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 12 

Abstract 13 

Soil properties and their associated hydro-physical parameters represent a significant 14 

source of uncertainty in Land Surface Models (LSMs) with consequent effects on 15 

simulated sub-surface thermal and moisture characteristics, surface energy 16 

exchanges and turbulent fluxes. These effects can result in large model differences 17 

particularly during extreme events. Typical of many model- based approaches, spatial 18 

soil information such as location, extent and depth of soil textural classes are derived 19 

from coarse scale soil information and employed largely due to their ready availability 20 

rather than suitability. However, the use of a particular spatial soil dataset hascan have 21 

important consequences for many of the processes simulated within a LSM. This study 22 

investigates NOAH-MP model uncertainty in the NOAH-MP model in simulating soil 23 

moisture (expressed as a ratio of water to soil volume, m3 m-3) and soil temperature 24 

changes associated with two widely used global soil databases (STATSGO and 25 

SOILGRIDS) across the Island of Ireland. Both soil datasets produced a significant dry 26 

bias in loam soils, up toof 0.15 m3 m-3 in a wet period and 0.10 m3 m-3 during a wet and 27 

in a dry period, respectively. The spatial disparities between STATSGO and 28 

SOILGRIDS also influenced the simulated regional soil hydrothermal changes and 29 

extremes. SOILGRIDS was found to intensify drought characteristics - shifting 30 

low/moderate drought areas into the extreme/exceptional classificationduring dry 31 

periods   -  relative to STATSGO. Our results demonstrate that the coarse STATSGO 32 

performs as good as the fine-scale SOILGRIDS soil database, though the latter 33 

representedimproved the soil moisture dynamics better. However, the results 34 

underscore the need to develop detailed regionally-derived soil texture characteristics, 35 

and for better representations of soil physicsroperties in LSMs to improve operational 36 

modeling and forecasting of hydrological processes and extremes.  37 

 38 
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1. Introduction 4 

The pedosphere (or soil) is an important component of the Earth system and plays a 5 

critical role in energy, water and biogeochemical exchanges that occur at the land-6 

atmosphere interface (Dai et al., 2019a;b). The accurate description and 7 

representation of soil textural categories and/or soil hydro-physical properties is 8 

fundamental to developing and enhancing Earth system modeling (ESM) capacity in 9 

predicting land surface exchanges at different scales (Luo et al., 2016; Dai et al., 10 

2019a,b). This information is incorporated via the respective land surface model (LSM) 11 

– the only physical boundary in an ESM and is a key component of any ESM framework 12 

(Fisher and Koven, 2020; Blyth et al., 2021). However, accurate descriptions of soil 13 

properties in LSMs are difficult to obtain due to the limited availability of high resolution 14 

global-scale soil texture measurements or lack of regionally specific measured soil 15 

properties (e.g. Kishné et al. 2017; Dennis and Berbery, 2021; 2022). This represents 16 

a key limitation and is a source of model uncertainty in current LSMs (Li et al., 2018; 17 

Zhang et al, 2023), and consequently weather and climate models. 18 

 19 

In many LSMs, soil hydrothermal properties such as saturated soil thermal and 20 

hydraulic conductivity and diffusivity, porosity, field capacity, wilting point, saturated 21 

soil matric potential, etc. are linked to soil textural classes/compositions in one of two 22 

ways. Typically, models employ a model-prescribed look-up table, with values that are 23 

empirically derived from often limitedexisting/available in extent(e.g. geographically 24 

and data limited) in-situ soil surveys, to associate mean or typical soil properties with 25 

each soil typecategory. The soil categories are identified by grouping soil samples with 26 

similar properties using particle size analysis (e.g. Gee and Bauder, 2018). While this 27 

option is computationally efficient, it relies on the assumptiones that the derived values 28 

are globally transferable; whichthis may is not likely to be realistic as soil properties 29 

vary both horizontally and vertically, depending on parent materials, climate, age, 30 

management etc. This approach is also dependent on having access to soil texture 31 

maps; the accuracy, scale and extent of which varies between different soil databases 32 

(Zhao et al., 2018; Dai et al., 2019a,b; Dennis and Berbery, 2022). In spite of this, the 33 

use of readilyreadily available global soil texture maps, in combination with model look-34 

up tables, is a standard practice in ESM research. As an alternative approach, new 35 

state-of-the-art global soil information datasets are being explored to constrain and 36 

potentially improve the representation of soil processes within LSMs (e.g. de Lannoy 37 

https://journals.ametsoc.org/view/journals/hydr/23/5/JHM-D-21-0101.1.xml#bib32
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et al., 2014; Shangguan et al., 2014; Hengl et al., 2017; Looy et al., 2017; Dennis and 1 

Berbery, 2021;2022; Xu et al., 2023). For some LSMsFor example, soil hydro-thermal 2 

properties can be estimated from a set of equations known as PedoTransfer Functions 3 

(PTFs) that require information on soil composition such as sand, silt and clay 4 

composition and  organic matter (Looy et al., 2017; Dai et al., 2019a,b).  5 

The existing PTFs are have been derived based on a variety of different approaches 6 

(Looy et al., 2017) including, physically-based relationships or advanced statistical 7 

approaches based onusing machine learning, random forest and neural networks 8 

(Lehmann et al., 2018; Zhang et al., 2018; Or and Lehmann, 2019; Szabó et al. 2019) 9 

and. Clearly, the existing PTFs vary in complexity. Thus, tWhile the choice of PTFs 10 

partly depends on the availability of inputs, (Weihermüller et al., 2021) and they 11 

havehas been reported to impact soil moisture simulations, with consequent effects on 12 

the surface energy and water fluxes, land-atmosphere coupling, atmospheric moisture 13 

budget, boundary layer evolution and simulation of regional climates (e.g. Dennis and 14 

Berbery, 2021; 2022; Weihermüller et al. 2021; Xu et al., 2023; Zhang et al., 2023). 15 

Moreover, as soil moisture affects land-atmosphere interactions, largely through its 16 

control on the evaporative fraction (e.g. Seneviratne et al., 2010; Ishola et al., 2022), 17 

soil hydrophysical properties play an important role in simulatingdetermining the land 18 

surface response to climate extremes (e.g. droughts) (He et al., 2023; Zhang et al., 19 

2023). Weihermüller et al. (2021), using the HYDRUS-1D model, reported that soil 20 

hydraulic properties estimated from different PTFs resulted in substantial variability in 21 

the predicted model estimated water fluxes. In this context, Dennis and Berbery (2021) 22 

and Dennis and Berbery (2022) employed soil properties derived from two different 23 

sources, the STATSGO and the Global Soil Dataset for Earth System Modelling 24 

(GSDE), in both the Weather and Research Forecasting (WRF) and Community Land 25 

Model (CLM) models., and They found soil texture-related differences in the surface 26 

fluxes that can could lead to differences in the evolution of boundary layer 27 

thermodynamic structure and development of precipitation, findings consistent with 28 

development. This finding is further supported by (e.g. Zhang et al., ((2023). The use 29 

of new soil information, such as POLARIS and the 250 m SoilGrids, has been found to 30 

improve the performance of LSMs (Xu et al., 2023), but based on a limited number of 31 

studies.  32 

Zhang et al. (2023) was one of the first to The first effort to implement SoilGrids in the 33 

NOAH-MP LSMcoupled WRF Hydrological Modelling system (WRF-Hydro), of which 34 

NOAH-MP is the land surface model, to was recently evaluate the role ofd four different 35 

global soil datasets on land atmosphere interactions over Southern Africa (Zhang et 36 

al., 2023). While Zhang et al. (2023) found that the ensemble of model simulations, 37 

https://journals.ametsoc.org/view/journals/hydr/23/5/JHM-D-21-0101.1.xml#bib65
https://journals.ametsoc.org/view/journals/hydr/23/5/JHM-D-21-0101.1.xml#bib73
https://journals.ametsoc.org/view/journals/hydr/23/5/JHM-D-21-0101.1.xml#bib73
https://journals.ametsoc.org/view/journals/hydr/23/5/JHM-D-21-0101.1.xml#bib73
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based on the different soil data inputs, was able to reasonably reproduce the spatial, 1 

and spatio-temporal, patterns of the surface hydrometeorological fields investigated, 2 

soil texture differences, specifically those associated with differences inthe soil 3 

properties, were found to directly impact model estimated soil moisture, with 4 

associated impacts on skin and air temperature and sensible heat fluxes. Importantly, 5 

for the study and domain outlined here, the effects of different soil texture datasets on 6 

soil moisture were found to decrease with increasing aridity (Zhaeng and Yang, 2016; 7 

Zhang et al., 2023). Consequently, the authors highlighted the need to consider study 8 

location and background climate in addition to the different schemes for estimating soil 9 

hydro-thermal processes with a model. While it is widely recognized that LSMs will 10 

respond to changes in other drivers, such as vegetation (e.g. albedo, surface 11 

roughness length, etc.) and meteorological forcing (Arsenault et al., 2018; Hosseini et 12 

al., 2022), it is critical to understand and potentially quantify the role of soil properties 13 

on model sensitivity.. 14 

 15 

Here we focus on the response of the NOAH-MP LSM specifically, without an 16 

atmospheric model component (i.e. WRF), to two different soil data and schemes for 17 

calculating soil parameters with the objective of evaluating the model estimation of the 18 

land surface fields. Our study, while complementary to Zhang et al. (2023), seeks to 19 

expand the discussion by focusing on a region that is typically energy rather than water 20 

limited, has intensively managed landscapes and is under a very contrasting climate 21 

regime. Additionally, we employ an alternative approach to derive model relevant soil 22 

parameters, using pedo transfer functions, and incorporate additional data sources for 23 

evaluation of the model responses. Critically, we focus on specific weather eventstwo 24 

contrasting years when model differences are likely to be largest. 25 

 26 

Due to its maritime climate, Ireland lies in a temperate region with cool temperatures 27 

year round and no marked seasonality to precipitation. As a consequence, growing 28 

conditions are near optimal, particularly for agricultural or managed grasslands which 29 

account for almost 60 % of the total land area. The country has relatively young (<12-30 

15 Kyrs) and heavily managed soils that are very heterogeneous over small spatial 31 

scales. In spite of the maritime climate, variations in the dominant soil categories 32 

across the country mean that some locations experience periodic/seasonal soil 33 

moisture deficits, particularly in the sandy soils located in the south-east of the island 34 

and which experience typically drier and sunnier summer periods, relative to the rest 35 

of the country.  To the north and west, soils tend to have higher clay contents, which 36 

can act as a buffer to prolonged periods of reduced precipitation or become 37 
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waterlogged during wet periods. The complexity of Ireland’s soil landscapes and 1 

climatological regime provide new impetus to test the impact of different soil data 2 

representations on LSM simulations, particularly within the context of understanding 3 

how projected future changes in the frequency and intensity of drought events may 4 

spatially impact maritime temperate locations, such as Ireland. 5 

               Recently, Xu et al. (2023) demonstrated that using state-of-the-art soil 6 

information, such as POLARIS and the 250 m SoilGrids, can improve the performance 7 

of LSMs. 8 

Here we focus on the response of the NOAH-MP LSM to soil information with the 9 

objectives of evaluating the model representation of land surface fields; however, a 10 

LSM will also respond to changes in other drivers, such as vegetation (e.g. albedo, 11 

surface roughness length, etc.) and meteorological forcing (Arsenault et al., 2018; 12 

Hosseini et al., 2022).   The first effort to implement SoilGrids in NOAH-MP LSM was 13 

recently evaluated over Southern Africa (Zhang et al., 2023). Our study differs from 14 

the previous effort in terms of climatic region, nature of the managed and highly 15 

heterogeneous soil landscapes, soil physics, new data sources and focus on specific 16 

weather events.  17 

Due to its maritime climate, Ireland lies in a temperate region with cool temperatures 18 

year round and no marked seasonality to precipitation. As a consequence, growing 19 

conditions are near optimal, particularly for grasslands which account for almost 60 % 20 

of the total land area. The country also has far younger soils that are heterogeneous 21 

over small spatial scales, as a result experiences periodic/seasonal soil moisture 22 

deficits, particularly in the sandy soils located in the south-east of the island, despite 23 

its maritime climate. To the north and west, soils tend to have high clay content, which 24 

can act as a buffer to prolonged dry periods. The complex Ireland’s soil landscapes 25 

provide new impetus to test the impact of different state-of-the-art global soil data 26 

representations on LSM simulations.  27 

Additionally, the use of new and more networks of in-situ soil moisture observations, 28 

covering different soil characteristics across Ireland, and high-resolution spatially and 29 

temporally consistent satellite soil moisture products derived from fusing Sentinel-1 C-30 

