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Abstract. Statistics is often abused and misused in hydro-climatology, thus causing research to get stuck around unscientific

concepts that hinder scientific advances. In this study, we focus on the iterated underestimation and misinterpretation of the

role of spatio-temporal dependence in statistical analysis of hydro-climatological processes. To this aim, we analyze the oc-

currence process of extreme precipitation (P ) derived from 100-year daily time series recorded at 1,106 worldwide gauges

of the Global Historical Climatology Network. The analysis relies on a model-based approach involving first-order Poisson5

integer autoregressive processes (Poisson-INAR(1)), nonhomogeneous Poisson processes (NHP), and Iterative Amplitude Ad-

justed Fourier Transform (IAAFT), which are used to describe and simulate the frequency of P events. This approach allows

us to highlight the actual impact of spatio-temporal dependence and finite sample size on statistical inference, resulting in

over-dispersed marginal distributions and biased estimates of dependence properties, such as autocorrelation and power spec-

trum density. These issues also affect the outcome and interpretation of statistical tests for trend detection. Overall, stationary10

stochastic processes incorporating the empirical spatio-temporal correlation and its effects provide a faithful description of the

occurrence process of extreme P at various spatio-temporal scales. Therefore, accounting for the effect of dependence in the

analysis of the frequency of extreme P has huge impact that cannot be ignored.

1 Introduction

Most of the methods reported in handbooks of applied statistics have been developed under the assumption of independence,15

distributional identity, and well-behaving bell-shaped/exponential distributions. Of course, there is a wide statistical literature

focused on dependence and related stochastic processes, lack of distributional identity and nonstationarity, and skewed sub-

exponential distributions. However, in some applied sciences such as hydro-climatology, analysts have often neglected that

moving from the former set of assumptions (commonly reported in introductory handbooks) to the latter is not just moving

to a more general model from one that can be considered a special case. A typical example is the Generalized Extreme20

Value (GEV) distribution widely used in the study of hydro-climatological extreme events, which converges to the Gumbel

distribution as the shape parameter converge to zero. While Gumbel is mathematically just a special case of the GEV, assuming

that Gumbel is the distribution of choice has relevant consequences, as it means assuming exponential tails instead of super-

exponential (upper bounded) or sub-exponential (possibly heavy). In particular, high skewness and heavy tails imply possible
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non existence of the moments of high order as well as bias and/or high variability in the estimates of the moments themselves,25

including variance, covariance, and autocorrelation, as well as long range dependence (see e.g., Embrechts et al., 2002; Barunik

and Kristoufek, 2010; Lombardo et al., 2014; Cirillo and Taleb, 2016; Taleb, 2020, and references therein). Similar remarks

hold for nonstationarity. Dealing with it does not mean just adding time dependent parameters to a stationary model, using for

instance Generalized Linear Models (GMLs) and their available extensions: it means that the ergodicity property, which is key

in the interpretation of statistical inference, is no longer valid (e.g., Koutsoyiannis and Montanari, 2015). In these cases, any30

estimate of whatever summary statistics, such as the sample mean, is uninformative as it does not have a corresponding unique

population counter part, as the latter does not exist anymore (e.g., Serinaldi and Kilsby, 2015).

The missing fundamental point is that every aspect of statistical analysis and its interpretation depend on the underlying

assumptions and models according to the rationale of statistical inference. Even the simplest diagnostic diagram relies on an

underlying model (see e.g., Serinaldi et al., 2020, for further discussion). This primary epistemological concept comes before35

any methodology and/or technicality and marks the boundary between correct interpretation and misinterpretation in inference

results. However, while it was routinely presented in statistical handbook published in the past century (e.g., Aitken, 1947;

Cramér, 1946; Papoulis, 1991), modern textbooks seem to miss it, perhaps taking it for granted. However, this concept seems

to be not so obvious, especially in applied sciences. Nonetheless, in the hydro-climatological context, von Storch and Zwiers

(2003, p. 69) well summarized those primary principles of statistical inference as follows:40

1. “A statistical model is adopted that supposedly describes both the stochastic characteristics of the observed process and

the properties of the method of observation. It is important to be aware of the models implicit in the chosen statistical

method and the constraints those models necessarily impose on the extraction and interpretation of information.”

2. “The observations are analysed in the context of the adopted statistical model.”

As for the effects of nonstationarity and heavy tails, there is a wide literature on the effects of dependence on statistical45

inference. Generally, dependence implies information redundancy and reduced effective sample size, along with variance

inflation and bias of standard estimators of summary statistics such as marginal and joint moments. Therefore, assuming

spatio-temporal dependence means recognizing that such an assumption impacts on every sampling property of the process,

including marginal distributions. Under spatio-temporal dependence, the classical estimator of the correlation itself is biased

and need to be corrected (e.g., Marriott and Pope, 1954; White, 1961; Wallis and O’Connell, 1972; Lenton and Schaake,50

1973; Mudelsee, 2001; Koutsoyiannis, 2003; Koutsoyiannis and Montanari, 2007; Papalexiou et al., 2010; Dimitriadis and

Koutsoyiannis, 2015; Serinaldi and Kilsby, 2016a).

This study focuses on the assumption of spatio-temporal dependence, attempting to show the practical consequences of

underestimating and not properly considering and interpret its effects on the analysis of extreme P frequency. It was motivated

by a recent work by Farris et al. (2021) who used an approach based on statistical tests to analyze a worldwide data set55

of daily precipitation, concluding that “accounting or not for the possible presence of serial correlation has a very limited

impact on the assessment of trend significance in the context of the model and range of autocorrelations considered here” (this

statements is also summarized by the key point “Accounting for serial correlation in observed extreme precipitation frequency
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has limited impact on statistical trend analyses”). Therefore, in light of the foregoing discussion, we study the same data set

analyzed by Farris et al. (2021) to double-check the role of spatio-temporal dependence in trend analysis, and more generally60

on the characterization of extreme P frequency at various spatio-temporal scales. However, instead of using an approach based

on statistical tests, we apply a model-based approach relying on theoretically-informed stochastic modeling and diagnostic

plots. Therefore, we compare the two methodologies in terms of their rationale and output to better understand why improper

treatment of dependence might result in misleading conclusions.

The structure of this study is as follows: Section 2 introduces the P data set. Section 3 presents and discusses the method-65

ology based on statistical tests, highlighting shortcomings and pitfalls that lead to introduce the rationale of our model-based

methodology, which is described in Section 4. In Section 5, we analyze the P frequency data studying: (i) the marginal distri-

bution of the annual number (Z) of OT events; (ii) the relationship between lag-1 autocorrelation ρ1 and slope ϕ of liner trend

estimated on the Z time series; and (iii) trend analysis on the Z time series. In this respect, we expand the analysis reported

by Farris et al. (2021) by focusing on the role of spatio-temporal dependence at various spatio-temporal scales. For each stage70

of the foregoing analysis, we further discuss the used methodologies and provide empirical results. Finally, Section 6 reports

general remarks about the interpretation of our study in the context of the existing literature on statistical trend analysis, and

more generally about the problem of approaching statistical analysis of hydro-climatological data neglecting epistemological

principles that are fundamental to properly set up the analysis itself.

2 Data75

We analyze daily precipitation time series from a sub-set of gauges extracted from more than 100,000 stations of the Global

Historical Climatology Network-Daily (GHCN-D) database (Menne et al., 2012a, b) (https://www.ncei.noaa.gov/data/global-

historical-climatology-network-daily/). Selected stations are characterized by at least 95 complete years of records in a common

100-year period from 1916 to 2015. We extracted 1,106 worldwide gauges, which are 19 more than those extracted by Farris

et al. (2021), using the same criteria. Figure 1 displays the map of the selected GHCN stations with indication of four sub-80

regions denoted as ‘North America’, ‘Eurasia’, ‘Australia’, and ‘North-Western Europe’. The first three regions are identified

to be as close as possible to those used by Farris et al. (2021) in their regional analysis, while ‘North-Western Europe’ is

an additional region corresponding to the most densely gauged area of ‘Eurasia’. Overall, the four regions along with the

worldwide scale (hereinafter denoted as ‘World’) allow us to highlight the behavior of extreme P in nested regions.

