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Inferring sediment-discharge event types in an Alpine catchment
from sub-daily time series

Amalie Skélevdg', Oliver Korup', and Axel Bronstert!

'Institute of Environmental Science and Geography, University of Potsdam, Germany
Correspondence to: Amalie Skélevag (skalevag2 @uni-potsdam.de)

Abstract. Fluvial sediment dynamics in mountain rivers are changing rapidly in a degrading cryosphere, raising the potential
for erosive rainfall and runoff, and detrimental effects on downstream areas. Hence, we need to understand better what char-
acterises and drives episodic pulses of water and suspended solids in rivers. Here, we infer different types of such sediment-
discharge events from 959 automatically detected events based on 16 metrics derived from 15-min time series of streamflow
and suspended sediment concentrations from the Vent-Rofental in the High Otztal Alps, Austria. We use principal component
analysis to extract uncorrelated event characteristics and cluster event types with a Gaussian mixture model. We interpret thus
inferred event types with catchment metrics describing antecedent conditions, hydrometeorological forcing, and fraction of
catchment area with freezing temperatures and snowcover. We find event magnitude, hysteresis, and event shape complexity
to be the main factors characterising the overall event regime. The most important characteristics distinguishing the event
types are suspended sediment and streamflow magnitude, and complexity of the hydro- and sedigraphs. Sediment-discharge
hysteresis is less relevant for discerning event types. We derive four event types that we attribute to (1) compound rainfall-
melt extremes, (2) glacier and seasonal snow melt, (3) freezethaw-modulated snow-melt and precipitation events, and (4) late
season glacier melt. Glacier and snow melt events driven by warm conditions and high insolation were the most frequent and
contributed some 40 % to annual suspended sediment yield on average; compound rainfall-melt extremes were rarest, but con-
tributed the second highest proportion (26 %). Our approach represents a reproducible method for objectively estimating the
variety of event-scale suspended sediment transport conditions in mountain rivers, which can provide insights into the contri-
bution of different drivers to annual sediment yields in current and future regimes. Our findings highlight the importance of

both meltwater and rainfall-runoff as drivers of high magnitude suspended sediment fluxes in mountain rivers.

1 Introduction

High mountain areas have been warming at a faster rate than the global average (Hock et al., 2019), drastically changing
the mountain cryosphere in terms of accelerated glacier mass loss (Hugonnet et al., 2021; Huss and Hock, 2018), permafrost
degradation (Smith et al., 2022; Biskaborn et al., 2019), and snowpack reduction (Hanzer et al., 2018; Beniston et al., 2018;
Carrer et al., 2023). This ongoing cryospheric decay combines with altered precipitation and weather patterns, and change

sediment dynamics and loads in mountain regions (Zhang et al., 2022). Elevated sediment loads can have detrimental effects
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on water quality, hydro-power production, and aquatic habitats and ecosystems in downstream reaches especially (Adler et al.
2022; Huss et al., 2017; Scheurer et al., 2009).

Current changes in uvial suspended sediment transport in mountain rivers are mainly affected by sub- and proglacial
sources in the wake of deglaciation and reworking of freshly exposed deposits (Schmidt et al., 2022; Zhang et al., 2022;
Ballantyne, 2002; Delaney and Adhikari, 2020; Delaney et al., 2018a; Hinderer et al., 2013). Episodic sediment pulses, often
caused by rainstorms, can contribute substantial fractions to annual sediment yields (Vercruysse et al., 2017; Gonzalez-Hidalgc
et al., 2013; Schmidt et al., 2022). Observed and projected increases in extreme precipitation (Madsen et al., 2014; Vergara-
Temprado et al., 2021; Fowler et al., 2021) make it seem likely that such sediment uxes may become more dominant, leading
to more ashy sediment-transport regimes (Zhang et al., 2022). Paraglacial environments in particular host large amounts of
unconsolidated sediment that can remain available for mobilisation during extreme rainfall events long after glaciers have
melted (Zhang et al., 2022; Huss et al., 2017). Thus, any gradually decaying sub- and proglacial sediment discharge may be
supplemented by rainfall-driven reworking of sediment (Zhang et al., 2022). Consequently, we need to understand better the
current drivers of episodic sediment uxes in high mountain areas, and to which extent hydrometeorological forcing, sediment
availability and reworking, will affect our projections of future rates and regimes sediment-transport.

