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Abstract. Statistics is often abused and misused in hydro-climatology, thus causing research to get stuck around unscientific

concepts that hinder scientific advances. In particular, neglecting the scientific rationale of statistical inference results in logical

and operational fallacies that prevent discerning facts, assumptions, and models, thus leading to systematic misinterpretation

of the output of data analysis. This study discusses how epistemological principles are not just philosophical concepts but have

very practical effects. To this aim, we focus on the iterated underestimation and misinterpretation of the role of spatio-temporal5

dependence in statistical analysis of hydro-climatic processes by analyzing the occurrence process of extreme precipitation (P )

derived from 100-year daily time series recorded at 1,106 worldwide gauges of the Global Historical Climatology Network.

The analysis contrasts a model-based approach compliant with the well-devised but often neglected logic of statistical in-

ference and a widespread but theoretically problematic test-based approach relying on statistical hypothesis tests applied to

unrepeatable hydro-climatic records. The model-based approach highlights the actual impact of spatio-temporal dependence10

and finite sample size on statistical inference, resulting in over-dispersed marginal distributions and biased estimates of depen-

dence properties, such as autocorrelation and power spectrum density. These issues also affect the outcome and interpretation

of statistical tests for trend detection. Overall, the model-based approach results in a theoretically coherent modeling frame-

work where stationary stochastic processes incorporating the empirical spatio-temporal correlation and its effects provide a

faithful description of the occurrence process of extreme P at various spatio-temporal scales. On the other hand, the test-based15

approach leads to theoretically unsubstantiated results and interpretations along with logically contradictory conclusions such

as the simultaneous equi-dispersion and over-dispersion of extreme P . Therefore, accounting for the effect of dependence in

the analysis of the frequency of extreme P has huge impact that cannot be ignored, and more importantly any data analysis

can be scientifically meaningful only if it considers the epistemological principles of statistical inference such as the asymme-

try between confirmatory and dis-confirmatory empiricism, the inverse probability problem affecting statistical tests, and the20

difference between assumptions and models.
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1 Introduction

1.1 Epistemology of scientific inquiry: ‘model-based’ data analysis

Most of the methods reported in handbooks of applied statistics have been developed under the assumption of independence,

distributional identity, and well-behaving bell-shaped/exponential distributions. Of course, there is a wide statistical literature25

focused on dependence and related stochastic processes, lack of distributional identity and nonstationarity, and skewed sub-

exponential distributions. However, in some applied sciences such as hydro-climatology, analysts have often neglected that

moving from the former set of assumptions (commonly reported in introductory handbooks) to the latter is not just moving to

a more general model from one that can be considered as a special case. A typical example is the Generalized Extreme Value

(GEV) distribution widely used in the study of hydro-climatic extreme events, which converges to the Gumbel distribution as30

the shape parameter converges to zero. While Gumbel is mathematically a special case of the GEV, assuming that Gumbel

is the distribution of choice has relevant consequences, as it means assuming exponential tails instead of super-exponential

(upper bounded) or sub-exponential (possibly heavy). In particular, high values of skewness and heavy tails imply possible

non-existence of the moments of high order as well as bias and/or high variability in the estimates of the moments themselves,

including variance, covariance, and autocorrelation, as well as long range dependence (see e.g., Embrechts et al., 2002; Barunik35

and Kristoufek, 2010; Lombardo et al., 2014; Cirillo and Taleb, 2016; Taleb, 2020; Dimitriadis et al., 2021; Koutsoyiannis,

2023, and references therein).

Similar remarks hold for nonstationarity. Dealing with it does not mean just adding time dependent parameters to a stationary

model, using for instance Generalized Linear Models (GMLs) and their available extensions: it means that the ergodicity

property, which is key in the interpretation of statistical inference, is no longer valid (e.g., Koutsoyiannis and Montanari,40

2015). In these cases, any estimate of whatever summary statistics, such as the sample mean, is uninformative as it does not

have a corresponding unique population counter part, as the latter does not exist anymore (e.g., Serinaldi and Kilsby, 2015).