To allow a fair comparison with existing literature, we followed Farris et al. (2021) and selected extreme P as the values85

exceeding given percentage thresholds according to the at-site empirical cumulative distribution function (ECDF) (including

zeros). For each station, the annual number Z of OT exceedances forms the time series of extreme P frequencies. Note that the

“exceedances on consecutive days are counted as separate events” (Farris et al., 2021). Farris et al. (2021) considered several

percentage threshold from 90% to 97.5% and different sub-sets (i.e., the most recent 30 and 50 years as well as the complete

sequences of 100 years). Since their results are consistent across different thresholds, we limit our analysis to 95% and 99.5%90

thresholds, as the former is the one discussed more extensively by Farris et al. (2021), while the latter serves to highlight the
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Figure 1. Map of GHCN rain gauges used in this study with indication of the four sub-regions (denoted as ‘North America’, ‘Eurasia’,

‘North-Western Europe’, and ‘Australia’) that are discussed in the subsequent analysis.

behavior of the occurrence process of P exceedances over a high threshold. As far as the number of years is of concern, we

only use 100 and 50 years, as shorter time series of 30 annual data points do not provide reliable information on occurrence

processes in terms spatio-temporal properties. The GHCN-D data set was retrieved and handled by the R contributed package

rnoaa (Chamberlain, 2020).95

3 Test-based methodology used in the literature

3.1 Assumptions and statistical tests

Before introducing the methodology used in this study, we firstly present the methodology previously used in the literature

to analyze the same data. The aim is two-fold: (i) to explain the rationale of applying a different approach, and (ii) to better

understand the discussion in Section 5 concerning the differences between the output of the two methodologies. Farris et al.100

(2021) investigated two main aspects of trend analysis of Z, that is, the impact of serial correlation on trend detection and the

effect of performing multiple tests. Their analysis is based on the following statistical methods:

– Kolmogorov-Smirnov and χ2 goodness-of-fit tests are used to check whether Z follow a Poisson distribution.

– Nonhomogeneous Poisson (NHP) process describing a collection of independent Poisson random variables with rate of

occurrence linearly varying with time, and first-order Poisson integer autoregressive (Poisson-INAR(1)) process, which105
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is a specific kind of stationary and temporally correlated process with Poisson marginal distribution (see Section S1 in

the Supplement). These models are used to study the effect of serial correlation.

– Various statistical tests for trend detection. Due to similar performance of parametric and nonparametric tests, Farris

et al. (2021) retained and discussed only one test for each category, that is, a nonparametric test based on Mann-Kendall

(MK) test statistic, and a parametric test based on the slope parameter of a Poisson regression (PR).110

When performing a statistical test at the α significance level many times, we expect a percentage α of false rejections on

average. Since all tests are applied to multiple time series, False Discovery Rate (FDR) method, that is, the ratio of number of

false rejections to all rejections (Benjamini and Hochberg, 1995), is used to account for the effect of test multiplicity which is

also known as field significance (Wilks, 2016; Farris et al., 2021).

3.2 Remarks on the methodology used in the literature115

As mentioned in Section 1, every statistical analysis (including diagnostic plots) relies on some assumptions, and these assump-

tions lead the interpretation of results. In this respect, while the simultaneous application of the techniques/tests listed in the

previous section seem reasonable, a closer look reveal that the assumptions behind these statistical methods are not compatible

to each other.

For example, Kolmogorov-Smirnov and χ2 goodness-of-fit tests, which are used to check the suitability of Poisson distribu-120

tion for Z, are valid under the assumption that the underlying process is independent and identically distributed. Therefore, if

these tests pointed to lack of rejection of Poisson distributions, this would also imply independence and distributional identity

(i.e., stationarity). In fact, if the process were not independent, dependence would generate information redundancy and over-

dispersion (variance larger than the mean) of the observed finite-size samples of Z, thus making the Poisson model unsuitable

from a theoretical standpoint. On the other hand, if the Z process were not identically distributed, we could not conclude that125

the distribution of Z is a single specific distribution. It can be at most conditionally Poisson or compound Poisson.

On the other hand, if we assume that the Z process is NHP, this means that the data are assumed to follow different Poisson

distributions, and the overall distribution of the observed Z is a compound Poisson, and more importantly this hinders the

application of Kolmogorov-Smirnov and χ2 goodness-of-fit tests, as the process does not fulfill the underlying assumptions

of these tests. Indeed, these tests can at most be applied to conditional processes, that is, to values resulting from filtering the130

effect of ‘non-homogeneity’ out (see e.g., Coles, 2001, pp. 110-111). In the present case, non-homogeneity can consist of

random fluctuations or well-defined evolution of the rate of occurrence of extreme P .

Concerning dependence, the resulting information redundancy impacts on goodness-of-fit tests, inflating the variance of their

test statistics, which must be adjusted accordingly. Variance inflation affects any sampling summary statistics, including sample

variance and auto-/cross-correlation as well as on the shape of the distribution of Z, which is expected to be over-dispersed135

(Marriott and Pope, 1954; White, 1961; Wallis and O’Connell, 1972; Lenton and Schaake, 1973; Mudelsee, 2001; Koutsoyian-

nis, 2003; Koutsoyiannis and Montanari, 2007; Papalexiou et al., 2010; Dimitriadis and Koutsoyiannis, 2015; Serinaldi and
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Kilsby, 2016a, 2018; Serinaldi and Lombardo, 2020). Therefore, Poisson-INAR(1) models are likely unsuitable models for Z

because of their inappropriate marginal distribution.

These remarks should clarify why adding or relaxing fundamental assumptions such as (in)dependence and (non)stationarity140

cannot be reduced to just introducing or removing (or setting to zero) some parameters. Changing these assumptions deeply

changes the inferential framework as well as the expected properties of the observed processes. Generally, conclusions and

results obtained under a set of assumptions A1 cannot be used to support further analysis and models that are valid under

a different set of assumptions A2. In fact, the results under A1 might not be valid under A2, and vice versa. In some cases,

models/tests need to be adjusted and results updated accordingly. In other cases, models/tests used under A1 might not even145

exist under A2.

The foregoing discussion indicates that an analysis based on models/tests relying on mixed assumptions is prone to severe

inconsistencies and misleading conclusions, thus suggesting that a proper statistical analysis should rely on well-specified

assumptions, adopting inferences procedures and methods that agree with those assumptions, thus guaranteeing a coherent

interpretation of results. In the next sections, we introduce this kind of approach and further investigate the aforementioned150

issues and their practical consequences in real-world data analysis.

4 Model-based methodology used in this study

The approach described in Section 3.1 involves several statistical tests, and is denoted as ‘test-based’ approach/method here-

inafter. Generally, extensive application of statistical tests corresponds to massive use of Monte Carlo simulations, with little

or no attention to exploratory data analysis and theoretical assumptions, and thus their consequences on the interpretation of155

results. Therefore, we switch from statistical tests and their binary and often uninformative output (see further discussion in

Section 6.1) to a ‘model-based’ approach supported by preliminary theoretical considerations and simple but effective graph-

ical exploratory analysis. The underlying idea is to avoid moving among different and possibly incompatible assumptions,

focusing on a single one that is considered to be realistic for the process studied. Thus, we build a coherent set of theoretically

supported models and methods that fulfill that assumption, and check if the framework is able to reproduce key properties of160

the process of interest (here, Z) over a reasonable range of spatio-temporal scales. Note that this approach is just the standard

procedure of scientific inquiry (von Neumann, 1955; Box, 1976), which however seems to be forgotten in a large body of

literature dealing with statistical analysis of hydro-climatological data.

Since precipitation process exhibits recognizable spatio-temporal patterns evolving over various spatio-temporal scales,

the assumptions of independence and distributional identity is reasonably untenable. We therefore relax the assumption of165

independence and check whether models/methods incorporating spatio-temporal dependence provide a reasonable description

of Z.
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4.1 Modeling marginal distributions

The choice of potential distributions for Z should consider four factors: (i) size of the blocks of observations over which we

compute Z values, (ii) finite sample size of Z records, (iii) threshold used to select OT events, and (iv) effect of dependence.170

The number of OT events Z is calculated over 365-day time windows, meaning that Z can be interpreted as the number

of successes/failures occurring over a finite number of experiments. The sample size of the resulting time series of Z is at

most 100, which is the number of available years of records, excluding possible missing values. Moreover, assuming a realistic

average probability of zero daily P equal to p0 = 0.7, and an OT probability p = 0.95 in the ECDF (including zeros), the

corresponding nonexceedance probability of non-zero P is p+ = p−p0
1−p0

∼= 0.83, which is not a very high threshold for P if175

one would like to focus on extreme values. For p = 0.95, the probability p+ becomes at most ∼= 0.92 for p0 = 0.4, which is

quite a reasonable value for p0 in wet climates (e.g., Harrold et al., 2003; Robertson et al., 2004; Serinaldi, 2009; Mehrotra

et al., 2012; Olson and Kleiber, 2017). Therefore, the OT processes analyzed and the corresponding Z unlikely fulfill the

assumptions required by asymptotic models such as Poisson or compound Poisson (Berman, 1980; Leadbetter et al., 1983) in

terms of sample size, block size, and threshold, whereas models devised for finite-size counting processes, such as Binomial,180

might be more appropriate.

