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Abstract. Using stable isotope methods is essential for studying tropical hydrology and climatology. The purpose of this

research was to investigate the influence of large-scale climate modes (teleconnection indices) and local meteorological

parameters on the stable isotope contents in six different stations, including Bangkok, Kuala Lumpur, Jakarta, Kota Bharu,

Jayapura, and Singapore in Southeast Asia. To achieve this goal, several machine learning (ML) techniques were employed,20
such as shallow neural network (SNN), deep neural network (DNN), decision tree (DT), random forest (RF), and extreme

gradient boosting (XGBoost). XGBoost demonstrated the highest accuracy across the majority of studied stations, with a R2

= 0.91, VNS=0.90, AIC= 405, BIC=410, and RMSE = 0.76. Additionally, DNN exhibited superior accuracy in specific cases,

achieving a R2 = 0.87, VNS=0.87, AIC = 445, BIC = 460, and RMSE = 1.10. Furthermore, a bootstrap analysis was

conducted to assess the uncertainty of the simulated data in each station. The results of this analysis demonstrated acceptable25
accuracy, as the majority of simulated data points fell within the 95% confidence intervals.Finally, stable isotope contents in

precipitation were forecasted for one year using Vector Autoregression (VAR) and ML techniques. This study underscores

the efficacy of ML techniques in both simulating and forecasting stable isotope contents with high precision. The inclusion

of specific accuracy metrics strengthens the validity of claims in this study and provides a clearer picture of the quantitative

outcomes of this research.30
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1 Introduction

Precipitation is the most essential part of the water cycle, which has dominant role in hydrological and climatological35
systems (Porntepkasemsan et al., 2016). Hence, studying precipitation with accurate proxies such as stable isotopes (δ 18O

and δ 2H) can help obtain invaluable information regarding the water cycle and climatic changes in a study region. Since the

discovery of the strong correlation between 18O and 2H in water by Harmon Craig (1961), numerous surveys on stable

water isotopes have been conducted to investigate hydrological characteristics at global and regional scales (Clark and Fritz,

1997). In addition, a global network of isotopes in precipitation (GNIP) was established for hydroclimate studies with the40
help of WMO and the IAEA. Some of the GNIP stations were operational for short periods or even just one year, while some

others, for example, Bangkok, Ottawa, Tehran, etc. were active for more than 30 years. These long-term records of

precipitation isotopes have offered valuable information about regional and global hydrological and climatic processes

(IAEA/GNIP, 2018).

Although precipitation isotopes have been widely applied in numerous hydroclimate investigations, they are subject to some45
disadvantages and shortcomings. The most crucial shortcoming is the high expense of developing and operating a

precipitation sampling network for stable isotope measurements. In addition, precipitation sampling is not always feasible in

some remote areas, particularly in hard-to-reach regions. These concerns point to the need for simulations that allow the

estimation of precipitation isotopes based on existing data sets. To simulate δ18O and δ2H in precipitation, isotope-equipped

general circulation models (GCMs) are powerful tools. However, these numerical models are challenging due to the50
complexity of the physical processes involved and their high computational cost. It also has been found that some numerical

models fail to capture long-term data on precipitation isotopes (Kopec et al., 2015). In contrast, statistical models provide a

simple, but effective, method for short-term precipitation isotope predictions by building relationships between isotopes and

climate parameters. There are various statistical methods, such as the ridge, lasso, stepwise, and elastic net methods, that

have been used to predict precipitation isotopes (Mohammadzadeh et al., 2020; Mohammadzadeh and Heydarizad, 2019). In55
addition to these simple statistical models, machine learning (ML) techniques have been demonstrated to

be remarkably successful in a variety of applications, including hydroclimate predictions. ML is a data analysis method that

is a branch of artificial intelligence. ML techniques are based on the concept that systems can learn from raw data, recognize

existing patterns, and make choices with minimal human interaction (Rahmati et al., 2017). The usage of ML started with the

application of artificial neural network (ANN) techniques (Banerjee et al., 2011; Barzegar and Asghari Moghadam, 2016)60
developed by McCulloch and Pitts in 1943 (Mcculloch and Pitts, 1943). Since then, numerous ML models have been

developed and applied in different science fileds. Several ML methods, including the neural network (Banerjee et al., 2011;

Cerar et al., 2018; Guzman et al., 2017; Mirarabi et al., 2019; Narayanan and Chintalapati, 2020; Sahour et al., 2020;

https://doi.org/10.5194/hess-2023-299
Preprint. Discussion started: 23 January 2024
c© Author(s) 2024. CC BY 4.0 License.



