded et al., 2023). Silica 

precipitation can be well described by first-order kinetics (Carroll et al., 1998; Ji et al., 2023; Pandey et 310 

al., 2015; Rimstidt and Barnes, 1980).  

Table 2.  Parameter values used in the simulations. 

Aquifer thickness H = 4 m 

Initial porosity θ0 = 0.05 and 0.2 

Total volumetric flow rate1 Q = 500 m3/s 

Initial aquifer temperature2  T0 = 20 °C 

Injection temperature2 Tin = 60 °C 

Fluid volumetric heat capacity2 Cpf = 4.2⸱106 J/(m3 °C) 

Rock volumetric heat capacity2 Cpb = 3.12⸱106 J/(m3 °C) 

Rock thermal conductivity2 Kb = 3 W/(m  °C) 

Calcite rate coefficient3  λ = 10-6 m/s 

Silica rate coefficient4  λ = 5⸱10-10 m/s 

Fractured carbonates specific reactive surface area5 As = 10 m−1 

Porous sandstones specific reactive surface area6 As = 104 m−1 

Calcite mineral concentration3 csol = 2.7·104 mol/m3 

Silica mineral concentration4 csol = 3.7·104 mol/m3 

Solubility change parameter calcite7 β = -0.075 mol/(m3 °C) 

Solubility change parameter silica1 β = 0.04 mol/(m3 °C) 

Stoichiometry coefficient3,4 ν = 1 

Exponent of θ-k relation5 n = 2-20 

1-Glassley (2014); 2-Huenges and Ledru (2011); 3-Palmer (1991); 4-Rimstidt and Barnes (1980); 5- see text; 6-Hussaini and 

Dvorkin (2021) and Lai et al. (2015); 7-Roded et al. (2023). 
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We also exploit approximately linear temperature-solubility dependence over the temperature range  

studied here (between T0 = 20 °C and Tin = 60 °C) and assign a constant β value (Eq. 7; Andre and 315 

Rajaram, 2005; Glassley, 2014; Rimstidt and Barnes, 1980; Roded et al., 2023). Additionally, it should 

be noted that in carbonates, the temperature-solubility relation strongly depends on PCO2: higher PCO2 

values result in larger increases in cs as the water cools (i.e., the magnitude of β is larger, see Fig. 2b in 

Roded et al., (2023) and Andre & Rajaram, (2005); Palmer, (1991)). Here, in accordance with typical 

conditions in geothermal systems, we consider injection of water with PCO2 = 0.03 MPa (Coudrain-320 

Ribstein et al., 1998; Lu et al., 2020). 

In the simulations, we assign characteristic porosity (θ), and reactive surface area, (As,) for the different 

aquifer types. In accordance with common field observations, we consider a carbonate aquifer in which 

flow and dissolution are focused in the permeable fracture network, and a porous sandstone aquifer 

characterized by high intergranular permeability (Bear and Cheng, 2010; Jamtveit and Yardley, 1996). 325 

The different aquifer characteristics are reflected in significant differences in θ and As for the different 

aquifer types. Specifically, carbonates are often characterized by permeability contrasts spanning orders 

of magnitudes between the fractures and the rock matrix (Dreybrodt et al., 2005; Lucia, 2007). 

Consequently, transport in the matrix occurs mostly by slow diffusion and the reaction within the matrix 

can be neglected. Hence, solely the reactive surface area, As, of the fractures effectively participates in 330 

the reaction (Deng and Spycher, 2019; Maher et al., 2006; Pacheco and Alencoão, 2006; Seigneur et al., 

2019). In this case, the θ can be minimal (Lucia, 2007) and As is orders of magnitude smaller compared 

to its value in porous sandstones (Hussaini and Dvorkin, 2021; Lai et al., 2015; Pacheco and Alencoão, 

2006; Pacheco and Van der Weijden, 2014; Seigneur et al., 2019). This disparity can lead to substantial 

differences in characteristic alteration rates and Damköhler numbers in these systems (Ladd & Szymczak, 335 

2021; Lucia, 2007; Seigneur et al., 2019).  