Detailed event-based analysis of suspended sediment dynamics in mountain rivers can identify important antecedent con-
ditions and drivers (Vercruysse et al., 2017). However, the complex and nonlinear nature of suspended sediment transport in
mountain rivers poses a challenge for such analyses (Vercruysse et al., 2017; Bracken et al., 2015): the complexity arises from
(1) multiple hydrological drivers of sediment transport, e.g. rainfall, snow-melt, and glacier melt (Costa et al., 2018; Orwin
et al., 2010); (2) catchment conditions and processes regulating sediment production and availability, e.g. snow and vegetatior
cover, freeze-thaw cycles and erosion, lithology and glacial history (Schmidt et al., 2022; Rengers et al., 2020); and (3) hill-
slope and channel geomorphology that in uences erosion potential and sediment connectivity (Bracken et al., 2015). Hence,
suspended sediment concentrations in mountain rivers are highly variable (Schmidt et al., 2022; Lalk et al., 2014; Hinderer
et al., 2013; Delaney et al., 2018b). By systematically detecting and grouping episodic suspended sediment uxes, which we
term "sediment-discharge events", we might derive a catchment-speci ¢ event typology, in which each type shares similar and
dominant hydrometeorological drivers and geomorphic catchment conditions.

While studies of event-scale suspended sediment dynamics are common, only a handful of studies have tried to identify
speci c event types and their conditions and drivers. Most of these studies focused on classifying patterns of sediment-discharge
hysteresis (e.g. Hamshaw et al., 2018; Tsyplenkov et al., 2020; Haddadchi and Hicks, 2021), and attributed these classe:
to drivers such as hydrometeorological forcing (e.g. rainfall intensity and amount); antecedent catchment conditions (e.g.
soil moisture, precipitation); land cover; sediment exhaustion; or contributions from multiple sediment sources. Sediment-
discharge hysteresis is a well-established concept in uvial sediment transport research dating back to 1953 (Malutta et al.,
2020). Despite its popularity in classifying event-scale sediment discharge dynamics, the interpretation of hysteresis remains
contextual (Vercruysse et al., 2017) and often without direct indication of its cause (Tsyplenkov et al., 2020), especially where
the same cause is attributed to different types of hysteresis (Tab. 1 in Malutta et al., 2020).
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A more general approach can be taken by clustering sediment-discharge events based on characteristics derived from thei
hydro- and sedigraphs. Leggat et al. (2015) and Orwin and Smart (2004) used a combined classi cation, separately clustering
sedigraph temporal patterns and magnitudes to identify event types and the associated dominant meteorological condition:
and drivers. Javed et al. (2021) grouped events based solely on hydro- and sedigraph shapes, by normalising magnitude an
standardising event lengths, and subsequently clustering with K-medoids and dynamic time warping. Mather and Johnson
(2015) clustered event shapes based on sediment rating curve parameters. The advantage of using clustering for inferring evel
typologies is that it does not require any previous knowledge about event types (Tarasova et al., 2019). Thus, clustering is a
suitable rst approach for inferring sediment-discharge event types in high mountain catchments on the basis of similar water
and sediment discharge characteristics.

Here, we use a clustering approach to derive a sediment-discharge event typology for the high-alpine, glaciated basin Vent-
Rofental, Otztal Alps, Austria. With its long monitoring history, the catchment has a wealth of hydrological, meteorological,
and glaciological data (Strasser et al., 2018). Key to our data-driven approach are continuous, high resolution records of sus-
pended sediment concentration since 2006. Recent reconstructions and projections of annual suspended sediment yield fc
Vent-Rofental basin suggest that the basin has entered a phase of declining glacial in uence on sediment transport (Schmid;
et al., 20237?), making it an ideal study area to examine. For our clustering approach, we assume that each event belongs to a
certain type that shares a set of similar sediment-discharge characteristics. We identify and condense these characteristics wit
a principal component analysis on 16 event metrics describing event magnitude, hysteresis, shape, and effects of precedin
events. We cluster events based on these characteristics with a Gaussian mixture model, and use hydrometeorological data
interpret each cluster as an event type. Our aim is to understand the catchment state, antecedent conditions and hydromet:
orological drivers that determine event-scale suspended sediment dynamics in the upper Otztal, with the following research
questions:

what are the key sediment-discharge characteristics that differentiate the event types?

do events of the same type share hydrometeorological drivers?

are the event types associated with diagnostic antecedent conditions (e.g. dry vs. wet, cool vs. warm)?

what is the contribution of each event type to the annual suspended sediment yield?