More importantly, spatio-temporal dependence also affects the marginal distribution of Z and the (inter-)arrival times of

OT events over finite-size blocks of observations (such as the 365 days forming one-year blocks). As mentioned in Sec-

tion 3.2, spatio-temporal dependence results in information redundancy and over-dispersion, so that the distribution of (inter-

)arrival times is expected to depart from exponential (which is instead valid for independent events) becoming sub-exponential185

Weibull-like (see e.g., Eichner et al., 2007, 2011; Serinaldi and Kilsby, 2016b, and references therein). Similarly, the distri-

bution of Z departs from Binomial (or Poisson) and tends to be closer to over-dispersed distributions like the Beta-Binomial

(βB) distribution (see e.g., Serinaldi and Kilsby, 2018; Serinaldi and Lombardo, 2020). In particular, the βB model is a con-

venient theoretically-based distribution, as it is an extension of the Binomial distribution that accounts for over-dispersion by

an additional parameter summarizing the average correlation over the spatio-temporal block of interest (see Section S2 in the190

Supplement and references therein).

Recalling that a Poisson distribution is characterized by equi-dispersion (i.e., equality of mean and variance), plotting sample

variances (σ̂2) versus means (µ̂) can provide an effective diagnostic plot to check whether a Poisson distribution can be a

valid model for Z. Note that, under dependence, sample variance estimators are biased and the variance estimates need to be

corrected accordingly (see Section S3 in the Supplement).195

To allow a direct and fair comparison with the test-based methodology described in Section 3.1, we complemented the

Kolomogorov-Smirnov test with two additional tests whose test statistics are (i) the Pearson product moment correlation

coefficient (PPMCC) on the probability-probability plots (e.g., Wilk and Gnanadesikan, 1968), and (ii) the variance-to-mean

ratio (VMR) σ2/µ, which is also known as index of dispersion (see e.g., Karlis and Xekalaki, 2000; Serinaldi, 2013, and

references therein). For all tests, the reference hypothesis H0 is that the data are drawn from a Poisson distribution, although200

such an H0 is expected to be untenable according to foregoing discussion.
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These tests are purposely chosen to highlight the inconsistencies resulting from a test-based methodology if we neglect the

rationale of the tests as well as informative exploratory analysis. In fact, as the PPMCC test relies on empirical and theoretical

frequencies, that is, standardized ranks, it misses the information about the absolute values of Z, and it is therefore the less

powerful test among the three. On the other hand, the KS test includes such information. However, it is also a general test205

devised for any distribution, while the VMR test focuses on a specific property characterizing the Poisson distribution, meaning

that it is specifically tailored for the problem at hand. Therefore, the VMR test tends to have higher discrimination power under

the expected over-dispersion of correlated OT events. Indeed, it was found to be the most powerful among several alternatives

in these circumstances (Karlis and Xekalaki, 2000; Serinaldi, 2013).

For each location, the distributions of the test statistics under H0 are estimated by simulating S = 1000 samples with the210

same size of the observed Z time series from a Poisson distribution with rate parameter equal to the observed rate of occurrence.

4.2 Modeling dependence and nonstationarity: Distinguishing assumptions and models

The aim of the test-based methodology described in Section 3.1 is to investigate the nature of possible trends in Z time series.

The underlying idea is that such trends could be spurious effect of serial dependence or vice versa the serial dependence could

be a spurious effect of deterministic trends. Therefore, Poisson-INAR(1) model is used to check the former case, while NHP215

the latter.

While this approach seems to be reasonable, it misses some basic theoretical aspects that have rather important practical

consequences. As mentioned in Sections 1 and 3.2, a selected statistical model should describe the stochastic properties of the

observed process, and results should be interpreted according to the constraints posed by the model itself. In the case of Z, the

underlying question is whether possible monotonic fluctuations are deterministic (resulting from a well identifiable mechanism)220

or stochastic (as an effect of dependence, for instance). In the former case, we work under the assumption of independence and

nonstationarity, whereas in the latter under the assumption of dependence and stationarity. Both assumptions are very general

and correspond to a virtually infinite set of possible model classes and structures. Therefore, we need to recall that:

1. Every model developed under a specific set of assumptions is only valid under its own set of assumptions and cannot

be used to validate the assumptions it relies on, as it cannot exist under different assumptions. For example, Poisson-225

INAR(1) cannot be used to assess the stationarity assumption, as it is not defined (it does not exist) under nonstationarity.

2. No specific model can be representative of the infinite types of models complying the same set of assumptions. For

example, if Poisson-INAR(1) models do not provide a good description of Z, this does not exclude that other dependent

and stationarity models with different marginal distribution and linear or nonlinear dependence structure can faithfully

describe Z.230

3. Every model developed under a specific set of assumptions cannot provide information about different sets of assump-

tions. For example, if we assume independence and nonstationarity, and show that the NHP models describe all the

properties of interest of an observed process, we can conclude that the NHP models provide a good description of data,
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but we cannot say anything about the performance of models complying the assumption of dependence and stationarity,

and vice versa.235

Therefore, using Poisson-INAR(1) and NHP (with linearly varying rate of occurrence) to assess stationarity or nonstation-

arity of Z is conceptually problematic for two key reasons:

– Stationarity and nonstationarity are not properties of the observed hydro-climatic processes (finite observed time series),

but assumptions of the models we deem suitable to describe physical processes.

– Poisson-INAR(1) and NHP are valid only under their own assumptions, and do not represent the entire classes of possible240

stationary and nonstationary models. Therefore, discarding one of them does not imply invalidating their own assump-

tions (and the corresponding infinite classes of models), and, for sure, it does not allow invalidation of the assumptions

of the alternative model, as each model could not even exist under the assumptions of the other one.

In a model-based approach, we do not compare specific models that are valid under different assumptions, but try to find

models that describe as closely as possible the observed processes under a specific set of assumptions that are considered245

realistic. In this context, the Poisson-INAR(1) model is not a suitable option, as the marginal distribution of Z is expected to

be over-dispersed under dependence, and the first-order autoregressive structure can be too restrictive. In other words, while

Poisson-INAR(1) is legitimate from mathematical perspective, it lacks conceptual consistency with the investigated process.

In this study, we use so-called ‘surrogate’ data to represent the class of stationary dependent models, minimizing the number

of additional assumptions and constraints. In particular, we apply Iterative Amplitude Adjusted Fourier Transform (IAAFT),250

which is a simulation framework devised to preserve (almost) exactly the observed marginal distribution and power spectrum,

and therefore autocorrelation function (ACF), under the assumption of stationarity (see Section S3 in the Supplement). In the

present context, IAAFT can be considered a ‘semi-parametric’ approach. Indeed, it does not make any specific assumption on

the shape of the distribution of Z (preserving the empirical one), while a parametric dependence structure is needed to correct

the bias of the empirical periodogram caused by temporal dependence (see Section S3 in the Supplement).255

Note that the word ‘stationarity’ used throughout this study refers to the formal definition given by Khintchine (1934)

and Kolmogorov (1938), which is the basis of theoretical derivations in mathematical statistics. The word ‘stationarity’ is

often used with different meanings in hydro-climatological literature. However, such informal definitions do not apply to

statistical inference and might generate confusion (see e.g., Koutsoyiannis and Montanari, 2015; Serinaldi et al., 2018, for

further discussion).260

If the model of choice is well devised, it is expected to mimic the observed fluctuations of Z, including apparent trends.