Specifically, in the case of fractured rocks as described above, we calculate the reactive surface area using  

As =  2·κ·RF where κ is fracture density (defined as the number of fractures per unit volume), the factor 

of two accounts for the presence of two surfaces, and RF is the roughness factor (Deng et al., 2018). 

Assuming κ = 1/33 m-3 and RF = 1.35, results in As = 0.1 m-1. Typical values of κ and fracture spacing can 340 
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span a substantial range and may be higher or lower (Narr and Suppe, 1991; Scholz, 2019). Here, it is 

further assumed that the fracture density is high, and the network is of high connectivity allowing it to be 

treated as a continuum (Anderson et al., 2015; Sahimi, 2011). We consider here an injection flow rate of 

Q = 500 m3/day, which falls within the typical range of flow rates observed in relevant applications, such 

as geothermal systems (Glassley, 2014) or groundwater storage and recovery (Maliva, 2019). The 345 

injection temperature is set to Tin = 60 °C and aquifer ambient temperature is set to T0 = 20 °C (ΔT = 40 

°C). To obtain the results in this section the solutions were implemented in MATLAB computer code 

(MATLAB, 2022). Appendix D details the use of the approximated Eq. D.2 in calculating the results in 

Figs. 2 and 3. 

3.2 Carbonate Aquifer Dissolution by Cooling Water 350 

In Fig. 2, the results of CO2-rich hot water injection into a carbonate aquifer at successive times since the 

beginning of the injection are shown (Eqs. 10, 17 and D.2 are solved for t = 0.2, 10 and 100 kyr). During 

the radial flow within the aquifer, the hot fluid cools by transferring heat into the confining layers, which 

heat up with time, resulting in the gradual advancement of the thermal front downstream (Fig. 2a). The 

cooling induces solute disequilibrium (Λ) associated with undersaturation (note that Λ is negative for 355 

undersaturation and positive for supersaturation, see Eq. 6). The magnitude of Λ in the aquifer is small 

compared to the absolute solubility change in the system, ∆cs = |cs(Tin) – cs(T0)|, i.e., between cs(Tin) at 

the injection point to cs(T0) at ambient conditions (|Λ|/∆cs << 1%, see Fig. 2b). The small magnitude of 

disequilibrium is associated with relatively high PCO2 considered here (0.03 MPa) and rapid kinetics under 

these conditions. The quasi-equilibrium conditions may allow simplification and calculation of the local 360 

reaction rate from transport processes alone, regardless of kinetics, referred to as the so-called equilibrium 

model (Andre and Rajaram, 2005; Bekri et al., 1995; Golfier et al., 2002; Lichtner, 1991), which will be 

the subject of a future research.  

Although the magnitude of disequilibrium, Λ, is small, it controls the alteration of the aquifer and the 

evolution of its properties. Significantly, because the water at the inlet is hot and saturated with calcite, c 365 

= cs(Tin), disequilibrium and the reaction rate are zero at the inlet leading to no change in the porosity (see 

Fig. 2b and 3c and their magnifications). Disequilibrium (undersaturation) sharply develops downstream 
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from the injection site forming first a small minimum (at r ≈ 20 m) and gradually increasing to zero at 

greater distances. Undersaturation and dissolution along the flow path are controlled by the interplay of 

three processes: (I) dissolution reducing undersaturation (i.e., Λ becomes closer to zero), (II) progressive 370 

cooling increasing undersaturation, and (III) advection transporting reaction products (i.e., calcium ions) 

radially outward from the well, helping maintain undersaturation. Here, the effect of fluid velocity and 

advection decays with a distance as 1/r.  