3

Wunsch et al., 2018), decision tree (Lee and Lee, 2015; Samadianfard et al., 2022; Xie et al., 2021), random forest (Kenda et

al., 2018; Koch et al., 2019; Wang et al., 2018), gradient-boosting (Malik et al., 2022; Ni et al., 2020; Song et al., 2022), and65
extreme gradient-boosting (Narayanan and Chintalapati, 2020; Sahour et al., 2020) techniques, have been applied in

numerous hydrological studies. However, predictions about precipitation isotopes based on ML methods

have been rarely reported (Erdélyi et al., 2023; Heydarizad et al., 2023a; Nelson et al., 2021).

In this study, authors built on observational precipitation isotope data from Southeast Asia, using GNIP stations that are

located in a tropical climate and have long-term isotope records, and explored the predictive potential for monthly70
precipitation isotopes using different ML methods. The authors first determined the relative importance of large-scale

climate indices and local meteorological parameters for influencing Southeast Asia precipitation isotopes using various ML

models. The authors then screened a subset of climate parameters as the best predictor variables for the different predictive

models. Finally, the authors evaluated the performance of these predictive models and chose the best-performing one for

precipitation isotope predictions.75

2 Climatology of the study region

Southeast Asia is mainly dominated by tropical monsoon (Am) and, to a lesser extent, tropical savanna (Aw) climates,

according to the Köppen climate classification. The Am of Southeast Asia consists of two independent components: the

southwest (SW) monsoon and the northeast (NE) monsoon (Manisan, 1995) (Fig. 1a).80
The SW monsoon starts in mid-May and ends in mid-October, causing significant precipitation events in Southeast Asia,

especially Thailand, from August to September (Khedari et al., 2002). During the SW monsoon season, Southeast Asia is

dominated by the influence of two main air masses. An air mass originating the Indian Ocean transports a large amount of

moisture into Southeast Asia (Nieuwolt, 1981), which couples with the unstable air mass emerging from the South Pacific

Ocean and Australia, resulting in more intense precipitation events. On the other hand, the NE monsoon prevails from mid-85
October to the next April, during which most parts of Southeast Asia, particularly Thailand, are controlled by cold and dry

air masses from the Pacific Ocean (Nieuwolt, 1981). Between the two monsoons, there exists a period known as the inter-

monsoon phase, during which the air temperature increases significantly (Khedari et al., 2002).
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90
Figure 1 The NE and SW monsoon trajectories toward Southeast Asia and the GNIP/study stations location (a), and the monthly variation
in air temperature and precipitation amount in the Southeast Asia region (data derived from GNIP station data sets) (b).

During the NE monsoon, the monthly precipitation and temperature demonstrate lower values compared to the annual

average in Southeast Asia, and these parameters show the lowest values in December. In contrast, when the SW monsoon95
occurs, the monthly rainfall and air temperature exhibit greater values than the annual average. The highest monthly

precipitation occurs in September during the SW monsoon, while the air temperature shows the highest values in the

transition period (Fig. 1b).

https://doi.org/10.5194/hess-2023-299
Preprint. Discussion started: 23 January 2024
c© Author(s) 2024. CC BY 4.0 License.



5

Studying the wind speed and direction based on the NCEP/NCAR reanalysis (NOAA, 2020) from the NOAA at a pressure

level of 850 hPa showed that strong winds mainly transfer moisture from the Indian Ocean toward Southeast Asia during the100
SW monsoon (Fig. 2a). However, during the NE monsoon, strong winds are observed from the northeastern and eastern

directions toward Southeast Asia and transfer the moisture of the South China Sea to this region (Fig. 2b). During the inter-

monsoon phase (Fig. 2c), the powerful winds seen during the SW and NE monsoon periods are not observed. This is the

reason for the stable atmospheric conditions and negligible moisture transfer toward Southeast Asia during this period.