SAR and Metop ASCAT, allows us to more robustly evaluate the efficacy of the models 31 

in representing complex soil regimes. Compared to the work of Zhang et al. (2023), we 32 

evaluated different soil physics, including those based on PTFs, to provide insights into 33 

advancing soil hydrothermal extremes by evaluating the added benefit of vertical soil 34 

properties derived from 250 m SOILGRID maps. We also focus on the ability of the 35 

land surface model – NOAH-MP, which provides the only physical boundary to WRF 36 

climate model, to estimate soil hydro thermal properties under both mean and extreme 37 
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conditions. Therefore, the current contribution, while strongly complementary to Zhang 1 

et al. (2023), is novel in application and important for a global audience. 2 

 3 

 4 

 5 

 6 

 7 

 complements the previous effort by evaluating the impact of combining the SoilGrids 8 

soil compositions with PTFs.   Specifically, we focus on the impact of two different soil 9 

datasets on simulations of soil moisture and temperature during a period of normal and 10 

dry weather conditions.  11 

 12 

2. Data and Methods 13 

2.1 Background context of Ireland 14 

The  Ireland is situated in a maritime temperate region where the climate here is 15 

predominantly influenced by the moist mid-latitude westerliesy warm airflowthat blow 16 

off the North Atlantic Ocean, and occasional incursions of cold air masses during winter 17 

(Peel et al., 2007). The long-term (1981-2010) average daily maximum temperature of 18 

the region is between 18° and 20°C in summer and 8 oC in winter. Occasionally, the 19 

daily minimum mean temperature drops below 0 oC in autumn and winter. Rainfall is 20 

distributed throughout the year with a mean annual value of 1200 mm. The west of 21 

Ireland typically experiences higher rainfall amounts (1000-1400 mm), and maycan 22 

exceed 2000 mm in the upland areas. Conversely, the east experiences lower rainfall 23 

amounts, between 750 and 1000 mm. More detailed information on the background 24 

climate of Ireland is provided in Walsh (2012). Although these are typical climatic 25 

conditions in Ireland, the country is also prone to extreme weather events. For instance, 26 

the summer of 2018 was an exceptionally warm and dry period, associated with 27 

weakened jet stream and persistent region of high pressure over north western Europe; 28 

it was followed by a return to normal conditions in 2019. More details on the 29 

background climate of Ireland are provided in Walsh (2012). In relation to the general 30 

soil information (Figure 1a), the south-east is characterized mainly byas having 31 

relatively free draining sandy soils;, peat soils dominate the mountains, hills and 32 

western edge of the country, while limestone-rich soils dominate the midlands and 33 

south (Creamer et al., 2014). Among the land cover use types (Figure 1b), agricultural 34 

grassland dominates the agricultural and total land area in Ireland, accounting for an 35 

estimated 59% of the total land use. The temperate climate in combination with fertile 36 

soils, mostly in the south and east where the soils are free draining, provides conditions 37 
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that are favourable to near year round grass growth, particularly in the coastal margins 1 

and along the south coast. However, cooler temperatures and the heavy clay (wet) 2 

soils limit the grass growthing season (early to mid-March) in the westuplands, 3 

midlands and north of the country (Keane and Collins, 2004). 4 

 5 

2.2 Model description 6 

Here, we employ the advanced community NOAH-MP land surface model with multi-7 

parameterization parameterisation options, with improved representation of physical 8 

processes (Chen et al., 1996; Niu et al., 2011). The model is available as ancan be 9 

run in uncoupled modelmode, with the capacity to simulate different land state 10 

variables (e.g. soil moisture) and land energy, water and carbon fluxes. It also 11 

represents a LSM that is coupled with numerous atmospheric and hydrological models, 12 

includiing such as the community based Weather Research and Forecasting (WRF) 13 

model (Barlage et al., 2015). Due to its simplicity inthe potential for selecting and 14 

combining multi-physics options, the model has been widely used for a range of 15 

different research applications, including natural hazards, drought and wildfire 16 

monitoring, land-atmosphere interactions, sensitivity and uncertainty quantification, 17 

biogeochemical processes, water dynamics, dynamic crop growth modeling, and soil 18 

hydrothermal processes. (e.g. Zhuo et al., 2019; Kumar et al., 2020; Chang et al., 2022; 19 

Hosseini et al., 2022; Nie et al., 2022; Warrach-Sagi et al., 2022; Hu et al., 2023).  20 

 21 

In NOAH-MP LSM, the major improvements in mechanisms relevant to soil processes 22 

are (1) ability to distinguishing less and more permeable frozen soil fractions, (2) 23 

introducing the introduction of an alternative lower boundary soil temperature that is 24 

based on zero heat flux from the deep soil bottom, (3) the adding addition of 25 

TOPMODEL and SIMGM models for runoff and groundwater physics options (Niu et 26 

al., 2007);, and (4) adding the inclusion of an unconfined aquifer beneath the 2 m 27 

bottom of the soil layer to account for water transport between the soil and aquifer. 28 

Relative to other LSMs, the NOAH-MP model framework is typical in its ability to define 29 

soil properties either by using the dominant soil texture class (e.g. USDA)e,  linked to 30 

laboratory or empirically-derived soil parameter values, using soil texture with varying 31 

depths, or using soil texture (proportions) compositions derived usingin combination 32 

with PTFs (e.g., Saxton and Rawls, 2006). Of these, the former is most commonly 33 

employed, in combination with readily available global soil information.  34 

 35 

The prognostic equations from Mahrt and Pan (1984) are used to describe soil 36 

moisture and soil temperature in the model (Chen et al., 1996). 37 
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where C is the volumetric heat capacity, 𝜃 is the soil moisture, C is the volumetric heat 8 

capacity, T is the soil temperature, and K and Kt are the hydraulic and thermal 9 

conductivities, respectively. D is the soil diffusivity and 𝐹𝜃 are the sinks and sources of 10 

soil water, that is, evaporation and precipitation. C, D, K and Kt are functions of soil 11 

texture and soil moisture 12 

 13 

2.3 Gridded data 14 

Meteorological variables which are required as initial and forcing conditions are were 15 

obtained from the European Centre for Medium-Range Weather Forecasting (ECMWF) 16 

database. We employ the state-of-the-art ECMWF ERA5-Land global reanalysis 17 

product that provides data at 0.1o (~96 km at 52oN) spatial and hourly temporal 18 

resolution (Muñoz-Sabater, 2021). The required forcing variables include total 19 

precipitation, incident shortwave and longwave radiation, 2m air temperature, 10m 20 

zonal and meridional wind components, surface pressure and specific humidity. For 21 

initialisation, the model also requires input fields initial values of soil temperature, 22 

surface skin temperature, canopy water and snow water equivalent to be specified at 23 

for the first timestep. The hourly data for all variables was obtained for the period 2009-24 

2022. 25 

 26 

The NOAH-MP model also requires static geographical data (e.g. soil texture and land 27 

use) and time varying vegetation products (e.g., leaf area index and fraction of green 28 

vegetation). We use the STATSGO gridded soil categories map provided at 5 arcmin 29 

resolution (~9 km) (FAO 2003a;b) and the International Soil Reference and Information 30 

Centre (ISRIC) global SoilGrids data (Hengl et al., 2017; Poggio et al., 2021). The latter 31 

is available at 250 m resolution and six standard soil depths, however, sand and clay 32 

proportions are currently available at four depth layers and provided as part of the WRF 33 

geographical data fields. Preprocessing of the data was undertaken in the WRF 34 

Preprocessing System (WPS) (Skamarock et al., 2019). 35 
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 1 

2.4 Model simulations 2 

We set up and ran an offline version of the NOAH-MP model (version 4.3) within the 3 

framework of the High Resolution Land Data Assimilation System (HRLDAS) (Chen et 4 

al., 2007). Using the WPS system, the model domain is set up as with a 1 km grid 5 

space covering the island of Ireland and includes the west coast of the United Kingdom 6 

(Figure 1). We incorporate a high resolution land use dataset based on the 100 m 7 

raster CORINE Land Cover for 2018 (CLC 2018). The 44 CORINE land cover classes 8 

awere initially reclassified into 210 categories to match the default modified IGBP 9 

MODIS 20-category land use (Figure 1 b). The data is then resampled to 250 m using 10 

a majority rule. To generate the required geographic files for for input to NOAH-MP, 11 

the CLC 2018 iwas converted to binary format which is then used as input to the WPS, 12 

which subsequently generates the gridded geographic format and information  13 

required to run the NOAH-MP model. Other geographical data, such as topography, 14 

green vegetation fraction and surface albedo used in this study are derived from the 15 

model default datasets provided by the Research Application Laboratory, National 16 

Center for Atmospheric Research (RAL/NCAR). 17 

 18 

To investigate the effect of soil hydrophysical properties on model simulations 19 

ofestimated soil moisture and soil temperature, we configure two experiments that are 20 

based on different soil data options, namely, (1) dominant soil texture categories used 21 

as default in WRF/NOAH-MP; and, (2) soil textureral compositions properties (e.g. 22 

sand, silt, clay) in combination with PTFs (based on Saxton and Rawls, 2006). The 23 

dominant soil texture option uses the baseline FAO/STATSGO dataset with the 24 

empirically-derived soil properties from aobtained from the model look-up table, while 25 

the PTFs-derived soil properties use the fine-scale SoilGrids sand and clay proportions 26 

as input to the PTF equations. The dominant topsoils across the domain are broadly 27 

classified into four and two broad categories based on STATSGO and SoilGrids, 28 

respectively (Figure 2). While Loam and Sandy Loam soil textures cover the largest 29 

area in both data sources (Table 2), the extent to which the difference in the soil data 30 

(e.g. spatial extent of textural classes; soil hydrophysical parameters) and soil physics 31 

options contribute to model uncertainty in the NOAH-MP model is evaluated. Other 32 

NOAH-MP physics options used are outlined in Table 3. 33 

 34 

For the numerical experiments, the soil layer thicknesses of 0.07, 0.21, 0.72 and 1.55 35 

m are used, with a cumulative soil depth of 2.55 m. The thicknesses are selected to 36 

match the layers of initial soil input fields from ERA5-Land to minimize the effects of 37 
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interpolation of the boundary data inputs on the model simulation. The model is spun-1 

up over 10 years for each experiment using the climatology of the hourly ERA5-Land 2 

for the period 2009-2022, to bring the soils to thermal and hydrologic equilibrium with 3 

the atmosphere. We employ a climatology, rather than preceding meteorology (e.g. 4 

2000-2009), to limit the impacts of unusual or extreme weather events on the 5 

estimation of the model stores.  After spin-up, the model is stores are assumed to be 6 

stable and is are then used as the pointinput to initialise the simulations, reported on 7 

here, using the hourly meteorological forcing from 2009 to 2022. 8 

 9 

2.5 Station data 10 

Profile measurements of soil temperature and volumetric water content (VWC) are 11 

obtained from two established eddy covariance flux sites located over grass land cover 12 

at Johnstown Castle and Dripsey (Kiely et al., 2018; Murphy et al., 2022), located in 13 

the south of the island. In addition, we employedand five new sites (deployed as part 14 

of a national network of monitoring sites – Terrain-AI) co-located with  existing national 15 

meteorological sites, namely Athenry, Ballyhaise, Claremorris, Dunsany and Valentia, 16 

and which are distributed across the island (Figure 1a).  17 

 18 

The selected sites are characterized as having either loam or sandy loam soils (Table 19 

1), representative of the top two dominant soil texture categories in STATSGO and 20 

SOILGRIDS (Table 2); and have contrasting soil water regimes (Figure 1 a). For 21 

example, Johnstown Castle is characterized as having imperfectly drained sandy loam 22 

soils and a measured field capacity of 0.32; Dripsey is classified as having loam soil 23 

and has a measured field capacity of 0.42 (e.g. Kiely et al., 2018; Ishola et al., 2020; 24 

Murphy et al., 2022), it is classed as poorly drained as it is dominated by heavy soils 25 

that retain water throughout the year.  26 

 27 

For note,  the flux sites’ VWC values are measured in the top 20 cm soil layer, while 28 

the Terrain-AI sites measure at fixed depths down the soil profile (e.g. 5 cm, 10 cm, 20 29 

cm, 30 cm, 40 cm, 50 cm, 60 cm, 75 cm and 100 cm). The Terrain-AI network is part 30 

of a wider recent national initiative to establish a long-term network of soil moisture 31 

monitoring sites across Ireland. It measures in situ soil moisture content using a Time 32 

Domain Reflectometry (TDR) profile sensor (Campbell Scientific CS615/CS616). 33 

Given that the Terrain-AI sites are relatively new, starting from 2022, the VWC 34 

measurements used here are limited to a year, and maybe prone to outliers as the 35 

TDR probes require some time for the soil to settle around the sensor. However, we 36 

seethere is no evidence of TDR sensor decay in the measured VWC when the 2022 37 
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values are compared with the patterns found in the more recent data (2023-present) 1 

at the 5 cm and 20 cm soil depths  (Figure A1). 2 

Profile measurements of soil temperature and volumetric water content (VWC) are 3 

obtained from two established eddy covariance grass flux sites, namely, Johnstown 4 