2 Study area and data

Rofental is a valley located upstream of the village of Vent in the Otztal Alps, Austria (Fig. 1. The valley has been the site
of several hydrometeorological and glaciological studies in the past 150 years, and has a unique time series of long-term
observations (see Strasser et al., 2018, for detailed description). The Vent-Rofental hydrological basikrhasa88 an

elevation range of 1891-3772 m a.s.l. The main river is the Rofenache, a tributary of the Venter Ache, Otztaler Ache, and
the Inn. The current hydrological regime is dominated by snow and ice melt, which peaks in July and August and is lowest
during winter (Strasser et al., 2018; Schmidt et al., 2022). The seasonality of suspended sediment has a pattern similar to tha
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Figure 1. Map of study area showing topography (Land Tirol, 2021), river network (OpenStreetMap, 2022), glaciers (Buckel and Otto,
2018) and active rock glaciers (Wagner et al., 2020). The location of the Vent-Rofental river gauge is denoted with a red triangle, and the

accompanying catchment boundary in green.

of stream ow, but with a longer low- ux winter period (Schmidt et al., 2022). Glaciers cover about a quarter of the catchment
(28 % in 2015, Schmidt et al., 2022; Buckel and Otto, 2018). However, their size is rapidly decreasing, and they will likely
disappear by the end of the 21st century (Hanzer et al., 2018).

The bedrock consists of various types of gneiss-mica schists and schistose gneisses (Moser, 2016; Kreuss, 2018). Th
Quaternary geology is dominated by Holocene and some Pleistocene moraines (Moser, 2016; Kreuss, 2018). The catchmern
also has many talus slopes sitting between the moraines and steep bedrock slopes (Moser, 2016; Kreuss, 2018). Apart from
few small lakes and proglacial outwash plains, the river network lacks signi cant sediment storage.

The Vent-Rofental river gauge (1891 m a.s.l., 46.8569110.91093E) has been operated continuously by the Hydro-
graphic Service of Tyrol (HD-Tirol) since 1967, and suspended sediment concentrations (SSC) have been monitored since
2006 with two optical infrared turbidity sensor (Solitax sensors by Hach) and manual SSC sampling (see Lalk et al., 2014, for
details). The continuous SSC monitoring at Vent-Rofental was established as part of a nation-wide strategy by the Austrian
Hydrographic Service in order to monitor and analyse changes in riverine suspended sediment resulting from deglaciation,
permafrost thawing, land use changes and river regulation (Habersack et al., 2008; Lalk et al., 2014). SSC samples to calibrate
turbidity measurements were collected manually close to the turbidity sensors frequently, and, when possible, during high ow
events (Lalk et al., 2014). Turbidity measurements at the Vent-Rofental gauge are paused in winter (October-April) to prevent
damage to the equipment. However, the sensors are installed before the spring rise in SSC, and the sediment transport durin
the unmonitored period can be considered negligible.
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Table 1. Description of datasets and variables used in this study. Temporal extents refer to available data in the study period (2006-2021).

Dataset Temporal  Description Source

extent
SSsC 2006-2021  15-min turbidity-based SSC observations at Vent-Rofental gauge HD-Tirol
Q 2006-2021  15-min stream ow observations at Vent-Rofental gauge HD-Tirol

SPARTACUS 2006-2021  1-km daily maximum and minimum air temperature, interpolated fré@oSphere Austria
point observations

INCA 2006-2021  1-km hourly precipitation, station-adjusted weather radar observations =~ GeoSphere Austria
APOLIS 2006-2021  100-m daily global radiation GeoSphere Austria
SNOWGRID 2006-2021  1-km daily modelled SWE and snow depth GeoSphere Austria
WINFORE 2006-2021  1-km dailgP El 30 GeoSphere Austria
MODIS-SC 2006-2018  250-m daily observed snowcover maps Matiu et al. (2019)

A number of gridded products of hydrometeorological variables are available for the Rofental (Tab. 1), mostly from the
Austrian Weather Servic&eoSphere AustriaVe used these data to calculate various metrics of catchment conditions and
processes during and leading up to events (see Sec. 3.4).

SPARTACUS provides daily maximum and minimum temperature elds at 1-km resolution based on interpolated station
data. Time series from 150 stations in Austria are interpolated with a method that combines a macroclimatic background eld
with a mesoclimatic residual eld (see Hiebl and Frei, 2016, for details).

WINFORE provides daily reference (potential) evapotranspiration elds at 1-km resolution using a recalibrated Hargreaves
method forced with SPARTACUS minimum and maximum temperature elds (see Haslinger and Bartsch, 2016, for details).
The daily reference potential evapotranspiration and SPARTACUS interpolated daily precipitation elds (Hiebl and Frei, 2018)
are then used to calculate 30-day standardised precipitation and evapotranspiratio mEeyg( elds at daily resolution.