105

Figure 2 Wind speed and direction maps during the SW (a) and NE (b) monsoons as well as the transition period (c) over Southeast Asia
(0°–25°N, 90°–115°E).

On the other hand, studying the variations in the monthly precipitation distribution as well as the atmospheric stability110
(which is typically studied by calculating ω) at a 500 hPa pressure level showed negative values for ω, which represents

atmospheric instability mainly over the southern, western, and northwestern parts of Southeast Asia during the SW monsoon

(Fig. 3a). The daily precipitation amount also showed higher values in the regions with atmospheric instability (Fig. 3d)

during the SW monsoon. During the NE monsoon, strong unstable atmospheric conditions were observed in the southern

part of Southeast Asia including, Malaysia and Indonesia (Fig. 3b). This was followed by high precipitation amounts, mainly115
in the southern part of Southeast Asia (Fig. 3e). Finally, atmospheric instability exists over the southern and eastern parts of

Southeast Asia during the inter-monsoon phase (Fig. 3c), followed by an increase in precipitation amount in these regions

(Fig. 3f).
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120
Figure 3 The stability of atmospheric (Omega ω) variations (a,b,c) and precipitation amount distribution (d,e,f) over Southeast Asia (0°–
25°N, 90°–115°E) for the SW and NE monsoons and the transition period, respectively. The data source is the NCEP NCAR reanalysis 1.

3 Materials and methods

During this survey, the stable isotope signatures in precipitation recorded by the GNIP at six different stations across125
Southeast Asia, including Bangkok, Kuala Lumpur, Jakarta, Kota Bharu, Jayapura, and Singapore, were investigated. The

stable isotopes in precipitation were shown in δ relative to the VSMOW, and in ‰ units by Eq.(1):

δ18Osample =
18O
16O sample

18O
16O reference

− 1
1

∗ 1000‰ VSMOW (1)

130
The 18O and 2H isotopes had analytical uncertainties of 0.1 ‰ and 1‰, respectively. In this study, the authors omitted the

stable isotope content in cases where the calculated deuterium excess (d-excess) value was higher than 50 ‰ or lower than -

30 ‰. According to (Nelson et al., 2021), these stable isotopes lead to extreme precipitation events, which occur rarely in the

monthly predictor timescale.

To simulate the stable isotope content (target variable) in precipitation of the studied stations, local variables (including the135
potential air evaporation, wind speed, vapor pressure, air temperature, relative humidity at 850 mb (the pressure level at

which most of the moisture responsible for precipitation in this region originates), and precipitation amount) and regional

variables (teleconnection indices) were independent variables.
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The local parameters, including the potential air evaporation and wind speed, have been obtained from the NOAA website

(NOAA, 2018a). However, the vapor pressure, precipitation amount, and air temperature data were provided by the GNIP140
stations. According to previous studies (Ichiyanagi and Yamanaka, 2005; Pong et al., 2002), the leading teleconnection

indices that influence the south of Asia and Thailand include the quasi-biennial oscillation (QBO), the Pacific decadal

oscillation (PDO), the Madden–Julian oscillation (MJO), the bivariate ENSO (BEST), the Southern Oscillation Index (SOI),

and the Indian Ocean dipole (IOD) time series. These are available on the NOAA website (NOAA, 2018a, 2018b) and were

used as independent variables (regional parameters) in this study.145
Several prediction models using various packages in R were used to predict the stable isotope contents in precipitation.

Initially artificial neural networks (ANNs), including shallow neural networks (SNNs) and deep neural networks (DNNs),

were utilized. Unlike conventional statistical techniques such as regression methods, problems with complex nonlinear

interactions are very well suited for neural networks (M.H and Darand, 2009; Mislan et al., 2015; Purnomo et al., 2017;

Schroeter, 2016).150
Then, decision trees (DTs) and random forest (RF) ML techniques were used to predict the stable isotope contents. Finally,

to achieve a more portable and accurate algorithm capable of omitting the computational limits observed in other ML models,

the extreme gradient-boosting (XGboost) model was applied.