Castle and Dripsey (Kiely et al., 2018; Murphy et al., 2022), and five new sites (as part 5 

of the Terrain-AI project) at Athenry, Ballyhaise, Claremorris, Dunsany and Valentia. 6 

We note that the flux sites’ VWC values are measured in the top 20 cm soil layer, while 7 

for Terrain-AI sites they are measured across soil profiles including 5 cm, 10 cm, 20 8 

cm, 30 cm, 40 cm, 50 cm, 60 cm, 75 cm and 100 cm. Terrain-AI is an on-going large-9 

scale project, which in part focuses on establishing a long-term network of soil moisture 10 

monitoring sites across Ireland. It monitors and measures in situ soil moisture contents 11 

using Time Domain Reflectometry (TDR) sensors (Campbell Scientific CS615/CS616) 12 

installed at the different soil depths. Given that the Terrain-AI sites are new, starting 13 

from 2022 the VWC measurements used here are so far limited to a year, and are 14 

prone to outliers because the TDR probes may require some time for the soil to settle 15 

around the sensorand provide reliable measurements. However, we see no evidence 16 

of TDR sensor decay in the measured VWC when the 2022 values are compared with 17 

the patterns seen in the later years (2023-present) for 5 cm and 20 cm soil depths  18 

(Figure A1). 19 

 In addition, the sSoil temperature measurements recorded at 5, 10 and 20 cm depth 20 

were obtained from Met Eireann, the national meteorological agency, for the same 21 

sites as the soil moisture measurements. for the Terrain-AI sites are not homogenised 22 

or quality controlled. Despite the limitations of the observed data from the Terrain-AI 23 

sites, they are the only station observations available to evaluate our model 24 

results.Despite the limitations of the observed data from the Terrain-AI sites, they are 25 

the only station observations available to evaluate our model results. 26 

 27 

Half-hourly or hourly measurements are obtainedavailable for the period from 2009 to 28 

2012 from Dripsey; 2018 (measurements available from the second half of year), 2019 and 29 

2021 from Johnstown Castle, and the year 2022 for the Terrain-AI/meteorological sites 30 

– representing different measurements periods and hence data availability at the sites. 31 

Metadata for each station outlining soil type, land cover and altitude are provided in 32 

Table 1. 33 

 34 

All the selected sites are distinguished by soil texture (Table 1) and contrasting soil 35 

water regimes (Figure 1 a). For example, Johnstown Castle site is characterized by 36 

seasonally dry and free draining sandy loam soils with measured field capacity of 0.32, 37 
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whereas Dripsey is dominated by heavy soils that retains water throughout the year, 1 

with measured field capacity of 0.42 (e.g. Kiely et al., 2018; Ishola et al., 2020; Murphy 2 

et al., 2022). Half-hourly or hourly measurements are obtained for 2009-2012 period 3 

from Dripsey, 2018 (only the second half of the year), 2019 and 2021 from Johnstown 4 

Castle, and the year 2022 for the Terrain-AI sites. Metadata for each station, outlining 5 

soil type, land cover and altitude are provided in Table 1. 6 

 7 

2.6 Satellite products 8 

Global satellite soil moisture datasets (e.g. ESA-CCI, SMAP, SMOS, and ASCAT) are 9 

often used to evaluate LSM at large spatial scales. Many of these products differ in 10 

terms of the satellite sensors and start of operations, and are subject to data gaps, 11 

cloud coverage, coarse resolution and limited time coverage (Beck et al., 2021). We 12 

employ the Soil Water Index (SWI) product (soil moisture expressed in percentage 13 

degree of saturation), derived from the fusion of Sentinel-1 C-SAR (1 km) and Metop 14 

ASCAT (25 km) sensors, to evaluate the NOAH-MP model at grid scales (Bauer-15 

Marschallinger et al., 2018). The product is derived from the ASCAT surface soil 16 

moisture (SSM) data using a two-layer water balance model that estimates the surface 17 

and profile soil moisture as a function of time (Wagner, 1999; Albergel et al., 2008). 18 

The operational ASCAT SWI are provided at eight different time characteristics (taken 19 

as soil depths), 1km resolution and daily mean values, from 2015 to 2022. The product 20 

is archived by the Copernicus Land Service and has been validated in previous studies 21 

(e.g. Albergel et al., 2012; Paulik et al., 2014; Beck et al., 2021). 22 

 23 

 24 

To evaluate our model at grid scales, we employ the characteristic time length T2, 25 

representative of the near-surface (0-10 cm), and T10, representative of the 26 

subsurface (10-30 cm), soil layers. We choose the ASCAT 1km SWI as the reference 27 

satellite product as it provides data at different depth layers, matches the NOAH-MP 28 

model grid resolution (e.g. 1 km) and has been found to out-perform other similar 29 

products, such as the ESA-CCI SSM and physics-informed machine learning GSSM 30 

1km product (Han et al., 2023), when evaluated against available ground 31 

measurements (Figures A2-A3). 32 

Global satellite soil moisture datasets (e.g. ESA-CCI, SMAP, SMOS, and ASCAT) are 33 

often used to evaluate LSM at large spatial scales. Many of these products differ in 34 

terms of the satellite sensors and start of operations, and are subject to data gaps, 35 

coarse resolution and limited coverage (Beck et al., 2021). We use the Soil Water 36 

Index (SWI) products (soil moisture expressed in percentage degree of saturation) 37 
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from the fusion of Sentinel-1 C-SAR (1 km) and Metop ASCAT (25 km) sensors to 1 

evaluate the NOAH-MP model at grid scales (Bauer-Marschallinger et al., 2018). The 2 

product is produced from ASCAT surface soil moisture (SSM) using a two-layer water 3 

balance model that relates the surface and profile soil moisture as a function of time 4 

(Wagner, 1999; Albergel et al., 2008). TWe employ the operational ASCAT SWI are 5 

provided at eight different time characteristics (taken as the soil depths), 1km 6 

resolution and daily mean values, from 2015 to 2022. The product is archived by 7 

Copernicus Land Service and has been well validated in previous studies (e.g. Albergel 8 

et al., 2012; Paulik et al., 2014; Beck et al., 2021). 9 

To evaluate our model at grid scales, we employ the characteristics time length T2 for 10 

near-surface (0-10 cm) and T10 for subsurface (10-30 cm) soil layers. The product is 11 

archived by Copernicus Land Service and has been well validated in previous studies 12 

(e.g. Albergel et al., 2012; Paulik et al., 2014; Beck et al., 2021). We choose the ASCAT 13 

1km SWI as the reference satellite product not just because it provides data at different 14 

layers and/or matches the model grid at 1 km, but importantly because it’s better 15 

performed than other products, such as ESA-CCI SSM and physics-informed machine 16 

learning GSSM 1km product (Han et al., 2023), when evaluated against the ground 17 

measurements across the in situ sites (Figures A2-A3).      18 

 19 

2.7 Analysis 20 

2.7.1 Model evaluation using in situ data 21 

The half-hourly or hourly station data and model outputs for each grid cell are 22 

aggregated to daily averages to be consistent throughout the analysisfor consistency.  23 

Then, fFor each validation site,  and variable and available time period, the daily mean 24 

values from the respective model grid cell are extracted at the model resolution (1 km). 25 

The daily values of topmost (0-7 cm) soil temperature (0-7 cm), and topsoil and sub-26 

surface (7-28 cm) volumetric water content (both at topsoil 0-7cm) layer are compared 27 

against the available in situ measurements. The model estimated values are then 28 

evaluated using the Root Mean Square Deviation (RMSD), Percent Bias (PBIAS) and 29 

Pearson’s Correlation Coefficient (R).  30 

 31 

2.7.2 Model evaluation using satellite data  32 

Given the limited number of in situ sites and scale differences between point 33 

observations and model grid resolution, the general interpretation of model 34 

performance across landscapes should be treated with care. However, the use of 35 

satellite data is a standard practice and a pragmatic way of evaluating model outputs 36 

of soil moisture over large spatial scales (He et al., 2023), notwithstanding the inherent 37 
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uncertainty (e.g. coarse resolution and data gaps) of the satellite products. We 1 

evaluate NOAH-MP estimated soil moisture output against the better performing 2 

ASCAT SWI (Figures A2-A3), for the surface and subsurface layers. To make ensure 3 

that the NOAH-MP soil moisture is comparable with the ASCAT SWI at the grid scale, 4 

we derive the a standardized grid-scale Relative Soil Moisture (RSM) index, which to 5 

varyies between 0 for for wilting point and 1 for for saturation (e.g. Samaniego et al., 6 

2018), as follows: 7 

𝑅𝑆𝑀𝑖,𝑗,𝑘 = (
𝜃𝑖,𝑗,𝑘−𝜃𝑤𝑖𝑙𝑡𝑖,𝑗

𝜃𝑠𝑎𝑡𝑖,𝑗
−𝜃𝑤𝑖𝑙𝑡𝑖,𝑗

) 𝑥100        3, 8 

Where 𝜃𝑖,𝑗,𝑘  is the simulated volumetric water content,  𝜃𝑠𝑎𝑡  and 𝜃𝑤𝑖𝑙𝑡  are the soil 9 

moisture at saturation and wilting point, respectively (Figure 3). We obtain RSM values 10 

for both the surface and subsurface soil layers. For the surface layer, ASCAT SWI-002 11 

data, which imply the surface soil moisture conditions, are contrasted compared 12 

against the model derived RSM values for the topmost model soil depth layer (0-7s of 13 

3.5 cm). For the  The subsurface,  RSM values are taken as the mean aggregates 14 

aggregated values of over the first topmost three model soil layers, and are evaluated 15 

against the ASCAT SWI-100. Similar metrics are used for the point-scale evaluation 16 

(see Section 2.7.1) and are also calculated at grid scale between the reference 17 

datasets and model outputs for selected dry (2018) and normal (2019) years. 18 

 19 

Additionally, uncertainties indifferences between the  near-surface soil moisture 20 

simulations are quantified for each grid (i,j) using the standard deviation difference (𝛥𝜎), 21 

as a measure of spread between the two soil datasets. 22 

∆𝜃𝑖,𝑗 =  [√∑ (𝜃𝑖,𝑗,𝑘− 𝜃̅𝑖,𝑗,𝑘)
2𝑛

𝑘=1

𝑛
]

𝑆𝑇𝐴𝑇𝑆𝐺𝑂

−  [√∑ (𝜃𝑖,𝑗,𝑘− 𝜃̅𝑖,𝑗,𝑘)
2𝑛

𝑘=1

𝑛
]

𝑆𝑂𝐼𝐿𝐺𝑅𝐼𝐷𝑆

             4, 23 

where  𝜃 is the VWC value at time k and n is the total number of daily soil moisture 24 

values from 2009-2022. 25 

2.7.3 Transition from energy limited to water limited regime Soil moisture drought 26 

analysis 27 

We also analyse the potential of NOAH-MP for monitoring simulating the evolution of 28 

an soil moistureagricultural  drought across the domain. Since the west-central 29 

European summer drought of  2018of 2018 was an exceptional event in terms of 30 

hydrological extremes across Ireland (Met Éireann Report, 2018; Falzoi et al., 2019; 31 

Moore, 2020; Ishola et al., 2022), we evaluated the model over this period. We apply 32 

grid-scale cumulative RSM values integrated over the three topmost soil layers (0-100 33 

cm) (Section 2.7.2), due to its simplicity and ease in quantifying and interpreting 34 

available soil water. Also becauseAdditionally, the RSM metric reduces the impact of 35 
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systematic biases in absolute values and/or the impact of transient errors associated 1 

with short-term fluctuations in absolute VWC values. In principle, RSM is an important 2 

drought indicator, particularly at short-time scales, and analogous to the widely used 3 

Soil Moisture Index (SMI) for drought monitoring at different spatial scales (Samaniego 4 

et al., 2018; Grillakis, 2019).. 5 

 6 

To characterise decreasing soil moisture during a drought period, percentiles of RSM 7 

values per grid cell are calculated based on 7-day moving windows from June to 8 

August for the climatology period 2009 - 2022. This amounts to 98 samples (7 days x 9 

14 years) as input per window. For individual model experiments, STATSGO and 10 

SOILGRIDS, the derived spatial RSM percentiles per day in each window are then 11 

classified into different drought categories ranging from least to most severe (Table 5), 12 

following Xia et al. (2014). These categories are currently being usedemployed by the 13 