The INCA system produces analysis and nowcasting elds for various meteorological variables. The precipitation analysis
incorporates rain gauge measurements, radar data, and elevation effects. The uncorrected radar eld is partially corrected tc
produce a climatologically adjusted radar eld, which is subsequently re-scaled based on the comparison between station
observations and the radar eld at the station location (see Haiden et al., 2011, for details).

Daily global radiation elds are obtained from APOLIS, a 100-m gridded dataset produced by calculating direct and diffuse
solar radiation with the parametric solar radiation model STRAHLGRID (Olefs and Schoner, 2012).

SNOWGRID-CL, a daily and longer term version of the physically based and spatially distributed snow model SNOWGRID,
uses an extended degree-day scheme to calculate snow ablation and a two-layer scheme to account for snow sublimatior
settling and refreezing of the snow cover (Olefs et al., 2020). The model is forced with daily WINFORE potential evapotran-
spiration (Haslinger and Bartsch, 2016), SPARTACUS temperature (Hiebl and Frei, 2016) and precipitation (Hiebl and Frei,
2018) elds, producing daily snow water equivalent (SWE) and snow depth estimations at 1-km resolution. To complement the
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SNOWGRID data, we also included daily 250-m snowcover maps derived from MODIS imagery using snow cover and cloud

removal algorithms tailored to the European Alps (see Matiu et al., 2019, for details).

3 Methods

Our approach for identifying sediment-discharge event types is divided into three steps: (1) the detection and characterisation
of events (Sec. 3.1; 3.2); (2) grouping similar events via clustering (Sec. 3.3); and (3) evaluation and interpretation of these

clusters as event types (Sec. 3.4).
3.1 Eventdetection

There is no commonly used de nition of what constitutes a sediment-discharge event, i.e. an episodic suspended sediment
ux measured at the catchment outlet. Studies use various terms, e.g. ood events (Pagano et al., 2019; Francke et al., 2008)
hydrologic(al) events (Tsyplenkov et al., 2020; Williams, 1989), or storm events (Javed et al., 2021; Hamshaw et al., 2018), as
events are generally separated based on stream ow either by hydrological day (e.g. Antoniazza et al., 2022; Leggat et al., 2015)
with hydrograph separation (e.g. Haddadchi and Hicks, 2020; Tsyplenkov et al., 2020), or with a semi-automated procedure
(e.g. Hamshaw et al., 2018). In this study we use the term sediment-discharge event, which we de ne as a marked increase ir
stream ow accompanied by a large pulse of suspended sediment measured at the catchment outlet (i.e. gauge).
Continuous 15-min time series of stream o and suspended sediment concentra&®C; were used for the event

detection. The staty and end; of an eveni were derived fronQ; and then subsequently Itered based on e\@81C; with

the following procedure (Fig. 2a):

1. The demarcation of hydrological events followed the method after Tsyplenkov et al. (2020) based on the local minimum
hydrograph separation method (Sloto and Crouse, 1996) usihgatieix R-package (Tsyplenkov, 2022). This method
essentially splits the entire stream ow record into events at local minima identi ed in a centered 21-hour search window

w.
2. We removed hydrological events with no or only partial SSC measurements.

3. Only events where peak SSC exceeded a xed threshedd.,eax were kept. To focus on large events we set the
threshold at the 90th percentiRyy of SSC,, which for our 16-year study period (2006-2021) was 1196¢5 1.

ssCpeak = Pgo(SSG) 1)

The choice ofPyg as the peak SSC threshold was a trade-off between ensuring a suf cient number of events for the

clustering while keeping only larger events.

This event detection procedure ensures that events of varying duration can be detected (Fig. 3), and that the detected eveni
are extreme enough (in terms of SSC) to be of interest. By ltering events based on the peak SSC threshold, our approach



Figure 2. Overview of event detection and characterisation (a), and event clustering (b). Events are demarcated at local stream ow minima,
then Itered by suspended sediment concentration (SSC) magnitude. Each event is then characterised with sediment-discharge event metric
(see Tab. 2). After transforming and standardising the metrics, the dimensions are reduced with principal component analysis (PCA), and
clusters identi ed with a Gaussian mixture model (GMM). The optimal number of clusters are chosen using two objective criteria. The values

speci c to this study are highlighted iitelic. Input variables and thresholds are highlightetatd.

Figure 3. Example of event detection procedure. SSC-Q time series is split at local stream ow minima and events with peak SSC below

threshold sscpeak  are discarded.

160 is similar to a peak-over-threshold (POT) approach, except that the boundaries of the events are determined by the even

hydrograph.



Table 2. Sediment-discharge event metrics used to characterise events.

