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Abstract. Fluvial sediment dynamics in mountain rivers are changing rapidly in a degrading cryosphere, raising the potential

for erosive rainfall and runoff, and detrimental effects on downstream areas. Hence, we need to understand better what char-

acterises and drives episodic pulses of water and suspended solids in rivers. Here, we infer different types of such sediment-5

discharge events from 959 automatically detected events based on 16 metrics derived from 15-min time series of streamflow

and suspended sediment concentrations from the Vent-Rofental in the High Ötztal Alps, Austria. We use principal component

analysis to extract uncorrelated event characteristics and cluster event types with a Gaussian mixture model. We interpret thus

inferred event types with catchment metrics describing antecedent conditions, hydrometeorological forcing, and fraction of

catchment area with freezing temperatures and snowcover. We find event magnitude, hysteresis, and event shape complexity10

to be the main factors characterising the overall event regime. The most important characteristics distinguishing the event

types are suspended sediment and streamflow magnitude, and complexity of the hydro- and sedigraphs. Sediment-discharge

hysteresis is less relevant for discerning event types. We derive four event types that we attribute to (1) compound rainfall-

melt extremes, (2) glacier and seasonal snow melt, (3) freezethaw-modulated snow-melt and precipitation events, and (4) late

season glacier melt. Glacier and snow melt events driven by warm conditions and high insolation were the most frequent and15

contributed some 40 % to annual suspended sediment yield on average; compound rainfall-melt extremes were rarest, but con-

tributed the second highest proportion (26 %). Our approach represents a reproducible method for objectively estimating the

variety of event-scale suspended sediment transport conditions in mountain rivers, which can provide insights into the contri-

bution of different drivers to annual sediment yields in current and future regimes. Our findings highlight the importance of

both meltwater and rainfall-runoff as drivers of high magnitude suspended sediment fluxes in mountain rivers.20

1 Introduction

High mountain areas have been warming at a faster rate than the global average (Hock et al., 2019), drastically changing

the mountain cryosphere in terms of accelerated glacier mass loss (Hugonnet et al., 2021; Huss and Hock, 2018), permafrost

degradation (Smith et al., 2022; Biskaborn et al., 2019), and snowpack reduction (Hanzer et al., 2018; Beniston et al., 2018;

Carrer et al., 2023). This ongoing cryospheric decay combines with altered precipitation and weather patterns, and change25

sediment dynamics and loads in mountain regions (Zhang et al., 2022). Elevated sediment loads can have detrimental effects
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on water quality, hydro-power production, and aquatic habitats and ecosystems in downstream reaches especially (Adler et al.,

2022; Huss et al., 2017; Scheurer et al., 2009).

Current changes in �uvial suspended sediment transport in mountain rivers are mainly affected by sub- and proglacial

sources in the wake of deglaciation and reworking of freshly exposed deposits (Schmidt et al., 2022; Zhang et al., 2022;30

Ballantyne, 2002; Delaney and Adhikari, 2020; Delaney et al., 2018a; Hinderer et al., 2013). Episodic sediment pulses, often

caused by rainstorms, can contribute substantial fractions to annual sediment yields (Vercruysse et al., 2017; Gonzalez-Hidalgo

et al., 2013; Schmidt et al., 2022). Observed and projected increases in extreme precipitation (Madsen et al., 2014; Vergara-

Temprado et al., 2021; Fowler et al., 2021) make it seem likely that such sediment �uxes may become more dominant, leading

to more �ashy sediment-transport regimes (Zhang et al., 2022). Paraglacial environments in particular host large amounts of35

unconsolidated sediment that can remain available for mobilisation during extreme rainfall events long after glaciers have

melted (Zhang et al., 2022; Huss et al., 2017). Thus, any gradually decaying sub- and proglacial sediment discharge may be

supplemented by rainfall-driven reworking of sediment (Zhang et al., 2022). Consequently, we need to understand better the

current drivers of episodic sediment �uxes in high mountain areas, and to which extent hydrometeorological forcing, sediment

availability and reworking, will affect our projections of future rates and regimes sediment-transport.40

Detailed event-based analysis of suspended sediment dynamics in mountain rivers can identify important antecedent con-

ditions and drivers (Vercruysse et al., 2017). However, the complex and nonlinear nature of suspended sediment transport in

mountain rivers poses a challenge for such analyses (Vercruysse et al., 2017; Bracken et al., 2015): the complexity arises from

(1) multiple hydrological drivers of sediment transport, e.g. rainfall, snow-melt, and glacier melt (Costa et al., 2018; Orwin

et al., 2010); (2) catchment conditions and processes regulating sediment production and availability, e.g. snow and vegetation45

cover, freeze-thaw cycles and erosion, lithology and glacial history (Schmidt et al., 2022; Rengers et al., 2020); and (3) hill-

slope and channel geomorphology that in�uences erosion potential and sediment connectivity (Bracken et al., 2015). Hence,

suspended sediment concentrations in mountain rivers are highly variable (Schmidt et al., 2022; Lalk et al., 2014; Hinderer

et al., 2013; Delaney et al., 2018b). By systematically detecting and grouping episodic suspended sediment �uxes, which we

term "sediment-discharge events", we might derive a catchment-speci�c event typology, in which each type shares similar and50

dominant hydrometeorological drivers and geomorphic catchment conditions.