U.S. Drought Monitor (USDM) for operational and regionally specific drought 14 

monitoring (Svoboda et al., 2002). 15 

 16 

3. Results 17 

First, we present the analysisa comparison of the ERA5-Land total annual precipitation 18 

in comparison with against station data, to illustrate the level of uncertaintyidentify any 19 

significant differences between the observed and  in input meteorology, for the 20 

respective measurement periods. Figure 4 shows that the seasonal variations and total 21 

annual cumulative of precipitation over the periods of interest are are reasonably well 22 

replicated in the ERA5-Land precipitation data across the selected stations, and for 23 

different weather conditions, including for the extended period of no rainfall during the 24 

summer ofin 2018 summer (Figure 4 f).  25 

 26 

3.1 Model evaluation: Soil moisture 27 

Using sStation observations 28 

The results of model simulations of near-surface and subsurface volumetric water 29 

content (VWC in m3 m-3) for both STATSGO and SOILGRIDS are presented for the 30 

periods when measurements are available at the selected sites. Figures 5 and A41 31 

illustrate the temporal comparisons and error statistics of near-surface VWC between 32 

the measured (0-5 cm) and modelled (0-7 cm) layers, respectively, while the 33 

subsurface VWC is illustrated in Figure A5. It is important to note that we are comparing 34 

a 1 km by 1 km model areal grid (areal) to a measurement point, which are assumed 35 

to be equivalent. Also, we are evaluating the near-surface model simulations within the 36 

top 20 cm VWC values at Johnstown Castle and Dripsey, the two flux sites, in the 37 
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absence of near-surface (0-5 cm) VWC data for these locations. 1 

 2 

Based on the evaluation resultsanalysis, tThe near-surface simulations are in closer 3 

agreement with the observed VWC at Athenry,, Claremorris and Johnstown Castle 4 

with the lowest error statistics (RMSD ≈ 0.1 m3 m-3, PBIAS < ~25%) relative to other 5 

stations (Figure A41). ThoughWhile the model outputs appear to more are closely 6 

matched withthe observations induring the summer months at Valentia (Figure 5e), 7 

this is masked by significant underprediction ofthe model significantly underestimates 8 

the measured VWC values in other seasonsoutside of these months, impacting the 9 

overall model performance at the station (Figure A4).  The Pearson’s correlation is 10 

generally high, above 0.8, across the measurement sites, with the exception of 11 

Ballyhaise (>0.71) and Claremorris (>0.63). The lowest model performance in terms of 12 

RMSD and PBIAS occurs at Dunsany, Valentia and Dripsey, with RMSD > 0.15 m3 m-13 

3, PBIAS > 30% (Figure A4). The Pearson’s correlation is generally high, above 0.8, 14 

across the measurement sites except for Ballyhaise and Claremorris.  15 

BothModel simulations with both soil datasets experiments broadly underestimate the 16 

observed VWC values in the autumn and winter months, but the model bias is lower 17 

in the STATSGO experiment than thecompared to SOILGRIDS experiment, a finding 18 

that is broadly consistent across the stations (Figure A41). These dDry biases (0.15 - 19 

0.4 m3 m-3) are broadly dominated largely evident in autumn and winter during which 20 

the measured VWC values are higherhigher, or soil is assumed to be relatively wetter 21 

(Figure 5 a-fe), except at Dripsey where the a systematic dry biases are is systematic 22 

evident throughout the entire years simulation period (Figure 5g). Conversely, in during 23 

summer where when soil moisture conditions tend to dry in response to atmospheric 24 

changes forcing (e.g. higher global solar radiation and evaporation), VWC temporal 25 

patterns are adequately reasonably captured by both model experiments (biases are 26 

less than 0.1 m3 m-3), including the during 2018, which experienced exceptionally dry 27 

summer soil moisture contents during the summer months (Figure 5f). The differences 28 

between STATSGO and SOILGRIDS are relatively small (< 0.05 m3 m-3) across the 29 

year(s); but seasonal differences are evident at some sites, likely due to the generally 30 

higher soil porosity and FC values in STATSGO relative to SOILGRIDS (Figure 3 31 

a,b,c,d,f)..  32 

 33 

Interestingly, both model experiments are capable of broadly replicating the measured 34 

near-surface VWC values at Athenry (well-drained), Claremorris (well-drained) and 35 

Johnstown Castle (imperfectly drained), where the soils are classified as either well- 36 

or imperfectly- drained (Figure 1a; Table 1), but the simulations underestimate the 37 
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variability (Figure 5 a, c, f). In contrast, for locations classified as poorly drained, 1 

namely Ballyhaise, Dunsany and Dripsey (Figure 5 b, d, g), the model does not perform 2 

well. The model appears to be able to replicate measured VWC during the summer 3 

months at Valentia, which is classified as well drained, but performs poorly for the 4 

remaining months (Figure 5 e). Figure 5 (boxplot) further illustrates the summary 5 

statistics and spread of in the model simulatedions and observed VWC. The mean of 6 

observed VWC (≈0.3 m3 m-3), calculated over the available measurement periods, is 7 

better captured in STATSGO than the SOILGRIDS, particularly at Athenry, Ballyhaise, 8 

Claremorris and Johnstown Castle. However, with where the mean of observed VWC 9 

exceedsing this value (e.g. > ≈0.3 m3 m-3), both experiments lead to significant 10 

underestimation of VWC, as evident at Dunsany, Valentia and Dripsey.  , both 11 

experiments lead to significant underestimation of VWC, as evident at Dunsany, 12 

Valentia and Dripsey.   13 

 14 

 15 

Overall, the model experiments closely replicate both the mean and variance of the 16 

measured near-surface VWC values at Athenry, Claremorris and Johnstown Castle 17 

locations, where the soils are either well- or imperfectly-drained (Figure 1a).  18 

 19 

Using Model comparison with reference ASCAT satellite SWI data 20 

The While the selected measurement stations are well distributed and represent 21 

different soil moisture regimes across Ireland (Figure 1a),. However, given the 22 

relatively small number of stations, generalizing generalising the results to the entire 23 

domain may be erroneousmay not be justified. InsteadTo address this, we evaluated 24 

all model grid cells are individually evaluated against the reference ASCAT satellite 25 

data. Our iPrior to undertaking the grid based analysisnitial, we evaluation ofcompared 26 

the ASCAT SWI, rescaled to match the mean and standard deviation of the measured 27 

values at the site of interest, to the available measured data at the sites. The ESA CCI 28 

SM is also included in the figures, however, the ESA CCI SM product reports absolute 29 

values of VWC (m-3 m-3) is for the top layer and is at 0.25o resolution. On the basis of 30 

the rescaled values, the ASCAT SWI shows good performance inis shown to largely r 31 

reproducinge the temporal variability of the observedmeasured VWC values indicating 32 

its suitability for use across the domain (Figures A2-A3). Figure 6 shows the results of 33 

the all Irelandisland grid-scale model evaluation (n = 131,000 grid values), of which 34 

compares daily derived RSM values, derived from the STATSGO and SOILGRIDS 35 

simulations, against the reference ASCAT SWI at the surface and subsurface for the 36 

2018 dry and 2019 normal years. Median metrics for each soil texture category in 37 
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STATSGO and SOILGRIDS are presented in Tables 5 and 6.  1 

 2 

As shown in Figure 6 (top) for the 2018 dry year, the median statistics indicate that 3 

STATSGO has lower RMSD values compared to SOILGRIDS for both the surface and 4 

subsurface layers and PBIAS values that lie closer to 0. model performance is broadly 5 

better for STATSGO than for SOILGRIDS, with lower median (black crossbar); RMSD 6 

of around 0.015%, PBIAS of 1% in magnitude of ASCAT SWI, for both surface and 7 

subsurface RSM grid values. While the Pearson’s R statistic (median around 0.85) for 8 

STATSGO and SOILGRIDS is comparable for the surface layer, the SOILGRIDS 9 

experiment produces a higher R value in the subsurface layer during the dry year. For 10 

the 2019 normal year (Figure 6,  bottom6, bottom), SOILGRIDS displays equivalent or 11 

lower the spatial distribution of error statistics at for the surface layer layer is nearly 12 

similar for both experiments, with a median RMSD of 0.015 %, PBIAS of around 6 1 % 13 

(1 6 % for SOILGRIDSSTATSGO) and R of 0.73. At For the subsurface layer, 14 

SOILGRIDS produces better results than STATSGO with lower RMSD (0.01 %) and 15 

PBIAS (6%) distributions and a higher R statistics value (median around approx. 0.76). 16 

 17 

 18 

The extended tails (positive/negative in PBIAS and lower/higher in RMSD and R) in 19 

the density distribution indicate a the relatively small number of isolated (spatial) grid 20 

cells with larger error statisticsspread in RMSD, PBIAS and R values. Given that the 21 

Loam (L) and Sandy Loam (SL) soils represent the largest proportion of grid cells 22 

across the study domain and are relatively comparable in terms of spatial coverage in 23 

STATSGO and SOILGRIDS (Table 2), the error statistics for these soil texture 24 

categories are explained further explored here. For 2018, results show that both 25 

experiments produce lower RMSD and PBIAS error statistics for SL than L at the 26 

surface layer, while STATSGO has lower PBIAS for SL than L (Table 5). Whereas at 27 

For the subsurface layer, both soil datasets have similar RMSDs and have lower 28 

PBIAS for L, compared to SLSOILGRIDS perform better than STATSGO for both soil 29 

categories. For the 2019 normal year (Table 6), both STATSGO and SOILGRIDS show 30 

improved PBIAS for L, compared to SL, in both the surface and subsurface layers.  31 

STATSGO gives has equivalent or lower RMSD and lower PBIAS error statistics than 32 

SOILGRIDS at the surface layer. Overall, the model performs better over L soil type 33 

than SL based on the lower PBIAS and higher R values. The RMSD and R statistics 34 

are relatively comparable at in both the surface and the subsurface layer for both the 35 

STATSGO and SOILGRIDS simulations and for L and SL soil categories. However, 36 

STATSGO produces lower PBIAS statistics than SOILGRIDS in for SL in 2018 (surface 37 
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and subsurface) and SL (surface) and L (surface and subsurface) soil in 2019. For 1 

2019, these findings contrast with those of the previous analysis, based on all grid cells 2 

and independent of soil texture class (Figure 6).l. Generally, the error statistics are 3 

lower in L than SL soil at the sub surface layer.  4 

 5 

 6 

 7 

The spatial characteristics of the ASCAT SWI and model derived surface RSM values 8 

are shown in Figure 7 a-j, along with their difference, annual mean bias relative to the 9 

reference datasets for the years 2018 and 2019 are illustrated in Figure 7 a-j,. and tThe 10 

long-term seasonal characteristics ofdifferences in the topsoil surface VWC between 11 

the both experiments are also shown in Figures A7-A82. At the surfaceFor the surface 12 

VWC, theboth modelsimulations largely generally showsexhibit a dry biases, 13 

increasing from the north west to the south east of the across the country;, and higher 14 

biases are evident inalongin the eastern and southern  the south-east incoastspart of 15 

the country in SOILGRIDS relative tothan STATSGO (Figure 7). The higher (dry) 16 

biases in both STATSGO and SOILGRIDS occur in regions that are largely classified 17 

as L soil texture class in both soil datasets. The dry bias is larger in 2019, compared 18 

to 2018 (dry year) and higher for SOILGRIDS than STATSGO. For the subsurface 19 

values (Figure A6), wWet biases are predominant evident in the north west, west and 20 

south west, which are characterised as SL and Clay Loam in STATSGO and SL in 21 

SOILGRIDS.; towards Towards the south and southeast of the domain, the results shift 22 

towards a dry bias, mostly in areas represented by L soils; more spatially extensive 23 

wet biases are evident in the normal year 2019, compared to 2018. While the spatial 24 

coverage of spatial patterns in the wet and dry biases model bias isare broadly 25 

consistent for both experiments and the years, the dry bias in both years is more 26 

pronounced in SOILGRIDS than STATSGO, consistent with the surface layer in the 27 

affected areas. Conversely, the wet bias in the sub-surface layer is more widespread 28 

in STATSGO than SOILGRIDS. While both soil datasets show the largest difference 29 

between the modelled and ASCAT SWI surface layers in the south eastern part of the 30 

country, this region displays the smallest between model differences (< 0.05 m-3 m-3) 31 

on a seasonal basis (Figure A7). As expected, the largest differences between the 32 

model estimated VWC are located in regions where the soil datasets have different 33 

soil texture classes (Figure 2 c) and hence associated soil properties. For example, 34 

STATSGO has a region of clay loam (CL) soils to the north west and clay (C) soils on 35 

the west coast, in contrast to the SOILGRIDs L class, and have different soil properties 36 

associated with these classes (Figure 3); the largest differences between the model 37 
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runs (STATSGO – SOILGRIDs) are associated with the STATSGO clay loam locations, 1 

with STATSGO indicating generally wetter soils associated with both the clay loam and 2 

clay texture classes. While the wilting points are similar between both datasets, 3 

STATGO has higher field capacity and soil porosity for these textural classes (C, CL) 4 