After constructing the model using training data, its precision is assessed by employing the ideal dataset. To authenticate the

ML techniques, a commonly utilized approach called cross-validation (v-fold variant) was implemented, utilizing the155
rsample package (Silge et al., 2022) in R language (R core team, 2018). The procedure includes spiliting the datasets into

train and test sets. An essential aspect while splitting the data into these sets is to guarantee that the distribution of the test

data accurately reflects the entire dataset (Frick et al., 2023). In v-fold cross-validation, the dataset is spilited to v separate

and non overlapping subsets randomly. This division is done to create training and testing sets.

After completing the training and testing stages in each developed model, the precision of the model was evaluated using the160
coefficient of determination (R2), the Nash Sutcliffe model efficiency coefficient (NSE), the root mean square error (RMSE),

Akaike information criterion (AIC), and Bayesian information criterion (BIC) to determine the most accurate method for

stable isotope simulation. R2, NSE, and RMSE can indicate the degree to which a model accurately presents the data. In

contrast, AIC and BIC can be used to compare various models, considering their level of hardness.

The reliability of the model's predictions and the accuracy of the simulated data were evaluated through a bootstrap165
uncertainty analysis, which considered multiple metrics. This enabled calculating the model's level of uncertainty and

offered a comprehensive evaluation of its effectiveness.

In the final step, the stable isotope contents in precipitation were forecasted for one year at each station after the GNIP

precipitation sampling project was terminated. To conduct the forecasting procedure, the most accurate ML model in each

station, as well as vector autoregression (VAR), were applied. The VAR model procedure starts by determining the number170
of folds for LOOCV (Leave One Out Cross Validation) and initializing a vector to store LOOCV outputs. It also initializes

variables to store minimum CI value and iteration with minimum CI value. Then, it conducts LOOCV by iterating over the

https://doi.org/10.5194/hess-2023-299
Preprint. Discussion started: 23 January 2024
c© Author(s) 2024. CC BY 4.0 License.



8

number of folds defined earlier. In each iteration, it determines the index for the test set, defines the test set, defines the

training set, determines optimal lag order using AIC (Akaike Information Criterion), fits the VAR model to the training set

with optimal lag order, makes a forecast for the test set, computes squared error for the test set and stores LOOCV outputs.175
Finally, the results of ML models were compared with the outputs of VAR models. To evaluate two models, firstly, the

LOOCV procedure was used to estimate the performance of each model when they were used to make predictions on data

not used to train the model. Then, the RMSE error was calculated for each model using the predicted values and measured

values, and the model which demonstarted the lowest RMSE error was chosen as the most accurate.

180
4 Results and discussion

4.1 Choosing the best input parameters for building ML models

Choosing the optimal predictors for creating a simulation of the stable isotope contents of precipitation at the Southeast

Asian stations is the most essential step in each ML modeling. Eliminating irrelevant and redundant predictors will increase185
the robustness of the developed machine learning models while reducing computational expenses (Akbarian et al., 2023).

Pearson correlation coefficients at a 95% confidence level were used to examine the main factors influencing stable isotopes

in precipitation at the studied stations (Fig. 4).
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190
Figure 4 (a) Pearson correlation coefficients and (b) Spearman’s rank correlation were applied to examine the factors influencing the
stable isotope composition of precipitation at the GNIP stations in Southeast Asia. An asterisk marks the pairs that have a significant
difference in statistics (*).

195
This research discovered pairs with statistical significance (sig<0.05) between the teleconnection indices. In Jakarta station,

QBO had a remarkable correlation with PDO (r=-0.64). In Kota Bharu, IOD had a correlation of r=-0.64 with QBO. In

Singapore station, PDO correlated r=-0.75, and BEST correlated r=-0.86 with QBO. The effects of teleconnection indices on

climatic parameters were also investigated. BEST had a notable correlation with OLR in most of the studied stations,

including Bangkok (r=-0.79), Jakarta (r=0.72), Jayapura (r=0.75), Kuala Lumpur (r=-0.86), and Singapore (r=-0.62).200
However, QBO only strongly correlated with OLR (r=0.60) in Singapore station.

Among the local parameters, potential evaporation was found to correlate with temperature (r=0.51) in Kuala Lumpur station

and with precipitation (r=-0.59) in Bangkok station. Vapor pressure also correlated with temperature in most stations,

including Bangkok (r=0.56), Jayapura (r=0.52), Kota Bharu (r=0.89), Kuala Lumpur (r=0.73), and Singapore (r=0.90).