While studies of event-scale suspended sediment dynamics are common, only a handful of studies have tried to identify

speci�c event types and their conditions and drivers. Most of these studies focused on classifying patterns of sediment-discharge

hysteresis (e.g. Hamshaw et al., 2018; Tsyplenkov et al., 2020; Haddadchi and Hicks, 2021), and attributed these classes

to drivers such as hydrometeorological forcing (e.g. rainfall intensity and amount); antecedent catchment conditions (e.g.55

soil moisture, precipitation); land cover; sediment exhaustion; or contributions from multiple sediment sources. Sediment-

discharge hysteresis is a well-established concept in �uvial sediment transport research dating back to 1953 (Malutta et al.,

2020). Despite its popularity in classifying event-scale sediment discharge dynamics, the interpretation of hysteresis remains

contextual (Vercruysse et al., 2017) and often without direct indication of its cause (Tsyplenkov et al., 2020), especially where

the same cause is attributed to different types of hysteresis (Tab. 1 in Malutta et al., 2020).60
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A more general approach can be taken by clustering sediment-discharge events based on characteristics derived from their

hydro- and sedigraphs. Leggat et al. (2015) and Orwin and Smart (2004) used a combined classi�cation, separately clustering

sedigraph temporal patterns and magnitudes to identify event types and the associated dominant meteorological conditions

and drivers. Javed et al. (2021) grouped events based solely on hydro- and sedigraph shapes, by normalising magnitude and

standardising event lengths, and subsequently clustering with K-medoids and dynamic time warping. Mather and Johnson65

(2015) clustered event shapes based on sediment rating curve parameters. The advantage of using clustering for inferring event

typologies is that it does not require any previous knowledge about event types (Tarasova et al., 2019). Thus, clustering is a

suitable �rst approach for inferring sediment-discharge event types in high mountain catchments on the basis of similar water

and sediment discharge characteristics.

Here, we use a clustering approach to derive a sediment-discharge event typology for the high-alpine, glaciated basin Vent-70

Rofental, Ötztal Alps, Austria. With its long monitoring history, the catchment has a wealth of hydrological, meteorological,

and glaciological data (Strasser et al., 2018). Key to our data-driven approach are continuous, high resolution records of sus-

pended sediment concentration since 2006. Recent reconstructions and projections of annual suspended sediment yield for

Vent-Rofental basin suggest that the basin has entered a phase of declining glacial in�uence on sediment transport (Schmidt

et al., 2023;?), making it an ideal study area to examine. For our clustering approach, we assume that each event belongs to a75

certain type that shares a set of similar sediment-discharge characteristics. We identify and condense these characteristics with

a principal component analysis on 16 event metrics describing event magnitude, hysteresis, shape, and effects of preceding

events. We cluster events based on these characteristics with a Gaussian mixture model, and use hydrometeorological data to

interpret each cluster as an event type. Our aim is to understand the catchment state, antecedent conditions and hydromete-

orological drivers that determine event-scale suspended sediment dynamics in the upper Ötztal, with the following research80

questions:

– what are the key sediment-discharge characteristics that differentiate the event types?

– do events of the same type share hydrometeorological drivers?

– are the event types associated with diagnostic antecedent conditions (e.g. dry vs. wet, cool vs. warm)?

– what is the contribution of each event type to the annual suspended sediment yield?85

2 Study area and data

Rofental is a valley located upstream of the village of Vent in the Ötztal Alps, Austria (Fig. 1. The valley has been the site

of several hydrometeorological and glaciological studies in the past 150 years, and has a unique time series of long-term

observations (see Strasser et al., 2018, for detailed description). The Vent-Rofental hydrological basin has 98km2 and an

elevation range of 1891-3772 m a.s.l. The main river is the Rofenache, a tributary of the Venter Ache, Ötztaler Ache, and90

the Inn. The current hydrological regime is dominated by snow and ice melt, which peaks in July and August and is lowest

during winter (Strasser et al., 2018; Schmidt et al., 2022). The seasonality of suspended sediment has a pattern similar to that
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Figure 1. Map of study area showing topography (Land Tirol, 2021), river network (OpenStreetMap, 2022), glaciers (Buckel and Otto,

