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 12 

Abstract 13 

Soil properties and their associated hydro-physical parameters represent a significant 14 

source of uncertainty in Land Surface Models (LSMs) with consequent effects on 15 

simulated sub-surface thermal and moisture characteristics, surface energy 16 

exchanges and turbulent fluxes. These effects can result in large model differences 17 

particularly during extreme events. Typical of many model based approaches, spatial 18 

soil information such as location, extent and depth of textural classes are derived from 19 

coarse scale soil information and employed largely due to their ready availability rather 20 

than suitability. However, the use of a particular spatial soil dataset has important 21 

consequences for many of the processes simulated within a LSM. This study 22 

investigates NOAH-MP model uncertainty in simulating soil moisture (expressed as a 23 

ratio of water to soil volume, m3 m-3) and soil temperature changes associated with two 24 

widely used global soil databases (STATSGO and SOILGRIDS) across the Island of 25 

Ireland. Both soil datasets produced a significant dry bias in loam soils, up to 0.15 m3 26 

m-3 in a wet period and 0.10 m3 m-3 in a dry period. The spatial disparities between 27 

STATSGO and SOILGRIDS also influenced the regional soil hydrothermal changes 28 

and extremes. SOILGRIDS was found to intensify drought characteristics - shifting 29 

low/moderate drought areas into extreme/exceptional during dry periods  -  relative to 30 

STATSGO. Our results demonstrate that the coarse STATSGO performs as good as 31 

the fine-scale SOILGRIDS soil database. However, the results underscore the need to 32 

develop detailed regionally-derived soil texture characteristics, and for better 33 

representations of soil physics in LSMs to improve operational modeling and 34 

forecasting of hydrological processes and extremes.  35 
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 1 

1. Introduction 2 

The pedosphere (or soil) is an important component of the Earth system and plays a 3 

critical role in energy, water and biogeochemical exchanges that occur at the land-4 

atmosphere interface (Dai et al., 2019a;b). The accurate description and 5 

representation of soil textural categories and/or soil hydro-physical properties is 6 

fundamental to developing and enhancing Earth system modeling (ESM) capacity in 7 

predicting land surface exchanges at different scales (Luo et al., 2016; Dai et al., 8 

2019a,b). This information is incorporated via the respective land surface model (LSM) 9 

– the only physical boundary in an ESM and is a key component of any ESM framework 10 

(Fisher and Koven, 2020; Blyth et al., 2021). However, accurate descriptions of soil 11 

properties in LSMs are difficult to obtain due to the limited availability of high resolution 12 

global-scale soil texture measurements or lack of regionally specific measured soil 13 

properties (e.g. Kishné et al. 2017; Dennis and Berbery, 2021; 2022). This represents 14 

a key limitation and is a source of model uncertainty in current LSMs (Li et al., 2018), 15 

and consequently weather and climate models. 16 

In many LSMs, soil hydrothermal properties such as saturated soil hydraulic 17 

conductivity and diffusivity, porosity, field capacity, wilting point, saturated soil matric 18 

potential, etc. are linked to soil textural classes/compositions in two ways. Typically, 19 

models employ a model-prescribed look-up table, with values that are empirically 20 

derived from existing/available in-situ soil surveys, to associate mean soil properties 21 

with each soil type. The soil categories are identified by grouping soil samples with 22 

similar properties using particle size analysis (e.g. Gee and Bauder, 2018). While this 23 

option is computational efficient, it assumes that the derived values are globally 24 

transferable which may not be realistic as soil properties vary both horizontally and 25 

vertically. This approach is also dependent on having access to soil texture maps; the 26 

scale and extent of which varies between different soil databases (Dai et al., 2019a,b; 27 

Dennis and Berbery, 2022). In spite of this, the use of readily available global soil 28 

texture maps in combination with model look-up tables is a standard practice in ESM 29 

research. As an alternative approach, new state-of-the-art global soil information 30 

datasets are being explored to constrain and improve the representation of soil 31 

processes within LSMs (e.g. de Lannoy et al., 2014; Shangguan et al., 2014; Hengl et 32 

al., 2017; Looy et al., 2017; Dennis and Berbery, 2021;2022; Xu et al., 2023). For some 33 

LSMs, soil hydrothermal properties can be estimated from a set of equations known 34 

as PedoTransfer Functions (PTFs) that require information on soil composition such 35 

as sand, silt and clay composition and  organic matter (Looy et al., 2017; Dai et al., 36 

2019a,b).  37 
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The existing PTFs are based on different approaches (Looy et al., 2017) including, 1 

physically-based relationships or advanced statistical approaches based on machine 2 

learning, random forest and neural networks (Lehmann et al., 2018; Zhang et al., 2018; 3 

Or and Lehmann, 2019; Szabó et al. 2019). Clearly, the existing PTFs vary in 4 

complexity. Thus, the choice of PTFs partly depends on the availability of inputs 5 

(Weihermüller et al. 2021) and has been reported to impact soil moisture simulations, 6 

with consequent effects on the surface energy and water fluxes, land-atmosphere 7 

coupling, atmospheric moisture budget, boundary layer evolution and regional climate 8 

(Dennis and Berbery, 2021; 2022; Weihermüller et al. 2021; Xu et al., 2023; Zhang et 9 

al., 2023). Moreover, as soil moisture affects land-atmosphere interactions largely 10 

through its control on the evaporative fraction (e.g. Seneviratne et al., 2010; Ishola et 11 

al., 2022), soil hydrophysical properties play an important role in simulating climate 12 

extremes (e.g. droughts) (He et al., 2023; Zhang et al., 2023). Weihermüller et al. 13 

(2021), using the HYDRUS-1D model, reported that soil hydraulic properties estimated 14 

from different PTFs resulted in substantial variability in the predicted water fluxes. In 15 

this context, Dennis and Berbery (2021) and Dennis and Berbery (2022) employed soil 16 

properties derived from two different sources, the STATSGO and the Global Soil 17 

Dataset for Earth System Modelling (GSDE), in the Weather and Research 18 

Forecasting (WRF) and Community Land Model (CLM) models, and found soil texture-19 

related differences in the surface fluxes that can lead to differences in the evolution of 20 

boundary layer thermodynamic structure and precipitation development. This finding 21 

is further supported by Zhang et al. (2023). Recently, Xu et al. (2023) demonstrated 22 

that using state-of-the-art soil information, such as POLARIS and the 250 m SoilGrids, 23 

can improve the performance of LSMs. 24 

Here we focus on the response of the NOAH-MP LSM to soil information with the 25 

objectives evaluating the model representation of land surface fields; however, a LSM 26 

will also respond to changes in other drivers, such as vegetation (e.g. albedo, surface 27 

roughness length, etc.) and meteorological forcing (Arsenault et al., 2018; Hosseini et 28 

al., 2022).   The first effort to implement SoilGrids in NOAH-MP LSM was recently 29 

evaluated over Southern Africa (Zhang et al., 2023). Our study complements the 30 

previous effort by evaluating the impact of combining the SoilGrids soil compositions 31 

with PTFs.   Specifically, we focus on the impact of two different soil datasets on 32 

simulations of soil moisture and temperature during a period of normal and dry weather 33 

conditions.  34 

 35 

2. Data and Methods 36 

2.1 Background context of Ireland 37 
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The Ireland is situated in a maritime temperate region where the climate is 1 

predominantly influenced by the mid-latitude westerly warm airflow off the North 2 