It follows that the statistical tests for trends used in the test-based methodology are expected to yield rejection rate close the

nominal significance level. Here, we use IAAFT samples as a more general stationary alternative closer to the observed time

series in terms of marginal distribution and ACF. IAAFT simulations are used to derive the sampling distributions of the MK

and PR tests under the assumption of temporal dependence.265
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4.3 Field significance under dependence

The FDR approach is devised to control the rate of false rejections with respect to the number of rejection rather than the signif-

icance level, that is, the rate of false rejections with respect to the total number of performed tests. As a consequence, Benjamini

and Hochberg (1995) highlighted that “The power of all the methods [Bonferroni, Hochberg, and Benjamini-Hochberg meth-

ods] decreases when the number of hypotheses tested increases – this is the cost of multiplicity control”. However, the decreased270

power does not justify the recommendation of going back to at-site results suggested in the literature (Farris et al., 2021), thus

overlooking de facto the field significance. In fact, the latter might be affected by unknown factors generating spurious re-

sults of statistical tests at local, regional, or global scale. In this respect, looking for instance at clusters of rejections of the

hypothesis of ‘no trend’, whereby trends have the same sign in a given area, as suggested for instance by Farris et al. (2021),

might be misleading as this is exactly the expected behavior under spatio-temporal dependence or dependence on an exogenous275

(common) forcing factor (see e.g., Serinaldi and Kilsby, 2018). In other words, the dependence of extreme P upon large-scale

processes does not increase the ‘power’ (evidence) of regional trend analysis. On the contrary, it is a sign of redundancy, as the

common local/regional behavior of multiple P series in a given area might just be the expression of the common forcing factor

(e.g., regional weather systems) driving the P process. However, since the effect cannot precede its cause, the question is no

longer if local trends in the P process in a given area are similar/homogenous but what is the nature of the possible trends of280

the forcing factor. In this respect, local/areal effects (e.g., homogeneous regional patterns of P ) can only reflect the behavior

of their common cause and cannot provide information about the nature of the cause itself. Data analysis in the next sections

further clarifies these issues.

Technically, the output of all statistical tests is analyzed in terms of p-values and FDR diagrams reporting the sorted p-values

versus their ranks (Wilks, 2016, fig. 3). When needed, we also report results at local significance level α = 0.05. This allows a285

fair comparison with results reported in the existing literature as well as a discussion about global (field) significance αglobal

and FDR control level αFDR (Wilks, 2016).

5 Data analysis

5.1 Marginal distribution of extreme P occurrences: Poissonian?

As mentioned in Section 4, albeit a preliminary exploratory analysis based on simple but effective diagnostic plots is often290

neglected, it might be more informative than the binary output of statistical tests. Graphical diagnostics are a key step of the

model-based approach. Concerning the marginal distribution of Z, the most obvious preliminary check consists of checking

under-/equi-/over-dispersion.

Figures 2a-f show the diagrams of variance versus mean, comparing the scatter plots corresponding to observed OT values

over the 95% and 99.5% thresholds with those corresponding to samples of the same size drawn from Poisson, NHP, and βB295

distributions with parameters estimated on the observed samples. As expected, the variance and mean of observed Z are not

aligned along the theoretical 1:1 line (dashed line) characterizing the Poisson behavior, not even considering the sampling
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Figure 2. Diagrams of sample variance versus sample mean of the annual occurrences of OT values and POT for the 95% and 99.5%

thresholds. Observed values are compared with those corresponding to simulated samples from Poisson, NHP, and Beta-Binomial (βB)

distributions.

uncertainty (Figures 2a-f). The patterns of observed means and variances of OT data do not even match those of NHP samples,

which under-represent the expected and remarkable over-dispersion (Figure 2b and 2e). On the other hand, the βB distribution

provides variance values closer to the observed ones, indicating that the variance inflation is consistent with the assumption of300

serially dependent occurrences, as expected from preliminary theoretical considerations.

For the sake of completeness, we also considered the peaks over threshold (POT), that is, the maximum values of independent

clusters of OT values, where each cluster is considered as a single event. The Poisson distribution might be a valid asymptotic
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model for peaks over high threshold under suitable conditions (e.g., Davison and Smith, 1990), whereas there is no theoretical

argument supporting its validity for OT data, especially if they are expected to be dependent and the used threshold is not very305

high. Sample means and variances of POT show a behavior closer to Poisson and NHP for both thresholds (Figure 2g-2l).

However, Poisson and NHP models still under-represent the observed variances for the 95% threshold, while βB distributions

provide a faithful reproduction. According to the foregoing theoretical remarks, this is not surprising, as the 95% threshold

is not high enough to identify independent events, resulting in occurrences that are still temporally dependent. As expected,

observed mean and variances of POT start to exhibit a Poissonian behavior only for the high 99.5% threshold. In this case,310

both NHP and βB provide results close to those of the Poisson distribution, as the parameters accounting for nonstationarity in

NHP and autocorrelation in βB tend to zero, and these models converge to the Poisson distribution, which is a special case of

both.

Since Poisson and NHP provide similar results in terms of VMR for all cases, we retain the former and use probability plots

(probability versus quantiles) to further check the agreement between observed data and models. We compare ECDFs Fn(z)315

with the CDFs FP(z) and FβB(z) of Poisson and βB models, respectively. Probability plots are complemented with diagrams

of the differences (Fn(z)−Fmodel(z)) versus z. For the 95% threshold, Figures 3a and 3b show that the Poisson distribution

cannot account for the observed variability of the empirical distributions, while βB models cover the range of variability

thanks to the additional parameter summarizing the intra-block autocorrelation. This is consistent with the interpretation of

over-dispersion as an effect of temporal dependence already highlighted in Figure 2. The diagrams of CDF differences in320

Figures 3e and 3f confirm that the βB models are closer to the empirical distributions for a wider range of Z values compared

with Poisson. For the 99.5% threshold, we have similar results (Figures 3c, 3d, 3g, and 3h), indicating that the temporal

dependence of the generating processes Y still plays a role despite the apparently low correlation of Z time series.

The outcome of our exploratory analysis disagrees with results of goodness-of-fit tests reported by Farris et al. (2021), who

concluded that the hypothesis of Poisson distribution for Z cannot be rejected in more than 95% of the gauges at αglobal = 0.05325

for all values of percentage threshold and number of years. Therefore, we applied the three goodness-of-fit tests described in

Section 4.1 to double check results of our exploratory analysis and allow a direct comparison. Figure 4 shows the FDR diagrams

reporting the sorted p-values versus their ranks (Wilks, 2016, fig. 3). The number of p-values underneath the reference FDR

line, which represent significant results according to the FDR control level αFDR = 0.10 (Wilks, 2016), strongly depends on

the specific test and threshold used. For the 95% threshold, the FDR rejection rates are 21%, 3%, and 53%, for KS, PPMCC,330

and VMR tests, respectively. For the higher 99.5% threshold, the number of events decreases, and OT values tend to correspond

to POT. Therefore, the rejection rates decrease, becoming 1%, 0.1%, and 12% for KS, PPMCC, and VMR tests, respectively.

As anticipated in Section 4.1, these results highlight that the choice of statistical tests characterized by different power can lead

to completely different and ambiguous conclusions.

Therefore, the theoretical arguments discussed in Section 4.1 and the foregoing exploratory analysis indicate that the βB335

distribution might be a good candidate distribution to describe Z, while neither Poisson nor NHP are suitable options. This

calls into question the use of Poisson-INAR(1) model as a stationary dependent reference to be used in the subsequent trend

analysis. Note that the emergence of βB distribution is inherently related to the assumption of serial dependence. In other
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Figure 3. Panels (a-d) show the ECDFs of Z for the 95% and 99.5% thresholds and each of the 1,106 rain gauges. ECDFs are complemented

with the median, lower and upper limits of the ensemble of Poisson and Beta-Binomial (βB) models corresponding to each rain gauge.

Panels (e-h) show median, lower and upper limits of the differences between ECDFs and Poisson and βB distributions.
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Figure 4. Illustration of FDR criterion for αFDR
∼= 0.10 (gray diagonal line) corresponding to αglobal

∼= 0.05 (Wilks, 2016). Plotted points

are the sorted p-values of 1,106 local tests for KS, PPMCC, and VMR tests. Points below the diagonal lines represent significant results (i.e.,

rejections of H0) according to FDR control level.
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words, even though we can build autocorrelated processes with whatever marginal distribution, and these models (e.g., Poisson-

INAR(1)) can be technically correct from a mathematical standpoint, they are not necessarily consistent with the studied340

process. In the present case, theoretical reasoning tells us that the distribution of Z over finite-size blocks under the assumption

of temporal dependence is over-dispersed and cannot be Poissonian. It follows that autocorrelated processes with Poisson

marginal distributions are known in advance to be unsuitable for these OT processes, albeit they can be mathematically correct

and suitable in other circumstances.