Category Metric Description Unit

) ) t Duration of the event h
Time and seasonality )
DOY Seasonality expressed as day of the year -

SSCrax Maximum (peak) SSC mgl !
SSCiean Average SSC of entire event mg |
SSCreanw Stream ow weighted average of SSC, i2SY divided byQiotal mg |

Magnitudé SSY Suspended sediment yield t
Qmax Maximum (peak) stream ow mis !
Qmean Average event stream ow més !
Qiotal Total event stream ow volume m?3
SHI Simple hysteresis index, standardised between -1 and 1 -
AHI Aich's hysteresis index -

Intra-event dynamics  peak Peak phase difference, indicates the hysteresis direction -
SSVYratio Log-ratio of SSY in the falling and rising limb of the hydrograph -
SQPR Log-ratio of number of SSC peaks to number of stream ow peaks -
IEI Log-ratio of SSC peak of last event to time since last event -

Inter-event effects )
Qpeak;ratio Log-ratio of peak stream ow of current to last event -

y log-transformed during cluster analysis preprocessing

3.2 Characterisation of events

In order to identify groups of similar sediment-discharge events, we need metrics to characterise them rst. A number of metrics
and indices have been developed to characterise event-scale (suspended) sediment dynamics. We select 14 metrics from t
165 literature and introduce two new metrics (Tab. 2), broadly divided into four categories relating to time and seasonality, event
magnitude, intra-event dynamics, and inter-event effects on sediment dynamics.
Metrics of event duration and magnitude are commonly used in studies of event-scale sediment dynamics, such as the
average and peak SSC and stream ow during an event (Tab. 2). The suspended sedim&8Yi@tso: suspended sediment
load) is the total mass of suspended sediment passing the gauge, calculated by integrating the [B&ticiodQ; for each
170 timestepdt between the statt and end; of the event:
Al
SSY=  SSGQdt 2
to
For comparability with other study areas, we sometimes report speci ¢ SSY (sSS¥in 2, which is SSY divided by

catchment area. Similarly, when we report on annual (s)&S¥ill be the start and; the end of the year.



Hysteresis results from differences in SSC in the rising and falling limbs of the hydrograph and is commonly used to describe
175 event-scale suspended sediment dynamics (Malutta et al., 2020; Vercruysse et al., 2017). A number of hysteresis indices (HI)
have been developed to quantify and classify hysteresis patterns objectively (e.g. Aich et al., 2014; Langlois et al., 2005;
Tsyplenkov et al., 2020; Lawler et al., 2006). Here, we use Aich's HI (AHI) (Aich et al., 2014) and the simple HI (SHI)
(Tsyplenkov et al., 2020), as both have standardised ranges that allow for direct comparison. More positive values of AHI and
SHI indicate stronger clockwise hysteresis, while more negative values indicate more pronounced anti-clockwise hysteresis.
180 Both metrics were computed with thead ux R-package (Tsyplenkov, 2022).
Three further metrics were used to characterise intra-event dynamics, i.e. the peak phase difference, the SSC to stream ow
peak ratio, and the falling and rising limb SSY ratio. The peak phase differepge (Haddadchi and Hicks, 2021) is a
dimensionless measure of the time difference between the peaks of streag) gwand SSQssc .., -

Qma  1SSComax
peak — Q—t 3)

185 and indicates to what degree the SSC peak leads (posiiiyg) or lags (negative peax ) the Q peak. Thus, it also indicates
the direction of the hysteresis pattern.
To indicate whether the exported sediment tends to be delivered before or after the stream ow peak we include a modi ed
version of theSS Y, (Haddadchi and Hicks, 2020), which is the log-ratioS$BY in the rising and falling limb of the
hydrograph,

SSYfalling
4
S SYrising ( )

indicating whether the bulk of the sediment is delivered in the ris®8 Yaio < 0), or falling limb of the hydrograph
(SSYratio > O)-
The SSC to stream ow peak ratio (SQPR), de ned as

n
SQPR =log 725‘3"%‘"5 (5)
Qpeaks

195 indicates whether more SSC peakgdcpeaks ) OF Stream ow peaksr{gpeaks ) OCcur during an event. Negative values indicate
more stream ow peaks, while positive values indicate more SSC peaks. If the SQPR is zero, the event had the same number of
stream ow and SSC peaks. The peaks were identi ed automatically (Virtanen et al., &@9.signal.find_peaks )
based on two criteria: the distance between peaks and the prominence of the peak. The peak prominence "measures how muc
a peak stands out from the surrounding baseline of the signal and is de ned as the vertical distance between the peak anc

200 its lowest contour line" (Virtanen et al., 2026cipy.signal.peak_prominences ). To calculate the SQPR we set a
minimal peak prominence of 50@g | * for SSC peaks, which corresponds to about a third of the median SSC range of
events, and M3 s ! for stream ow peaks, which corresponds to about an eight of the median stream ow range of events.
The minimum distance between peaks was set to one hour. The selection of these parameters for peak detection were based
visual inspection of the hydro- and sedigraphs of the detected events.