The inverse relationship between the amount of precipitation and the potential evaporation showed that more moisture in the205
air and more precipitation per month usually lowered the potential evaporation (Clark and Fritz, 1997). On the contrary,
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more vapor pressure in the atmosphere (which, together with atmospheric instability, is a key factor for precipitation to

happen) led to more precipitation in the study sites. Moreover, the relationship between air temperature and vapor pressure

also revealed that higher air temperature caused more surface water resources to evaporate, resulting in a substantial rise in

atmospheric vapor pressure (Thornthwaite, 1948).210
The results demonstrated that precipitation had a significant influence on stable isotopes in precipitation. However, other

parameters, such as teleconnection indices, had little impact on most of the stations. The stable isotope signatures were

negatively correlated with precipitation, which can be attributed to the impact of precipitation amount. As the amount of

precipitation increases, the heavier isotopes, such as 18O and 2H, preferentially condense and are removed from the vapor

(cloud), while the lighter isotopes remain in the vapor phase. This results in the progressive depletion of heavy isotopes in215
the remaining vapor as precipitation continues. Therefore, the stable isotope content in precipitation tends to decrease as

precipitation increases (Clark and Fritz, 1997).

In addition to the Pearson correlation coefficient, the elimination by importance method has also been used at the studied

stations for predictor selection. Several methods for selecting important predictors, such as Recursive Feature Elimination

(RFE) and Lasso regression have been used. In the RFE method, all possible combinations of predictors are used to run the220
models. The explanatory power of each predictor is determined by RFE, and predictors with lower importance criteria are

eliminated by the models in each search step. In the RFE method used in this study, the random forest (RF) was used as the

underlying model for feature selection. The main predictors were selected based on 10 fold cross validation (K fold method),

and the RMSE method was used to evaluate the model’s performance during feature selection. In addition to the RFE

method, the Lasso regression method has also been used to determine the most important predictors. This method performs225
both variable selection and regularization by shrinking the coefficients of less important predictors towards zero, allowing

for the selection of the most important predictors. Similar to the RFE method, 10 fold cross validation (K fold method) was

applied as the resampling method to estimate the performance of the Lasso model. Additionally, RMSE was also calculated

to evaluate the model’s performance during cross validation. After fitting the Lasso model, predictor importance was

measured based on the absolute value of the t statistic for each predictor. Predictors with larger t statistic values were230
considered more important. Ultimately, the significant factors that impact the isotopic composition of precipitation at the

sampling sites in Southeast Asia were identified by analyzing RFE and Lasso regression models (Table 1).

235

240
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Table 1 Optimum predictors selected from RFE technique and/or Lasso regression model.

Station Isotope Method MJO PDO IOD NAO QBO BEST
Wind

speed
OLR

Potential

evaporatio

n

Vapor

pressu

re

Temperature

Bangkok

δ18O

(VSMO

W‰)

RFE ＊ ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊

Jakarta

δ18O

(VSMO

W‰)

RFE ＊ ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊ ＊

Jayapura

δ18O

(VSMO

W‰)

RFE ＊ ＊ ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊ ＊

Kota

Bharu

δ18O

(VSMO

W‰)

RFE ＊ ＊ ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊

Kuala

lumpur

δ18O

(VSMO

W‰)

RFE ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊ ＊

Singapor

e

δ18O

(VSMO

W‰)

RFE ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊

Station Isotope Method MJO PDO IOD NAO QBO BEST
Wind

speed
OLR

Potential

evaporatio

n

Vapor

pressu

re

Temperature

Bangkok

δ2H

(VSMO

W‰)

RFE ＊ ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊ ＊

Jakarta

δ2H

(VSMO

W‰)

RFE ＊ ＊ ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊

Jayapura

δ2H

(VSMO

W‰)

RFE ＊ ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊ ＊
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Kota

Bharu

δ2H

(VSMO

W‰)

RFE ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊

Kuala

lumpur

δ2H

(VSMO

W‰)

RFE ＊ ＊ ＊ ＊ ＊

Lasso

Regression
＊

Singapor

e

δ2H

(VSMO

W‰)