It is also worth noting how simple diagnostic plots supported by theoretical arguments concerning stochastic properties of345

the studied process provide more information than the binary output (rejection/no rejection) of whatever statistical test, and

also help identification of consistent models. On the other hand, statistical tests might be misleading. They suffer not only

from several logical and technical inconsistencies but also from trivial problems related to the their choice (see discussion in

Section 6.1). In fact, while KS, PPMCC, and VMR tests look suitable choices, they have very different power for the specific

problem at hand, and can lead to contrasting conclusions, without providing insights about the actual nature of the investigated350

process.

5.2 Stationary or nonstationary models?

5.2.1 Linear correlation versus linear trends: Practical consequences of confusing assumptions with models

Farris et al. (2021) discarded temporal dependence as a possible cause of apparent trends in Z time series based on disagreement

between trend slopes estimated on observed data and Poisson-INAR(1) simulated samples, respectively. In particular, their355

conclusion is based on diagrams of lag-1 autocorrelation coefficient ρ̂1 versus slope of linear trend ϕ̂ estimated on observed

Z time series, and sequences simulated by NHP and Poisson-INAR(1). Since the foregoing exploratory analysis indicated that

NHP and Poisson-INAR(1) models are not consistent with the marginal distributions of Z, we used IAAFT samples as a more

realistic alternative.

Figure 5a compares the observed pairs (ρ̂1, ϕ̂) with those resulting from Poisson-INAR(1) models. Figure 5a is similar to360

Figure 4a in Farris et al. (2021), which however compares observed pairs (ρ̂1, ϕ̂) with those corresponding to independent

Poisson variables. Figure 5a confirms that the Poisson-INAR(1) models do not provide a good description of the observed

behavior, as expected for models that cannot even reproduce marginal distributions. On the other hand, the pattern of the pairs

(ρ̂1, ϕ̂) estimated from IAAFT samples matches that of the observed pairs much better (Figure 5b).

Following Farris et al. (2021), we also simulated 10,000 samples from (i) NHP model for fixed values of ϕ ranging between365

-0.2 and 0.2, (ii) Poisson-INAR(1) for ρ1 ranging between 0 and 0.8, and additionally (iii) IAAFT. The 10,000 samples from the

three models allow the estimation of two different conditional probabilities, that is, P[P1 ≤ ρ1|Φ = ϕ] and P[Φ≤ ϕ|P1 = ρ1],

respectively. Therefore, we can estimate the confidence intervals (CIs) of the conditional variables (ρ1|Φ = ϕ) for NHP and

(ϕ|P1 = ρ1) for Poisson-INAR(1). Figures 5c and 5d show these point-wise CIs. Even though their comparison in unfair as

they refer to different conditional distributions, Poisson-INAR(1) was discarded due to the fact that the CIs of (ρ1|Φ = ϕ) for370

NHP cover the observed pairs (ρ̂1, ϕ̂) better than the CIs of (ϕ|P1 = ρ1).
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Figure 5. Scatter plots of the pairs (ρ̂1, ϕ̂) for the 1,106 observed Z time series over the 95% threshold and 100 years (1916-2015) along

with pairs corresponding to Poisson-INAR(1) samples (a), pairs corresponding to IAAFT samples (b), 95% CIs of (ϕ|P1 = ρ1) for IAAFT

and NHP (c), and 95% CIs of (ρ1|Φ = ϕ) for IAAFT and Poisson-INAR(1) (d).
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Figure 6. (a) Scatter plot of the pairs (ϕ̂, ϕ̂k), where ϕ̂ is the slope of the linear trend estimated on the observed Z time series for the 95%

threshold and 100 years, while ϕ̂k (with k = 1, ...,4) are the slopes estimated on four sub-samples of length equal to 25 years. (b and c)

Similar to (a) but for time series simulated from NHP and IAAFT, respectively.

However, as mentioned in Section 4.2, if a specific model in the class of stationary models does not fit well, this does

not enable to discard the entire class. In fact, the conditional CIs of (ρ1|Φ = ϕ) built from the IAAFT samples indicate that

alternative stationary processes can yield results similar to NHP. On the other hand, IAAFT CIs of (ϕ|P1 = ρ1) are much wider

than those from Poisson-INAR(1) samples, thus confirming that such a model is clearly inappropriate to describe Z. Therefore,375

the class of dependent stationary models and the assumption of stationarity cannot be discarded based on the poor performance

of a single misspecified stationary model that does not reproduce either the marginal distribution or the autocorrelation of the

observed data.

The foregoing analysis is complemented by an additional one focusing on sub-samples. Following Farris et al. (2021), we

sampled Z values recorded every four years, thus extracting four sub-series of size 25, and therefore removing the effect380

of potential autocorrelation at lags from 1 to 3 years. For each sub-sample, we estimated the linear trend slopes ϕ̂k (with

k = 1, ...,4) and plotted it against the slope estimated on the full series.

Figures 6a and 6b reproduce Figure 5 in Farris et al. (2021). Figure 6a shows the scatter plot of the pairs (ϕ̂, ϕ̂k) of the

observed Z, while Figure 6b displays the pairs (ϕ̂, ϕ̂k) for synthetic series from the NHP model. The similarity of the patterns

led Farris et al. (2021) to conclude that the serial dependence does not play any significant role, and observed trends are con-385

sistent with NHP behavior. However, the additional Figure 6c shows that also the pairs (ϕ̂, ϕ̂k) from stationary and temporally

correlated IAAFT samples exhibit a behavior similar to that of the observed Z, thus contradicting the foregoing conclusion.

Similarly to the analysis of pairs (ρ̂1, ϕ̂), the analysis of the pairs (ϕ̂, ϕ̂k) seems to be reasonable at a first glance. However,

it suffers from similar inconsistencies:
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– Four-year lagged sub-samples are supposed to be approximately independent based on the belief that the correlation is390

week and the value of ACF terms is generally low. However, this assumption misses the fact that, under dependence,

the ACF estimates on finite samples are negatively biased and need to be adjusted according to a parametric model of

choice. In this respect, Figure 5 and the corresponding Figure 4 in Farris et al. (2021) are not even consistent because all

panels show the ρ1 values obtained by standard estimators that are only valid under independence, whereas the panels

referring to Poisson-INAR(1) and IAAFT should show ρ1 values adjusted for estimation bias. This further confirms that395

assumptions like (in)dependence and (non)stationarity influence not only the model parametrization (e.g., Poisson with

or without linear trend), but the entire inference procedure, including diagnostic plots and their interpretation.

– The performance of a specific independent nonstationary model (NHP) is incorrectly considered to be informative about

the performance of an entire complimentary class of dependent stationary models, while NHP is not even defined under

those alternative assumptions. The ability of NHP to reproduce the patterns of (ϕ̂, ϕ̂k) cannot exclude the existence of400

equally good or better models based on different assumptions. The only way to understand if a class of models (and the

underlying assumptions) is suitable for a given data set is to use credible members of such a class. This conceptual mis-

take is the same one affecting statistical tests, where the rejection of H0 is often misinterpreted and leads to uncritically

embrace the alternative hypothesis H1, while rejection can be due to unknown factors that are not included in either H0

or H1 (see discussion in Section 6.1).405

To summarize, our analysis shows that neither NHP nor Poisson-INAR(1) are suitable models for Z in the considered range

of thresholds. On the other hand, for POT and high thresholds, we recover the theoretically expected Poissonian behavior, and

NHP and Poisson-INAR(1) models tend to converge to Poisson model, thus becoming almost indistinguishable.

5.3 Trend analysis of observed extreme P occurrences: The actual role of spatio-temporal dependence

After analyzing marginal distributions and temporal dependence, we study spatio-temporal fluctuations of Z, comparing410

model-based and test-based methods. We expand the analysis of Z (number of annual OT at each gauging location) con-

sidering the number of daily and annual OT events aggregated over the five regions described in Section 2 and shown Figure 1.

This allow us to check if the assumption of dependence and the corresponding models provide a reasonable description of OT

frequency over a range of spatio-temporal scales.