2018) and active rock glaciers (Wagner et al., 2020). The location of the Vent-Rofental river gauge is denoted with a red triangle, and the

accompanying catchment boundary in green.

of stream�ow, but with a longer low-�ux winter period (Schmidt et al., 2022). Glaciers cover about a quarter of the catchment

(28 % in 2015, Schmidt et al., 2022; Buckel and Otto, 2018). However, their size is rapidly decreasing, and they will likely

disappear by the end of the 21st century (Hanzer et al., 2018).95

The bedrock consists of various types of gneiss-mica schists and schistose gneisses (Moser, 2016; Kreuss, 2018). The

Quaternary geology is dominated by Holocene and some Pleistocene moraines (Moser, 2016; Kreuss, 2018). The catchment

also has many talus slopes sitting between the moraines and steep bedrock slopes (Moser, 2016; Kreuss, 2018). Apart from a

few small lakes and proglacial outwash plains, the river network lacks signi�cant sediment storage.

The Vent-Rofental river gauge (1891 m a.s.l., 46.85691� N, 10.91093� E) has been operated continuously by the Hydro-100

graphic Service of Tyrol (HD-Tirol) since 1967, and suspended sediment concentrations (SSC) have been monitored since

2006 with two optical infrared turbidity sensor (Solitax sensors by Hach) and manual SSC sampling (see Lalk et al., 2014, for

details). The continuous SSC monitoring at Vent-Rofental was established as part of a nation-wide strategy by the Austrian

Hydrographic Service in order to monitor and analyse changes in riverine suspended sediment resulting from deglaciation,

permafrost thawing, land use changes and river regulation (Habersack et al., 2008; Lalk et al., 2014). SSC samples to calibrate105

turbidity measurements were collected manually close to the turbidity sensors frequently, and, when possible, during high �ow

events (Lalk et al., 2014). Turbidity measurements at the Vent-Rofental gauge are paused in winter (October-April) to prevent

damage to the equipment. However, the sensors are installed before the spring rise in SSC, and the sediment transport during

the unmonitored period can be considered negligible.
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Table 1.Description of datasets and variables used in this study. Temporal extents refer to available data in the study period (2006-2021).

Dataset Temporal

extent

Description Source

SSC 2006-2021 15-min turbidity-based SSC observations at Vent-Rofental gauge HD-Tirol

Q 2006-2021 15-min stream�ow observations at Vent-Rofental gauge HD-Tirol

SPARTACUS 2006-2021 1-km daily maximum and minimum air temperature, interpolated from

point observations

GeoSphere Austria

INCA 2006-2021 1-km hourly precipitation, station-adjusted weather radar observations GeoSphere Austria

APOLIS 2006-2021 100-m daily global radiation GeoSphere Austria

SNOWGRID 2006-2021 1-km daily modelled SWE and snow depth GeoSphere Austria

WINFORE 2006-2021 1-km dailySP EI 30 GeoSphere Austria

MODIS-SC 2006-2018 250-m daily observed snowcover maps Matiu et al. (2019)

A number of gridded products of hydrometeorological variables are available for the Rofental (Tab. 1), mostly from the110

Austrian Weather ServiceGeoSphere Austria. We used these data to calculate various metrics of catchment conditions and

processes during and leading up to events (see Sec. 3.4).

SPARTACUS provides daily maximum and minimum temperature �elds at 1-km resolution based on interpolated station

data. Time series from 150 stations in Austria are interpolated with a method that combines a macroclimatic background �eld

with a mesoclimatic residual �eld (see Hiebl and Frei, 2016, for details).115

WINFORE provides daily reference (potential) evapotranspiration �elds at 1-km resolution using a recalibrated Hargreaves

method forced with SPARTACUS minimum and maximum temperature �elds (see Haslinger and Bartsch, 2016, for details).

The daily reference potential evapotranspiration and SPARTACUS interpolated daily precipitation �elds (Hiebl and Frei, 2018)

are then used to calculate 30-day standardised precipitation and evapotranspiration index (SPEI 30) �elds at daily resolution.

The INCA system produces analysis and nowcasting �elds for various meteorological variables. The precipitation analysis120

incorporates rain gauge measurements, radar data, and elevation effects. The uncorrected radar �eld is partially corrected to

produce a climatologically adjusted radar �eld, which is subsequently re-scaled based on the comparison between station

observations and the radar �eld at the station location (see Haiden et al., 2011, for details).