Atlantic Ocean, and occasional incursions of cold air masses during winter (Peel et al., 3 

2007). The long-term (1981-2010) average daily maximum temperature of the region 4 

is between 18° and 20°C in summer and 8 oC in winter. Occasionally, the daily 5 

minimum temperature drops below 0 oC in winter. Rainfall is distributed throughout the 6 

year with mean annual value of 1200 mm. The west of Ireland typically experiences 7 

higher rainfall amounts (1000-1400 mm), and may exceed 2000 mm in the upland 8 

areas. Conversely, the east experiences lower rainfall amounts, between 750 and 9 

1000 mm. More details on the background climate of Ireland are provided in Walsh 10 

(2012). In relation to the general soil information (Figure 1a), the south-east is 11 

characterized mainly by free draining sandy soils, peat soils dominate the mountains, 12 

hills and western edge of the country, while limestone-rich soils dominate the midlands 13 

and south (Creamer et al., 2014). Among the land cover types (Figure 1b), grassland 14 

dominates the agricultural and total land area in Ireland. The temperate climate in 15 

combination with fertile soils, mostly in the south and east where the soils are free 16 

draining, provides conditions that are favourable to near year round grass growth. 17 

However, the heavy clay (wet) soils limit grass growth in the west and north of the 18 

country (Keane and Collins, 2004). 19 

 20 

2.2 Model description 21 

Here, we employ the advanced community NOAH-MP land surface model with multi-22 

parameterization options, with improved representation of physical processes (Chen 23 

et al., 1996; Niu et al., 2011). The model is available as an uncoupled model, with the 24 

capacity to simulate different land state variables (e.g. soil moisture) and land energy, 25 

water and carbon fluxes. It also represents a LSM that is coupled with atmospheric 26 

models such as the Weather Research and Forecasting (WRF) model (Barlage et al., 27 

2015). Due to its simplicity in selecting and combining multi-physics options, the model 28 

has been widely used for different applications, including natural hazards, drought and 29 

wildfire monitoring, land-atmosphere interactions, sensitivity and uncertainty 30 

quantification, biogeochemical processes, water dynamics, dynamic crop growth 31 

modeling, and soil hydrothermal processes. (Zhuo et al., 2019; Kumar et al., 2020; 32 

Chang et al., 2022; Hosseini et al., 2022; Nie et al., 2022; Warrach-Sagi et al., 2022; 33 

Hu et al., 2023).  34 

 35 

In NOAH-MP LSM, the major improvements in mechanisms relevant to soil processes 36 

are (1) distinguishing less and more permeable frozen soil fractions, (2) introducing an 37 
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alternative lower boundary soil temperature that is based on zero heat flux from the 1 

deep soil bottom, (3) adding TOPMODEL and SIMGM models for runoff and 2 

groundwater physics options (Niu et al., 2007), and (4) adding an unconfined aquifer 3 

beneath the 2 m bottom of the soil layer to account for water transport between the soil 4 

and aquifer. Relative to other LSMs, the NOAH-MP model framework is typical in its 5 

ability to define soil properties either by using dominant soil texture linked to 6 

empirically-derived soil parameter values, using soil texture with varying depths, or 7 

using soil texture compositions derived using PTFs (Saxton and Rawls, 2006).  8 

The prognostic equations from Mahrt and Pan (1984) are used to describe soil 9 

moisture and soil temperature in the model (Chen et al., 1996). 10 

    𝐶(𝜃)
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where C is the volumetric heat capacity, 𝜃 is the soil moisture, T is the soil temperature, 13 

and K and Kt are the hydraulic and thermal conductivities, respectively. D is the soil 14 

diffusivity and 𝐹𝜃  are the sinks and sources of soil water, that is, evaporation and 15 

precipitation. 16 

 17 

2.3 Gridded data 18 

Meteorological variables which are required as initial and forcing conditions are 19 

obtained from the European Centre for Medium-Range Weather Forecasting (ECMWF) 20 

database. We employ the state-of-the-art ECMWF ERA5-Land global reanalysis 21 

product that provides data at 0.1o (~9 km) spatial and hourly temporal resolution 22 

(Muñoz-Sabater, 2021). The required forcing variables include total precipitation, 23 

incident shortwave and longwave radiation, 2m air temperature, 10m zonal and 24 

meridional wind components, surface pressure and specific humidity. For initialisation, 25 

the model also requires input fields of soil temperature, surface skin temperature, 26 

canopy water and snow water equivalent at the first timestep. The hourly data for all 27 

variables was obtained for the period 2009-2022. 28 

NOAH-MP model also requires static geographical data (e.g. soil texture and land use) 29 

and time varying vegetation products (e.g., leaf area index and fraction of green 30 

vegetation). We use the STATSGO gridded soil categories map provided at 5 arcmin 31 

resolution (~9 km) (FAO 2003a;b) and the International Soil Reference and Information 32 

Centre (ISRIC) global SoilGrids data (Hengl et al., 2017; Poggio et al., 2021). The latter 33 

is available at 250 m resolution and six standard soil depths, however, sand and clay 34 

proportions are currently available at four layers and provided as part of the WRF 35 
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geographical data fields. Preprocessing of the data was undertaken in the WRF 1 

Preprocessing System (WPS) (Skamarock et al., 2019). 2 

 3 

2.4 Model simulations 4 

We set up and ran an offline NOAH-MP model version 4.3 within the framework of the 5 

High Resolution Land Data Assimilation System (HRLDAS) (Chen et al., 2007). Using 6 

the WPS system, the model domain is set up as a 1 km grid space covering the island 7 

of Ireland and the west coast of the United Kingdom (Figure 1). We incorporate a high 8 

resolution land use dataset based on the 100 m raster CORINE Land Cover for 2018 9 

(CLC 2018). The 44 CORINE land cover classes are initially reclassified into 21 10 

categories to match the default modified IGBP MODIS 20-category land use (Figure 1 11 

b). The data is then resampled to 250 m. To generate the required geographic files for 12 

input to NOAH-MP, the CLC 2018 is converted to binary format which is used as input 13 

to the WPS, which subsequently generates the gridded geographic information 14 

required to run the NOAH-MP model. Other geographical data, such as topography, 15 

green vegetation fraction and surface albedo used in this study are derived from the 16 

model default datasets provided by the Research Application Laboratory, National 17 

Center for Atmospheric Research (RAL/NCAR). 18 

To investigate the effect of soil hydrophysical properties on model simulations of soil 19 

moisture and soil temperature, we configure two experiments that are based on 20 

different soil data options, namely, (1) dominant soil texture categories used as default 21 

in WRF/NOAH-MP; and, (2) soil textural compositions in combination with PTFs 22 

(Saxton and Rawls, 2006). The dominant soil texture option uses the baseline 23 

FAO/STATSGO dataset with the empirically-derived soil properties from a look-up 24 

table, while the PTFs-derived soil properties use the fine-scale SoilGrids sand and clay 25 

proportions. The dominant topsoils across the domain are broadly classified into four 26 

and two broad categories based on STATSGO and SoilGrids, respectively (Figure 2). 27 