RFE ＊ ＊ ＊ ＊

Lasso

Regression
＊ ＊ ＊ ＊ ＊ ＊ ＊

4.2 The importance of predictor variables in influencing target variable/the isotopic composition of precipitation245
Analyzing the relative significance of different predictor variables that impacts the stable isotope contents can present a

valuable findings (Fig. 5 and Fig. A1). According to the developed ML models, several factors, including precipitation

amount, potential evaporation, vapor pressure, and temperature are the main parameters influencing the isotopic composition

of precipitation at most of the studied sites. These factors have been historically identified as significant drivers of the stable

isotope composition in tropical areas (Clark and Fritz, 1997). At tropical stations, the stable isotope composition of250
precipitation has a fairly strong relationship with air temperature, which is due to the periodicity of monsoon precipitation.

However, at non tropical stations, the temperature is one of the main parameters influencing the stable isotope composition

of precipitation (Clark and Fritz, 1997).
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255
Figure 5 Fractional importance of various local and regional parameters (predictors) influencing δ18O content in the studied stations
precipitation based on the output from various ML models.

More interesting is the low ranking (much weaker impact) of most regional factors (teleconnection indices) in influencing260
the stable isotope composition of precipitation. The weak impact of regional factors influencing the stable isotope

composition of precipitation compared to the local parameters has also been reported by previous studies in Southeast Asia

(Heydarizad et al., 2023b) and other parts of the world (Heydarizad et al., 2021). Previous studies have mentioned the

influence of ENSO teleconnection indices on the stable isotope composition of precipitation across Southeast Asia

(Heydarizad et al., 2023b; Ichiyanagi and Yamanaka, 2005).265

4.3 Utilization of various machine learning techniques for predicting stable isotope composition in precipitation

Various machine learning techniques were employed to predict the stable isotope composition of precipitation, while

assessing the relative significance of different local and regional factors. The predictors for the ML models were local factors

including geopotential height, precipitation amount, potential evaporation, air temperature, vapor pressure, relative humidity,270
and wind speed, as well as regional factors (teleconnection indices). However, the isotopic composition of precipitation was

used as the target variable. The results showed that the models developed based on ML techniques were accurate in most

cases due to their high R2 values and low RMSE, NSE, BIC, and AIC values (Table 2). This is due to a much more

complicated procedure for processing the data in ML models than regression models. Among the ML models, XGboost

showed the highest accuracy in most cases, while DNN demonstrated the highest accuracy in a few cases. The higher275
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accuracy of the models developed based on XGboost was due to the fact that this model uses a more regularized algorithm

that reduces over fitting and gives it much better accuracy. In addition to its higher accuracy, the XGboost model fulfills

tasks at a significantly higher speed of up to 10 times faster compared to other ML models, which is due to the fact that

XGboost conducts numerous calculations and processes simultaneously (Nishida, 2017).

280

Table 2 Evaluating the precision of the ML models using various evaluation metrics.

Statio

n

Isot

ope

Metho

d

XGbo

ost

DN

N
SNN

Rando

m

forest

Dec

isio

n

tree

Isotope
Metho

d

XGbo

ost
DNN SNN

Rand

om

fores

t

Decis

ion

tree

Bangk

ok

δ18O

(VS

MO

W

‰)

AIC 405 585 607 498 520

δ2H

(VSM

OW‰)

AIC 960 989 1110 1068 1140

BIC 410 590 620 512 531 BIC 981 995 1135 1072 1146

R2 0.91 0.72 0.69 0.88 0.84 R2 0.87 0.80 0.55 0.64 0.33

VNS 0.90 0.71 0.67 0.87 0.82 VNS 0.86 0.80 0.54 0.61 0.32

RMSE 0.76 2.0 2.4 1.3 1.5
RMS

E
12.20 15.50 22.10

18.7

2
28.30

Jakart

a

δ18O

(VS

MO

W

‰)

AIC 435 545 530 570 690

δ2H

(VSM

OW‰)

AIC 973 1085 993 1065 1072

BIC 452 567 542 583 710 BIC 991 1097 1012 1075 1095

R2 0.89 0.75 0.76 0.73 0.32 R2 0.85 0.65 0.78 0.69 0.72

VNS 0.88 0.73 0.74 0.73 0.31 VNS 0.85 0.64 0.77 0.68 0.70

RMSE 0.91 1.6 1.6 1.8 3.3
RMS

E
12.80 19.20 16.20

18.1

0
18.60

Jayapu

ra

δ18O

(VS

MO

W

‰)