205 Inter-event effects such as sediment accumulation or exhaustion are important for suspended sediment transport but dif cult
to quantify. The ow peak rati®@peax;raio  introduced by Haddadchi and Hicks (2020) is one metric that attempts to quantify
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inter-event effects:
i1
Qpeakyratio = log % (6)
max
We modi ed this metric by using the log-ratio, rather than the ratio, of stream ow peak of the last@yghtand the current
eventQ! . .

We also attempt to account for inter-event effects with a new metric, the inter-event index (IEl), de ned as the ratio of the
SSC peak of the previous eve®SC/,+ in mg| ! and the time between the end of the last e\lén{ and the start of the
current event}) in hours:

SS i 1
S5 Cnax )
tg t

o U

3.3 Event clustering

IEI =log

Our approach for inferring the event types is based on the assumption that each event type shares a set of de ning anteceder
conditions, hydrometeorological drivers, and catchment states, which we capture suf ciently by our choice of event metrics.
Clustering, a type of unsupervised machine learning analysis where data points are grouped into clusters based on their simi
larity (Murphy, 2012), is suited for our purposes as it does not require prede ned class criteria. By clustering based on event
metrics, we hope to nd groups of events, i.e. event types, that are the expression of a certain set of catchment conditions and
hydrometeorological drivers. We employed a two-step approach (Fig. 2b) consisting of a transformation step and a clustering
step.

In the transformation step, we applied a principal component analysis (PCA) to the sediment-discharge event metrics. PCA
transforms correlated metric variables into the same number of uncorrelated variables called principal components (PCs) (Kim
and Kim, 2012). By selecting the top PCs ranked by their explained variance, we end up with a re-projected dataset, where the
variables, i.e. PCs, contain most of the variance from the original variables.

After the event detection and characterisation, we ended up with a data matrix ol sediment-discharge events and
event metrics. Some of these metrics describe similar aspects of the same event property, e.g. event magnitude or hysteresi
By transforming the dataset with PCA we achieve two objectives. Firstly, we obmaincipal components (PCs) that can be
interpreted as uncorrelated event characteristics. Secondly, we reduce the dimensions of our dataset by selecting fewer PCs the
metrics. Preprocessing the event metrics was necessary before applying the PCA. Event metrics describing magnitude wer
natural-log-transformed (Tab. 2) as the distributions of these metrics were highly skewed. Next, all metrics where standardised
by subtracting the mean and dividing by the standard deviation. This step is needed before performing a PCA, since the
principal components can be "misled" by directions in which the variance is high merely because of the measurement scale
(Murphy, 2012). Finally, the metrics were re-projected in a lower dimension space with PCA, by keeping only those ranked
principal components that together accounted for more than 80 % of the total explained variance. This leftlata matrix
X =(Xj)1 i n1j c Wherec<m.

In the clustering step, the event types were inferred with a Gaussian mixture model (GMM). A GMM is a mixkire of
multivariate Gaussiarl$ with mean vectors i, denoting the center of the cluster in allimensions, and covariance matrices

10
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x denoting the shape of the cluster, and mixing weightssuch that

X
p(xij )= kNG k0 k) (8)
k=1

P
The mixture weights satisfy the constraint thaE:l k = 1. The parameterisation of the GMM is given by:
=f «; k; kg k=1;:5K 9)

The GMM is a type of soft clustering that estimates the probability of each eyentX i, belonging to each clustd.
Each event is assigned to the cluster to which is has the highest likelihood of belonging.

The GMM can be tted with different covariance types fok. We tested three different options: a full covariance matrix
with dimensionk ¢ ¢, a diagonal covariance matrix with dimensidas c, and a spherical covariance matrix with dimen-
sionsk. The full covariance type is the most exible model by admitting independent Gaussians for each cluster, while the
spherical is the most restrictive allowing only one variance value for each cluster.