High advection and cooling rates near the inlet result in the abrupt formation of undersaturation (i.e., 

negative Λ). Further downstream, undersaturation diminishes due to dissolution reactions. As the thermal 375 

front advances downstream over time and the temperature gradients diminish along the aquifer, the Λ 

curve flattens and becomes more elongated (see curves for t = 10 and 100 kyr in Fig. 2b). Due to the 

disequilibrium, porosity grows with time. The porosity profile sharply increases near the inlet and then 

gradually decreases downstream (Fig. 2c). The porosity changes are extensive and take place over an 

aquifer area of ~ 30 km2 within a relatively short geological timescale of 100 kyr, resulting in the addition 380 

of significant void space of thousands of cubic meters (~5⸱103 m3).  
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Figure 2: Carbonate aquifer dissolution by cooling hot water. Temperature, T, solute disequilibrium, Λ, and 

porosity, θ in the aquifer are plotted as functions of radial position, r, at different times (computed using Eqs. 10, 

D.2 and 17). (a) The hot flow cools gradually as it travels through the aquifer, transferring heat to the confining 385 

rocks, thereby causing them to warm over time and the thermal front to progress downstream. (b) Cooling induces 

undersaturation (negative disequilibrium, Λ, see Eq. 6), which is of a relatively small magnitude due to the rapid 

kinetics of calcite dissolution. Λ is normalized by the total solubility change in the system, ∆cs, (refer to the text 

for ∆cs definition). The water is hot and saturated at the inlet, c = cs(Tin). Undersaturation quickly develops near the 

inlet (r ≈ 20 m, as shown in the magnification) and then gradually diminishes due to the dissolution reactions further 390 

along the flow path (Λ approaches zero). As the thermal front propagates over time, and thermal gradients diminish, 

the Λ curves also flattens. (c) Corresponding to Λ variations, a porosity profile develops over time (see the 

magnification for the inlet-adjacent region).  

An essential assumption underlying the solutions in section 2 and the results depicted in Fig. 2, is the 

assumption of spatial uniformity and symmetry of reactive flow. In practical scenarios, however, 395 
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dissolutional instabilities at the reaction front can emerge. These instabilities, owing to the positive 

feedback between reaction and transport, may evolve into dissolution channels, often referred to as 

wormholes (Aharonov et al., 1997; Budek and Szymczak, 2012; Chadam et al., 1986; Ortoleva et al., 

1987; Roded et al., 2018, 2021). The wormholes concentrate reactive flow, resulting in heterogeneous 

flow fields that cannot be accurately represented by assuming symmetry and uniformity. In such a case, 400 

the results of Fig. 2 can only be regarded as an average solution, which is not accurate locally. 

Isothermal dissolution, driven by undersaturation of the incoming solution is known to be unstable in the 

radial geometry for large enough solute Péclet, Pes, numbers and intermediate Damköhler numbers. The 

Damköhler number here is given by Da = AsλlA/u, and represents the ratio between advective and reactive 

timescales (Daccord, 1987; Grodzki and Szymczak, 2019; Kalia and Balakotaiah, 2007; Xu et al., 2020). 405 

However, in our case, cooling of the solution leads to its renewed aggressiveness, hence extending the 

penetration length in the system which may influence the stability of the reactive front (Xu et al., 2020). 

The effect of renewed aggressiveness by considering solubility gradients was studied for planer reactive 

flow in Aharonov et al. (1997) and Spiegelman et al. (2001), but requires further investigation for radial 

flow, and taking into account coupling with heat transfer.   410 

3.3 Silica Precipitation by Cooling Water 

Here, we consider the injection of hot silica-rich water that cools, becoming supersaturated and leading 

to silica precipitation, consequently reducing void-space and permeability. While the previous case 

involved dissolution, this one involves precipitation; however, the thermal and reactive transport 

processes are similar in both cases (with approximately mirror image Λ and θ profiles, c.f., Fig.2b-c and 415 

Fig.3a-b).  