5.3.1 Trend analysis under temporal dependence415

We analyze the presence of trends in the time series Z recorded at the 1,106 stations selected from the GHCN gauge network.

For the sake of comparison with results reported by Farris et al. (2021), trends are investigated applying the same MK and

PR tests. However, the distributions of test statistics (and therefore critical values) are estimated from 10,000 IAAFT samples

to properly account for the over-dispersion of the marginal distributions and temporal correlation. Moreover, tests are firstly

performed at the local 5% significance level without applying FDR to check if the empirical rejection rate is close to the420

nominal one, as expected under correct model specification.
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Figure 7. Maps of statistically significant trends at the GHCN gauges of the three regions North America (a), Eurasia (b), and Australia

(c). Results refer to MK and PR tests applied to Z time series for 100-year sample size and the 95% threshold without FDR. Statistical

tests are performed at the local 5% significance level without applying FDR. The distributions of test statistics (and therefore critical values)

are estimated from 10,000 IAAFT samples. Gray circles ‘◦’ denote lack of rejection by both tests. Results for the other combinations of

thresholds and sample sizes are reported in Figures S2-S4 in the Supplement.

Figures 7 and 8 show the maps of trend test results for the 95% threshold, 100-year sample size, and the three regions North

America, Eurasia, and Australia, with and without FDR, respectively (results for the other combinations of thresholds and

sample sizes with and without FDR are reported in Figures S2-S7 in the Supplement). Results in Figures 7 and 8 are different

from those reported by Farris et al. (2021) in their analogous Figure 9. To better understands such differences, we examine the425

rejection rates of both MK and PR tests for the four combinations of two thresholds (95% and 99.5%) and two sample sizes

(50 and 100 years), and three different cases: (A) critical values of test statistics obtained by IAAFT without bias correction

of the autocorrelation and without FDR, (B) critical values obtained by IAAFT with bias correction and without FDR, and (C)

critical values obtained by IAAFT with bias correction and FDR (Table 1). The second case highlights the effect of neglecting

the bias of classical ACF estimators under the assumption of temporal dependence, while the third one shows the effects of430

spatial correlation (albeit indirectly via FDR).
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Figure 8. Similar to Figure 7 but with FDR. Results for the other combinations of thresholds and sample sizes are reported in Figures S5-S7

in the Supplement.

Focusing on case A, for 50-year time series, local rejection rates are always close to the nominal 5%, as expected. For

100-year time series, local rejection rates corresponding to 95% and 99.5% thresholds reach a maximum of 22% and 14%,

respectively. These values seems to be higher than expected. However, after correcting ACF bias (case B), the maximum

rejection rate for the 95% threshold drops to 13%, whereas the rejection rates for the 99.5% threshold stay almost unchanged.435

This is due to the higher (lower) autocorrelation of OT values corresponding to lower (higher) thresholds, and therefore stronger

(weaker) bias correction. Overall, accounting for ACF bias results in rejection rates ranging between 9% and 13%. After

considering (indirectly) the effects of spatial correlation via FDR (case C), the rejection rate drops to zero in all cases, meaning

that all tests are globally not significant at αFDR
∼= 0.10.

Some simple diagnostic plots can provide a clearer picture. Figure 9 shows the scatter plots of the pairs (ρ̂1, ϕ̂) with the440

rejections highlighted by different markers. Figure 9 is analogous to Figure 10 in Farris et al. (2021), but using IAAFT samples

and considering the cases A, B and C. It shows how the number of rejections decreases as the effects of temporal and spatial

correlation are progressively compounded. Focusing on case B, rejections tend to occur for higher values of |ϕ̂| conditioned to

the value of ρ̂1, but there is no systematic rejection for all |ϕ̂| exceeding a specified value as for the case A. On the contrary,

19

https://doi.org/10.5194/hess-2023-293
Preprint. Discussion started: 18 December 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 1. Rejection rates of PR and MK tests for the four combinations of two thresholds (95% and 99.5%) and two sample sizes (50 and 100

years) and different treatment of spatio-temporal dependence (cases A= {Biased ACF | w/o FDR}, B = {Bias adjusted ACF | w/o FDR}
and C = {Bias adjusted ACF | w/ FDR})

Test Threshold [%] Sample size [years] Rejection rate [%]

case A case B case C
PR 95 100 22.3 13.4 0

MK 20.3 12.6 0

PR & MK 18.2 9.9 0

PR 95 50 6 5.8 0

MK 6 5.6 0

PR & MK 3.9 3.9 0

PR 99.5 100 13.7 12.6 0

MK 14.2 11.9 0

PR & MK 11 9.1 0

PR 99.5 50 5.5 5.4 0

MK 5.6 5.3 0

PR & MK 3.7 3.6 0

the pairs marked as ‘rejections’ overlap the pairs marked as ‘no rejection’ indicating that we can have both ‘rejections’ and ‘no445

rejections’ for time series with similar values of ρ̂1 and ϕ̂.

These results disagree with those reported by Farris et al. (2021), who found that the hypothesis of significant trend is always

rejected for |ϕ̂|> 0.05 events/year, and concluded that “the occurrence of the different cases is controlled by ϕ̂, while ρ̂1 is

not influential, thus providing additional evidence on the limited effect of autocorrelation on trend detection”. However, those

rejections result from MK and PR tests performed under the assumption of temporal independence (case “ρ = 0; φ = 0” in450

Farris et al. (2021)). In this case, rejections are necessarily independent of ρ̂1 due to the implicit model under which the tests

are performed. As recalled in Section 1, results should be interpreted in light of the underlying statistical model and not vice

versa.

As mentioned throughout this study, a suitable diagnostic plot might be more informative than just reporting the number/rate

of rejections. Figure 10 displays the FDR diagrams of the sorted p-values versus their ranks for MK and PR tests. All p-455

values are above the FDR reference line. Independently of the geographic region one focuses on, all tests are not significant at

αFDR
∼= 0.10 and H0 cannot be rejected at global level. Moreover, FDR diagrams provide additional information. In fact, when

H0 is consistent with the underlying (implicit or explicit) model and corresponding assumptions, p-values are expected to be

uniformly distributed, that is, aligned along a straight line connecting the origin (0,0) and the point with abscissa equal to the

maximum rank and ordinate equal to the maximum p-value, where the latter is equal to 1 (0.5) for one-sided (two-sided) tests460

(e.g., Falk and Michel, 2006; Serinaldi et al., 2015). Figure 10 shows that the estimated p-values are reasonably aligned along
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Figure 9. Scatter plots of the pairs (ρ̂1, ϕ̂) with the rejections highlighted by different markers. Markers refer to rejection of MK test,

PR test, or both for Z time series corresponding to the four combinations of two thresholds (95% and 99.5%) and two sample sizes (50 and

100 years) and the three casesA= {Biased ACF | w/o FDR},B = {Bias adjusted ACF | w/o FDR} and C = {Bias adjusted ACF | w/ FDR}.

Gray circles ‘◦’ denote lack of rejection by both tests.

such a line, thus confirming the overall (global) consistency of H0 with a temporally correlated and over-dispersed process for

Z.

5.3.2 Space beyond time: The non-negligible effects of spatial dependence

Figure 7 (and Figures S2-S4 in the Supplement) shows that the locally significant trends tend to cluster in geographic areas465

where such trends exhibit the same sign (e.g., South-Western Australia, North America, and European coastal areas around the

North Sea). Often this behavior is interpreted as further evidence of trend existence. However, this interpretation neglects that

the spatial clustering is also an inherent expression of spatial dependence in the same way temporal clustering is the natural

expression of temporal dependence (see e.g., Serinaldi and Kilsby, 2016b, 2018; Serinaldi and Lombardo, 2017a, b, 2020, for

examples of spatio-temporal clustering).470
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Figure 10. Illustration of FDR criterion with αFDR
∼= 0.10 (gray diagonal line). Plotted points are the sorted p-values resulting from the

application of MK and PR tests to data recorded at each location. Results are reported for the five regions described in Section 2. The

distributions of test statistics (and therefore critical values) are estimated from 10,000 IAAFT samples. Points below the diagonal lines

represent significant results (i.e., rejections of H0) according to FDR control levels.
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For example, Farris et al. (2021) state that the detection of significant trends with similar sign/magnitude over spatially

coherent areas “is also supported by the physical argument that extreme P is often controlled by synoptic processes (Barlow et

al., 2019), and that their occurrence is changing in time (Zhang & Villarini, 2019)”. However, while similar evolution of the

occurrence of extreme P and synoptic systems is due to their physical relationships, statistical tests for trends cannot provide

information about the nature of the temporal evolution of such processes. Indeed, as shown in Section 5.3.1, the outcome of475

statistical tests depends on the underlying assumptions. Therefore, the jointly evolving fluctuations of both processes (extreme

P and synoptic systems) can be identified as ‘not significant’ or ‘significant’ based on the assumptions used to perform the

statistical tests. Loosely speaking, if we observe an ‘increasing trend’ in the occurrence of synoptic systems, a similar behavior

likely emerges in local P records observed over the area interested by the synoptic processes, as the latter cause the former.