In order to determine the optimal number of clustiéirsand covariance type we used two objective criteria, the Bayesian
Information Criterion (BIC) (Schwarz, 1978), which penalises higher number of parameters needed to describe more clusters,
and the Variance Ratio Criterion (VRC) (Califiski and Harabasz, 1974) and silhouette score (Rousseeuw, 1987), where a highet
value relates to a model with better de ned clusters and separated clusters respectively. The selection of the optimal cluster
model was based on the objective criteria of the lowest BIC and highest VRC. However, depending on the agreement between
the BIC and VRC scores, the nal choice may require expert judgement, e.g. by use of the elbow method. The elbow method
is a heuristic approach for determining the optimal number of clusters, wWhé&eelected based on the most distinct break in

the curve of cluster scores.
3.4 Interpretation of event clusters with catchment metrics

For the interpretation of the inferred event clusters, we selected a number of catchment metrics describing antecedent condition:
and hydrometeorological forcing; all these may be relevant for suspended sediment dynamics in mountain rivers (Tab. 3; Tab.
1).
In order to measure differences between event types consistently, in terms of both sediment-discharge characteristics an
hydrometeorological catchment conditions, we standardised all event and catchment metrics such that
Xi X
s

z = (10)

wherex is the metricX its mean and its standard deviation across all events. Such standarzlisedres are useful to compare
groups of events (Javed et al., 2021).

11



Table 3. Catchment metrics describing catchment conditions and hydrometeorological drivers leading up to and during sediment-discharge

events.
Category Metric  Description Unit Data
NAPI 14 Normalised antecedent precipitation index (Heggen, 2001), indicating the INCA
moisture conditions in the catchment over the last 14 days leading up to
Water the event.
SPEIl3 Standardised Precipitation Evapotranspiration Index (SPEI) of the 30 WINFORE
days leading up to event
| max Maximum precipitation intensity, maximum of maximum grid cell inmmh ! INCA
each event time step.
Protal Total catchment average precipitation mm INCA
SM Snowmelt, as estimated from change in mean catchment snow waten SNOWGRID
equivalent (SWE), from rst to last day of event.
SA Snow accumulation, as estimated from change in mean catchment, SW&m SNOWGRID
from rst to last day of event.
FCF Frost change factor, average area affected by diurnal freezethaw during SPARTACUS
Energy eyent, i.e. daily maximum air temperature above&0and daily minimum
air temperature below 0C
ATls Antecedent thawing index , the thawing index (Frauenfeld et al., 2007)degree- SPARTACUS
the 5 days leading up to the event. days
AFl s Antecedent freezing index, the freezing index (Frauenfeld et al., 2007)degree- SPARTACUS
the 5 days leading up to the event. days
AGRs  Antecedent global radiation, average global radiation in the 5 days le&d@vhm 2 APOLIS
ing up to event
Trmax Maximum daily maximum temperature of event C SPARTACUS
GRevent Average global solar radiation during the day(s) of the event kWhm 2 APOLIS
Catchment fSCA Fraction of catchment area with snowcover - SNOWGRID
state MODIS-SC
ACDA  Actively contributing drainage area (ACDA Li et al., 2021b), fraction of SPARTACUS

total catchment area with above® temperatures

y Excluding glaciated catchment area (Buckel and Otto, 2018)
z Snowcover in SNOWGRID de ned as grid cells with snow depth > 0.01 m
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Figure 4. Seasonality and magnitude of detected sediment-discharge events (a), including the average annual cycle of daily stream ow (Q)
and speci ¢ suspended sediment yield (sSSY) for the study period (2006-2021), together with the timing and sSSY magnitude of events,
whose size is proportional to event total stream ow volume. The nine events with (s)SSY greater than 1000kt(132 are annotated

(a). These events have exceptionally high peak suspended sediment concentrations (SSC) (b-j).

4 Results
4.1 General characteristics of detected sediment-discharge events

Our detection routine identi ed 976 sediment-discharge events between 2006 and 2021. On average, the annual event frequenc
is 60 events per year. While events occurred throughout the monitored suspended sediment season from May to October, mos
happened from mid-June to early September (Fig. 4a), when daily suspended sediment export was highest following the snow-
and glacier melt season. During this period, the peak suspended sediment concentration thseshald of 1196.5mg | ?
was exceeded frequently. The largest events occurred towards the end of the glacier melt season, i.e. between mid-July an
August.