Similar to the previous section, the low magnitude of Λ suggests that the reaction rate (Eq. 5) is relatively 

high compared to transport processes, effectively reducing disequilibrium, Λ. It is noted that the reaction 

rates are high in both systems, despite the orders of magnitude differences in the kinetic rate coefficient 

(λ = 10-6 m/s for calcite dissolution compared to 5ꞏ10-10 m/s for silica precipitation). However, this 420 

difference is largely compensated by the contrast between the reactive surface area of the porous 
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sandstone and fractured carbonate aquifers (As = 104 m−1 compared to 10 m−1, respectively). It should also 

be noted that while precipitation of crystalline and non-crystalline silica (amorphous) is characterized by 

relatively high rates, dissolution of quartz and silica polymorphs is typically slower by several orders of 

magnitudes (Rimstidt and Barnes, 1980).  425 

 

Figure 3: Silica precipitation in sandstone aquifer by cooling hot water. The calculated solute disequilibrium, 

Λ, and porosity, θ, as functions of the lateral position, r, are shown at different times since the beginning of the 

injection (calculated using Eqs. D.2 and 17; the temperature profile is given in Fig. 2a). The reactive transport 

processes in this case are similar to the carbonate dissolution system shown in Fig. 2, with insets Fig. 2b-c being 430 

approximately mirror images of (a) and (b), showing supersaturation and porosity reduction. (a) As a result of 

cooling, solute disequilibrium corresponding to supersaturation (Λ, Eq. 6) develops, which is of small magnitude 

due to the high reaction rates (Λ is scaled by the total solubility change in the system, ∆cs, refer to the text for ∆cs 

definition). The water enters hot and saturated at the inlet, c = cs(Tin), and, subsequently, Λ increases rapidly and 

then gradually diminishes downstream due of the reaction. The advancement of the thermal front over time and 435 

lower gradients lead to the flattening of Λ curves. (b) In accordance with Λ, an extensive porosity profile develops 

over time.  

While the reaction rates are high in both systems, differences exist in the absolute amount of porosity 

change resulting from the injection. For example, the maximal porosity change in the aquifer due to silica 

precipitation is approximately ∆θmax ≈ 0.03, whereas for the carbonate case it is around ∆θmax ≈ 0.08 440 

(where ∆θmax = |θmax(t = 100 kyr) – θ0|, and θmax denote the maximal porosity change along the profile). 
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The predicted lower porosity change in silica arises mostly due to its lower total solubility change, ∆cs, 

and the reduced dependence of mineral solubility on temperature, expressed here by the β parameter (see 

Table 2). This conclusion is further supported by the fact that no disequilibrated fluid exits the system: 

the fluid outflows from the system at r = 3000 m, at a temperature close to the ambient temperature, T0, 445 

(Fig. 2a) and chemically equilibrated (Λ = 0; Fig. 2b and Fig. 3a).  

3.4 Permeability Evolution of the Aquifers 

The porosity changes affect the aquifer hydraulics. Here, we calculate the effective aquifer permeability, 

keff, within a distance, R, around the well. keff is calculated based on the relationship between the local 

porosity and permeability, utilizing the power-law relation k(r)/k0 = (θ(r)/θ0)n, where k0 and θ0 are the 450 

initial permeability and porosity (the steps for the calculation of keff are presented in Appendix E). The 

exponent n depends on various factors such as medium microstructural details and the nature of the 

alteration processes (Seigneur et al., 2019; Steefel et al., 2015; Vafaie et al., 2023). The limited predictive 

capabilities of k-θ relations were previously noted (e.g., Sabo & Beckingham, 2021), including instances 

where counter trends of porosity and permeability changes occur (Garing et al., 2015). Here, it is applied 455 

to evaluate general trends, which, with the exception of unique cases, remain valid regardless of the 

porosity-permeability relation used.  