While Loam and Sandy Loam soil textures cover the largest area in both data sources 28 

(Table 2), the extent to which the difference in the data and soil physics options 29 

contribute to model uncertainty in NOAH-MP model is evaluated. Other NOAH-MP 30 

physics options used are outlined in Table 3. 31 

For the numerical experiments, the soil layer thicknesses of 0.07, 0.21, 0.72 and 1.55 32 

m are used, with a cumulative soil depth of 2.55 m. The thicknesses are selected to 33 

match the layers of initial soil input fields from ERA5-Land. The model is spun-up over 34 

10 years for each experiment using the climatology of the hourly ERA5-Land for the 35 

period 2009-2022, to bring the soils to thermal and hydrologic equilibrium with the 36 

atmosphere.  After spin-up, the model is assumed to be stable and is then used as the 37 
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point to initialise the simulations, reported on here, using the hourly meteorological 1 

forcing from 2009 to 2022. 2 

 3 

2.5 Station data 4 

Profile measurements of soil temperature and volumetric water content are obtained 5 

from two established eddy covariance grass flux sites, namely, Johnstown Castle and 6 

Dripsey (Kiely et al., 2018; Murphy et al., 2022), and five new sites (as part of the 7 

Terrain-AI project) at Athenry, Ballyhaise, Claremorris, Dunsany and Valentia. Terrain-8 

AI is an on-going large-scale project, which in part focuses on establishing a long-term 9 

network of soil moisture monitoring sites across Ireland. It monitors and measures in 10 

situ soil moisture contents using Time Domain Reflectometry (TDR) sensors installed 11 

at different soil depths. Given that the Terrain-AI sites are new, the VWC 12 

measurements are so far limited to a year, and are prone to outliers because the TDR 13 

probes may require some time for the soil to settle and provide reliable measurements. 14 

In addition, the soil temperature measurements obtained from Met Eireann for the 15 

Terrain-AI sites are not homogenised or quality controlled. Despite the limitations of 16 

the observed data from the Terrain-AI sites, they are the only station observations 17 

available to evaluate our model results. 18 

All the selected sites are distinguished by soil texture (Table 1) and contrasting soil 19 

water regimes (Figure 1 a). For example, Johnstown Castle site is characterized by 20 

seasonally dry and free draining sandy loam soils, whereas Dripsey is dominated by 21 

heavy soils that retains water throughout the year (e.g. Ishola et al., 2020). Half-hourly 22 

or hourly measurements are obtained for 2009-2012 period from Dripsey, 2018 (only 23 

second half of the year), 2019 and 2021 from Johnstown Castle, and the year 2022 for 24 

the Terrain-AI sites. Metadata for each station, outlining soil type, land cover and 25 

altitude are provided in Table 1. 26 

 27 

2.6 Satellite products 28 

Global satellite soil moisture datasets (e.g. ESA-CCI, SMAP, SMOS, and ASCAT) are 29 

often used to evaluate LSM at large spatial scales. Many of these products differ in 30 

terms of the satellite sensors and start of operations, and are subject to data gaps, 31 

coarse resolution and limited coverage (Beck et al., 2021). We use the Soil Water 32 

Index (SWI) products (soil moisture expressed in percentage degree of saturation) 33 

from the fusion of Sentinel-1 C-SAR and Metop ASCAT sensors to evaluate NOAH-34 

MP model at grid scales. The product is produced from ASCAT surface soil moisture 35 

(SSM) using a two-layer water balance model that relates the surface and profile soil 36 

moisture as a function of time (Wagner, 1999; Albergel et al., 2008). We employ the 37 
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operational ASCAT SWI provided at eight different time characteristics (taken as the 1 

soil depths), 1km resolution and daily mean values, from 2015 to 2022. The product is 2 

archived by Copernicus Land Service and has been well validated in previous studies 3 

(e.g. Albergel et al., 2012; Paulik et al., 2014; Beck et al., 2021).      4 

 5 

2.7 Analysis 6 

2.7.1 Model evaluation using in situ data 7 

The half-hourly or hourly station data and model outputs for each grid cell are 8 

aggregated to daily averages to be consistent throughout the analysis. Then, for each 9 

validation site and variable, the daily mean values from the respective model grid cell 10 

are extracted at the model resolution. The daily values of soil temperature and 11 

volumetric water content (both at topsoil 0-7cm) layer are compared against the in situ 12 

measurements. The model estimated values are then evaluated using the Root Mean 13 

Square Deviation (RMSD), Percent Bias (PBIAS) and Pearson’s Correlation 14 

Coefficient (R).  15 

 16 

2.7.2 Model evaluation using satellite data  17 

Given the limited number of in situ sites and scale differences between point 18 

observations and model grid resolution, the general interpretation of model 19 

performance across landscapes should be treated with care. However, the use of 20 

satellite data is a standard practice and a pragmatic way of evaluating model outputs 21 

of soil moisture over large spatial scales (He et al., 2023), notwithstanding the inherent 22 

uncertainty (e.g. coarse resolution and data gaps) of the satellite products. We 23 

evaluate NOAH-MP soil moisture output against ASCAT SWI for the surface and 24 

subsurface layers. To make the NOAH-MP soil moisture comparable with ASCAT SWI, 25 

we derive the grid-scale Relative Soil Moisture (RSM) to vary between 0 for wilting 26 

point and 1 for saturation (e.g. Samaniego et al., 2018) 27 

     𝑅𝑆𝑀𝑖,𝑗,𝑘 = (
𝜃𝑖,𝑗,𝑘−𝜃𝑤𝑖𝑙𝑡𝑖,𝑗

𝜃𝑠𝑎𝑡𝑖,𝑗−𝜃𝑤𝑖𝑙𝑡𝑖,𝑗

)𝑥100        3, 28 

Where 𝜃𝑖,𝑗,𝑘  is the simulated volumetric water content,  𝜃𝑠𝑎𝑡  and 𝜃𝑤𝑖𝑙𝑡  are the soil 29 

moisture at saturation and wilting point, respectively (Figure 3). We obtain RSM values 30 

for both the surface and subsurface soil layers. For the surface, ASCAT SWI-002 data, 31 

which imply the surface soil moisture conditions, are contrasted against the derived 32 

RSM values for the topmost soil depths of 3.5 cm.  The subsurface RSM values are 33 

taken as the mean aggregates of the first three model layers, and are evaluated 34 

against ASCAT SWI-100. Similar metrics used for point-scale evaluation (see Section 35 
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2.7.1) are also calculated at grid scale between the reference datasets and model 1 

outputs for selected dry (2018) and normal (2019) years. 2 

 3 

2.7.3 Soil moisture drought analysis 4 

We also analyse the potential of NOAH-MP for monitoring the evolution of soil moisture 5 

drought across the domain. Since the west-central European summer drought of  2018 6 

was an exceptional event in terms of hydrological extremes across Ireland (Met 7 

Éireann Report, 2018; Falzoi et al., 2019; Moore, 2020; Ishola et al., 2022), we 8 

evaluated the model over this period. We apply grid-scale cumulative RSM values 9 

integrated over three topmost soil layers (0-100 cm) (Section 2.7.2), due to its simplicity 10 

and ease in quantifying and interpreting available soil water. In principle, RSM is an 11 

important drought indicator, particularly at short-time scales, and analogous to the 12 

widely used Soil Moisture Index (SMI) for drought monitoring at different spatial scales 13 