The median event speci ¢ suspended sediment yield (sSSY) ist k3 ? (duration-normalised sSSY: 13t&m 2d 1),
and the median event suspended sediment concentration (SSC) (stream ow weighteaigllo39 The largest event (2014-
021, Fig. 4g) exported an estimated 22016f suspended sediment (sSSY: 224kn 2; duration-normalised sSSY: 54.1
tkm 2d 1) over nearly 100 hours, with 90 % of the sediment reaching the outlet during the rst 24 hours. Two events in
August 2020 (2020-027, Fig. 4i; 2020-028, Fig. 4j) occurred consecutively. When combined, these two events exported 25179
t of suspended sediment (sSSY: 256K 2; duration-normalised sSSY: 200t&m 2 d 1). However, most events had a
SSSY of less than 50km 2 (Fig. 4a).
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Figure 5. Importance of event metrics for each principal component (PC) (a-g), indicated by the sorted absolute loadings of each component.
The sign of the loading, which indicates positive or negative correlation of a metric with the PC, is denoted with a "+" or "-" for positive and

negative sign respectively. The rst 7 PCs were chosen as these explained just over 80 % of the total variance in the data (h).

The average event duration is about 24 hours, with 90 % of events lasting under 30 hours. The remaining events have a

duration of two to three days, with six events lasting longer than four days.
4.2 Principal component analysis of event metrics

The PCA reduced our set of 16 event metrics to seven principal components (PCs) that explain 84 % of the variance (Fig. 5h).
As PCA can only be applied on complete data, 16 events with minor data gaps had to be discarded, leading us to consider ¢

total of 959 events for the PCA and event clustering.
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We nd that PC1 (Fig. 5a) is strongly tied to stream ow and suspended sediment magnitude (i.e. mean and peak event SSC,
total suspended sediment mass exported, mean and peak event stream ow, and total stream ow volume). PC1 explains 35 %
of the total variance in the data.

Both PC2 and PC3 relate to metrics of intra-event dynamics; PC2 (Fig. 5b) expresses hysteresis effect and direction. Higher
absolute values indicates stronger hysteresis (con rmed by visual inspection of hysteresis pattern). The sign of PC2 indicates
hysteresis direction, where positive (negative) values indicate clockwise (anti-clockwise) hysteresis. PC2 is essentially a com-
bined hysteresis index of SHI, AHI,peax aNdSSYaio . PC3 relates to the complexity of the event shape, and the similarity
between hydro- and sedigraphs, expressed by mixed loadings of event duration, the ratio of SSC to stream ow peaks, SQPR,
and SSC peak magnitude (Fig. 5¢). Visual inspections of event hydro- and sedigraphs con rm that events with high PC3 val-
ues have multiple peaks or complex hysteresis patterns, whereas low PC3 values indicate more uniform event shapes witt
synchronous hydro- and sedigraphs.

PCs 4 and 5 mainly represent seasonal-dependent effects. PC4 (Fig. 5d) captures the seasonal-dependent relationship L
tween event SSC and stream ow volume, with the tendency of higher SSC for a given total stream ow volume later in the
year. Events with high PC4 values tend to occur later in the season, therefore the positive correlation with DOY (Fig. 5d). PC5
(Fig. 5e) relates to seasonal- and duration-dependent hysteresis, with mixed loadings of seasonal timing (DOY), peak phase
difference,SSVYaiio , and event duration.

PC6 represents mostly inter-event conditions, and two metrics on intra-event dynamics, AHI, and SQPR (Fig. 5f). Visual
checks con rm that PC6 expresses the tendency for more pronounced clockwise hysteresis (positive AHI) with higher IEI and
Qpeakratio - Overall, AHI, IEl, andQpeakratio  are negatively correlated with PC6. Finally, PC7 (Fig. 5g) relates to hysteresis,
inter-event effects, and seasonality. PC7 is negatively correlated with seasonal timing (DOY), and has higher values for events
occurring earlier in the year. However, PC7 explains only 5 % of the total variance in the data.

4.3 Selection of cluster model

and covariance types (spherical, diagonal, and full; Fig. 6).K-er 4, the BIC decays distinctly for all models (Fig. 6a).

Models with diagonal and full covariance matrices have elbow points where the curve attens abriptlyatwhereas the

BIC for spherical models decays smoothly with increasing-or fewer clusters the more exible covariance types (diagonal

and full) have better BIC scores. Strictly judging by the BIC, the best model would be that with full covariance &n& $<
However, for both the VRC and silhouette score, the spherical-type models consistently outperform all others (Fig. 6b-c),

with a clear peak for VRC & =4, and a minor peak for the silhouette score. The BIC also indicates that four clusters with

the spherical covariance type model is reasonable, which is why we selected this variant for our interpretation.

4.4 Cluster characteristics

The model assigned 486, or about half of all detected sediment-discharge events, to cluster 1 (Tab. 4). Clusters 2 and 3 eacl
contain about a fth of events (Tab. 4). Cluster 0 is smallest with 110 events, or 11 % of the total (Tab. 4). In general, clusters
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