As for the effects of nonstationarity and heavy tails, there is a wide literature on the effects of the assumption of depen-

dence on statistical inference. Generally, dependence implies information redundancy and reduced effective sample size, along

with variance inflation and bias of standard estimators of summary statistics such as marginal and joint moments (e.g., Kout-45

soyiannis, 2004; Lombardo et al., 2014; Dimitriadis and Koutsoyiannis, 2015, and references therein). Therefore, assuming

spatio-temporal dependence means recognizing that such an assumption impacts on every sampling property of the process,

including marginal distributions. Under spatio-temporal dependence, the classical estimator of the correlation itself is biased

and need to be corrected (e.g., Marriott and Pope, 1954; White, 1961; Wallis and O’Connell, 1972; Lenton and Schaake,

1973; Mudelsee, 2001; Koutsoyiannis, 2003, 2011; Koutsoyiannis and Montanari, 2007; Papalexiou et al., 2010; Tyralis and50

Koutsoyiannis, 2011; Dimitriadis and Koutsoyiannis, 2015; Serinaldi and Kilsby, 2016a).

The foregoing examples highlight that the statistical inference cannot be reduced to the usage of multiple competing models

and methods, as every aspect of statistical analysis and its interpretation depend on the underlying assumptions according to the

rationale of statistical inference. Even the simplest diagnostic diagram relies on underlying assumptions and models (see e.g.,

Serinaldi et al., 2020a, for further discussion). This primary epistemological concept comes before any methodology and/or55
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technicality and marks the boundary between correct interpretation and misinterpretation of inference results, and eventually

“between engineering concepts dictated by expediency, and scientific truth” (Klemeš, 1986). However, while it was routinely

presented in statistical handbook published in the past century (e.g., Aitken, 1947; Cramér, 1946; Papoulis, 1991), most of the

modern textbooks seem to miss it, perhaps taking it for granted. Nonetheless, in the hydro-climatological context, von Storch

and Zwiers (2003, p. 69) well summarized those primary principles of statistical inference as follows:60

1. “A statistical model is adopted that supposedly describes both the stochastic characteristics of the observed process and

the properties of the method of observation. It is important to be aware of the models implicit in the chosen statistical

method and the constraints those models necessarily impose on the extraction and interpretation of information.”

2. “The observations are analysed in the context of the adopted statistical model.”

These concepts are nothing but the specialization of the principles of scientific inquiry in the context of data analysis. As65

stressed by Box (1976), “science is a means whereby learning is achieved, not by mere theoretical speculation on the one

hand, nor by the undirected accumulation of practical facts on the other, but rather by a motivated iteration between theory

and practice... Matters of fact can lead to a tentative theory. Deductions from this tentative theory may be found to be discrepant

with certain known or specially acquired facts. These discrepancies can then induce a modified, or in some cases a different,

theory. Deductions made from the modified theory now may or may not be in conflict with fact, and so on.” Eventually, “the70

sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical

construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such

a mathematical construct is solely and precisely that it is expected to work - that is, correctly to describe phenomena from a

reasonably wide area. Furthermore, it must satisfy certain esthetic criteria - that is, in relation to how much it describes, it

must be rather simple.” (von Neumann, 1955).75

Based on the foregoing remarks, appropriate statistical inference (and scientific learning) is an iterative ‘model-based’ pro-

cedure, which can be summarized as follows:

1. Make assumptions that are deemed to be reasonable for data and facts at hand.

2. Build tentative theories and models and make inference accounting for the effect and consequences of the underlying

assumptions.80

3. Interpret results according to the nature of the adopted assumptions and models.

4. Retain or change/update assumptions and models based on the agreement or disagreement of the developed theories and

models with (new) data and facts.

This procedure should be iterated bearing in mind that the developed models should satisfy some formal criteria such as

parsimony, accuracy, generality, and fit for purpose.85
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1.2 Box’s cookbookery and mathematistry: ‘test-based’ data analysis

Being the prerequisite to any sound scientific investigation, the epistemological principles described in Section 1.1 should

be obvious and well-known. However, this does not seem to be the case in some applied sciences where data analysis and

modeling often neglect or ignore such principles, thus calling into question the scientific validity of results and conclusions.90

In this respect, the statistician George E.P. Box highlighted that the scientific progress results from the feedback between

theory and practice, and this feedback requires a closed loop. Therefore, when loop is open, progress stops. Box (1976)

referred to the main consequences of lack on feedback between theory and practice as maladies called ‘cookbookery’ and