(Samaniego et al., 2018; Grillakis, 2019). 14 

To characterise soil moisture drought, percentiles of RSM values per grid cell are 15 

calculated based on 7-day windows from June to August for the climatology period 16 

2009 - 2022. This amounts to 98 samples (7 days x 14 years) as input per window. For 17 

individual model experiments, STATSGO and SOILGRIDS, the derived spatial RSM 18 

percentiles per day in each window are then classified into different drought categories 19 

(Table 5), following Xia et al. (2014). These categories are currently being used by U.S. 20 

Drought Monitor (USDM) for operational and regionally specific drought monitoring 21 

(Svoboda et al., 2002). 22 

 23 

3. Results 24 

First, we present the analysis of ERA5-Land total annual precipitation in comparison 25 

with station data, to illustrate the level of uncertainty in input meteorology. Figure 4 26 

shows that the seasonal variations and total annual cumulative of precipitation are 27 

reasonably replicated across the selected stations, and for different weather conditions, 28 

including the extended period of no rainfall in 2018 summer (Figure 4 f).  29 

3.1 Model evaluation: Soil moisture 30 

Using station observations 31 

The results of model simulations of volumetric water content (VWC in m3 m-3) for both 32 

STATSGO and SOILGRIDS are presented. Figures 5 and A1 illustrate the temporal 33 

comparisons and error statistics of VWC, respectively. It is important to note that we 34 

are comparing a model areal grid to a measurement point, which are assumed to be 35 

equivalent. The simulations are in closer agreement with the observed VWC at Athenry, 36 

Claremorris and Johnstown Castle with the lowest error statistics (RMSD ≈ 0.1 m3 m-37 
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3, PBIAS < 25%) relative to other stations (Figure A1). The lowest model performance 1 

occurs at Dunsany, Valentia and Dripsey, with RMSD > 0.15 m3 m-3, PBIAS > 30%. 2 

The Pearson’s correlation is generally high, above 0.8, across the measurement sites 3 

except for Ballyhaise and Claremorris. Both experiments broadly underestimate the 4 

observed VWC values, but the model bias is lower in the STATSGO than the 5 

SOILGRIDS experiment, consistent across the stations (Figure A1). These dry biases 6 

(0.15 - 0.4 m3 m-3) are broadly dominated in autumn and winter during which the VWC 7 

values are higher or soil is assumed to be relatively wetter (Figure 5 a-f), except at 8 

Dripsey where the dry biases are systematic throughout the years (Figure 5g). 9 

Conversely, in summer where soil moisture conditions tend to dry in response to 10 

atmospheric changes (e.g. higher global solar radiation and evaporation), VWC 11 

temporal patterns are adequately captured by both model experiments (biases are less 12 

than 0.1 m3 m-3), including the 2018 exceptionally dry summer soil moisture content 13 

(Figure 5f). The differences between STATSGO and SOILGRIDS are relatively small 14 

(< 0.05 m3 m-3) across the year(s).  15 

Figure 5 (boxplot) further illustrates the summary statistics and spread of model 16 

simulations and observed VWC. The mean of observed VWC (≈0.3 m3 m-3) is better 17 

captured in STATSGO than the SOILGRIDS, particularly at Athenry, Ballyhaise, 18 

Claremorris and Johnstown Castle. However, with the mean of observed VWC 19 

exceeding this value, both experiments lead to significant underestimation of VWC, as 20 

evident at Dunsany, Valentia and Dripsey.   21 

Overall, the model experiments closely replicate both the mean and variance of the 22 

measured surface VWC values at Athenry, Claremorris and Johnstown Castle 23 

locations, where the soils are either well- or imperfectly-drained (Figure 1a).  24 

 25 

Using reference ASCAT satellite SWI data 26 

The selected measurement stations are well distributed and represent different soil 27 

moisture regimes across Ireland (Figure 1a). However, given the relatively small 28 

number of stations, generalizing the results to the entire domain may be erroneous. 29 

Instead, model grid cells are individually evaluated against the reference ASCAT 30 

satellite data. Figure 6 shows the results of all Ireland grid-scale model evaluation of 31 

daily derived RSM values against the reference SWI at the surface and subsurface for 32 

2018 dry and 2019 normal years. Median metrics for each soil texture category in 33 

STATSGO and SOILGRIDS are presented in Tables 5 and 6.  34 

As shown in Figure 6 (top) for the 2018 dry year, model performance is broadly better 35 

for STATSGO than for SOILGRIDS, with lower median (black crossbar); RMSD of 36 

around 0.015%, PBIAS of 1% in magnitude of ASCAT SWI, for both surface and 37 
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subsurface RSM grid values. While the Pearson’s R statistic (median around 0.85) for 1 

STATSGO and SOILGRIDS is comparable for the surface layer, the SOILGRIDS 2 

experiment produces a higher R value in the subsurface layer during the dry year. For 3 

the 2019 normal year (Figure 6,  bottom), the spatial distribution of error statistics at 4 

the surface layer is nearly similar for both experiments, with median RMSD of 0.015 %, 5 

PBIAS of around 6 % (1 % for SOILGRIDS) and R of 0.73. At the subsurface layer, 6 

SOILGRIDS produces better results than STATSGO with lower RMSD (0.01 %) and 7 

PBIAS (6%) distributions and higher R statistics (median around 0.76). 8 

The extended tails (positive/negative in PBIAS and lower/higher in RMSD and R) in 9 

the density distribution indicate a relatively small number of isolated (spatial) grid cells 10 

with larger error statistics. Given that the Loam (L) and Sandy Loam (SL) soils 11 

represent the largest proportion of grid cells across the study domain and are relatively 12 

comparable in terms of spatial coverage in STATSGO and SOILGRIDS (Table 2), the 13 

error statistics for these soil texture categories are explained here. For 2018, results 14 

show that both experiments produce lower RMSD and PBIAS error statistics for SL 15 

than L at the surface layer (Table 5). Whereas at the subsurface layer, SOILGRIDS 16 

perform better than STATSGO for both soil categories. For the 2019 normal year 17 

(Table 6), STATSGO gives lower RMSD and PBIAS error statistics than SOILGRIDS 18 

at the surface layer. Overall, model performs better over L soil type than SL based on 19 

the lower PBIAS and higher R values. The RMSD and R statistics are relatively 20 

comparable at the subsurface layer for both the STATSGO and SOILGRIDS 21 

simulations and for L and SL soil categories. However, STATSGO produces lower 22 

PBIAS statistics than SOILGRIDS in L soil. Generally, the error statistics are lower in 23 

L than SL soil at the sub surface layer.  24 

The spatial characteristics of model surface RSM annual mean bias relative to the 25 

reference datasets for the years 2018 and 2019 are illustrated in Figure 7 a-j, and the 26 

long-term seasonal characteristics of topsoil VWC between the experiments are shown 27 

in Figure A2. Wet biases are predominant in the north, characterised as SL in 28 

STATSGO and SOILGRIDS; towards the south and southeast of the domain, the 29 

results shift towards a dry bias, mostly in areas represented by L soils. While the spatial 30 

coverage of model bias is consistent for both experiments and the years, the dry bias 31 

in both years is more pronounced in SOILGRIDS than STATSGO in the affected areas. 32 