(Figure 3). Both soil datasets have similarly located SL classes located along the extent 5 

of the western sea board, however, STATSGO estimates lower VWC compared to 6 

SOILGRIDs in these regions (Figure A7).       7 

 8 

3.2 Model evaluation: Soil temperature 9 

Figure 8 (a-g) illustrates model comparisons against the reference station 10 

measurements of top soiltopsoil (0-5 cm) temperature, while Figure A103 shows the 11 

associated evaluation results. Generally, the error statistics (RMSD and PBIAS) for 12 

both the STATSGO and SOILGRIDS experiments are low, and R values are high 13 

(above 0.9 across all sites). The model errors are betteris closer to the observations 14 

RMSD < 3 K and PBIAS < 1% in Athenry, Dunsany, Valentia and Johnstown Castle 15 

(RMSD < 3 K and PBIAS < 1%), than compared in to Ballyhaise, Claremorris and 16 

Dripsey where the errors exceeded these values. Comparatively, SOILGRIDS leads 17 

to a slightly better model performance than STATSGO across the sites.sites.   18 

 19 

 20 

Additionally, the soil temperature increases from around 280 K in winter to a peak of 21 

about 297 K in summer , and up to 300 K during the extreme hot and dry  summer of 22 

2018 (e.g. Johnstown Castle) (Figure 8f). The spread and variance of the observed 23 

soil temperatures are reasonably replicated by in both experiments and for the selected 24 

year(s) across locations (Figure 8, bottom). Whereas the mean of the observed soil 25 

temperature, which is approximately 285 K, is systematically underestimated by 26 

between 1 K to 3 K across stations;, however, the peak values in the mid-summer 27 

months are well captured by the both experiments (Figure 8a-g). .  28 

Overall, both STATSGO and SOILGRIDS produce covarying soil temperature profiles 29 

that are close, but the differences inbetween the measured and simulated values are 30 

statistically significantly different (p-value < 2.2 x 10-16) and are comparable with 31 

observations for the study year(s) and locations. 32 

 33 

Given the reasonable model performance across the selected locations, the grid-scale 34 

model differences in soil temperature between STATSGO and SOILGRIDS  in the 35 

absence of satellite reference observations, is further examined (Figure 9). The spatial 36 

differences of surface soil temperature are based on the seasonal long-term 37 
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climatology from 2009 to 2022. In response to seasonal variations in global solar 1 

radiation and VWC, winter shows the lowest soil temperatures (Figure 9 a,e,i), whereas 2 

summer is characterised by as having the highest soil temperatures (Figure 9 c,g,k),. 3 

The highest soil temperatures in summer are widespread mostly over Loam soil in the 4 

south and southeast of the study domain. The south and east are seasonally drier, 5 

experiencing lower rainfall and soil water deficits in during the summer months (Figures 6 

1a and A74). In other seasons, the spatial characteristics are irregular. Thise 7 

spatiotemporal evolution of the soil temperature characteristics is consistent in both 8 

STATSGO and SOILGRIDS model experimentsthroughout the year. That is, both soil 9 

texture mapsBoth soil datasets produce soil temperature differences that are low or 10 

negligible mostly in the south and southeast, which are dominated by Loam soils 11 

(Figure 9 i-l). However, STATSGO broadly shows aexhibits colder soil temperature 12 

bias in Clay and Clay Loam soils, and a small warm bias overwarmer Sandy Loam 13 

soils in the northern border and southwest, with respectrelative to SOILGRIDS. These 14 

areas of exhibiting cold and warm soil temperature biasesdifferences between 15 

STATSGO and SOILGRIDS,  broadly coincide with areas ofregions exhibiting wet and 16 

dry VWC differencesbiases.biases of STATSGO VWC in comparison with SOILGRIDS 17 

(Figure A72).). 18 

 19 

3.3 Spatial and temporal evolution of soil moisture drought 20 

Figure 10 illustrates the spatial characteristics of 0-100 cm RSM percentiles for 21 

selected days during the summer of 2018. The selected days dates are used to denote 22 

the start, peak and end of the summer water deficits (Figure 4 f) experienced during 23 

that year.   For the first 7-day window ending 07 June, the southeast and east of Ireland 24 

broadly show low drought intensity D0-D1 (abnormal/moderate) in STATSGO, 25 

relativecompared to SOILGRIDS with which exhibits values in the severe drought D2 26 

category. During this build up period, there are notable spatial differences between 27 

STATSGO and SOILGRIDS, with the latter exhibiting a more spatially extensive 28 

regionwider spread ofin the D0 and -D1 categories in all directions and quicker 29 

transition into different degrees of drought.  Both experiments are largely consistent in 30 

other areas of the study domain. For example, the major land areas in the north of the 31 

island are characterised as severe drought D2, and D0-D1 in the midlands and west 32 

of Ireland. However, the D0-D1 categories are more spatially widespread across the 33 

midlands and west in SOILGRIDS than in STATSGO.  34 

By the middle of  summer 2018 (sixth week ending 12 July), almost the entire Iresland 35 

is dominated by the exceptional drought D4 category in STATSGO, except for the land 36 

areas in the extreme north east  and south west where thewhich are classified in the  37 
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D2 and D3 categoryies is sustained over time. These patterns are broadly consistent 1 

in SOILGRIDS except for somemall areas with in higher intensity drought classes. For 2 

example, the drought category in the southeast  north east of Northern Irelandthe 3 

island shifts from D2 in STATSGO to D3-D4 (extreme and exceptional) categories, and 4 

from D2-D3 (severe and extreme) category in the southwest and east of Ireland to D3-5 

D4 drought categories in SOILGRIDS. It is notable that these regions in the southwest 6 

and east are associated with high topography.   7 

Whereas the soil water deficits appear to have improved by the end of summer (week 8 

13 ending 30 August), the landscapes are still largely under different levels of soil 9 

dryness is experiencing different levels of soil water deficits. For example, in 10 

STATSGO, the moderate drought D1 category broadly dominates the Loam soil 11 

texture areas in the midlands, south and southeast of Ireland, while a mix of drought 12 

D1-D4 categories dominates the west and southwest of the country. These patterns 13 

are consistent in SOILGRIDS, but areas with sustained D3-D4 drought categories in 14 

the northern borderremain more extensive in the north, west and southwest are more 15 

widespread with a sustained D3-D4 categories are wider in SOILGRIDS than 16 

compared to STATSGO. 17 

Figure 11 illustrates the time-areal coverage cross-section of variousthe drought 18 

categories over the domain during the summer period 2018, based on RSM percentiles. 19 

While the landscapes are already under experiencing soil water deficits by the start of 20 

summer in June, the largest areal coverage (about 70 % in STATSGO and 80 % in 21 

SOILGRIDS) is dominated by low drought intensities (D0-D2). Approximately 10 % of 22 

the domain is characterised by extreme and exceptional D3-D4 drought, up to the end 23 

of June. The drought intensifies effectively from late June, with higher areal coverage 24 

of evident in the D4 category of (more than 80 %), extending for several days in 25 

STATSGO (July 10-15). Over the same period, the D4 category in SoilgridsOILGRIDS 26 

is less extensive and lasts for a shorter period that STASGO, but also transitions to 27 

less severe categories  more slowly than STATSGO. This is similar in SOILGRIDS, 28 

however, days in July that show recovery based on a reduced areal coverage of D3-29 

D4 category in STATSGO, show high coverage of the same intensities in SOILGRIDS. 30 

At the start of August, there is a brief interlude with a reduction in the the areal coverage 31 

extent of the high intensity D3-D4 drought has effectively droppedevident in both 32 

SoilgridsOILGRIDS and STASGO, which compensated by an increase in the spatial 33 

coverage oftransition to the less severe categories  D0-D2. In By the last week of 34 

August, the peak of the drought has passed and the landscape begins to recoverareal 35 

coverage of D0-D1 is higher (about 80 %) relative to other drought categories. 36 

 37 
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 1 

4. Discussions 2 

4.1 Effects of soil hydrophysical properties on simulated soil hydrothermal regimes. 3 

As a consequence of misrepresentation of soil texture classes in LSMs, soil 4 

hydrophysical properties are expected to influence model simulations of changes in 5 

soil moisture content and soil temperature across space and time. In this study, we 6 

investigated the differences between two commonly used global soil texture maps data 7 

sets currently implemented in the NOAH-MP land surface model , namely STATSGO 8 

and SOILGRIDSon the simulated soil hydrothermal properties. The impact of using 9 

theIn addition to using the default look-up table in combination with the STATSGO soil 10 

information, which is perhaps the most widely used or typical approach, we employed 11 

and PedoTransfer Functions (PTFs) in combination with the SOILGRIDs soil 12 

information to prescribe evaluateexplore the impact of different soil datasets and hence 13 

their associatedgrid-scale soil properties (e.g. porosity, field capacity, wilting point, 14 

hydraulic conductivity, etc.), on the simulated surface and subsurface soil 15 

hydrothermal changesparameters, during a normal (2019) period and extremely dry 16 

(2018) year is further evaluated. The role of these properties, particularly the field 17 

capacity – a measure of water retained in the soil at the pressure of -0.33 bar, after 18 

excess rain waterrainwater has drained off - , are critical in LSMs thatto correctly 19 

simulatinge soil hydrophysical processes and have consequent impacts on the 20 

subsequent interactions between the land surface with and the overlying atmosphere.  21 

 22 

Initially, we compared the model simulated values at grid scale with available in-situ 23 

data for a selection of sites distributed across the island and representative of the 24 

dominant soil textural properties (Table 1). In general, both the STATSGO and 25 

SOILGRIDs model simulations resulted in an underestimation ofin the 26 

estimatedmodelled variance at all sites compared to the measured values. With the 27 

exception of STATSGO at Ballyhaise, bBoth model simulations also  underestimated 28 

the mean observed values, particularly marked, at three sites; seasonal differences 29 

were also evident in the under and over estimation(Figure 5). With the exception of 30 

Valentia, SOILGRIDS estimated equivalent or lower mean values, compared to 31 

STATSGO (Figure 5h). At two sites, Ballyhaise and Dunsany, both soil datasets 32 

resulted in an overestimation of VWC during the drier summer months, when the 33 

measured values indicate the soils were close to, or at, wilting point. The largest 34 

differences between the modelled and measured VWC occurred at sites where the 35 

soils appear to have a larger water holding capacity, namely Dunsany, Valentia and 36 

Dripsey (Figure 5 boxplot).  37 
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At point-scale, the results reveal model differences between dry and wet soil moisture 1 

regimes and are able to fairly replicate the measured values of soil moisture and soil 2 

temperature at the topmost soil layer  across a variety of weather conditions, mostly 3 

during seasonally dry conditions and including during extreme water shortage. These 4 

are evident at a few stations, such as Athenry where the temporal fluctuations of 5 

measured VWC are relatively low (𝞼 < 0.1 m3 m-3), likely due to their finer soil texture 6 

and smaller pore spaces that allow water to drain steadily between rainfall events.    7 

While STATSGO is closer to observations than SOILGRIDS, the model errors between 8 

these data sources are marginal but statistically significant (p-value < 2.2 x 10-16) for 9 

both variables, notwithstanding the difference in soil physics. Though SOILGRIDS 10 

leads to higher negative biases, it improves the temporal dynamics of the simulated 11 

VWC across the stations. The betterro soil moisture dynamics may be linked to the 12 

SOILGRIDS finer resolution that improves the spatial representation of soil properties, 13 

but these properties (e.g. field capacity, hydraulic conductivity) are also under- or over-14 

represented by SOILGRIDS (Figure 3), lowering soil moisture retention and increasing 15 

dry biases, compared to STATSGO. 16 

 Despite the misrepresentation of the soil texture class by both sources and the 17 

difference in soil depths between the measured and simulated VWC , for example at 18 

Johnstown Castle (Table 1), the model does performs reasonably well at this site. This 19 

is because the model’s near-surface soil water retention capability is low, thereby 20 

simulating surface VWC values that resemble the subsurface values.  However, for a 21 

relatively wet site (e.g. Dripsey) where the soil texturale class is accurately correctly 22 

represented in both soil databases, the model simulations systematically 23 

underestimates soil moisture content (Figures 5g and A41). This illustrates suggests 24 

that the soil-induced model uncertainty which is isoften rarely linked to 25 

misrepresentation of soil texture class, and hence misspecification of hydrophysical 26 

parameters, , but can arise due to the soil physics and the prescribed soil 27 

hydrophysical parametersother factors (e.g. model physics, incorrect hydrophysical 28 

parameters etc).. 29 

 hydrophysical parameters.  30 

We also compared the ASCAT SWI with the measured VWC at the selected sites and 31 

subsequently the RSM derived from the model simulated VWC. Based on the rescaled 32 

SWI, derived using the mean and standard deviation of the measured values, the 33 

ASCAT SWI is shown to largely replicate the temporal variability of the measured 34 

values at the selected sites, in particular the seasonal evolution of soil moisture. With 35 

regards to the comparison between ASCAT SWI and the model derived RSM, we 36 

found that while the median correlation between SWI and RSM was higher for 37 



 