‘mathematistry’, claiming that “The symptoms of the former are a tendency to force all problems into the molds of one or

two routine techniques, insufficient thought being given to the real objectives of the investigation or to the relevance of the95

assumptions implied by the imposed method... Mathematistry is characterized by development of theory for theory’s sake,

which since it seldom touches down with practice, has a tendency to redefine the problem rather than solve it... In such areas

as sociology, psychology, education, and even, I sadly say, engineering, investigators who are not themselves statisticians

sometimes take mathematistry seriously. Overawed by what they do not understand, they mistakenly distrust their own common

sense and adopt inappropriate procedures devised by mathematicians with no scientific experience”.100

In the context of climate science, von Storch and Zwiers (2003) raised similar remarks in the preface of their book: “Cook-

book recipes for a variety of standard statistical situations are not offered by this book because they are dangerous for anyone

who does not understand the basic concepts of statistics”.

This problem is not new in hydrology and hydro-climatology either, and was already stressed by Yevjevich (1968) and

Klemeš (1986), who discussed some misconceptions concerning the study and interpretation of hydrological processes and105

variables by methods borrowed from other disciplines such as systems/decision theory, mathematics, and statistics. For in-

stance, often stochastic processes are no longer considered as convenient descriptors of hydrological processes for practical

purposes, but the former are identified with the latter and vice versa, thus generating confusion and a questionable approach to

data analysis and modeling that contrasts with the logic of statistical inference recalled in Section 1.1.

A large body of the literature on data analysis of unrepeatable hydro-climatic processes seems to neglect or ignore episte-110

mological principles, thus confusing the role of observations, assumptions, and models. This results in fallacious procedures

that share the following general structure, which we call ‘test-based’ method:

1. Select several models and methods based on different and often incompatible assumptions.

2. Make inference neglecting the constraints imposed by different underlying assumptions.

3. Interpret results attempting to prove/disprove models’ assumptions, which are often (if not always) erroneously attributed115

to physical processes, whereas they refer to models used to describe such processes.

This approach generally corresponds to a widespread mechanistic use of statistical methods/software and massive applica-

tion of statistical hypothesis tests, which are not supported by the required epistemological and theoretical knowledge of the

methodologies used. Such approach neglects that models cannot be used to prove or disprove their own assumptions in the
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same way a mathematical theory cannot prove or disprove its own axioms and definitions. This is because those models and120

theories are valid only under those assumptions, axioms, and definitions. Of course, specific models cannot even be used to

prove or disprove alternative assumptions as they might not even exists under those alternative hypotheses.

1.3 Aims and organization of this study

While Yevjevich (1968) and Klemeš (1986) provided extemporaneous commentaries about the foregoing issues, we address125

the problem from a different perspective. Instead of discussing several misconceptions from a general and purely conceptual

point of view, we focus on a specific issue (here, the role of dependence in statistical analysis of extreme P occurrence),

focusing on theoretical inconsistencies and showing practical consequences by performing a detailed data analysis. In this

way, theoretical remarks are complemented with a side-by-side comparison of the output of ‘model-based’ and ‘test-based’

methods, emphasizing the concrete effect of conceptual mistakes. Therefore, this work is a proper neutral validation/falsifica-130

tion study (see e.g., Popper, 1959; Boulesteix et al., 2018, and references therein) that expands some existing literature about

the independent check of the theoretical consistency in statistical methods applied in hydro-climatology (Lombardo et al.,

2012, 2014, 2017, 2019; Serinaldi and Kilsby, 2016a; Serinaldi et al., 2015, 2018, 2020a, b, 2022).

Focusing on the assumption of spatio-temporal dependence in the analysis of extreme P frequency, we attempt to show

the practical consequences of underestimating and not properly considering and interpreting the effects of dependence as well135

as the logical fallacies of ‘test-based’ method in this context. In particular, we re-analyze a worldwide precipitation data set

comparing the output of a ‘model-based’ framework (relying on theoretically-informed stochastic modeling and diagnostic

plots) with a ‘test-based’ approach that led Farris et al. (2021) to conclude that “accounting or not for the possible presence

of serial correlation has a very limited impact on the assessment of trend significance in the context of the model and range

of autocorrelations considered here” and “Accounting for serial correlation in observed extreme precipitation frequency has140