Conversely, the wet bias is more widespread in STATSGO than SOILGRIDS.     33 

 34 

3.2 Model evaluation: Soil temperature 35 

Figure 8 (a-g) illustrates model comparisons against the reference station 36 

measurements of top soil temperature, while Figure A3 shows the associated 37 
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evaluation results. Generally, the error statistics (RMSD and PBIAS) for both the 1 

STATSGO and SOILGRIDS experiments are low, and R values are high (above 0.9 2 

across all sites). The model errors are better RMSD < 3 K and PBIAS < 1% in Athenry, 3 

Dunsany, Valentia and Johnstown Castle, than in Ballyhaise, Claremorris and Dripsey 4 

where the errors exceeded these values. Comparatively, SOILGRIDS leads to a 5 

slightly better model performance than STATSGO across the sites.   6 

Additionally, the soil temperature increases from around 280 K in winter to a peak of 7 

about 297 K in summer , and up to 300 K during the extreme hot and dry  summer of 8 

2018 (e.g. Johnstown Castle) (Figure 8f). The spread and variance of the observed 9 

soil temperature are reasonably replicated by both experiments (Figure 8, bottom). 10 

Whereas the mean of observed soil temperature, which is approximately 285 K, is 11 

systematically underestimated by 1 K to 3 K across stations, the peak values in the 12 

mid-summer months are well captured by the experiments (Figure 8a-g). 13 

Overall, both STATSGO and SOILGRIDS produce soil temperature profiles that are 14 

close, but significantly different (p-value < 2.2 x 10-16) and are comparable with 15 

observations for the study year(s) and locations. 16 

Given the reasonable model performance across the selected locations, the grid-scale 17 

model differences between STATSGO and SOILGRIDS in the absence of satellite 18 

reference observations, is further examined (Figure 9). The spatial differences of 19 

surface soil temperature are based on the seasonal long-term climatology from 2009 20 

to 2022. In response to seasonal variations in global solar radiation and VWC, winter 21 

shows the lowest soil temperature (Figure 9 a,e,i), whereas summer is characterised 22 

by the highest soil temperature (Figure 9 c,g,k). The highest soil temperature in 23 

summer are widespread mostly over Loam soil in the south and southeast of the study 24 

domain. The south and east are seasonally drier, experiencing lower rainfall and soil 25 

water deficits in summer (Figures 1a and A4). In other seasons, the spatial 26 

characteristics are irregular. This spatiotemporal evolution of the soil temperature 27 

characteristics is consistent in both STATSGO and SOILGRIDS model experiments. 28 

That is, both soil texture maps produce soil temperature differences that are negligible 29 

mostly in the south and southeast dominated by Loam soils (Figure 9 i-l). However, 30 

STATSGO broadly shows a cold soil temperature bias in Clay and Clay Loam soils, 31 

and a small warm bias over Sandy Loam in the northern border and southwest, relative 32 

to SOILGRIDS. The areas of cold and warm biases broadly coincide with areas of wet 33 

and dry biases of STATSGO VWC in comparison with SOILGRIDS (Figure A2). 34 

 35 

3.3 Spatial and temporal evolution of soil moisture drought 36 
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Figure 10 illustrates the spatial characteristics of 0-100 cm RSM percentiles for 1 

selected days during summer 2018. The days are used to denote the start, peak and 2 

end of summer water deficits (Figure 4 f).   For the first 7-day window ending 07 June, 3 

the southeast and east of Ireland broadly show low drought intensity D0-D1 4 

(abnormal/moderate) in STATSGO, relative to SOILGRIDS with severe drought D2 5 

category. Both experiments are largely consistent in other areas of the study domain. 6 

For example, the major land areas in the north of the island are characterised as 7 

severe drought D2, and D0-D1 in the midlands and west of Ireland. However, the D0-8 

D1 categories are more spatially widespread across the midlands and west in 9 

SOILGRIDS than in STATSGO.  10 

By the middle of  summer 2018 (sixth week ending 12 July), the entire Ireland is 11 

dominated by exceptional drought D4 category in STATSGO, except for the land areas 12 

in the north where the D2 category is sustained over time. These patterns are 13 

consistent in SOILGRIDS except for some areas with higher intensity. For example, 14 

the drought category in the southeast of Northern Ireland shifts from D2 in STATSGO 15 

to D3-D4 (extreme and exceptional) categories, and from D2-D3 (severe and extreme) 16 

category in the southwest of Ireland to D3-D4 drought categories in SOILGRIDS. 17 

Whereas the soil water deficits appear to have improved by the end of summer (week 18 

13 ending 30 August), the landscapes are still largely under different levels of soil 19 

dryness. For example, in STATSGO, moderate drought D1 category broadly 20 

dominates the Loam soil texture areas in the midlands, south and southeast of Ireland, 21 

while a mix of drought D1-D4 categories dominates the west and southwest of the 22 

country. These patterns are consistent in SOILGRIDS, but areas in the northern border, 23 

west and southwest with a sustained D3-D4 categories are wider in SOILGRIDS than 24 

STATSGO. 25 

Figure 11 illustrates the time-areal coverage cross-section of various drought 26 

categories over the domain during the summer period 2018, based on RSM percentiles. 27 

While the landscapes are already under soil water deficits by the start of summer in 28 

June, the largest areal coverage (about 70 % in STATSGO and 80 % in SOILGRIDS) 29 

is dominated by low drought intensities (D0-D2). Approximately 10 % of the domain is 30 

characterised by extreme and exceptional D3-D4 drought, up to the end of June. The 31 

drought intensifies effectively from late June, with higher areal coverage of D4 category 32 

of more than 80 %, extending for several days in STATSGO. This is similar in 33 

SOILGRIDS, however, days in July that show recovery based on a reduced areal 34 

coverage of D3-D4 category in STATSGO, show high coverage of the same intensities 35 

in SOILGRIDS. At the start of August, the areal coverage of high intensity D3-D4 36 

drought has effectively dropped, compensated by an increase in the spatial coverage 37 
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of D0-D2. In the last week of August, the areal coverage of D0-D1 is higher (about 1 

80 %) relative to other drought categories. 2 

 3 

4. Discussions 4 

4.1 Effects of soil hydrophysical properties on simulated soil hydrothermal regimes. 5 

As a consequence of misrepresentation of soil texture classes in LSMs, soil 6 

hydrophysical properties are expected to influence model simulations of changes in 7 

soil moisture content and soil temperature across space and time. In this study, we 8 

investigate the difference between two commonly used global soil texture maps 9 

implemented in NOAH-MP land surface model, namely STATSGO and SOILGRIDS. 10 

The impact of using the default look-up table and PedoTransfer Functions (PTFs) to 11 

prescribe grid-scale soil properties (e.g. porosity, field capacity, wilting point, hydraulic 12 

conductivity, etc.), on simulated surface and subsurface soil hydrothermal changes 13 

during normal period and extremely dry year is further evaluated. The role of these 14 

properties, particularly the field capacity – a measure of water retained in the soil at 15 

the pressure of -0.33 bar, after excess rain water has drained off, are critical in LSMs 16 

that simulate soil hydrophysical processes and interactions with the atmosphere.  17 

