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S1 Non-homogeneous Poisson (NHP) Process and First-order Poisson Integer Autoregressive (Poisson-INAR(1))

Process

Let P be the precipitation process sampled at given time scale (e.g., daily), and let us denote as Z the number of events

(observations of P ) exceeding a given value (e.g., a percentage threshold) in a specified time windows (e.g., 365 days = 1

year). Loosely speaking, the process {Zj} (with j = 0,1,2, ...) follows a non-homogenous Poisson (NHP) process if {Zj} has5

Poisson distribution with time-varying rate of occurrence λ(j). Under the assumption that λ(j) varies linearly along the years,

we have λ(j) = λ0 +ϕ · j (with j = 0,1,2, ...), where λ0 and ϕ are the intercept and slope parameters, respectively.

A process {Zj} (with j = 0,1,2, ...) is first-order Poisson Integer Autoregressive (Poisson-INAR(1)) process if Zj = ρ1 ◦
Zj−1 + εj (with j = 1,2,3, ...), where ρ1 correspond to the lag-1 autocorrelation value of {Zj}, the symbol ‘◦’ denotes the

binomial thinning operator, and {εj} is a sequence of independent Poisson random variables with rate of occurence µ=10

(1− ρ1) ·λ, where λ is the rate of occurrence of the process {Zj}. We refer to Farris et al. (2021) and references therein for

further details about these processes and estimation of their parameters.

S2 Beta-Binomial distribution

Let {Yj} be a discrete-time Bernoulli process with state space {0,1} and probability of success/failure in each trial p=

P[Yj = 1] ∈ [0,1], where j (= 0,1,2, ...) denotes discrete time. For daily P , the process {Yj} describes the binary time series15

resulting from the occurrence/non occurrence of over-threshold (OT) exceedances in each day of the period of record. With this

notation, the number of OT events during n time steps (e.g., 365 days) is defined as Z(Yj) =
∑n
j=1Yj . Among the distributions

devised to describe Z, the Beta-Binomial (βB) distribution plays a key role in the case of mutually dependent trials. The βB
distribution is a compound distribution resulting from the ordinary Binomial (B) distribution fB(z) =

(
n
z

)
ψz(1−ψ)n−z , when

ψ is assumed to be a random variable Ψ following a beta distribution fβ(ψ) =
ψα−1(1−ψ)β−1

B(α,β) with mean E[Ψ ] = p, where E20
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is the expectation operator, B denotes beta function, and α and β are two positive shape parameters. The βB probability mass

function can be written as (Skellam, 1948)

fβB(z) =

(
n

z

)
B(z+α,n− z+β)

B(α,β)
, (S1)

while mean and variance are given by the formulas (Ahn and Chen, 1995)

µβB := E[Z] = np, (S2)25

and

σ2
βB := V[Z] = np(1− p) [1+ (n− 1)ρβB] , (S3)

where p= α/(α+β), and ρβB = 1/(α+β+1) is known as the ‘intra class’ or ‘intra cluster’ correlation. If the random variable

Ψ has a degenerate distribution with probability 1 at a single point (or α→∞ and β→∞), then Var[Ψ ] = 0 and Z becomes

binomial with µB = p (Ahn and Chen, 1995). Being positive by definition, ρβB produces over-dispersion as it inflates the30

variance np(1− p) of the original B distribution with constant p. On the other hand, ρβB does not affect the expected value,

which is identical for βB and B models. For correlated experiments, we have (Serinaldi et al., 2020)

ρβB =

∑∑
j ̸=l ρjl

n(n− 1)
, (S4)

where V is the expectation operator, ρjl = C[Yj ,Yl] denotes the pairwise correlation of experiment j and l in the parent process

Y . The indices j and l can refer to two different time steps in a temporal process evolving over n time steps, or two locations35

in a spatial process over n locations. For a spatio-temporal process over n time steps and m locations, ρji,lk = C[Yji,Ylk] are

the element of the q = n ·m space-time correlation matrix and Eq. S4 reads as

ρβB =

∑∑
ji̸=lk ρji,lk

q(q− 1)
. (S5)

The βB distribution has been used in several fields for various purposes (see e.g., Nicola and Goyal, 1990; Hughes and

Madden, 1993; Tsai et al., 2003), the estimation of the number of rejections in multiple tests for trend in spatially dependent40

stream flow records (Serinaldi et al., 2018), and the estimation of the number of OT events under spatio-temporal dependence

(Serinaldi and Kilsby, 2018).

S3 Iterative Amplitude Adjusted Fourier Transform (IAAFT) and bias adjustment of power spetrum estimates

The Iterative Amplitude Adjusted Fourier Transform (IAAFT) is a simulation technique belonging to the class of Fourier

Transform (FT) methods, which have been widely used in several disciplines to generate time series with desired properties45
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(see e.g., Theiler et al., 1992; Schreiber and Schmitz, 2000; Venema et al., 2006; Maiwald et al., 2008; Keylock, 2010; Serinaldi

and Lombardo, 2017; Lancaster et al., 2018; Serinaldi et al., 2022). In particular, IAAFT allows the simulation of synthetic

time series that preserve the empirical marginal distribution and, to some error level, the empirical power spectrum of the

original data. For a given discrete-time process and regular time intervals, {zj}n−1
j=0 , where n is the sample size, the discrete FT

is:50

ζk = Fk[{zj}n−1
j=0 ] =

n−1∑
j=0

zj ·
[
cos

(
2π

n
jk

)
− i sin

(
2π

n
jk

)]