The wide range of heterogeneous microstructures in rocks and sediments, and their response to different 

reactive flow regimes, leads to a large variability in the exponent n values. For example, for relatively 

uniform spatial dissolution, n can range from ~3 to a few dozen for the early stages of flow or when 460 

wormholes develop (Hao et al., 2013; Roded et al., 2020; Vafaie et al., 2023). For precipitation, n typically 

ranges from ~2 and up to above 10 (Aharonov et al., 1998; Hommel et al., 2018; Seigneur et al., 2019).  

Figure 4 shows keff evolution over time for representative exponent values within a distance, R = 3 km. 

The rapid increase in carbonate aquifer permeability indicates (in agreement with previous works; Agar 

& Geiger, 2015; Andre & Rajaram, 2005; Dreybrodt et al., 2005) that keff can be substantially altered 465 

within relatively short geological timescales. Specifically, the results suggest that keff can even increase 

by several tens of percents within tens to hundreds of years. Conversely, significant keff alterations due to 
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silica precipitations (10-50 % reduction) involve typical timescales of tens of thousands of years. These 

findings are consistent with previous observations of dissolution and precipitation under solubility 

gradient (e.g., Aharonov et al., 1997), emphasizing differences between these processes, as embodied in 470 

the exponent n.  

  

Figure 4: Evolution of aquifer effective permeability due to dissolution and precipitation.  The effective 

permeability is keff, and t is time; red and blue curves designate carbonate dissolution and silica precipitation, 

respectively. keff is calculated within radius R = 3 km from the well and is normalized by its initial value, k0. The 475 

power-law θ-k relation is used to determine keff from the local porosity, θ(r), and permeability, k(r), with typical 

exponent values of n = 3-20 for dissolution, and n = 2-8 for precipitation. keff can be substantially altered in 

carbonate aquifers due to dissolution even within tens to hundreds of years, while tens of thousands of years are 

required for similar magnitudes of change by silica precipitation. 

4 Summary and Conclusions 480 

In this paper, we considered non-isothermal injection into a confined aquifer, and the settings and solution 

of the so-called Lauwerier problem, to derive coupled thermally-driven reactive transport solutions 
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(reactive Lauwerier problem). The presented solution is among the very limited number of analytical 

solutions available in the field of Thermo-Hydro-Chemical (THC) flows in porous media. The THC 

scenarios considered here involved geochemical disequilibrium and reactions induced by thermally-485 

driven solubility changes, leading to mineral dissolution or precipitation. In the first section, solutions 

were derived for the evolution of solute concentration in radial and planar cases. These derivations utilized 

the non-isothermal Lauwerier solution to calculate the temperature-dependent solubility, which was then 

substituted into the reactive transport equation. Subsequently, the obtained concentration closed-form 

solutions were used to derive expressions for the porosity change in the aquifer.  490 

In the second section, these solutions were employed to study two common cases in geothermal and water 

resource systems, exhibiting opposite feedbacks on porosity evolution: (I) injection of hot CO2-rich water 

into a fractured carbonate aquifer, leading to cooling and dissolution, and (II) injection of hot silica-rich 

water into sandstone aquifer leading to silica precipitation. The resulting porosity profiles were then used 

to calculate the hydraulic changes and effective aquifer permeabilities. The results show that the timescale 495 

of porosity development in these systems is of the order of thousands to dozens of thousands of years, 

depending on the THC conditions (in agreement with previous works; Andre and Rajaram, 2005; Roded 

et al., 2023). Despite the often-faster kinetics of carbonate dissolution compared to silica precipitation, 

similar timescales are observed in both systems. This is attributed to the high specific reactive surface 

area of sandstones, which enhances the reaction rate, compensating for the differences in kinetics between 500 

carbonate dissolution and silica precipitation. However, substantial hydraulic changes occur much faster 

in carbonate aquifers, possibly within tens to hundreds of years, primarily due to the rapid enhancement 

of permeability resulting from dissolution. 