At point-scale, the results reveal model differences between dry and wet soil moisture 18 

regimes and are able to fairly replicate the measured values of soil moisture and soil 19 

temperature across a variety of weather conditions, including during extreme water 20 

shortage. While STATSGO is closer to observations than SOILGRIDS, the model 21 

errors between these data sources are marginal but statistically significant (p-value < 22 

2.2 x 10-16) for both variables, notwithstanding the difference in soil physics. Despite 23 

misrepresentation of soil texture class by both sources, for example at Johnstown 24 

Castle (Table 1), the model does reasonably well. However, for a relatively wet site 25 

(e.g. Dripsey) where the soil texture class is accurately represented in both soil 26 

databases, the model systematically underestimates soil moisture content (Figures 5g 27 

and A1). This illustrates that the soil-induced model uncertainty is rarely linked to 28 

misrepresentation of soil texture class, but to the soil physics and the prescribed soil 29 

hydrophysical parameters.  30 

For example, the field capacity (FC) value reported for Johnstown Castle (Table 1) is 31 

0.32 m3 m-3 (Ishola et al., 2020), which is close to the values employed in STATSGO 32 

and SOILGRIDS, and consistent with station measurements (Figures 3 and 4). 33 

However, the observed FC value in Dripsey is approximately 0.42 m3 m-3 (Table 1), 34 

which contrasts the values of approximately 0.31 m3 m-3 used in the models (Figure 3 35 

and 4 bottom) and values reported in Liu et al. (2012) and Ishola et al. (2020) for this 36 

site. The bias in FC limits the ability of the soil to increase the memory of the stores, 37 
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resulting in systematic bias in the simulated VWC. To illustrate the role of prescribed 1 

FC values for Dripsey, the simulated VWC for a neighboring grid cell with a FC of 0.412 2 

m3 m-3 and similar weather condition is evaluated against the measured VWC (Figure 3 

12). A higher FC clearly results in higher VWC values, reducing the bias between 4 

observations and STATSGO by more than 50 % of the value at Dripsey. In contrast, 5 

the maximum FC derived from SOILGRIDS across the domain is 0.34 m3 m-3 (Figure 6 

3), which still lies around the default value, and is not in a proximal grid location to 7 

Dripsey site. Hence, using the same grid cell as above, the SOILGRIDS with PTFs fall 8 

short of this illustration and consequently fail to improve the simulated VWC.  9 

At grid-scale, the STATSGO and SOILGRIDS soil texture data are evidently different, 10 

particularly in the north, west and southwest of Ireland (Figure 2). Notably, the 11 

STATSGO data represents smaller soil grain sizes in most of these areas, relative to 12 

SOILGRIDS. This results in higher values of soil hydrophysical properties in STATSGO, 13 

including porosity and field capacity (Figure 3). The increasing grain size leads to wet 14 

and cold biases in STATSGO, relative to SOILGRIDS in these notable areas (Figures 15 

7, 9 and A2). Similar to our results, It has been demonstrated that a reduction in soil 16 

grain size (e.g. Loam to Sandy Loam) leads to dry and hot biases (decrease in latent 17 

heat flux and increase in sensible heat flux) between two global soil datasets (Dennis 18 

and Berbery, 2021).  19 

 20 

While the choice of PTFs is critical in model simulations of soil water fluxes 21 

(Weihermüller et al. 2021), the default Saxton and Rawls (2006) soil physics produce 22 

properties that are very close to using the look-up table in NOAH-MP model. One 23 

reason for this similarity is that the SOILGRIDS sand and clay compositions produce 24 

Loam and Sandy Loam soil texture, based on USDA classes, and these coincide with 25 

FAO/STATSGO in space with nearly the same areal coverage (Figure 2 and Table 2). 26 

Another reason for similar soil properties between the PTFs and look-up table, is the 27 

default PTFs coefficients which are derived based on USDA soil samples (Saxton and 28 

Rawls, 2006) and may be inaccurate for the study domain; the empirically-derived look-29 

up table is also based on soil samples in the US. The net effect of similar but inaccurate 30 

soil properties is the significant under-representation of soil hydrothermal regimes in 31 

wet soils as illustrated in Figures 5 and 7. This aligns with Vereecken et al. (2010) who 32 

demonstrated that PTFs are highly accurate over the areas for which they have been 33 

developed, but have limited accuracy if transferred outside these areas. 34 

The overall results indicate that there is a major impact of under-represented soil 35 

hydrophysical parameters, particularly in relatively wet sites, regardless of the source 36 

of global soil texture map and soil physics option implemented in NOAH-MP. The 37 
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discrepancies between STATSGO and SOILGRIDS exert great regional impacts on 1 

the soil hydrothermal regimes.  2 

 3 

4.2 Implications for regional drought monitoring 4 

Soil moisture content is an essential variable in many hydrological applications and in 5 

understanding the evolution and characteristics of extreme climate events such as 6 

droughts. Instead of heatwaves, the study domain is rather subject to rainfall extremes 7 

(Noone et al., 2017), a precursor of soil water deficits and droughts; the intensity and 8 

frequency of which have been projected to increase globally and in the study domain 9 

by the end of century (Seneviratne et al., 2012; Fealy et al., 2018).   10 

In this study, the drought analysis are based on the cumulative RSM percentiles 11 

aggregated over three uppermost soil layers (0-100 cm) for 2018 summer hydrological 12 

extremes for STATSGO and SOILGRIDS (Figures 10-11). The 0-100 cm depth is 13 

sufficient for drought assessment since the root zone of many crops grown across the 14 

world does not surpass 1.0 m in depth (Fan et al., 2016; Grillakis et al., 2019). 15 

Both STATSGO and SOILGRIDS are largely consistent in terms of the evolution of soil 16 

moisture drought in space and time. However, SOILGRIDS shows higher drought 17 

intensity in the many areas, relative to STATSGO. This is due to the dry bias of 18 

SOILGRIDS associated with underrepresented soil hydrophysical properties and 19 

simulated VWC (Figures 3 and A2). During the summer of 2018, particularly from late 20 

May to late July, Ireland was reported to have experienced different degrees of 21 

meteorological droughts (rainfall deficits) (Figure 4 f) ranging from dry spells to 22 

absolute droughts (Met Éireann Report, 2018; Falzoi et al., 2019; Moore, 2020). 23 

Meteorological droughts precede soil moisture/agricultural droughts through reduction 24 

in soil water storage and available water for plant uptake, our results indicate that 25 

extreme to exceptional soil moisture droughts are only effective from last week in June, 26 

covering the large part of the domain by mid-July (Figure 11). During August, rainfall 27 

improved soil water stores (Figure 4 f) and weakened drought conditions across much 28 

of the country, particularly in the north and west (Met Éireann Report, 2018; Moore, 29 