=

n−1∑
j=0

zj · e−i 2πn jk

=Akeiφk , (S6)

where ζk is the k-th sinusoid component of the FT of {zj}, i =
√
−1, Ak =

∣∣∣∑n−1
j=0 zj · e−i 2πn jk

∣∣∣=√
[Re(ζk)]2 + [Im(ζk)]2

are the Fourier amplitudes, and φk = tan−1[Im(ζk)/Re(ζk)] are the phases (or phase angles). SinceA2
k are the power spectrum

values, a synthetic time series preserving the power spectrum can be generated by randomizing the phases. Phase randomization

works as follows: the phases φk are replaced by random values φ̃k ranging in [0,2π), then a phase-randomized FT is created

as ζ̃k =Akeiφ̃k , and finally a synthetic time series is given by the inverse discrete FT55

z̃j =F−1
j [{Akeiφ̃k}n−1

k=0 ]

=F−1
j [{ζ̃k}n−1

k=0 ]

=
1

n

n−1∑
k=0

ζ̃k · ei
2π
n jk. (S7)

While the power spectrum of z̃j is equal to that of zj by construction, phase randomization yields a marginal distribution

different from the observed one. Therefore, the generated new values x̃j are replaced by the values in the original time se-

ries with the same rank (i.e. the same position in the time series sorted in ascending or descending order), according to a

rank-order matching procedure (e.g. Schreiber and Schmitz, 2000). As this replacement modifies the power spectrum for the

synthetic series, the procedure is repeated starting from a new sequence ζ̃k that is built using the original amplitudes Ak and60

the phases resulting from the last iteration. Iterations stop when a convergence criterion is satisfied (Schreiber and Schmitz,

1996; Kugiumtzis, 1999; Keylock, 2012).

IAAFT relies on the power spectrum estimated by the periodogram via FT. For small/finite sample sizes such as those of

Z data, the periodogram is known to be one of the most biased estimators of linear dependence properties among other es-

timators such as correlogram and climacogram for small sample sizes (Stoica et al., 2005; Koutsoyiannis, 2010; Dimitriadis65

and Koutsoyiannis, 2015). However, the definition the power spectrum as the Fourier transform of the autocovariance does

not allow derivation of an analytical formula for the estimation bias. In this study, we exploit the relationship between au-

tocovariance and power spectrum to adjust the autocovariance for finite-sample bias and then beck-transforming it to power

spectrum. Bias adjustment depends on the underlying model assumed to describe the temporal dependence structure. Following
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Iliopoulou and Koutsoyiannis (2019), we use the fractional Gaussian noise (fGn), which is also known as Hurst-Kolmogorov70

(HK) process (Koutsoyiannis, 2010). The fGn process is characterized by the Hurst coefficient H ∈ (0,1), where H = 0.5 cor-

responds to independence. For fGn processes, bias adjusted estimators of variance, and lag k covariance and autocorrelation

are (Koutsoyiannis, 2003)

s̃2 :=
n− 1

n−n2H−1
s2, (S8)

g̃k := gk +
n− 1

n3−2H −n
s2, (S9)

and

r̃k :=
g̃k
s̃2k

= rk

(
1− 1

n2−2H

)
+

1

n2−2H
, (S10)

where n is the sample size, while s2, gk, and rk denote the standard estimators of variance, and lag k covariance and autocorre-75

lation under independence, respectively. Here, H is estimated by the ‘least squares based on variance’ (LSV) method proposed

by Tyralis and Koutsoyiannis (2011). Figures S1a and S1b show the climacograms of two randomly selected Z time series

highlighting the effect of bias adjustment, while Figures S1c and S1d show the observed time series along with one simulated

time series for each case, which is displayed for illustration purpose.

S4 Maps of PR and MK rejections80

Figures S2, S3 and S4 show the maps of statistically significant trends at the GHCN gauges of the three regions North America

(a), Eurasia (b), and Australia (c). Figure S2 refers to MK and PR tests applied to Z time series for 50-year sample size and the

95% threshold without FDR. Figure S3 refers to time series for 100-year sample size and the 99.5% threshold without FDR,

while Figure S4 to 50-year sample size and the 99.5% threshold without FDR. Figures S5, S6 and S7 correspond to Figures S2,

S3 and S4, respectively, but with FDR.85
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Figure S1. (a-b) Climacograms of two randomly selected Z time series highlighting the effect of bias adjustment. (c-d) Observed time series

and one simulated time series shown for illustration purpose.
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Figure S5. Similar to Figure S1, but for 50-year sample size, and the 95% threshold with FDR.
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Figure S6. Similar to Figure S1, but for 100-year sample size, and the 99.5% threshold with FDR.

10



25°N

30°N

35°N

40°N

45°N

50°N

130°W 120°W 110°W 100°W  90°W  80°W  70°W

Longitude

L
a

ti
tu

d
e

30°N

40°N

50°N

60°N

70°N

  0°  20°E  40°E  60°E  80°E 100°E 120°E 140°E

Longitude

L
a

ti
tu

d
e

40°S

35°S

30°S

25°S

20°S

15°S

10°S

110°E 120°E 130°E 140°E 150°E

Longitude

L
a

ti
tu

d
e

Test: PR rej. only MK rej. only PR & MK rej.

φ
^
:

(−0.043,−0.032]

(−0.032,−0.021]

(−0.021,−0.011]

(−0.011,0]

(0,0.014]

(0.014,0.027]

(0.027,0.041]

(0.041,0.054]

(a)

(b)

(c)

Size = 50 years | 99.5% threshold | with FDR

Figure S7. Similar to Figure S1, but for 50-year sample size, and the 99.5% threshold with FDR.
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