Therefore, what we actually need is to identify the physical mechanism causing trends in the synoptic systems, as trends in480

extreme P are just a consequence. In this respect, performing massive statistical testing is rather uninformative, as it does not

matter if the observed fluctuations are statistically significant or not. Detecting trends in multiple local processes that are known

to react to fluctuations of synoptic generating processes does not add evidence, and just reflects information redundancy due to

their common causing factor.

To support the foregoing statements with quantitative analysis, we checked the consistency of the spatio-temporal behavior485

of observed OT occurrences with the assumption of spatio-temporal dependence. Following the model-based approach, we

avoid statistical tests for trend detection and rely on theoretical reasoning to formulate a coherent model, thus checking the

agreement with observations by simple but effective diagnostic plots.

We firstly check the role of possible spatial dependence of OT occurrences focusing on the distribution of the number ZS of

daily OT occurrences over the five regions introduced in Section 2 (i.e., World, North America, Eurasia, North-Western Europe,490

and Australia). Daily time scale is selected to isolate the effect of spatial dependence from that of temporal dependence, as it

is the finest time scale, and the counting procedure does not involve any aggregation over time. The occurrence of OT events

over m locations can be seen as the outcome of m Bernoulli trials. Under dependence, the distribution of ZS can be described

by a βB distribution, where the parameter ρβB controlling over-dispersion can be expressed as the average of the off-diagonal

terms of the lag-0 correlation matrix of the process Y describing the daily occurrence/non occurrence of OT events at each495

spatial location (see Equation S4 in the Supplement). In other words, if the spatial correlation is sufficient to describe the

spatial clustering, we expect that that the βB distribution with ρβB estimated as the average cross-correlation between binary

time series of daily OT occurrences faithfully matches the empirical distribution of ZS over any region.

Figure 11 shows that the βB distribution reproduces accurately the above-mentioned empirical distributions for any threshold

and region. Note that North America, Eurasia, Australia, and North-Western Europe are nested regions of World, and North-500

Western Europe is also a nested region of Eurasia. Therefore, the remarkable fit of βB indicates that the spatial correlation is

sufficient to describe the spatial clustering both globally and locally. In other words, the simultaneous occurrence of daily OT

events in North America or North-Western Europe, for instance, is consistent with a stationary spatially correlated process.

Figure 11 also reports the Binomial distribution that would be valid under independence, thus highlighting the huge (but too
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Figure 11. ECDFs of number of OT events (for the 95% and 99.5% thresholds) occurring at daily time scale over different regions along

with Binomial and βB CDFs.

often neglected) impact of spatial dependence on the distribution of ZS (see also Douglas et al., 2000; Serinaldi and Kilsby,505

2018; Serinaldi et al., 2018, for additional examples).

Since the aim of tests for trend should be the detection of ‘deterministic’ temporal patterns, we checked the possible temporal

evolution of the distribution of ZS over the five regions. This information is summarized in Figure 12 in terms of box plots of

ZS aggregated at decadal scale to better visualize temporal patterns along the century. Figure 12 also shows the 95% CIs from

Binomial and βB distributions reported in Figure 11. Of course, these CIs are constant as the Binomial and βB distributions510

are unique under the assumption of stationarity. The empirical distributions of ZS do not show any evident temporal evolution

along the ten decades, and more importantly, any possible fluctuation is well within the range of values allowed by the βB
distribution. The comparison of the 95% CIs from Binomial and βB models further highlights the huge effect of spatial

dependence, which can yield CIs from ∼= 2 up to ∼= 6 times wider than those corresponding to spatial independence.

5.3.3 Space and time: The non-negligible effects of spatio-temporal dependence515

While the analysis at daily scale allowed to focus on spatial dependence, here we focus on the annual number ZST of OT events

over multiple locations. Studying the spatial clustering of such data implies aggregation in space and time. In other words, the

occurrence of OT events can be thought of as a set of Bernoulli trials over m locations (i.e., the number of stations in each

geographic region) and n time steps (i.e., the 365 days in one-year time interval), and we are interested in the distribution of
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Figure 12. Box plots summarizing the decadal distributions of the number of OT events (for the 95% and 99.5% thresholds) occurring at

daily time scale over different regions along with the 95% CIs corresponding to Binomial and βB distributions.

ZST resulting from m ·n Bernoulli trials. This case is analogous to that concerning daily OT occurrences. The βB distribution520

is still a theoretically consistent model for ZST, and its over-dispersion parameter ρβB can be expressed as the average of all

lagged auto- and cross-correlation values of the generating binary process Y up to time lag n = 365 (see Equation S5 in the

Supplement). Also in this case, we use probability plots and box plots to assess the validity of the βB distribution, and therefore

its underlying assumption of spatio-temporal dependence.

Figure 13 shows that the βB model faithfully describes the ECDFs of ZST for any threshold and region. This means that the525

local spatio-temporal correlation is sufficient to describe the differences in all regions and sub-regions without introducing any

ad hoc local models, involving for instance physically unjustified linear trends or generic links with local exogenous factors.

We stress again that the parameter ρβB is not estimated on the 100 values of ZST in each region, but it comes from the spatio-
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Figure 13. ECDFs of number of OT events (for the 95% and 99.5% thresholds) occurring at annual time scale over different regions along

with Binomial and βB distributions.

temporal correlation values of the generating binary process Y . Therefore, the goodness of fit of the βB distribution is not

related to the minimization of some distance metric for 100-size samples, but depends on the agreement of the observed binary530

time series with the hypothesized stationary spatio-temporal stochastic process Y .

For any threshold and region, Figure 14 confirms that the temporal fluctuations of the distribution of ZST is well within the

range of values expected from a stationary stochastic process characterized by the observed spatio-temporal correlation struc-

ture. In this case, the 95% CIs from βB models under spatio-temporal dependence are from ∼= 3 up to ∼= 13 times wider than

those yielded by Binomial distribution under spatio-temporal independence. Of course, an increasing pattern along the decades535

is evident in the regions of the Northern hemisphere. However, accounting for spatio-temporal correlation dramatically changes

their interpretation. Such fluctuations are obviously inconsistent with the assumption of independence and therefore the Bino-

mial model. This explains the high rejection rate of the trend tests performed under independence or using Poisson-INAR(1)

or IAAFT with biased ACF. On the other hand, low-frequency fluctuations evolving over wide spatial scales, and time scales

comparable or longer than the observation period are the expected behavior of spatio-temporal dependent processes. There-540

fore, we should ask ourselves whether such fluctuations can look unexpected or surprising because they are actually unusual or

just because humans tend to systematically underestimate the actual uncertainty characterizing the surrounding environments,

thus looking at hydro-climatic processes with a too anthropocentric point of view, which is inherently uncertainty-averse or

behaviorally biased toward known outcomes.
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Figure 14. Box plots summarizing the decadal distributions of the number of OT events (for the 95% and 99.5% thresholds) occurring at

annual time scale over different regions along with the 95% CIs corresponding to Binomial and βB distributions.

6 General discussion and concluding remarks545

6.1 Statistical tests for trend detection: unfit for purpose!

Disagreement between model-based and test-based methods are mainly related to the inherent problems affecting statistical

tests. They are statistical methods developed for evaluation of differences in repeatable experiments that “have been misused

to create an illusion of a scientific analysis of unrepeatable hydrologic events” (Klemeš, 1986). Logical, conceptual, and

practical inconsistencies of statistical tests have been widely discussed in both theoretical and applied literature (Pollard and550

Richardson, 1987; Gigerenzer et al., 1989; Flueck and Brown, 1993; McBride et al., 1993; Meehl, 1997; Gill, 1999; Johnson,

1999; Nicholls, 2001; Krämer and Gigerenzer, 2005; Levine et al., 2008; Ambaum, 2010; Clarke, 2010; Beninger et al.,
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2012; Ellison et al., 2014; Nuzzo, 2014; Briggs, 2016; Greenland et al., 2016; Wasserstein and Lazar, 2016; Serinaldi et al.,

2018, 2020; Wasserstein et al., 2019, and references therein).