It is worth noting that under the typical conditions considered, the reaction rates  are high and the 

geochemical disequilibrium in these systems is minimal (i.e., quasi-equilibrium). In such conditions, the 505 

equilibrium assumption can be applied which simplifies calculations in reactive Lauwerier problem and 

comprises an ongoing area of inquiry. The solutions and analyses provided contribute to the understanding 

of natural and engineered hydrothermal systems, such as aquifer storage and recovery (ASR) and thermal 
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energy storage (ATES) applications. Additionally, these solutions can aid in the development and 

benchmarking of coupled numerical models. 510 

Appendices 

Appendix A: An Extended Form of the Conservation Equations 

Aquifer temperature. Assuming radial symmetry and that heat transport through the rocks confining the 

aquifer is governed by conduction, the heat equation in polar coordinates becomes  

𝜕𝑇

𝜕𝑡
=

𝛼b

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) + 𝛼𝑏

𝜕2𝑇

𝜕𝑧2
,                {

𝑧 ≤ −
𝐻

2

𝑧 ≥
𝐻

2

,                                                                          (𝐴. 1) 515 

where T is the temperature, t is time, r and z are the radial and vertical coordinates, respectively, with 

their origin at the injection well center, and H is aquifer thickness (see Fig. 1). The quantity αb = Kb/Cpb 

is the thermal diffusivity, where the subscript b denotes bulk rock, K is the thermal conductivity, and Cp 

is the volumetric heat capacity (Stauffer et al., 2014). 

Assuming that heat transport in the fluid within the aquifer is governed by advection and conduction, the 520 

heat-transport equation can then be expressed as 

𝐶pb

𝜕𝑇

𝜕𝑡
= −𝐶pf

1

𝑟

𝜕(𝑟𝑢𝑇)

𝜕𝑟
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𝜕

𝜕𝑟
(𝑟
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𝜕𝑟
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𝜕2𝑇

𝜕𝑧2 ) ,     for    −
𝐻

2
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𝐻

2
,                        (𝐴. 2) 

where subscript f denotes fluid, u(r) is the fluid velocity (or Darcy flux) and can be calculated from the 

total volumetric flow rate Q using u = Q/(H2πr) (assuming uniformity of u along the z direction of the 

aquifer; Andre & Rajaram, 2005; Chaudhuri et al., 2013).  525 

Assuming complete thermal mixing in the transverse direction (z) of the aquifer, allows to establish the 

“depth-averaged” Eq. 2 in the main text. In this case, the heat exchange between the aquifer and the 

confining rocks is integrated within the heat exchange term (Θ). 
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Reactive Transport. Similarly, the solute transport advection-diffusion-reaction equation in the aquifer 

is   530 

𝜕𝑐

𝜕𝑡
= −𝑢

𝜕𝑐

𝜕𝑟
+ 𝐷 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) +

𝜕2𝑐

𝜕𝑧2
) − Ω(𝑟, 𝑡),     for     −

𝐻

2
≤ 𝑧 ≤

𝐻

2
,                                (𝐴. 3) 

where c is the solute concentration [M/L3], D is the molecular diffusion coefficient, and Ω is the reaction 

term (Chaudhuri et al., 2013; Szymczak and Ladd, 2012). The equations describing the reaction term, Ω, 

saturation concentration, cs, dependence on the temperature and the porosity change are given in section 

2.3 in the main text (Eqs. 5, 7 and 8, respectively). 535 

In the case of planar flow and Cartesian coordinates the equations A.1-A.3 above take the form, 

𝜕𝑇

𝜕𝑡
= 𝛼b (

𝜕2𝑇
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and 540 
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Appendix B: Timescales Analysis to Validate the Quasi-static Assumption 

In our reactive transport calculations and Eq. 4 used for developing the solutions in section 2, we adopt 

the quasi-static approach (Detwiler & Rajaram, 2007; Ladd & Szymczak, 2017; Lichtner, 1991; Roded, 545 