2020).  30 

Overall, the discrepancies between STATSGO and SOILGRIDS impacts drought 31 

characteristics mostly in space, with SOILGRIDS shifting the 32 

abnormal/moderate/severe droughts in STATSGO to extreme/exceptional droughts. 33 

These may result in erroneous or potential loss of vital information with dire 34 

consequences on ecosystems with regards to predicting the response and productivity, 35 

as drought stress has been highlighted as the primary factor limiting ecosystem 36 

response and productivity (De Boeck et al., 2011). 37 
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 1 

 2 

5. Conclusions 3 

In this study, the usability of two global soil datasets for representing soil processes in 4 

NOAH-MP model and simulating soil hydrothermal variations and associated extremes, 5 

has been evaluated across all of Ireland. Specifically, FAO/STATSGO dominant soil 6 

texture categories linked to an empirically-derived soil hydrophysical properties from a 7 

look-up table (default in WRF), are compared with PedoTransfer Functions (PTFs) that 8 

ingest an alternative SOILGRIDS sand and clay compositions at four soil layers. 9 

Through temporal comparison with in situ soil moisture and soil temperature 10 

observations, it has been found that, both soil datasets can fairly replicate the general 11 

soil hydrothermal variations. However, they under-represent the soil properties (e.g. 12 

field capacity) in wet loam soil, leading to systematic dry bias in soil moisture. The 13 

results have further shown that there is no distinct difference between the soil physics 14 

applied to the same soil texture category in both STATSGO and SOILGRIDS. But, the 15 

disparities and sensitivity to soil physics increase for different soil texture categories 16 

between the datasets.  17 

Through spatial comparison with satellite-based ASCAT SWI, dry bias is more 18 

pronounced and widespread in the midland, south and east in SOILGRIDS, while wet 19 

bias dominates the west and north. As a consequence, 2018 summer soil moisture 20 

droughts broadly intensify more in SOILGRIDS than in STATSGO. These disparities 21 

may result in misinformation that could hamper adequate and effective preparation and 22 

response during drought episodes. While identifying the better soil database is not the 23 

primary objective of this study, STATSGO performs slightly better than SOILGRIDS. 24 

Overall, the study highlights the shortcomings of global soil databases in simulating 25 

soil hydrothermal changes and underscore the need to optimize and improve global 26 

soil hydrophysical properties that are ingested in LSMs for better performance. 27 

Developing detailed regional soil texture properties may be more realistic and enables 28 

more improvement in model simulations. Ultimately, this would advance the 29 

understanding of the role of soil processes in hydrologic cycle, ecosystem productivity, 30 

drought evolution, land-atmosphere interactions and regional climate. 31 

A number of initiatives (e.g. Terrain-AI) has been developed to deploy soil moisture 32 

measuring network across Ireland to address the lack of soil moisture observations. A 33 

significant conclusion of this study is that the NOAH-MP model has shown an excellent 34 

capacity to ingest better alternative soil texture data, to reduce the model biases of soil 35 

hydrothermal changes and evolution of soil moisture drought. Therefore, it can be 36 

applied to augment current network of sites across the country for operational modeling 37 
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and real-time forecasting of soil moisture conditions and drought across the domain. 1 

This will support hydrometeorological monitoring similar to Global Food Awareness 2 

System (GloFAS) and NASA’s Short-term Prediction Research and Transition with 3 

Land Information System (SPoRT-LIS). 4 

 5 

Code and data availability 6 

The open-source HRLDAS/NOAH-MP model is freely available on github 7 

(https://github.com/NCAR/hrldas). The ERA5-Land hourly input meteorological forcing were 8 

downloaded from the climate data store (https://cds.climate.copernicus.eu/). The WPS 9 

geographical data were downloaded from NCAR (https://ral.ucar.edu/model/noah-10 

multiparameterization-land-surface-model-noah-mp-lsm). 2018 Corine land use and satellite 11 

ASCAT soil water index are freely available on Copernicus Global Land Service 12 

(https://land.copernicus.eu/global/index.html). In situ data for the selected sites were obtained 13 

from Met Eireann, Ireland and from the European fluxes database cluster (http://www.europe-14 

fluxdata.eu).  15 
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Table 1. Summary of locations of in situ measurements. The station land cover and elevation data are 1 

obtained from Met Eireann service. The station soil texture data for Johnstown Castle and Dripsey are 2 

obtained from previous work (Kiely et al., 2018; Murphy et al., 2022), and soil texture map from the 3 

Irish Soil Information System (Creamer et al., 2014) are used for the in situ Terrain-AI sites 4 

Sites   Lon/Lat  Elevation  Field   Soil texture category 5 
      (o)       (m)   Capacity  In-situ STATSGO SOILGRIDS 6 
Athenry  -8.786/    40.0     -   Loam  Loam  Loam 7 

53.2892 8 
 9 
Ballyhaise  -7.309/    78.0     -   Loam  Clay-  Loam 10 

54.0513           Loam  11 
 12 
Claremorris -8.992/    68.0     -   Sandy-  Loam  Loam  13 

53.7108        Loam 14 
 15 
Dunsany  -6.660/    83.0     -   Loam  Loam  Loam 16 

53.5158 17 
 18 
Valentia  -10.244/    25.0     -   Sandy-  Sandy-  Loam 19 

51.9397        Loam  Loam 20 
 21 
Johnstown -6.505/    52.0  0.32   Sandy-  Loam  Loam 22 
Castle  52.2981        Loam 23 
 24 
Dripsey  -8.752/   190.0  0.42   Loam  Loam  Loam 25 

51.9867 26 
 27 

Table 2. Percentage proportion of grids covered by soil texture categories  28 
for STATSGO and SOILGRIDS databases used. 29 
Soil texture    STATSGO   SOILGRIDS 30 

(%)      (%) 31 

Sandy Loam      16.4     27.0 32 

Loam       57.8     71.5 33 

Sandy Clay Loam          0          1.4 34 

Clay Loam         19.5      0.1 35 

Clay            6.3        0 36 
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Table 3. Summary of NOAH-MP physical options used in this study 1 

Physical processes     Options 2 

Vegetation      (4) Prescribed LAI + Prescribed max FVEG 3 

Canopy stomatal resistance   (1) Ball-berry  4 

        (2) Jarvis 5 

Soil moisture factor     (1) Noah 6 

Runoff and groundwater    (3) Noah (free drainage) 7 

Surface layer drag     (1) Monin-Obukhov 8 

Radiation transfer     (3) Gap=1-FVEG 9 

Snow surface albedo    (2) CLASS 10 

Precipitation partition    (1) Jordan (1991) 11 

Lower boundary soil 12 

temperature      (2) Soil temperature at 8m depth 13 

Snow/soil temperature time   (1) Semi-imiplicit 14 

Surface resistance     (1) Sakaguchi and Zeng (2009) 15 

Soil data       (1) Dominant soil texture 16 

        (3) Soil composition and PedoTransfers 17 

PedoTransfers      (1) Saxton and Rawls (2006) 18 

 19 

 20 

 21 

Table 4. Definitions of drought categories based on Relative Soil Moisture (RSM) percentiles  22 