limited impact on statistical trend analyses”. Therefore, this study double-checks the role of scientific logic and spatio-temporal

dependence in the analysis and characterization of extreme P frequency at various spatio-temporal scales. Eventually, we

compare the two methodologies (‘model-based’ and ‘test-based’) in terms of their rationale and output to better understand

why and how epistemological fallacies and the consequent improper use of statistical analysis and treatment of dependence

might result in misleading conclusions.145

This study is organized according to the its specific purpose. Therefore, it does not follow the standard structure ‘problem-

model-application-results’. In particular, all technical details of models and methods are reported in the Supplement. Indeed, the

aim is to emphasize the practical importance of epistemology in data analysis, rather than focusing on models’ technicalities,

which is one of the conceptual mistakes affecting ‘test-based’ analysis. In this respect, the specific models/methods used are

secondary and replaceable with others, whereas the logical reasoning leading the analysis (but systematically neglected in150

‘test-based’ approach) stays unchanged.

Based on the foregoing remarks, Section 2 introduces the P data set. Section 3 presents and discusses the ‘test-based’

methodology, highlighting shortcomings and pitfalls that lead to introduce the rationale of a ‘model-based"’ approach, whose
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rationale is described in Section 4. In Section 5, we analyze the P frequency data studying: (i) the marginal distribution of the

annual number (Z) of OT events; (ii) the relationship between lag-1 autocorrelation ρ1 and slope ϕ of liner trend estimated on155

the Z time series; and (iii) trend analysis on the Z time series. In this respect, we expand the analysis reported by Farris et al.

(2021) by focusing on the role of spatio-temporal dependence at various spatio-temporal scales (e.g., Koutsoyiannis, 2020;

Dimitriadis et al., 2021). For each stage of the foregoing analysis, we further discuss the logical consistency or pitfalls of the

used methodologies and provide empirical results. Finally, Section 6 reports general remarks about the interpretation of our

study in the context of the existing literature on statistical trend analysis, and more generally about the problem of approaching160

statistical analysis of hydro-climatic data neglecting epistemological principles that are fundamental to properly set up the

analysis itself.

2 Data

We analyze daily precipitation time series from a sub-set of gauges extracted from more than 100,000 stations of the Global

Historical Climatology Network-Daily (GHCN-D) database (Menne et al., 2012a, b) (https://www.ncei.noaa.gov/data/global-165

historical-climatology-network-daily/). Selected stations are characterized by at least 95 complete years of records in a common

100-year period from 1916 to 2015. We extracted 1,106 worldwide gauges, which are 19 more than those extracted by Farris

et al. (2021), using the same criteria. Figure 1 displays the map of the selected GHCN stations with indication of four sub-

regions denoted as ‘North America’, ‘Eurasia’, ‘Australia’, and ‘North-Western Europe’. The first three regions are identified

to be as close as possible to those used by Farris et al. (2021) in their regional analysis, while ‘North-Western Europe’ is170

an additional region corresponding to the most densely gauged area of ‘Eurasia’. Overall, the four regions along with the

worldwide scale (hereinafter denoted as ‘World’) allow us to highlight the behavior of extreme P in nested regions.

To allow a fair comparison with existing literature, we followed Farris et al. (2021) and selected extreme P as the values

exceeding given percentage thresholds according to the at-site empirical cumulative distribution function (ECDF) (including

zeros). For each station, the annual number Z of OT exceedances forms the time series of extreme P frequencies. Note that the175

“exceedances on consecutive days are counted as separate events” (Farris et al., 2021). Farris et al. (2021) considered several

percentage threshold from 90% to 97.5% and different sub-sets (i.e., the most recent 30 and 50 years as well as the complete

sequences of 100 years). Since their results are consistent across different thresholds, we limit our analysis to 95% and 99.5%

thresholds, as the former is the one discussed more extensively by Farris et al. (2021), while the latter serves to highlight the

behavior of the occurrence process of P exceedances over a high threshold. As far as the number of years is of concern, we180

only use 100 and 50 years, as shorter time series of 30 annual data points do not provide reliable information on occurrence

processes in terms spatio-temporal properties. The GHCN-D data set was retrieved and handled by the R contributed package

rnoaa (Chamberlain, 2020).
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Figure 1. Map of GHCN rain gauges used in this study with indication of the four sub-regions (denoted as ‘North America’, ‘Eurasia’,

‘North-Western Europe’, and ‘Australia’) that are discussed in the subsequent analysis.