Aharonov, Holtzman, et al., 2020; Sanford & Konikow, 1989) and neglect the transient term (present in 

Eqs. A.3 and A.6). However, it is noted that temporal variations do take place due to changes in the 

temperature field and its effect on the solubility, which are accounted for by coupling the equations.  
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The justification for the quasi-static assumption lies in the significant separation of characteristic 

timescales in the system. There are three important timescales in our problem: (I) the timescale governing 550 

reactant transport (tA), (II) mineral chemical alteration timescale (tM), and (III) the characteristic 

conduction heat transport timescale (tC). The latter affects the solubility of aquifer minerals, thus 

influencing reaction and solute transport. Specifically, the conditions for the validity of quasi-static 

assumption are that tC and tM are several orders of magnitude larger compared to reactant transport 

relaxation time, tA (i.e., tA<< tM and tA<<tC).  555 

For example, in relatively fast-reacting natural carbonate systems the doubling of initial pore size or 

fracture aperture due to dissolution typically occurs over a timescale of months to years. In silicate 

minerals, these timescales are of the order of thousands of years (Dove & Crerar, 1990; Ladd & Szymczak, 

2021; Szymczak & Ladd, 2012; Zhu, 2005). Similarly, the timescale characteristics for the conduction 

processes in the confining rocks (tC) are commonly several orders of magnitude longer than the relaxation 560 

times for reactant transport (tA), which essentially maintains a steady-state throughout the aquifer 

evolution. The timescales are given by, 

𝑡A =
𝑙A

𝑢
,               𝑡C =

𝑙C
2

𝛼b
,           𝑎𝑛𝑑           𝑡M =

𝛿𝜃

𝛾𝐴s𝜆
,                                                                        (𝐵. 1) 

where lA, lC are characteristic length scales of advection and heat conduction, respectively, u denotes the 

Darcy flux [L T-1], αb is the bulk thermal diffusivity, δθ represents a minute  change in porosity, As stands 565 

for the specific surface area of the reacting mineral [L2/L3] and λ is the kinetic reaction rate coefficient 

[L/T]. Here, γ = ∆cs/csolν, where csol is the mineral concentration in the solid, ν accounts for the 

stoichiometry of the reaction and ∆cs is the variation in solubility induced by thermal changes along the 

flow path. ∆cs is calculated here from the difference between the injected saturated fluid concentration, 

c(φ=0) = cs(Tin), and the downstream saturation at the background aquifer temperature, c = cs(T0) (i.e., 570 

∆cs = |cs(Tin)−cs(T0)|). γ is often referred to as the acid capacity number, representing the ratio between 

(I) the maximum number of molecules in a unit volume of fluid dissolving or precipitating mineral from 

the fluid along the flow path (calculated from the ratio, ∆cs/ν), (II) to the number of molecules in a unit 



28 
 

volume of a mineral, csol (see parameter values in Table 2; Ladd & Szymczak, 2017; Roded, Aharonov, 

Holtzman, et al., 2020).  575 

In the calculation of the timescale tA, the characteristic length scale, lA, can be set equal to the reactive 

front length, which in turn is affected by the thermal front length along the aquifer (φ-direction). The 

length scale lC (used in tC calculation) corresponds to the thermal front that develops in the confining 

insulating layers in the z-direction, which elongates over time. In practice, the timescale separation 

between tA and tM and tC, can also be validated a posteriori. Under a large set of conditions, the reaction 580 

rate is limited solely by advective transport (i.e., regardless of kinetics), which leads to small geochemical 

disequilibrium (Andre & Rajaram, 2005). In such conditions, the actual timescale of matrix deformation 

will be much longer than predicted by the expression given above for tM.  

Appendix C: Lauwerier Solution Validity Assuming t’ ≈ t  

 585 

Figure A1: Comparison of the full and approximate solution for the temperature profile. The approximate 

solution considers t’ = t (Eq. 10). The results demonstrate that for times longer than 100 years, the differences 

between the solutions diminish, with a maximal error of 1.5% (see text). 