ID   RSM percentile  Descriptions 23 

Dryness 24 

D0   ≤ 30    Abnormal  25 

D1   ≤ 20    Moderate  26 

D2   ≤ 10    Severe  27 

D3   ≤ 5    Extreme  28 

D4   ≤ 2    Exceptional  29 

Wetness 30 

W0   ≥ 70    Abnormal 31 

W1   ≥ 80    Moderate 32 

W2   ≥ 90    Severe 33 

W3   ≥ 95    Extreme 34 

W4   ≥ 98    Exceptional 35 

 36 

 37 
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Table 5. Performance statistics of Relative Soil Moisture (RSM) for various soil texture categories at 1 

the topsoil (0 – 10 cm) and subsurface (0 – 100 cm) in STATSGO and SOILGRIDS for 2018 year. The 2 

errors are the median grid values.  SL- Sandy Loam, L – Loam, SCL – Sandy Clay Loam, CL – Clay Loam, 3 

C – Clay. 4 

Soil    RMSD    PBIAS     R 5 

texture STATSGO SOILGRIDS STATSGO SOILGRIDS STATSGO SOILGRIDS 6 

Surface  7 

SL  0.016 0.016  -3.0  5.3   0.82  0.80 8 

L  0.018 0.018  -7.8  -4.5   0.84  0.84 9 

SCL    -  0.017   -  -6.0      -  0.84 10 

CL  0.016 0.016  11.0  4.6   0.79  0.86 11 

C  0.017   -   9.7     -   0.82    - 12 

Subsurface 13 

SL  0.016 0.015  2.9  3.6   0.56  0.61 14 

L  0.016 0.015  -1.9  -0.5   0.57  0.59 15 

SCL    -  0.015   -  2.0     -  0.62 16 

CL  0.014 0.015  4.5  -3.3   0.62  0.58 17 

C  0.014   -   -1.3     -   0.61   - 18 

 19 

 20 

Table 6. Performance statistics of Relative Soil Moisture (RSM) for various soil texture categories at 21 

the topsoil (0 – 10 cm) and subsurface (0 – 100 cm) in STATSGO and SOILGRIDS for 2019 year. The 22 

errors are the median grid values. SL- Sandy Loam, L – Loam, SCL – Sandy Clay Loam, CL – Clay Loam, C 23 

– Clay. 24 

Soil    RMSD    PBIAS      R 25 

texture STATSGO SOILGRIDS STATSGO SOILGRIDS STATSGO SOILGRIDS 26 

Surface  27 

SL  0.015 0.016  3.6  9.8   0.68  0.66 28 

L  0.016 0.016  1.2  5.2   0.72  0.71 29 

SCL    -  0.016   -  4.8        -  0.67 30 

CL  0.019 0.018  21.2  18.0   0.61  0.81 31 

C  0.019   -   20.1     -   0.79   - 32 

Subsurface 33 

SL  0.013 0.012  17.8  16.7   0.61  0.63 34 

L  0.011 0.012  13.8  16.4   0.68  0.71 35 

SCL    -  0.013    -  19.1     -  0.73 36 

CL  0.013 0.011  20.5  16.1   0.73  0.76 37 

C  0.012   -   16.1     -   0.77    - 38 

https://doi.org/10.5194/hess-2023-304
Preprint. Discussion started: 30 April 2024
c© Author(s) 2024. CC BY 4.0 License.



28 

 

 

     1 
Figure 1. [a] Geographical locations of the selected in situ grassland sites overlaid on Ireland’s 2 
map of soil drainage categories. [b] Refined map of 2018 Corine to MODIS land cover classes 3 
for the study domain.  4 

 5 

 6 
Figure 2. [a-b] Soil textural classes for the study domain based on global soil databases, namely 7 
FAO/STATSGO and SOILGRIDS. [c] Spatial differences in the soil texture categories between 8 
STATSGO and SOILGRIDS, indicating increasing or decreasing soil grain size. 9 
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 1 
Figure 3. Spatial characteristics of absolute and difference between STATSGO and 2 
SOILGRIDS for [a-c] soil porosity, [d-f] field capacity and  [g-i] wilting point.  3 
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 1 
Figure 4. Temporal comparisons of observed total annual cumulative precipitation at the 2 
selected reference stations, against the ERA5-Land colocated grids. 3 
 4 
 5 
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 2 
Figure 5. [a-g] Temporal comparisons of volumetric water contents and boxplots of data 3 
distribution, between observations and simulated values for the selected reference stations. 4 
The black dots in the boxes represent the mean values 5 
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 1 
Figure 6. Performance statistics for STATSGO and SOILGRIDS derived Relative Soil Moisture 2 
(RSM) values at the topsoil layer (0-7 cm) and subsurface soil layer (0-100 cm), against 3 
satellite-based ASCAT Soil Water Index (SWI), for 2018 (top) and 2019 (bottom) years.  N = 4 
131,000 cells and the black crossbars are the median values. 5 
 6 
 7 
 8 

 9 
Figure 7. Spatial characteristics of absolute and difference between satellite-based annual 10 
ASCAT Soil Water Index (SWI) and model derived annual mean Relative Soil Moisture (RSM) 11 
at the surface , for [a-e] 2018 and [f-j] 2019 years  12 
 13 
 14 
 15 
 16 
 17 
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 2 
Figure 8. [a-g] Temporal comparisons of soil temperature and boxplots of data distribution, 3 
between observations and simulated values for the selected reference stations. The black dots 4 
in the boxes represent the mean values 5 
 6 
 7 
 8 
 9 
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 1 
Figure 9.  Spatial and seasonal characteristics of simulated top (0-7 cm) soil temperature using 2 
STATSGO [a-d], SOILGRIDS [e-h] and the difference [i-l], for the period 2009 - 2022. Rows [1-3 
4] represent the Winter to Autumn seasons in that order. 4 
 5 
 6 
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 2 

Figure 10. Spatial characteristics of soil moisture drought categories derived using 0 – 100 cm 3 
Relative Soil Moisture percentiles for STATSGO [top] and SOILGRIDS [bottom] for 2018 4 
summer. D0-D4 represents abnormally dry, moderate, severe, extreme and exceptional 5 
droughts, while W0-W4 is the corresponding wetness categories. 6 
 7 
 8 
 9 
 10 
 11 
 12 
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 2 
 3 

Figure 11. Time-areal coverage crossection of drought evolution based on daily 0 – 100 cm 4 
Relative Soil Moisture (RSM) percentiles during 2018 summer for STATSGO [top] and 5 
SOILGRIDS [bottom].  D0-D4 represents abnormally dry, moderate, severe, extreme and 6 
exceptional droughts. The dashed vertical lines represent the effective start of severe to 7 
exceptional droughts. 8 
 9 

 10 
Figure 12. Temporal comparisons of observed volumetric water content (VWC) at Dripsey 11 
site, against the simulated values for a nearby grid location with field capacity of 0.412 m3 m-3. 12 
 13 
Appendix 14 
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 1 
Figure A1. Error statistics of volumetric water contents between observations and model 2 
experiments for the selected reference stations. 3 
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Figure A2. Spatial and seasonal characteristics of simulated top soil (0-7 cm) volumetric water 2 
content (VWC) using STATSGO [a-d], SOILGRIDS [e-h] and the difference [i-l], for the period 3 
2009 - 2022. Rows [1-4] represent the Winter to Autumn seasons in that order 4 
 5 
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 1 
Figure A3. Error statistics of soil temperature between observations and model experiments 2 
for the selected reference stations. 3 
 4 
 5 
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