Daily global radiation �elds are obtained from APOLIS, a 100-m gridded dataset produced by calculating direct and diffuse

solar radiation with the parametric solar radiation model STRAHLGRID (Olefs and Schöner, 2012).125

SNOWGRID-CL, a daily and longer term version of the physically based and spatially distributed snow model SNOWGRID,

uses an extended degree-day scheme to calculate snow ablation and a two-layer scheme to account for snow sublimation,

settling and refreezing of the snow cover (Olefs et al., 2020). The model is forced with daily WINFORE potential evapotran-

spiration (Haslinger and Bartsch, 2016), SPARTACUS temperature (Hiebl and Frei, 2016) and precipitation (Hiebl and Frei,

2018) �elds, producing daily snow water equivalent (SWE) and snow depth estimations at 1-km resolution. To complement the130
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SNOWGRID data, we also included daily 250-m snowcover maps derived from MODIS imagery using snow cover and cloud

removal algorithms tailored to the European Alps (see Matiu et al., 2019, for details).

3 Methods

Our approach for identifying sediment-discharge event types is divided into three steps: (1) the detection and characterisation

of events (Sec. 3.1; 3.2); (2) grouping similar events via clustering (Sec. 3.3); and (3) evaluation and interpretation of these135

clusters as event types (Sec. 3.4).

3.1 Event detection

There is no commonly used de�nition of what constitutes a sediment-discharge event, i.e. an episodic suspended sediment

�ux measured at the catchment outlet. Studies use various terms, e.g. �ood events (Pagano et al., 2019; Francke et al., 2008),

hydrologic(al) events (Tsyplenkov et al., 2020; Williams, 1989), or storm events (Javed et al., 2021; Hamshaw et al., 2018), as140

events are generally separated based on stream�ow either by hydrological day (e.g. Antoniazza et al., 2022; Leggat et al., 2015),

with hydrograph separation (e.g. Haddadchi and Hicks, 2020; Tsyplenkov et al., 2020), or with a semi-automated procedure

(e.g. Hamshaw et al., 2018). In this study we use the term sediment-discharge event, which we de�ne as a marked increase in

stream�ow accompanied by a large pulse of suspended sediment measured at the catchment outlet (i.e. gauge).

Continuous 15-min time series of stream�owQt and suspended sediment concentrationSSCt were used for the event145

detection. The startt0 and endt1 of an eventi were derived fromQt and then subsequently �ltered based on eventSSCt with

the following procedure (Fig. 2a):

1. The demarcation of hydrological events followed the method after Tsyplenkov et al. (2020) based on the local minimum

hydrograph separation method (Sloto and Crouse, 1996) using theload�ux R-package (Tsyplenkov, 2022). This method

essentially splits the entire stream�ow record into events at local minima identi�ed in a centered 21-hour search window150

w.

2. We removed hydrological events with no or only partial SSC measurements.

3. Only events where peak SSC exceeded a �xed threshold� SSC;peak were kept. To focus on large events we set the

threshold at the 90th percentileP90 of SSCt , which for our 16-year study period (2006-2021) was 1196.5mg l � 1.

� SSC;peak = P90(SSCt ) (1)155

The choice ofP90 as the peak SSC threshold was a trade-off between ensuring a suf�cient number of events for the

clustering while keeping only larger events.

This event detection procedure ensures that events of varying duration can be detected (Fig. 3), and that the detected events

are extreme enough (in terms of SSC) to be of interest. By �ltering events based on the peak SSC threshold, our approach
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Figure 2. Overview of event detection and characterisation (a), and event clustering (b). Events are demarcated at local stream�ow minima,

then �ltered by suspended sediment concentration (SSC) magnitude. Each event is then characterised with sediment-discharge event metrics

(see Tab. 2). After transforming and standardising the metrics, the dimensions are reduced with principal component analysis (PCA), and

clusters identi�ed with a Gaussian mixture model (GMM). The optimal number of clusters are chosen using two objective criteria. The values

speci�c to this study are highlighted initalic. Input variables and thresholds are highlighted inbold.

Figure 3. Example of event detection procedure. SSC-Q time series is split at local stream�ow minima and events with peak SSC below

threshold� SSC;peak are discarded.

is similar to a peak-over-threshold (POT) approach, except that the boundaries of the events are determined by the event160

hydrograph.
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Table 2.Sediment-discharge event metrics used to characterise events.