25 

Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

SOILGRIDS than STATSGO for both the surface and subsurface layers, STATSGO 1 

performed better in terms of the error statistics in the dry year (2018), while SOILGRIDs 2 

performed better in the normal year (2019)  (Figure 6). While both the SWI and RSM 3 

are based on relative, rather than absolute values, the calculated correlation 4 

coefficients (R values) indicate that the model is able to capture at least some of the 5 

temporal evolution (covariation) of soil moisture in both a dry (2018) and normal year 6 

(2019) and importantly, suggests that the model soil physics is functioning correctly or 7 

at least in a way that is temporally consistent with the independently derived ASCAT 8 

SWI data. However, while both STATSGO and SOILGRIDS produce similar estimates 9 

of VWC where textural classes are in common (Figure A7), both STATSGO and 10 

SOILGRIDS systematically underestimate VWC, when compared to the ASCAT SWI, 11 

and in particular for the Loam textural class (Figure 2; Figure 7); SOILGRIDS shows a 12 

larger underestimation compared to STATSGO (Figure 7; Figure A7) most marked in 13 

winter, spring and autumn (Figure A7). From Figure 3, STATSGO has higher field 14 

capacity and wilting point values associated with Loam soils, compared to SOILGRIDS, 15 

which may explain the lower bias in STATSGO, relative to SOILGRIDS. 16 

 17 

The assessment of the model against the measured values (Figure 5) and the ASCAT 18 

SWI (Figure 6; Figure 7) highlight the potential impact of the prescribed soil 19 

hydrophysical parameters, specifically FC and WP, in limiting the models ability to 20 

accurately simulate absolute values of soil moisture content within the model soil layers. 21 

To test this, we focus on two sites for which measured FC is available, namely 22 

Johnstown Castle and Dripsey. The measured field capacity (FC) in the top 20 cm at 23 

Johnstown Castle  is 0.32 m3 m-3 (Table 1) (Ishola et al., 2020Peichl et al., 2012), which 24 

lies close to the representative FC value employed in both STATSGO and SOILGRIDS 25 

for this location. However, the measured FC value in the top 20 cm at Dripsey is 0.42 26 

m3 m-3 (Table 1), higher than the respective FC value of ~0.31 m3 m-3, prescribed from 27 

STATSGO, via the look up table, and the value from SOILGRIDS using the PTFs, for 28 

this location (Figure 3 and 4 bottom). While the model estimated VWC at Johnstown 29 

Castle lies close to the measured values at this site, the model systematically 30 

underestimates VWC at Dripsey. Ultimately, a lower FC limits the ability of the soil to 31 

increase the memory of the stores, resulting in a systematic bias in the simulated VWC. 32 

To illustrate the role of the prescribed FC values at Dripsey, the simulated VWC for a 33 

neighboring grid cell with a FC of 0.412 m3 m-3 and which experiences similar weather 34 

conditions is plotted against the measured VWC at Dripsey (Figure 12). A higher FC 35 

clearly results in higher VWC values, significantly reducing the systematic bias (RMSD 36 

and PBIAS) between observations and STATSGO by more than 50 % of the FC value 37 
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employed by the model at Dripsey. In contrast, the maximum FC derived from 1 

SOILGRIDS across the domain is 0.34 m3 m-3 (Figure 3), which lies around the default 2 

value, and is not in a proximal grid location to the Dripsey site. Hence, using the same 3 

grid cell as above, SOILGRIDS with PTFs fall short of this and consequently fail to 4 

improve the simulated VWC. Dripsey site. Hence, using the same grid cell as above, 5 

SOILGRIDS with PTFs fall short of this and consequently fail to improve the simulated 6 

VWC.  7 

 8 

 9 

 10 

 11 

For example, the field capacity (FC) value reported for Johnstown Castle (Table 1) is 12 

0.32 m3 m-3 (Ishola et al., 2020), which is close to the values employed in STATSGO 13 

and SOILGRIDS, and consistent with station measurements (Figures 3 and 4). 14 

However, the observed FC value in Dripsey is approximately 0.42 m3 m-3 (Table 1), 15 

which contrasts the values of approximately 0.31 m3 m-3 used in the models (Figure 3 16 

and 4 bottom) and values reported in Liu et al. (2012) and Ishola et al. (2020) for this 17 

site. The bias in FC limits the ability of the soil to increase the memory of the stores, 18 

resulting in systematic bias in the simulated VWC. To illustrate the role of prescribed 19 

FC values for Dripsey, the simulated VWC for a neighboring grid cell with a FC of 0.412 20 

m3 m-3 and similar weather condition is evaluated against the measured VWC (Figure 21 

12). A higher FC clearly results in higher VWC values, reducing the bias between 22 

observations and STATSGO by more than 50 % of the value at Dripsey. In contrast, 23 

the maximum FC derived from SOILGRIDS across the domain is 0.34 m3 m-3 (Figure 24 

3), which still lies around the default value, and is not in a proximal grid location to the 25 

Dripsey site. Hence, using the same grid cell as above, the SOILGRIDS with PTFs fall 26 

short of this illustration and consequently fail to improve the simulated VWC.  27 

illustration and consequently fail to improve the simulated VWC.  28 

At grid-scale, the STATSGO and SOILGRIDS soil texture data are evidently different, 29 

particularly in the north, west and southwest of Ireland (Figure 2). Notably, the 30 

STATSGO data represents smaller soil grain sizes in most of these areas, relative to 31 

SOILGRIDS. This results in higher values of soil hydrophysical properties in STATSGO, 32 

including porosity and field capacity, and lower saturated hydraulic conductivity 33 

(Figures 3 and A9). The increasing grain size leads to wet and cold biasessoil in 34 

STATSGO, relative to SOILGRIDS at the top 30 cm layer in these notable areas 35 

(Figures A6-A7, 7 and, 9 and A72). Similar to our results, It has been demonstrated 36 

that a reduction in soil grain size (e.g. Loam to Sandy Loam) leads to dry and hot soil 37 



 

27 

Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

differencesbiases (decrease in latent heat flux and increase in sensible heat flux) 1 

between two global soil datasets (Dennis and Berbery, 2021).  2 

 3 

While the choice of PTFs is critical in model simulations of soil water fluxes 4 

(Weihermüller et al. 2021), the default Saxton and Rawls (2006) soil physicsPTFs 5 

produce properties that are verylie close to using the look-up table in NOAH-MP model. 6 

One reason for this similarity is that in general the SOILGRIDS sand and clay 7 

compositions produce a similar spatial distribution in the Loam and Sandy Loam soil 8 

texture classes, based on the USDA classes, and thesethat coincide with the spatial 9 

locations of the FAO/STATSGO in spaceclasses with nearly the same areal coverage 10 

(Figure 2 and Table 2). Another reason for similar soil properties between the PTFs 11 

and look-up table, is the default PTFs coefficients which are derived based on USDA 12 

soil samples (Saxton and Rawls, 2006) and are therefore may benot likely to be  13 

inaccuraterepresentative of soil processes and consequently properties in for the a 14 

different study domain; the empirically-derived look-up table values are is also based 15 

on soil samples in from the US.  The net effect of similar but inaccurate soil properties 16 

is the significant under-representation of soil hydrothermal regimes in wet soils as 17 

illustrated in Figures 5 and 7. This aligns with Vereecken et al. (2010) who 18 

demonstrated that PTFs are highly accurate over the areas for which they have been 19 

developed, but have limited accuracy if transferred outside these areas. Weber et al. 20 

(2024) also noted that the divergence between the scale of derivation from laboratory 21 

experimental data, and the regional/global scale of application is a fundamental 22 

shortcoming for PTFs.   23 

 24 

In situations where the model systematically under- or over- estimates soil moisture, 25 

the impacts on the surface exchanges with the atmosphere may be more limited (e.g. 26 

Dripsey Figure 5g); however, for locations with a high water table and/or subject to 27 

seasonal drying (e.g. Dunsany, Ballyhaise Figure 5 b and d), deficiencies in the model 28 

estimated timing and extent of soil moisture deficits are likely to result in large seasonal 29 

biases in the simulated surface fluxes. However, further work is required to understand 30 

the simulated soil moisture response at these locations, but are likely due to a 31 

combination of the hydrothermal parameters.          32 

 33 

With regards to the model simulated soil temperature, both the STATSGO and 34 

Soilgrids inputs were able to reasonably replicate the measured surface soil 35 

temperature at the selected sites, albeit with a tendency to systematically 36 

underestimate the measured values (Figure 8). Only minor, insignificant, differences 37 

https://journals.ametsoc.org/view/journals/hydr/23/5/JHM-D-21-0101.1.xml#bib73
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were evident between the two simulated soil temperature series. In contrast, spatial 1 

differences between the STATSGO and SOILGRIDS data were evident, particularly in 2 

the north, west and southwest of Ireland (Figure 9), which are largely coincident with 3 

the differences in the spatial distribution and extent of selected hydrothermal 4 

parameters, between both datasets (Figure 3). Notably, the STATSGO data 5 

represents smaller soil grain sizes in most of these areas, relative to SOILGRIDS. This 6 

results in higher values of soil hydrophysical properties in STATSGO, including 7 

porosity and field capacity, and lower saturated hydraulic conductivity (Figures 3 and 8 

A9). The increasing grain size leads to wetter and colder soils in STATSGO, relative 9 

to SOILGRIDS in the top 30 cm layer (Figures A6-A7, 7 and 9). Similar to our results, 10 

it has been demonstrated that a reduction in soil grain size (e.g. Loam to Sandy Loam) 11 

leads to dry and hot soil differences (decrease in latent heat flux and increase in 12 

sensible heat flux) between two global soil datasets (Dennis and Berbery, 2021). The 13 

oOverall, the results results here support previous findings that indicate that that soil 14 

hydrophysical parametersthere is a major impact of under-represented soil 15 

hydrophysical parameters, particularly in relatively wet sites, directly regardless of the 16 

source of global soil texture map and soil physics option implemented in NOAH-17 

MPimpact the model simulated soil moisture; while the spatial distribution of soil 18 

textural classes impact soil thermal properties. In contrast to our expectations, the 19 

model estimated VWC values were close to the measured values at Johnstown Castle, 20 

a site that experiences seasonal/periodic soil moisture deficits/drought, due to a 21 

combination of meteorology and soil type (e.g. imperfectly drained). The model 22 

performed poorly with respect to the measured VWC at Valentia, (south west coast – 23 

imperfectlywell drained), Ballyhaise (north; imperfectlypoorly drained) and Dunsany 24 

(east; poorlymoderately drained),  25 

 26 

 but highlight that impacts are likely to be more pronounced in relatively wet sites and 27 

sites that experience a marked seasonal contrast in soil moisture - which represent a 28 

new contribution to the discussion. The discrepancies between STATSGO and 29 

SOILGRIDS exert great regional impacts on the soil hydrothermal regimes.  30 

      31 

4.2. Sources of uncertainties  32 

Model uncertainty: The NOAH-MP model’s reliance on default look-up tables for STATSGO 33 

and more sophisticated PTFs for SOILGRIDS, introduces systematic biases, particularly when 34 

their parameterisations do not represent the local soil conditions accurately. For instance, a 35 

mismatch in FC values at Dripsey significantly underestimates soil’s water retention capacity, 36 
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which directly affects soil moisture, with biases exceeding 50% of the employed FC value. In 1 

essence, the mismatch in spatial scale between the parameterisation of soil properties and 2 

their application in a global model introduces significant uncertainties in soil moisture 3 

simulations, particularly in regions with distinct soil properties (Vereecken et al., 2010; Weber 4 

et al., 2024). As a consequence, the impact may directly affect the soil moisture coupling with 5 

the atmosphere through surface energy fluxes, leading to uncertainties in surface exchanges. 6 

 7 

Soil dataset uncertainty: The magnitude of impact of soil dataset uncertainty is particularly 8 

pronounced when it comes to the parameterisation of critical soil hydrophysical parameters 9 

like field capacity (FC) and wilting point (WP). As shown in this study (Figure 12), a small 10 

difference in FC values (e.g., 0.31 m³/m³ vs 0.42 m³/m³) can significantly alter the simulated 11 

volumetric water content (VWC), leading to a systematic bias in the model outputs. At sites 12 

like Dripsey, where the field capacity was significantly underestimated, the model consistently 13 

underestimated soil moisture. This bias was reduced when using a higher FC value for a 14 

neighboring grid cell, demonstrating that even small changes in soil property inputs can have 15 

substantial impacts on model outputs. Additionally, regional differences in soil properties, 16 

linked to divergence in grain size representation between STATSGO and SOILGRIDS (Figures 2-17 