AIC 540 445 521 605 620

δ2H

(VSM

OW‰)

AIC 1090 985 1040 1069 1140

BIC 553 460 536 618 629 BIC 1110 996 1062 1082 1163

R2 0.75 0.87 0.76 0.68 0.65 R2 0.61 0.84 0.76 0.68 0.33

VNS 0.74 0.87 0.76 0.68 0.61 VNS 0.60 0.84 0.74 0.65 0.31

RMSE 1.70 1.10 1.5 2.6 2.7
RMS

E
20.10 13.15 16.90

17.8

0
25.5

Kota

Bharu

δ18O

(VS

MO

AIC 470 535 595 570 624 δ2H

(VSM

OW‰)

AIC 985 1090 1062 1083 1211

BIC 476 543 606 585 635 BIC 996 1110 1076 1097 1252

R2 0.85 0.74 0.69 0.70 0.63 R2 0.84 0.61 0.63 0.62 0.32
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W

‰)
VNS 0.84 0.74 0.69 0.70 0.62 VNS 0.84 0.60 0.62 0.62 0.31

RMSE 1.1 1.6 2.4 2.3 2.6
RMS

E
13.15 20.10 18.72

19.9

0
27.75

Kuala

lumpu

r

δ18O

(VS

MO

W

‰)

AIC 412 480 509 526 490

δ2H

(VSM

OW‰)

AIC 942 1012 1040 1085 1115

BIC 422 486 524 545 502 BIC 961 1026 1062 1099 1176

R2 0.90 0.84 0.78 0.76 0.82 R2 0.91 0.82 0.76 0.60 0.45

VNS 0.90 0.84 0.77 0.76 0.81 VNS 0.90 0.81 0.74 0.59 0.42

RMSE 0.83 1.0 1.4 1.5 1.2
RMS

E
10.50 14.20 16.90

20.9

0
24.60

Singap

ore

δ18O

(VS

MO

W

‰)

AIC 446 614 605 533 518

δ2H

(VSM

OW‰)

AIC 1024 955 1052 1121 1077

BIC 461 629 619 546 531 BIC 1032 970 1065 1135 1089

R2 0.88 0.65 0.66 0.81 0.84 R2 0.80 0.89 0.71 0.42 0.61

VNS 0.87 0.64 0.66 0.81 0.83 VNS 0.78 0.88 0.70 0.41 0.60

RMSE 0.93 2.91 2.90 2.2 1.9
RMS

E
15.90 11.32 17.30

25.9

0
20.10

To ensure the precision of the models, stable isotope contents in precipitation, generated by the most precise machine

learning model, have been compared with the measured data at each station in this study. The comparsion results (Fig. 6 and285
Fig. A2) showed acceptable matching between simulated and measured stable isotope data. While the simulation created by

the ML models showed acceptable accuracy, further refinement of these models is also possible. Adding more predictors to

the ML models, like cloud microphysical properties including cloud top temperature and cloud top pressure, can improve the

accuracy of the models. Nevertheless, these factors only cover a small part of the stable isotope dataset and are not available

for the whole period of the stable isotope data in the studied stations.290
Furthermore, the utilization of hybrid algorithms including machine learning-Q statistic algorithms can contribute to

developing more precise models.
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Figure 6 Examining the differences between measured and simulated δ18O content in precipitation using the most accurate ML models by295
R2 values.

4.4 Evaluating model performance in predicting stable isotope contents with Bootstrap confidence intervals

To evaluate the uncertainty in the simulated stable isotope contents of precipitation, a bootstrap technique was utilized. A300
95% confidence interval for the predicated data was calculated using this method, which provided a better understanding of

the variation of predictions from the developed model to other existing statistics. Figures 7 and figure A3 display the 95%

confidence intervals for the stable isotope contents of precipitation at the studied stations. Most stable isotope data fit within

the confidence intervals, suggesting that the ML model precisely estimated the stable isotope contents for each station.