Category Metric Description Unit

Time and seasonality
� t Duration of the event h

DOY Seasonality expressed as day of the year -

Magnitudey

SSCmax Maximum (peak) SSC mg l � 1

SSCmean Average SSC of entire event mg l � 1

SSCmean;w Stream�ow weighted average of SSC, i.e.SSY divided byQtotal mg l � 1

SSY Suspended sediment yield t

Qmax Maximum (peak) stream�ow m3 s� 1

Qmean Average event stream�ow m3 s� 1

Qtotal Total event stream�ow volume m3

Intra-event dynamics

SHI Simple hysteresis index, standardised between -1 and 1 -

AHI Aich's hysteresis index -

� peak Peak phase difference, indicates the hysteresis direction -

SSYratio Log-ratio of SSY in the falling and rising limb of the hydrograph -

SQP R Log-ratio of number of SSC peaks to number of stream�ow peaks -

Inter-event effects
IEI Log-ratio of SSC peak of last event to time since last event -

Qpeak;ratio Log-ratio of peak stream�ow of current to last event -

y log-transformed during cluster analysis preprocessing

3.2 Characterisation of events

In order to identify groups of similar sediment-discharge events, we need metrics to characterise them �rst. A number of metrics

and indices have been developed to characterise event-scale (suspended) sediment dynamics. We select 14 metrics from the

literature and introduce two new metrics (Tab. 2), broadly divided into four categories relating to time and seasonality, event165

magnitude, intra-event dynamics, and inter-event effects on sediment dynamics.

Metrics of event duration and magnitude are commonly used in studies of event-scale sediment dynamics, such as the

average and peak SSC and stream�ow during an event (Tab. 2). The suspended sediment yieldSSY (also: suspended sediment

load) is the total mass of suspended sediment passing the gauge, calculated by integrating the product ofSSCt andQt for each

timestepdt between the startt0 and endt1 of the event:170

SSY =

t 1Z

t 0

SSCt Qt dt (2)

For comparability with other study areas, we sometimes report speci�c SSY (sSSY) int km � 2, which is SSY divided by

catchment area. Similarly, when we report on annual (s)SSYt0 will be the start andt1 the end of the year.
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Hysteresis results from differences in SSC in the rising and falling limbs of the hydrograph and is commonly used to describe

event-scale suspended sediment dynamics (Malutta et al., 2020; Vercruysse et al., 2017). A number of hysteresis indices (HI)175

have been developed to quantify and classify hysteresis patterns objectively (e.g. Aich et al., 2014; Langlois et al., 2005;

Tsyplenkov et al., 2020; Lawler et al., 2006). Here, we use Aich's HI (AHI) (Aich et al., 2014) and the simple HI (SHI)

(Tsyplenkov et al., 2020), as both have standardised ranges that allow for direct comparison. More positive values of AHI and

SHI indicate stronger clockwise hysteresis, while more negative values indicate more pronounced anti-clockwise hysteresis.

Both metrics were computed with theload�ux R-package (Tsyplenkov, 2022).180

Three further metrics were used to characterise intra-event dynamics, i.e. the peak phase difference, the SSC to stream�ow

peak ratio, and the falling and rising limb SSY ratio. The peak phase difference� peak (Haddadchi and Hicks, 2021) is a

dimensionless measure of the time difference between the peaks of stream�owtQ max and SSCtSSC max ,

� peak =
tQ max � tSSC max

� t
(3)

and indicates to what degree the SSC peak leads (positive� peak ) or lags (negative� peak ) the Q peak. Thus, it also indicates185

the direction of the hysteresis pattern.

To indicate whether the exported sediment tends to be delivered before or after the stream�ow peak we include a modi�ed

version of theSSYratio (Haddadchi and Hicks, 2020), which is the log-ratio ofSSY in the rising and falling limb of the

hydrograph,

SSYratio = log
�

SSYfalling

SSYrising

�
(4)190

indicating whether the bulk of the sediment is delivered in the rising (SSYratio < 0), or falling limb of the hydrograph

(SSYratio > 0).

The SSC to stream�ow peak ratio (SQPR), de�ned as

SQPR = log
�

nSSCpeaks

nQpeaks

�
(5)

indicates whether more SSC peaks (nSSCpeaks ) or stream�ow peaks (nQpeaks ) occur during an event. Negative values indicate195

more stream�ow peaks, while positive values indicate more SSC peaks. If the SQPR is zero, the event had the same number of

stream�ow and SSC peaks. The peaks were identi�ed automatically (Virtanen et al., 2020,scipy.signal.find_peaks )

based on two criteria: the distance between peaks and the prominence of the peak. The peak prominence "measures how much

a peak stands out from the surrounding baseline of the signal and is de�ned as the vertical distance between the peak and

its lowest contour line" (Virtanen et al., 2020,scipy.signal.peak_prominences ). To calculate the SQPR we set a200

minimal peak prominence of 500mg l� 1 for SSC peaks, which corresponds to about a third of the median SSC range of

events, and 2m3 s� 1 for stream�ow peaks, which corresponds to about an eight of the median stream�ow range of events.

The minimum distance between peaks was set to one hour. The selection of these parameters for peak detection were based on

visual inspection of the hydro- and sedigraphs of the detected events.