3), affect simulations by 10-30% depending on soil textural class and climatic conditions.This 18 

is evident in regions with high water tables or areas subject to seasonal drying (Figure A7), 19 

where the model’s inability to accurately simulate soil moisture deficits may potentially 20 

propagates through hydrological and thermal cycles, mischaracterising droughts or 21 

waterlogging events and affecting surface energy partitioning and land-atmosphere 22 

interactions (Dennis and Berbery, 2021; 2022; Zhang et al., 2023). 23 

 24 

Observation uncertainty: This also arises, particularly in terms of spatial variability and 25 

accuracy of in-situ measurements used for model evaluation. The precision and accuracy of 26 

new Terrain-AI TDR measurements used in this study, depend on the sensor installation and 27 

performance (Briciu-Burghina et al., 2022). The Terrain-AI network has followed and used the 28 

standard, custom-designed installation and calibration tools recommended by the 29 

manufacturers, thus we do not observe sensor decay or random errors in the soil moisture 30 

measurements, given that the 2022 pattern is temporally consistent with more recent 31 

measurements (Figure A1). The observed standard error in the measurements is generally less 32 

than 0.01 m3 m-3, which is consistent with the recommended optimal accuracy for TDR sensors 33 

(e.g. Blonquist et al., 2005). However, we acknowledge that the presence of air gaps between 34 
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the soil and sensor contact during installation may introduce errors, particularly at the start 1 

of sensor measurement. The time for the soil to properly settle around the sensor depends 2 

on soil condition and it’s a common error for newly installed soil moisture sensors (Briciu-3 

Burghina et al., 2022). Despite this, we believe the impacts on the overall uncertainties in our 4 

model evaluation may be relatively small given the observed sensor accuracy across sites. 5 

The in-situ soil moisture measurements, though accurate, are point-based and may not 6 

represent grid-scale heterogeneity. For example, discrepancies between measured and 7 

simulated volumetric water content (VWC) at Johnstown Castle and Dripsey highlight this 8 

limitation (Figure 5). Differences between the measurement depth (e.g., 5 cm top 20 cm, etc.) 9 

and model representation (0-7 cm) exacerbate observational uncertainty. For example, model 10 

biases at Valentia and Dripsey partly stem from mismatches in vertical soil layering, with the 11 

shallower model soil depth expected to be wetter between rainfall events and drier in 12 

response to atmospheric conditions. The point-to-grid biases and soil depth mismatches 13 

contribute to about 5-20 % errors in validation results, which can distort the interpretation of 14 

model accuracy and reliability.  15 

The use of ASCAT characteristics time length (e.g. T2) to represent soil depths without 16 

accounting for soil textural class or properties may also influence the model results, as the 17 

optimal characteristic time lengths differ for different soil texture categories (de Lange et al., 18 

2008). The ASCAT SWI replicates the covariation in the measured soil moisture well (Figures 19 

A2-A3), but struggles with accurately predicting the absolute moisture content. The 20 

correlation between the model RSM and ASCAT SWI was generally higher for SOILGRIDs 21 

compared to STATSGO, particularly in a normal year (2019), whereas STATSGO performed 22 

better in the dry year (2018) (Figure 6). This indicates that while the model physics and soil 23 

properties are functioning reasonably well in simulating temporal variations, there remain 24 

issues with absolute soil moisture content. 25 

Overall, global soil datasets may be relevant for weather and climate modelling, assuming the 26 

soil water physics are functioning correctly and that the model simulated soil water changes 27 

result in the correct partitioning of energy; however,  numerous authors (e.g. Dennis and 28 

Berbery, 2021; 2022; Zhang et al., 2023) have found that flux partitioning is negatively 29 

impacted by the simulated soil moisture. Also, for operational purposes for estimating soil 30 

moisture, more refined national level soil data information should be considered. Such efforts, 31 

as previously attempted in studies like Reidy et al. (2016), could be expanded to generate 32 

more detailed and region-specific soil property datasets. 33 

 34 

 35 
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 1 

4.32 Implications for regional drought monitoring 2 

Soil moisture content is an essential variable in many hydrological applications and in 3 

understanding the evolution and characteristics of extreme climate events such as 4 

droughts. Instead of heatwaves, the study domain is rather subject to rainfall extremes 5 

(Noone et al., 2017), a precursor of soil water deficits and droughts; the intensity and 6 

frequency of which have been projected to increase globally and in the study domain 7 

by the end of century (Seneviratne et al., 2012; Fealy et al., 2018).   8 

In this study, the drought analysis isare based on the cumulative RSM percentiles 9 

aggregated over three uppermost soil layers (0-100 cm) for 2018 summer hydrological 10 

extremes for STATSGO and SOILGRIDS (Figures 10-11). The 0-100 cm depth is 11 

sufficient for drought assessment since the root zone of many crops grown across the 12 

world does not surpass 1.0 m in depth (Fan et al., 2016; Grillakis et al., 2019). 13 

Both STATSGO and SOILGRIDS are largely consistent in terms of the evolutionpeak 14 

of soil moisture drought in space and time. However, SOILGRIDS exhibitsshows 15 

higher and wider drought intensity in the many areas during the buildup and recovery 16 

phases, relative to STATSGO. This suggests that there is sensitivity during the buildup 17 

to the drought and rewetting of the soils after peak droughts. Similar results have been 18 

found in Zheng and Yang (2016), where regardless of soil type, soils tend to dry up 19 

with increasing aridity so that the difference in soil moisture between two soil datasets 20 

tends to zero.  Theis is due to the dry bias higher drought intensity of SOILGRIDS is 21 

associated with underrepresented soil hydrophysical properties and simulated VWC 22 

as previously highlighted (Figures 3 and A72).  23 

During the summer of 2018, particularly from late May to late July, Ireland was reported 24 

to have experienced different degrees of meteorological droughts (rainfall deficits) 25 

(Figure 4 f) ranging from dry spells to absolute droughts (Met Éireann Report, 2018; 26 

Falzoi et al., 2019; Moore, 2020). Meteorological droughts precede soil 27 

moisture/agricultural droughts through reduction in soil water storage and available 28 

water for plant uptake, our results indicate that extreme to exceptional soil moisture 29 

droughts are only effective from last week in June, covering the large part of the 30 

domain by mid-July (Figure 11). During August, rainfall improved soil water stores 31 

(Figure 4 f) and weakened drought conditions across much of the country, particularly 32 

in the north and west (Met Éireann Report, 2018; Moore, 2020).  33 

Overall, the discrepancies between STATSGO and SOILGRIDS impacts drought 34 

characteristics mostly in space, with SOILGRIDS shifting the 35 

abnormal/moderate/severe droughts in STATSGO to extreme/exceptional droughts. 36 

These underscore the sensitivity of soil information on drought events, which are 37 
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critical to improve our understanding of themay result in erroneous or potential loss of 1 

vital information with dire consequences on ecosystems with regards to predicting the 2 

response and productivity, as drought stress has been highlighted as the primary factor 3 

limiting ecosystem response and productivity (De Boeck et al., 2011). 4 

 5 

 6 

5. Conclusions 7 

In this study, the usability of two global soil datasets for representing soil processes in 8 

the NOAH-MP model and simulating soil hydrothermal variations and associated 9 

extremes, has been evaluated across all of Ireland. Specifically, FAO/STATSGO 10 

dominant soil texture categories linked to an empirically-derived soil hydrophysical 11 

properties from a look-up table (default in WRF), are compared with PedoTransfer 12 

Functions (PTFs) that ingest an alternative SOILGRIDS sand and clay compositions 13 

at four soil layers. Through temporal comparison with in situ soil moisture and soil 14 

temperature observations, it has been found that, both soil datasets can fairly replicate 15 

the general  soil hydrothermal variations for stations with moderate spikes. However, 16 

they under-represent the soil properties (e.g. field capacity) in wet loam soil, leading to 17 

systematic dry bias in soil moisture. The results have further shown that there is no 18 

distinct difference between the soil physics applied to the same soil texture category 19 

in both STATSGO and SOILGRIDS. But, the disparities and sensitivity to soil physics 20 

increase for different soil texture categories between the datasets.  21 

Through spatial comparison with satellite-based ASCAT SWI, sub-surface dry bias is 22 

more pronounced and widespread in the midland, south and east in SOILGRIDS, while 23 

wet bias dominates the west and north. As a consequence, 2018 summer soil moisture 24 

droughts broadly intensify more in SOILGRIDS, indicating higher sensitivity during 25 

transition to and from peak drought than in STATSGO. This heightened sensitivity 26 

could suggest that SOILGRIDS captures finer details of soil moisture variability, 27 

however, Tthese disparities couldmay result in misinformation that could hamper 28 

adequate and effective preparation and response during drought 29 

episodesinconsistencies in drought response and increase the risk of over-preparation 30 

due to overly sensitive model results. Climate change is expected to drive greater 31 

fluctuations in soil wetting and drying in Ireland and other regions. This highlights the 32 

importance of addressing inconsistencies between soil datasets, not only to better 33 

understand the sensitivity of soil information to drought conditions but also to ensure 34 

careful interpretation of soil moisture data. Additionally, adopting ensemble 35 

approaches could offer a more balanced perspective. 36 
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While identifying the better soil database is not the primary objective of this study, 1 

STATSGO performs slightly better  than S OILGRIDS .Uncertainties in soil moisture 2 

simulations are found to be largely linked to soil properties, particularly the field 3 

capacity and saturated hydraulic conductivity derived from different soil physics, 4 

Overall, the study highlights the shortcomings of global soil databases in simulating 5 

soil hydrothermal changes and underscore the need to optimize and improve global 6 

soil hydrophysical properties that are ingested in LSMs for better performance. 7 

Developing detailed regional soil texture properties may be more realistic and enables 8 

more improvement in model simulations. Ultimately, this would advance the 9 

understanding of the role of soil processes in hydrologic cycle, ecosystem productivity, 10 

drought evolution, land-atmosphere interactions and regional climate. 11 

A number of initiatives (e.g. Terrain-AI) has been developed to deploy soil moisture 12 

measuring networks across Ireland to address the lack of soil moisture observations. 13 

A significant conclusion of this study is that the NOAH-MP model has shown an 14 

excellent capacity to ingest better alternative soil texture data, to reduce the model 15 

biases of soil hydrothermal changes and evolution of soil moisture drought. Therefore, 16 

it can be applied to augment the current network of sites across the country for 17 

operational modeling and real-time forecasting of soil moisture conditions and drought 18 

across the domain. This will support hydrometeorological monitoring similar to Global 19 

Food Awareness System (GloFAS) and NASA’s Short-term Prediction Research and 20 

Transition with Land Information System (SPoRT-LIS). 21 

 22 

Code and data availability 23 

The open-source HRLDAS/NOAH-MP model is freely available on github 24 

(https://github.com/NCAR/hrldas). The ERA5-Land hourly input meteorological forcing were 25 

downloaded from the climate data store (https://cds.climate.copernicus.eu/). The WPS 26 

geographical data were downloaded from NCAR (https://ral.ucar.edu/model/noah-27 

multiparameterization-land-surface-model-noah-mp-lsm). 2018 Corine land use and satellite 28 

ASCAT soil water index are freely available on Copernicus Global Land Service 29 

(https://land.copernicus.eu/global/index.html). In situ data for the selected sites were obtained 30 

from Met Eireann, Ireland and from the European fluxes database cluster (http://www.europe-31 

fluxdata.eu).  32 
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Valentia -10.244/ 

51.9397 

25.0 - Sandy

-Loam 

Sandy 

-Loam 

Loam 

Johnstown 

Castle 

-6.505/ 

52.2981 

52.0 0.32 Sandy 

-Loam 

Loam Loam 

Dripsey -8.752/ 

51.9867 

190.0 0.42 Loam Loam Loam 

Table 1. Summary of locations of in situ measurements. The station elevation data are obtained 1 

from Met Eireann service. The station soil texture data for Johnstown Castle and Dripsey are 2 

obtained from previous work (Kiely et al., 2018; Murphy et al., 2022), and soil texture map 3 
from the Irish Soil Information System (Creamer et al., 2014) are used for the in situ Terrain-4 

AI sites. The soil drainage classes are also obtained from the Irish soil information database. 5 

 Lon/Lat Elevation Field   Soil 

texture 
category Drainage  Definition 

Sites (o)  (m)  capacity In-situ  STATSGO  SOILGRIDS class  

Athenry -8.786/ 
53.2892 

40.0 - Loam Loam Loam Well  Brown earth soil group, allowing 

water movement through the soil at 

a moderate rate 
Ballyhaise -7.309/ 

54.0513 
78.0 - Loam Clay- 

Loam 
Loam Poor Surface water gley soils, retaining 

more water at or near the surface 

Claremorris -8.992/ 
53.7108 

68.0 - Sandy 
-Loam 

Loam Loam Well Brown earth soil group, allowing 

water movement through the soil at 

a moderate rate 
Dunsany -6.660/ 

53.5158 
83.0 - Loam Loam Loam Moderate Luvisol soils, often well-drained in 

the upper layers and slower 

movement deeper down. 
Valentia -10.244/ 

51.9397 
25.0 - Sandy-

Loam 
Sandy 
-Loam 

Loam Well Brown podzolic soils, draining 

relatively well in the upper layers 

Johnstown 

Castle 
-6.505/ 
52.2981 

52.0 0.32 Sandy 
-Loam 

Loam Loam imperfect Luvisol soils, often well-drained in 

the upper layers and slower 

movement deeper down. 
Dripsey -8.752/ 

51.9867 
190.0 0.42 Loam Loam Loam Poor Surface water gley soils, retaining 

more water at or near the surface 

 6 

Table 2. Percentage proportion of grids covered by soil texture categories 7 

for STATSGO and SOILGRIDS databases used. 8 

Soil texture STATSGO SOILGRIDS 

  (%)  (%)  