3 Test-based methodology

3.1 Assumptions and statistical tests185

Before introducing the model-based methodology, we firstly present the test-based approach to data analysis. The aim is

two-fold: (i) to explain the motivation of moving from test-based to model-based analysis, and (ii) to better understand the

discussion in Section 5 concerning the differences between the output of the two methodologies. For the sake of comparison,

we apply the same test-based procedure used by Farris et al. (2021). It consists of the following steps:

– Firstly, Kolmogorov-Smirnov and χ2 goodness-of-fit tests are used to check whether Z follow a Poisson distribution.190

– Based on the outcome of the first step, two competing models are selected: (i) Nonhomogeneous Poisson (NHP) process

describing a collection of independent Poisson random variables with rate of occurrence linearly varying with time,

and (ii) first-order Poisson integer autoregressive (Poisson-INAR(1)) process, which is a specific kind of stationary and

temporally correlated process with Poisson marginal distribution (see Section S1 in the Supplement). These models are

used to study the effect of serial correlation.195

– Therefore, various statistical tests for trend detection are applied. Due to similar performance of parametric and nonpara-

metric tests, Farris et al. (2021) retained and discussed only one test for each category, that is, a nonparametric test based

on Mann-Kendall (MK) test statistic, and a parametric test based on the slope parameter of a Poisson regression (PR).
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Incidentally, when performing a statistical test at the α significance level many times, we expect a percentage α of false

rejections on average. Since all tests are applied to multiple time series, False Discovery Rate (FDR) method, that is, the200

ratio of number of false rejections to all rejections (Benjamini and Hochberg, 1995), is used to account for the effect of test

multiplicity which is also known as field significance (Wilks, 2016; Farris et al., 2021).

The aim of this trend analysis of Z is to investigate the impact of serial correlation on trend detection and the effect of

performing multiple tests. Even though technicalities (such as the selection of a particular test or model) can change from case

to case, it is easy to recognize that the foregoing procedure follows the same test-based rationale of trend analyses reported in205

the majority of the literature on this topic. However, are we sure that such way of analyzing data is compliant with scientific

method and its logic? Does the widespread use (or abuse) of test-based analysis imply theoretical consistency? In the next

section, we start to answer these questions.

3.2 Remarks on logical fallacies of test-based methodology

As mentioned in Section 1, every statistical analysis (including diagnostic plots) relies on some assumptions, and these as-210

sumptions lead the interpretation of results. In this respect, while the simultaneous application of the techniques/tests listed in

the previous section seems to be reasonable, a closer look reveals that the assumptions behind these statistical methods are not

compatible to each other and might yield logical contradictions.

For example, Kolmogorov-Smirnov and χ2 goodness-of-fit tests, which are used to check the suitability of Poisson distribu-

tion for Z, are valid under the assumption that the underlying process is independent and identically distributed. Therefore, if215

these tests pointed to lack of rejection of Poisson distributions, this would also imply independence and distributional identity

(i.e., stationarity). In fact, if the process were not independent, dependence would generate information redundancy and over-

dispersion (variance larger than the mean) of the observed finite-size samples of Z, thus making the Poisson model unsuitable

from a theoretical standpoint. On the other hand, if the Z process were not identically distributed, we could not conclude

that the distribution of Z is a single specific distribution, such as Poisson. In that case, the distribution of Z can be at most220

conditionally Poisson or compound Poisson. Therefore, if the Poisson assumption is not rejected according to tests that imply

independence and stationarity, we must necessarily exclude the alternative assumptions of dependence and nonstationarity,

thus concluding that there is no reason to further proceed with any subsequent analysis of trends and/or dependence. This is

the first logical contradiction of the test-based procedure described in Section 3.1.