Inter-event effects such as sediment accumulation or exhaustion are important for suspended sediment transport but dif�cult205

to quantify. The �ow peak ratioQpeak;ratio introduced by Haddadchi and Hicks (2020) is one metric that attempts to quantify
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inter-event effects:

Qpeak;ratio = log
�

Qi � 1
max

Qi
max

�
(6)

We modi�ed this metric by using the log-ratio, rather than the ratio, of stream�ow peak of the last eventQi � 1
max and the current

eventQi
max .210

We also attempt to account for inter-event effects with a new metric, the inter-event index (IEI), de�ned as the ratio of the

SSC peak of the previous eventSSCi � 1
max in mg l� 1 and the time between the end of the last eventt i � 1

1 and the start of the

current eventt i
0 in hours:

IEI = log
�

SSCi � 1
max

t i
0 � t i � 1

1

�
(7)

3.3 Event clustering215

Our approach for inferring the event types is based on the assumption that each event type shares a set of de�ning antecedent

conditions, hydrometeorological drivers, and catchment states, which we capture suf�ciently by our choice of event metrics.

Clustering, a type of unsupervised machine learning analysis where data points are grouped into clusters based on their simi-

larity (Murphy, 2012), is suited for our purposes as it does not require prede�ned class criteria. By clustering based on event

metrics, we hope to �nd groups of events, i.e. event types, that are the expression of a certain set of catchment conditions and220

hydrometeorological drivers. We employed a two-step approach (Fig. 2b) consisting of a transformation step and a clustering

step.

In the transformation step, we applied a principal component analysis (PCA) to the sediment-discharge event metrics. PCA

transforms correlated metric variables into the same number of uncorrelated variables called principal components (PCs) (Kim

and Kim, 2012). By selecting the top PCs ranked by their explained variance, we end up with a re-projected dataset, where the225

variables, i.e. PCs, contain most of the variance from the original variables.

After the event detection and characterisation, we ended up with an � m data matrix ofn sediment-discharge events andm

event metrics. Some of these metrics describe similar aspects of the same event property, e.g. event magnitude or hysteresis.

By transforming the dataset with PCA we achieve two objectives. Firstly, we obtainc principal components (PCs) that can be

interpreted as uncorrelated event characteristics. Secondly, we reduce the dimensions of our dataset by selecting fewer PCs than230

metrics. Preprocessing the event metrics was necessary before applying the PCA. Event metrics describing magnitude were

natural-log-transformed (Tab. 2) as the distributions of these metrics were highly skewed. Next, all metrics where standardised

by subtracting the mean and dividing by the standard deviation. This step is needed before performing a PCA, since the

principal components can be "misled" by directions in which the variance is high merely because of the measurement scale

(Murphy, 2012). Finally, the metrics were re-projected in a lower dimension space with PCA, by keeping only those ranked235

principal components that together accounted for more than 80 % of the total explained variance. This left an � c data matrix

X = ( x ij )1� i � n; 1� j � c, wherec < m .

In the clustering step, the event types were inferred with a Gaussian mixture model (GMM). A GMM is a mixture ofK

multivariate GaussiansN with mean vectors� k , denoting the center of the cluster in allc dimensions, and covariance matrices
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� k denoting the shape of the cluster, and mixing weights� k , such that240

p(x i j � ) =
KX

k=1

� k N (x i j � k ; � k ) (8)

The mixture weights satisfy the constraint that
P K

k=1 � k = 1 . The parameterisation� of the GMM is given by:

� = f � k ; � k ; � k g k = 1 ; :::;K (9)

The GMM is a type of soft clustering that estimates the probability of each eventx i = X i? belonging to each clusterk.

Each event is assigned to the cluster to which is has the highest likelihood of belonging.245

The GMM can be �tted with different covariance types for� k . We tested three different options: a full covariance matrix

with dimensionsk � c� c, a diagonal covariance matrix with dimensionsk � c, and a spherical covariance matrix with dimen-

sionsk. The full covariance type is the most �exible model by admitting independent Gaussians for each cluster, while the

spherical is the most restrictive allowing only one variance value for each cluster.

In order to determine the optimal number of clustersK and covariance type we used two objective criteria, the Bayesian250

Information Criterion (BIC) (Schwarz, 1978), which penalises higher number of parameters needed to describe more clusters,

and the Variance Ratio Criterion (VRC) (Caliñski and Harabasz, 1974) and silhouette score (Rousseeuw, 1987), where a higher

value relates to a model with better de�ned clusters and separated clusters respectively. The selection of the optimal cluster

model was based on the objective criteria of the lowest BIC and highest VRC. However, depending on the agreement between

the BIC and VRC scores, the �nal choice may require expert judgement, e.g. by use of the elbow method. The elbow method255

is a heuristic approach for determining the optimal number of clusters, whereK is selected based on the most distinct break in

the curve of cluster scores.