However, there were instances where the predicted data surpaseed the upper limit of the confidence interval, showing that305
the model significantly underestimated the higher values. On the other hand, there were also cases where the data was below

the lower boundary of the confidence interval, suggesting that the model had overestimated the very low stable isotope

contents.
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310
Figure 7 Examining the differences between measured and simulated δ18O content in precipitation using the most accurate ML models by
R2 values.

4.5 Forecasting stable isotope contents in precipitation with VAR and ML models315
Finally, the stable isotope composition of precipitation was forecasted for one year using the VAR method and compared

with the forecasted stable isotope data using an ML model at the studied stations (Fig. 8 and Fig. A4). The results

demonstrated that the ML models could forecast the stable isotope contents of precipitation with higher precision relative to

the VAR models in most of the study sites except for Singapore and Kota Bharu for δ2H isotope and Jakarta station for δ18O

isotope due to lower RMSE values of ML models compared to VAR model outputs (Fig. A5). This study depicts that ML320
techniques can forecast stable isotope contents with acceptable accuracy. There are several reasons why ML forecasting is

more accurate than other methods. Firstly, ML models can determine patterns that are too complex for other methods to

detect. Secondly, ML models usually are more flexible than other techniques and allow the quick infusion of new

information into models. Thirdly, unlike traditional methods, ML forecasting algorithms often apply techniques that involve

more complex features and predictive methods compared to other ones which improve the accuracy of forecasts while325
minimizing a loss function.
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Figure 8 Comparison of δ18O content in the studied stations precipitation for 12 months using VAR and ML models.

5. Conclusion330
The stable isotope composition of precipitation was simulated by diverse ML models at the studied stations in Southeast

Asia. The results showed that the XGboost method resulted in more accurate models in most cases according to various

evaluation metrics (AIC, BIC, NSE, R2, and RMSE). This study also demonstrated that local and regional predictors

influence the stable isotope composition of precipitation of the studied stations. The stable isotope composition of

precipitation depends mainly on the vapor pressure, precipitation amount, temperature, and potential evaporation. The results335
of a bootstrap uncertainty analysis showed that the ML models could predict the stable isotope compositions of precipitation

accurately. Finally, the results of stable isotope forecasting using ML and VAR models reveal that ML models are also

highly accurate for forecasting stable isotope contents in precipitation compared to the VAR method. This is due to their

significant ability to determine patterns that are too complex for other methods to detect as well as their notable flexibility in

prediction compared to other techniques.340

https://doi.org/10.5194/hess-2023-299
Preprint. Discussion started: 23 January 2024
c© Author(s) 2024. CC BY 4.0 License.



19

Appendix A: Extra figures

345
Figure A1 Fractional importance of various local and regional parameters (predictors) impacting δ2H content in the studied stations

precipitation based on the output from various ML models.

Figure A2 Examining the differences between measured and simulated δ2H content in precipitation by the most accurate ML models by350
R2 values.
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355

Figure A3 Confidence intervals by a bootstrap analysis for predicted δ2H content in the studied stations using the most accurate ML

model.
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360
Figure A4 Comparison of δ2H content in the studied stations precipitation for 12 months using VAR and ML models.

Figure A5 Performance of evaluated ML and VAR models for the studied stations in Southeast Asia.
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Code and data avilability365
The R software was used to perform all statistical data analyses (version 4.1.3). The R packages used in this study were

“devtools”, “tidyverse”, “corrplot”, “caret”, “leaps”, “MASS”, “olsrr”, “GGally”, “glmnet”, “Metrics”, “dplyr”, “pls”,

“lattice”, “quantreg”, “ggplot2”, “rsample”, “reshape2”, “lubridate”, “ncdf4”, “rts”, “ParamHelpers”, “data.table”, “e1071”,

“stringr”, “readr”, “xgboost”, “gbm”, “h2o”, “pdp”, “datasets”, “caTools”, “party”, “magrittr”, “randomForest”, “keras”,

“mlbench”, “neuralnet”, “lime” ,“mc2d”, “lhs”, “fitdistrplus”,“boot”, "vars", "stats" , "lmtest" , "tseries", "dynlm", and370
“leaps”. The codes used for data processing are available at ……... Data sets used in this study are also available at Global

Network of Isotopes in Precipitaion (GNIP) website at https://www.iaea.org/services/networks/gnip.
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