Sandy-Loam 16.4 27.0 

Loam 57.8 71.5 

Sandy Clay Loam 0 1.4 

Clay Loam 19.5 0.1 

Clay 6.3 0 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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 3 

 4 

 5 

Table 3. Summary of NOAH-MP physical options used in this study 6 

Physical processes Options 

Vegetation (4) Prescribed LAI + Prescribed max FVEG 

Canopy stomatal resistance (2) Jarvis 

Soil moisture factor (1) Noah 

Runoff and groundwater (3) Noah (free drainage) 

Surface layer drag (1) Monin-Obukhov 

Radiation transfer (3) Gap=1-FVEG 

Snow surface albedo (2) CLASS 

Precipitation partition (1) Jordan (1991) 

Lower boundary soil temperature (2) Soil temperature at 8 m depth 

Snow/soil temperature time (1) Semi-implicit 

Surface resistance (1) Sakaguchi and Zeng (2009) 

Soil data (1) Dominant soil texture 

(3) Soil composition and Pedotransfers 

PedoTransfers (1) Saxton and Rawls (2006) 

 7 

 8 

 9 

Table 4. Definitions of drought categories based on Relative Soil Moisture (RSM) percentiles 10 

ID RSM percentile Descriptions 

Dryness   

D0 ≤ 30 Abnormal 

D1 ≤ 20 Moderate 

D2 ≤ 10 Severe 

D3 ≤ 5 Extreme 

D4 ≤ 2 Exceptional 

Wetness   

W0 ≥ 70 Abnormal 

W1 ≥ 80 Moderate 
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W2 ≥ 90 Severe 

W3 ≥ 95 Extreme 

W4 ≥ 98 Exceptional 

 1 

 2 
Table 5. Performance statistics of Relative Soil Moisture (RSM) for various soil texture 3 

categories at the topsoil (0 – 10 cm) and subsurface (0 – 100 cm) in STATSGO and SOILGRIDS 4 

for 2018 year. The errors are the median grid values.  SL- Sandy Loam, L – Loam, SCL – Sandy 5 

Clay Loam, CL – Clay Loam, C – Clay. 6 

Soil texture  RMSD  PBIAS  R 

  STATSGO SOILGRIDS  STATSGO SOILGRIDS  STATSGO  SOILGRIDS 

Surface       

SL 0.016 0.016 -3.0 5.3 0.82 0.80 

L 0.018 0.018 -7.8 -4.5 0.84 0.84 

SCL - 0.017 - -6.0 - 0.84 

CL 0.016 0.016 11.0 4.6 0.79 0.86 

C 0.017 - 9.7 - 0.82 - 

Subsurface       

SL 0.016 0.015 2.9 3.6 0.56 0.61 

L 0.016 0.015 -1.9 -0.5 0.57 0.59 

SCL - 0.015 - 2.0 - 0.62 

CL 0.014 0.015 4.5 -3.3 0.62 0.58 

C 0.014 - -1.3 - 0.61 - 

 7 
Table 6. Performance statistics of Relative Soil Moisture (RSM) for various soil texture 8 

categories at the topsoil (0 – 10 cm) and subsurface (0 – 100 cm) in STATSGO and SOILGRIDS 9 

for 2019 year. The errors are the median grid values.  SL- Sandy Loam, L – Loam, SCL – Sandy 10 

Clay Loam, CL – Clay Loam, C – Clay. 11 

Soil texture  RMSD  PBIAS  R 

  STATSGO SOILGRIDS  STATSGO SOILGRIDS  STATSGO  SOILGRIDS 

Surface       

SL 0.015 0.016 3.6 9.8 0.68 0.66 

L 0.016 0.016 1.2 5.2 0.72 0.71 

SCL - 0.016 - 4.8 - 0.67 

CL 0.019 0.018 21.2 18.0 0.61 0.81 

C 0.019 - 20.1 - 0.79 - 

Subsurface       
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SL 0.013 0.012 17.8 16.7 0.61 0.63 

L 0.011 0.012 13.8 16.4 0.68 0.71 

SCL - 0.013 - 19.1 - 0.73 

CL 0.013 0.011 20.5 16.1 0.73 0.76 

C 0.012 - 16.1 - 0.77 - 

 1 

     2 
Figure 1. [a] Geographical locations of the selected in situ grassland sites overlaid on Ireland’s 3 
map of soil drainage categories. [b] Refined map of 2018 Corine to MODIS land cover classes 4 
for the study domain.  5 

 6 
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 1 
Figure 2. [a-b] Soil textural classes for the study domain based on global soil databases, namely 2 
FAO/STATSGO and SOILGRIDS. [c] Spatial differences in the soil texture categories between 3 
STATSGO and SOILGRIDS, indicating increasing or decreasing soil grain size. 4 

 5 
Figure 3. Spatial characteristics of absolute and difference between STATSGO and 6 
SOILGRIDS for [a-c] soil porosity, [d-f] field capacity and  [g-i] wilting point.  7 
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 1 
Figure 4. Temporal comparisons of observed total annual cumulative precipitation at the 2 
selected reference stations, against the ERA5-Land colocated grids. 3 
 4 
 5 
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 1 

Figure 5. [a-g] Temporal comparisons of near-surface volumetric water contents and 2 

boxplots of data distribution, between observations at 5 cm and simulated values at 0-3 
7 cm layer for the selected reference stations. For Johnstown Castle and Dripsey [f-g], 4 

the model simulations are evaluated against the available observations at the top 20 5 

cm depth. The black dots in the boxes represent the mean values. [a-g] Temporal 6 
comparisons of volumetric water contents and boxplots of data distribution, between 7 

observations and simulated values for the selected reference stations. The black dots 8 
in the boxes represent the mean values 9 

 10 

Figure 6. Performance statistics for STATSGO and SOILGRIDS derived Relative Soil 11 

Moisture (RSM) values at the topsoil layer (0-7 cm) and subsurface soil layer (0-100 12 

cm), against satellite-based ASCAT Soil Water Index (SWI), for 2018 (top) and 2019 13 
(bottom) years.  N = 131,000 cells and the black crossbars are the median values. 14 
 15 
 16 
 17 



 

49 

Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

 1 

Figure 7. Spatial characteristics of absolute and difference between satellite-based 2 
annual ASCAT Soil Water Index (SWI) and model derived annual mean Relative Soil 3 

Moisture (RSM) at the surface , for [a-e] 2018 and [f-j] 2019 years4 

 5 
Figure 7. Spatial characteristics of absolute and difference between satellite-based 6 

annual ASCAT Soil Water Index (SWI) and model derived annual mean Relative Soil 7 

Moisture (RSM) at the surface , for [a-e] 2018 and [f-j] 2019 years  8 

 9 
 10 
 11 
 12 
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 1 

 2 

Figure 8. [a-g] Temporal comparisons of soil temperature and boxplots of data 3 
distribution, between observations and simulated values for the selected reference 4 

stations. The black dots in the boxes represent the mean values 5 
 6 
 7 
 8 
 9 
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Figure 9.  Spatial and seasonal characteristics of simulated top (0-7 cm) soil 2 

temperature using STATSGO [a-d], SOILGRIDS [e-h] and the difference [i-l], for the 3 

period 2009 - 2022. Rows [1-4] represent the Winter to Autumn seasons in that order. 4 
 5 
 6 
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Figure 10. Spatial characteristics of soil moisture drought categories derived using 0 3 

– 100 cm Relative Soil Moisture percentiles for STATSGO [top] and SOILGRIDS 4 

[bottom] for 2018 summer. D0-D4 represents abnormally dry, moderate, severe, 5 
extreme and exceptional droughts, while W0-W4 is the corresponding wetness 6 

categories. 7 
 8 
 9 
 10 
 11 
 12 
 13 
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 3 

Figure 11. Time-areal coverage crossection of drought evolution based on daily 0 – 4 
100 cm Relative Soil Moisture (RSM) percentiles during 2018 summer for STATSGO 5 

[top] and SOILGRIDS [bottom].  D0-D4 represents abnormally dry, moderate, severe, 6 

extreme and exceptional droughts. The dashed vertical lines represent the effective 7 

start of severe to exceptional droughts. 8 
 9 

 10 

Figure 12. Temporal comparisons of observed volumetric water content (VWC) at 11 

Dripsey site, against the simulated values for a nearby grid location with field 12 
capacity of 0.412 m3 m-3. 13 
 14 
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 3 

Figure A1. Observed 5 cm and 20 cm depths TDR soil moisture from 2022 to present 4 

across the Terrain-AI stations 5 

 6 

 7 

Figure A2. Evaluation of satellite-derived 1 km ASCAT-T2 (0-10 cm), 1 km GSSM (0-8 

5 cm) and 25 km ESACCI near-surface soil moisture against the station observations. 9 

No available ESACCI SSM grid values for Valentia, and due to ASCAT later year of 10 

operation in 2015, no available ASCAT values also for Dripsey. 11 

 12 

To evaluate ASCAT SWI, we rescaled the units in percent to match the observed VWC 13 

and other products (in m3 m-3) used . To achieve this, we used the variance matching 14 

approach (equation A1) so that the linearly transformed 𝑆𝑊𝐼∗ data would have the 15 
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same mean (𝜇) and standard deviation (𝜎)  as the ground VWC measurements (Paulik 1 

et al., 2014; Bauer-Marschallinger et al., 2018).  2 

 3 

𝑆𝑊𝐼∗  =  
𝑆𝑊𝐼(𝑡) − 𝜇𝑆𝑊𝐼

𝜎𝑆𝑊𝐼
𝜎𝑉𝑊𝐶 + 𝜇𝑉𝑊𝐶     (A1) 4 

As demonstrated in Figures A2-A3 for near-surface and sub-surface VWC, the ASCAT 5 

𝑆𝑊𝐼∗ generally yields better performance than ESA CCI 25 km SSM and GSSM 1 km 6 

products, though the latter products show higher temporal dynamics as shown by the 7 

higher temporal correlations with the ground observations. The rising and falling trends 8 

are also better captured by ASCAT. Compared to ASCAT, the ESA CCI SSM and 9 

GSSM show fewer fluctuations in VWC, looking very close to the subsurface VWC 10 

profiles (e.g. Figure A2f). While the uncertainty in GSSM products is likely linked to 11 

lack of training data from Ireland, the biases in ESA CCI SSM may be attributed to its 12 

native grid resolution which is too coarse to effectively represent the soil heterogeneity, 13 

and/or differences in soil depths 14 

 15 

 16 

Figure A3. Evaluation of satellite-derived 1 km ASCAT-T10 (10-30 cm) sub-surface 17 

soil moisture against the station observations (20 cm). No sub-surface values for 18 

ESACCI and GSSM products 19 
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Figure A41. Error statistics of volumetric water contents between observations and 2 
model experiments for the selected reference stations. 3 
 4 
 5 

 6 

Figure A5. [a-g] Temporal comparisons of subsurface volumetric water contents 7 

between observations at 20 cm depth and simulated values at 7-21 cm layer for the 8 

selected reference stations.  9 

 10 
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Figure A6. Spatial characteristics of absolute and difference between satellite-based 3 

annual ASCAT Soil Water Index (SWI) and model derived annual mean Relative Soil 4 

Moisture (RSM) at the subsurface , for [a-e] 2018 and [f-j] 2019 years 5 

 6 

 7 
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Figure A72. Spatial and seasonal characteristics of simulated top soil (0-7 cm) 2 

volumetric water content (VWC) using STATSGO [a-d], SOILGRIDS [e-h] and the 3 
difference [i-l], for the period 2009 - 2022. Rows [1-4] represent the Winter to Autumn 4 

seasons in that order 5 
 6 
 7 
 8 
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Figure A8. Spatial and seasonal characteristics of simulated long-term variability in top 2 

soil (0-7 cm) volumetric water content (VWC) using STATSGO [a-d], SOILGRIDS [e-3 

h] and the difference [i-l], for the period 2009 - 2022. Rows [1-4] represent the Winter 4 

to Autumn seasons in that order 5 

 6 
 7 

 8 
 9 

 10 
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Figure A1093. Error statistics of soil temperature between observations and model 2 

experiments for the selected reference stations. 3 
 4 
 5 