3.4 Interpretation of event clusters with catchment metrics

For the interpretation of the inferred event clusters, we selected a number of catchment metrics describing antecedent conditions

and hydrometeorological forcing; all these may be relevant for suspended sediment dynamics in mountain rivers (Tab. 3; Tab.260

1).

In order to measure differences between event types consistently, in terms of both sediment-discharge characteristics and

hydrometeorological catchment conditions, we standardised all event and catchment metrics such that

zi =
x i � x

s
(10)

wherex is the metric,x its mean ands its standard deviation across all events. Such standardisedz-scores are useful to compare265

groups of events (Javed et al., 2021).
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Table 3.Catchment metrics describing catchment conditions and hydrometeorological drivers leading up to and during sediment-discharge

events.

Category Metric Description Unit Data

Water

NAP I 14 Normalised antecedent precipitation index (Heggen, 2001), indicating the

moisture conditions in the catchment over the last 14 days leading up to

the event.

- INCA

SP EI 30 Standardised Precipitation Evapotranspiration Index (SPEI) of the 30

days leading up to event

- WINFORE

I max Maximum precipitation intensity, maximum of maximum grid cell in

each event time step.

mm h � 1 INCA

Ptotal Total catchment average precipitation mm INCA

SM Snowmelt, as estimated from change in mean catchment snow water

equivalent (SWE)y , from �rst to last day of event.

mm SNOWGRID

SA Snow accumulation, as estimated from change in mean catchment SWEy ,

from �rst to last day of event.

mm SNOWGRID

Energy

F CF Frost change factor, average area affected by diurnal freezethaw during

event, i.e. daily maximum air temperature above 0� C and daily minimum

air temperature below 0� C

- SPARTACUS

AT I 5 Antecedent thawing index , the thawing index (Frauenfeld et al., 2007) in

the 5 days leading up to the event.

degree-

days

SPARTACUS

AF I 5 Antecedent freezing index, the freezing index (Frauenfeld et al., 2007) in

the 5 days leading up to the event.

degree-

days

SPARTACUS

AGR 5 Antecedent global radiation, average global radiation in the 5 days lead-

ing up to event

kW h m � 2 APOLIS

Tmax Maximum daily maximum temperature of event � C SPARTACUS

GRevent Average global solar radiation during the day(s) of the event kW h m � 2 APOLIS

Catchment

state

fSCA Fraction of catchment area with snowcover - SNOWGRIDz ,

MODIS-SC

ACDA Actively contributing drainage area (ACDA Li et al., 2021b), fraction of

total catchment area with above 0� C temperatures

- SPARTACUS

y Excluding glaciated catchment area (Buckel and Otto, 2018)

z Snowcover in SNOWGRID de�ned as grid cells with snow depth > 0.01 m
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Figure 4. Seasonality and magnitude of detected sediment-discharge events (a), including the average annual cycle of daily stream�ow (Q)

and speci�c suspended sediment yield (sSSY) for the study period (2006-2021), together with the timing and sSSY magnitude of events,

whose size is proportional to event total stream�ow volume. The nine events with (s)SSY greater than 10000 t (102t km � 2) are annotated

(a). These events have exceptionally high peak suspended sediment concentrations (SSC) (b-j).

4 Results

4.1 General characteristics of detected sediment-discharge events

Our detection routine identi�ed 976 sediment-discharge events between 2006 and 2021. On average, the annual event frequency

is 60 events per year. While events occurred throughout the monitored suspended sediment season from May to October, most270

happened from mid-June to early September (Fig. 4a), when daily suspended sediment export was highest following the snow-

and glacier melt season. During this period, the peak suspended sediment concentration threshold� SSC;peak of 1196.5mg l� 1

was exceeded frequently. The largest events occurred towards the end of the glacier melt season, i.e. between mid-July and

August.

The median event speci�c suspended sediment yield (sSSY) is 14.3t km � 2 (duration-normalised sSSY: 13.9t km � 2 d� 1),275

and the median event suspended sediment concentration (SSC) (stream�ow weighted) 1059mg l� 1. The largest event (2014-

021, Fig. 4g) exported an estimated 22019t of suspended sediment (sSSY: 224.5t km � 2; duration-normalised sSSY: 54.1

t km � 2 d� 1) over nearly 100 hours, with 90 % of the sediment reaching the outlet during the �rst 24 hours. Two events in

August 2020 (2020-027, Fig. 4i; 2020-028, Fig. 4j) occurred consecutively. When combined, these two events exported 25179

t of suspended sediment (sSSY: 256.7t km � 2; duration-normalised sSSY: 200.2t km � 2 d� 1). However, most events had a280

sSSY of less than 50t km � 2 (Fig. 4a).
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Figure 5. Importance of event metrics for each principal component (PC) (a-g), indicated by the sorted absolute loadings of each component.