29 
 

In this appendix, the solution of Eq. 10 is compared to its approximated solution, when t’ ≈ t is assumed 

(Fig. A1). The results demonstrate that for times longer than 100 years, the differences between the 590 

solutions diminish, with a maximal error of 1.5 %, where the error is defined as Err = 100*(|TExt – 

TApr|)/ΔT, with TExt and TApr being the exact and approximated solutions. These results confirm the validity 

of the assumption of t’ ≈ t and the derived solutions for times longer than 100 years under the conditions 

considered. 

Appendix D: Asymptotic Expansion for the Disequilibrium Solutions  595 

To obtain a solution by computational means and prevent an integer overflow (Press et al., 2007), it is 

useful to derive an approximate solution for Eq. 15 using the first-order asymptotic expansion of erfc. 

Substituting this expansion into Eq. 15 leads to 

Λ =  
∆𝑇𝛽

√𝜋
𝑒

(
𝜂2

4𝜁2−𝜂𝑟2)
(−e

(−
𝜂2

4𝜁2) 2𝜁

𝜂
+ e

−(
𝜂2

4𝜁2−𝜂𝑟2+𝜁2𝑟4) 1
𝜂

2𝜁 − 𝜁𝑟2
),                                          (𝐷. 1) 

and after further rearrangement, we finally arrive at: 600 

Λ =  
∆𝑇𝛽

√𝜋
𝑒(−𝜂𝑟2) (

e(𝜂𝑟2 −𝜁2𝑟4)

𝜂
2𝜁 − 𝜁𝑟2

−
2𝜁

𝜂
).                                                                                             (𝐷. 2) 

For the planar injection case, we obtain from Eq. 20,  

Λ =  
∆𝑇𝛽

√𝜋
𝑒(−𝜎𝑥) (

e(𝜎𝑥−𝜔2 𝑥2)

𝜎
2𝜔 − 𝜔𝑥

−
2𝜔

𝜎
) .                                                                                              (𝐷. 3) 

To avoid integer overflow errors, Eq. D.2 is used to obtain the undersaturation profiles in Figs. 2b and 3a 

and is numerically iterated to solve for the porosity profile at later times (t ≈ 100 kyr). The accuracy of 605 

the approximation of Eq. D.2 was verified by comparing it to the full solution in Eq. 15, which can be 

solved for early times (t ≈ 1 yr). Furthermore, the accuracy of Eq. D.2 and the iterative solutions was 
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further confirmed by solving for the porosity profile and comparing these results to those obtained using 

the full solution in Eq. 17 for t = 10 kyr. 

Appendix E: Permeability of an Aquifer with Nonuniform Porosity Profile  610 

Using Darcy’s law, we calculate an effective permeability, keff, for the aquifer around the well within a 

radius r = R. The Darcy’s law under these conditions is 

𝑢(𝑟) = −
𝑘(𝑟)

𝜇

d𝑝

d𝑟
,                                                                                                                                  (𝐸. 1) 

where p and µ are the fluid pressure and viscosity and k permeability. Integrating Eq. E.1 between r=0 

and r=R leads to 615 

𝑢(𝑅) = −
𝑅

𝜇 ∫
d𝑟

𝑘(𝑟)
𝑅

0

(
∆𝑝

𝑅
),                                                                                                                    (𝐸. 2) 

and the effective permeability is  

𝑘eff =
𝑅

∫
d𝑟

𝑘(𝑟)
𝑅

0

,                                                                                                                                         (𝐸. 3) 

which is calculated by numerical integration over the porosity profile and the power-law given in section 

3.4. 620 

Code & Data availability:  

The MATLAB codes and data produced in this study are available at 

https://zenodo.org/doi/10.5281/zenodo.12531720 
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