One of the key drawbacks of statistical tests is the error of ‘transposed conditional’ (also known as ‘converse inequality555

argument’ or ‘inverse probability problem’ (Pollard and Richardson, 1987; Gill, 1999; Krämer and Gigerenzer, 2005; Ambaum,

2010; Beninger et al., 2012; Serinaldi et al., 2018, 2022)). It consists of confusing conditional and conditioning events, so that

we are interested in the probability of the null hypothesis H0 given the observational evidence (data), and we end up calculating

the probability observational data when H0 is assumed to be true. This is like confusing the probability P[a man is a UK citizen

| a man is the King of the UK]∼= 1 with the probability P[a man is the King of the UK | a man is a UK citizen]∼= 1/(33.7·106).560

In the context of statistical tests for trend detection applied to hydro-climatic data, rejection of H0 (e.g., ‘no trend’) does

not provide information about the likelihood of H0 given the observations. Rejection does not allow any statement about

possible deterministic trends because deterministic trends are not a property of the model H0 assumed to perform the test.

In other words, ‘rejection’ can be due to something that is unknown and different from deterministic trends. Similarly, ‘no

rejection’ might be related to violation of implicit assumptions of the model H0, thus introducing spurious effects due to565

exogenous factors (Serinaldi et al., 2022). One of these factors is the spatio-temporal dependence. Its effects on statistical

inference have been widely studied in the literature (Jones, 1975; Katz, 1988a, b; Katz and Brown, 1991; Kulkarni and von

Storch, 1995; Hamed and Rao, 1998; Douglas et al., 2000; Yue and Wang, 2002; Koutsoyiannis, 2003; Yue and Wang, 2004;

Hamed, 2008, 2009a, b, 2011; Bayazit and Önöz, 2007; Serinaldi and Kilsby, 2016a, 2018; Serinaldi et al., 2018, 2020). In

particular von Storch and Zwiers (2003, p. 97) recalled that “the use of statistical tests in a cookbook manner is particularly570

dangerous. Tests can become very unreliable when the statistical model implicit in the test procedure does not properly account

for properties such as spatial or temporal correlation”. Nonetheless, the foregoing iterated warnings and recommendations are

systematically ignored.

6.2 Models, tests, and their interpretation

The aim of most of the literature applying statistical tests for trend detection on hydro-climatic processes is to find the answer575

to a question that can generally be summarized as ‘are these processes stationary or nonstationary?’. However, such a question

is scientifically ill-posed as natural processes cannot be either stationary or nonstationary. Only mathematical models used to

describe physical processes can.

It can be argued that ‘statistical trend testing attempts to assess whether the natural process has manifested in a stationary

or nonstationary fashion during the period of observation to ultimately support decision-making in the future’. However, this580

type of statements confuses sampling fluctuations, which can look monotonic or not, with a population property such as sta-

tionarity. Statistical trend tests attempt to infer the latter, as theoretical properties/assumptions are the only one behind any

statistical method. As every statistical method, statistical tests for trend detection make inference on ‘population stationar-

ity’ (Khintchine, 1934; Kolmogorov, 1938), not on sampling fluctuations, which can result from a variety of stationary and

nonstationary processes. The aim of these test is exactly to establish which kind of population behavior is compatible with585

observed sampling fluctuations. Otherwise, we would not need any test to state that an observed sample shows a given (mono-
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tonic or non-monotonic) temporal patterns, as we would just need to look at the time series diagrams. We infer the population

properties because these allow us to assume a model and make out-of-sample predictions. We argue that the vague use of the

term ‘stationarity’, overlooking a formal definition and its consequences, is one the main reasons of a widespread misuse and

misinterpretation of statistical testing (see Koutsoyiannis and Montanari, 2015, for further discussion).590

The comparison of test-based and model-based approaches discussed in this study attempts to clarify the foregoing concepts.

For the same physical process (i.e., the OT occurrences of P ) we showed two options. On the one side, we can choose to model

the number Z of OT occurrences by nonstationary Poisson distributions (NHP). In this way, (i) we neglect that the Poisson

distributions are theoretically unsuitable to describe Z, and therefore do not reproduce the observed marginal distribution of

the Z process, and (ii) we assume that the rate of occurrence in NHP models change in time according to linear (or nonlinear)595

laws that have no physical justification. The aim of this type of regression models is exactly to follow sampling fluctuations,

and they hardly ever provide information about the underlying population properties. This also explains why extrapolation

for this type of models is always deprecated in textbooks and courses, and when it is done, it might yield paradoxical results

(Serinaldi and Kilsby, 2015). On the other side, we can attempt to preliminarily understand the general theoretical properties

of spatio-temporal OT processes, look for appropriate models reproducing such expected population properties, and check600

if these models are general enough to reproduce the observations at various spatio-temporal scales. Using this approach, we

ended up with the conclusion that the spatio-temporal correlation structure of a stationary stochastic process provides a good

description of the behavior of the observed OT frequencies at various spatio-temporal scales. Thus, the actual question is not

about the (non)stationarity of natural processes or ‘(non)stationary behavior of observed samples’, but which kind of model we

deem more suitable in terms of generality, reliability and parsimony.605

Conversely to what is often iterated in the literature, accurate statistical trend analysis of observed and modeled P time

series are not key to validate hypotheses on the underlying physical mechanisms and do not improve our ability to predict

the magnitude of these changes. On the contrary, the foregoing discussion shows that the statistical tests for trend detection

might generate confusion, potentially concealing model mis-specification (see also Serinaldi and Kilsby, 2016a; Serinaldi et al.,

2018, 2020, 2022, for further examples). Statistical tests can just reflect the properties of the underlying models at most, while610

well devised models do not need any statistical test to be validated. In fact, we did not use any test to show the validity of the

model-based approach. We only needed to visually compare observed properties with those expected from theory for a range

of spatio-temporal scales. When we applied statistical tests for the sake of comparison with existing literature, tests’ outcomes

just reflected what was already known and expected from a theoretical point of view.

6.3 Confirmatory versus dis-confirmatory empiricism615

Why do our results contrast with those reported in most of the existing literature on trend detection? Because most of this

literature resorts to methods based on the same unrealistic assumption of independence and corresponding trivial models such

as those discussed in this study. On the other hand, when dependence is accounted for, its true consequences on the entire

inference procedure are commonly underestimated, partially missed, or neglected. Therefore, the resulting (expected) high

rejection rates are incorrectly interpreted as evidence of a specific alternative, whereas rejection can be due to a variety of causes620

29

https://doi.org/10.5194/hess-2023-293
Preprint. Discussion started: 18 December 2023
c© Author(s) 2023. CC BY 4.0 License.



that are not considered in the analysis. The missing key point is that the results of statistical analysis and their interpretation

depend on the underlying assumptions and models according to the rationale of statistical inference (Aitken, 1947; Cramér,

1946; Papoulis, 1991; von Storch and Zwiers, 2003). In contrast to what is incorrectly stated in the literature too often, even

the simplest diagnostic diagram relies on an underlying model.

Why does most of the literature on trend detection rely on the same methods? There are several causes. We argue that625

the main one is a too superficial approach probability and statistics along with insufficient exposure to the epistemological

principles of science. Using similar methods based on the same assumptions always gives similar results. However, “a million

observations of white swans do not confirm the non-existence of black swans” and “a million confirmatory observations count

less than a single disconfirmatory one... What is called ‘evidence based’ science, unless rigorously disconfirmatory, is usually

interpolative, evidence-free, and unscientific” (Taleb, 2020). Since most of the literature on trend detection is just an iterative630

application of statistical tests under the assumption of independence or ill-defined dependence, one should wonder if the

general agreement is related to the common misinterpretation of the output of the same inappropriate methodologies rather

than to physical properties. In this study, we offered an alternative point view in this respect. Interested readers can (and

should) independently assess which approach looks more general, reliable and parsimonious, and eventually consistent with

the epistemological principles of scientific inquiry.635
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