The sign of the loading, which indicates positive or negative correlation of a metric with the PC, is denoted with a "+" or "-" for positive and

negative sign respectively. The �rst 7 PCs were chosen as these explained just over 80 % of the total variance in the data (h).

The average event duration is about 24 hours, with 90 % of events lasting under 30 hours. The remaining events have a

duration of two to three days, with six events lasting longer than four days.

4.2 Principal component analysis of event metrics

The PCA reduced our set of 16 event metrics to seven principal components (PCs) that explain 84 % of the variance (Fig. 5h).285

As PCA can only be applied on complete data, 16 events with minor data gaps had to be discarded, leading us to consider a

total of 959 events for the PCA and event clustering.
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We �nd that PC1 (Fig. 5a) is strongly tied to stream�ow and suspended sediment magnitude (i.e. mean and peak event SSC,

total suspended sediment mass exported, mean and peak event stream�ow, and total stream�ow volume). PC1 explains 35 %

of the total variance in the data.290

Both PC2 and PC3 relate to metrics of intra-event dynamics; PC2 (Fig. 5b) expresses hysteresis effect and direction. Higher

absolute values indicates stronger hysteresis (con�rmed by visual inspection of hysteresis pattern). The sign of PC2 indicates

hysteresis direction, where positive (negative) values indicate clockwise (anti-clockwise) hysteresis. PC2 is essentially a com-

bined hysteresis index of SHI, AHI,� peak andSSYratio . PC3 relates to the complexity of the event shape, and the similarity

between hydro- and sedigraphs, expressed by mixed loadings of event duration, the ratio of SSC to stream�ow peaks, SQPR,295

and SSC peak magnitude (Fig. 5c). Visual inspections of event hydro- and sedigraphs con�rm that events with high PC3 val-

ues have multiple peaks or complex hysteresis patterns, whereas low PC3 values indicate more uniform event shapes with

synchronous hydro- and sedigraphs.

PCs 4 and 5 mainly represent seasonal-dependent effects. PC4 (Fig. 5d) captures the seasonal-dependent relationship be-

tween event SSC and stream�ow volume, with the tendency of higher SSC for a given total stream�ow volume later in the300

year. Events with high PC4 values tend to occur later in the season, therefore the positive correlation with DOY (Fig. 5d). PC5

(Fig. 5e) relates to seasonal- and duration-dependent hysteresis, with mixed loadings of seasonal timing (DOY), peak phase

difference,SSYratio , and event duration.

PC6 represents mostly inter-event conditions, and two metrics on intra-event dynamics, AHI, and SQPR (Fig. 5f). Visual

checks con�rm that PC6 expresses the tendency for more pronounced clockwise hysteresis (positive AHI) with higher IEI and305

Qpeak;ratio . Overall, AHI, IEI, andQpeak;ratio are negatively correlated with PC6. Finally, PC7 (Fig. 5g) relates to hysteresis,

inter-event effects, and seasonality. PC7 is negatively correlated with seasonal timing (DOY), and has higher values for events

occurring earlier in the year. However, PC7 explains only 5 % of the total variance in the data.

4.3 Selection of cluster model

For the event clustering, we ran 60 different GMMs in total, with varying combinations of cluster numbers (K = 1 ;2; :::;20)310

and covariance types (spherical, diagonal, and full; Fig. 6). ForK < 4, the BIC decays distinctly for all models (Fig. 6a).

Models with diagonal and full covariance matrices have elbow points where the curve �attens abruptly atK = 2 , whereas the

BIC for spherical models decays smoothly with increasingK . For fewer clusters the more �exible covariance types (diagonal

and full) have better BIC scores. Strictly judging by the BIC, the best model would be that with full covariance and 3 <K < 6.

However, for both the VRC and silhouette score, the spherical-type models consistently outperform all others (Fig. 6b-c),315

with a clear peak for VRC atK = 4 , and a minor peak for the silhouette score. The BIC also indicates that four clusters with

the spherical covariance type model is reasonable, which is why we selected this variant for our interpretation.

4.4 Cluster characteristics

The model assigned 486, or about half of all detected sediment-discharge events, to cluster 1 (Tab. 4). Clusters 2 and 3 each

contain about a �fth of events (Tab. 4). Cluster 0 is smallest with 110 events, or 11 % of the total (Tab. 4). In general, clusters320
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