Nonetheless, let us overlook the foregoing contradiction, and move to the second step of the procedure. If we assume that225

the Z process is NHP, this model implies that the data follow a different Poisson distribution at each time step (see Section S1

in the Supplement). In this case, the overall distribution of the observed Z is a compound Poisson, and more importantly

the nonstationarity of NHP hinders the application of Kolmogorov-Smirnov and χ2 goodness-of-fit tests, as the process does

not fulfill the underlying assumptions of these tests. Indeed, these tests can at most be applied to conditional processes, that

is, to values resulting from filtering the effect of ‘nonhomogeneity’ out (see e.g., Coles, 2001, pp. 110-111). In the present230

case, nonhomogeneity can consist of random fluctuations or well-defined evolution of the rate of occurrence of extreme P . To

summarize, if we assume NHP (and therefore nonstationarity), the results of first step are theoretically invalid, and they should
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be discarded a priori. This is the second logical contradiction of the test-based procedure, and it is the dual counter part of the

first one.

Similar remarks hold for the assumption of dependence. It is well known that dependence introduces information redun-235

dancy that impacts on goodness-of-fit tests, inflating the variance of their test statistics, which must be adjusted accordingly.

Variance inflation affects any sampling summary statistics, including sample variance and auto-/cross-correlation as well as

the shape of the distribution of Z, which is expected to be over-dispersed (Marriott and Pope, 1954; White, 1961; Wallis

and O’Connell, 1972; Lenton and Schaake, 1973; Mudelsee, 2001; Koutsoyiannis, 2003; Koutsoyiannis and Montanari, 2007;

Papalexiou et al., 2010; Dimitriadis and Koutsoyiannis, 2015; Serinaldi and Kilsby, 2016a, 2018; Serinaldi and Lombardo,240

2020). Therefore, under dependence, the marginal distribution of Z cannot be Poisson, and the Poisson-INAR(1) models are

likely unsuitable models for Z. In other words, the preliminary application of goodness-of-fit tests neglecting the subsequent

assumption of dependence yields results that are theoretically invalid also in this case because: (i) the distribution of the test

statistics under independence are not valid under dependence, and (ii) Poisson distribution is not a valid candidate model for Z

under dependence. Therefore, assuming Poisson-INAR(1) models is not only incompatible with the first step of the test-based245

procedure but also with the its own assumption of dependence.

These remarks should clarify why adding or relaxing fundamental assumptions such as (in)dependence and (non)stationarity

cannot be reduced to just introducing or removing (or setting to zero) some parameters. Changing these assumptions deeply

changes the inferential framework as well as the expected properties of the observed processes. Generally, conclusions and

results obtained under a set of assumptions A1 cannot be used to support further analysis and models that are valid under250

a different set of hypotheses A2. In fact, the results under A1 might be not valid under A2, and vice versa. In some cases,

models/tests need to be adjusted and results updated accordingly. In other cases, models/tests used under A1 might not even

exist under A2.

The foregoing discussion indicates that an analysis based on models/tests relying on mixed assumptions is prone to severe

logical inconsistencies and misleading conclusions, thus suggesting that a proper statistical analysis should rely on well-255

specified assumptions, adopting inferences procedures and methods that agree with those assumptions, thus guaranteeing a

coherent interpretation of results according to the genuine scientific logic recalled in Section 1.1. In the next sections, we

introduce this kind of approach and further investigate the aforementioned issues and their practical consequences in real-

world data analysis.

4 Model-based methodology: Recovering the seemingly forgotten scientific method260

The approach described in Section 3.1 was referred to as ‘test-based’ as it generally involves extensive application of several

statistical tests and massive use of Monte Carlo simulations, with little or no attention to exploratory data analysis and theo-

retical assumptions, and thus their consequences on the interpretation of results. Therefore, we move from statistical tests and

their binary and often uninformative output (see further discussion in Section 6.1) to a ‘model-based’ approach supported by

preliminary theoretical considerations and simple but effective graphical exploratory analysis. The underlying idea is to avoid265
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moving among different and possibly incompatible assumptions, focusing on a single one that is considered to be realistic for

the process studied. Thus, we build theoretically supported models and methods that fulfill that set of assumptions, and check if

the framework is able to reproduce key properties of the process of interest (here, Z) over a reasonable range of spatio-temporal

scales. Note that this approach is nothing but the standard procedure of scientific inquiry (Aitken, 1947; Cramér, 1946; von

Neumann, 1955; Box, 1976; Papoulis, 1991; von Storch and Zwiers, 2003), which is however seemingly forgotten in a large270

body of literature dealing with statistical analysis of hydro-climatic data.

As recalled in Section 1.1, the model-based approach implies the following steps: (i) introduce reasonable assumptions

based on preliminary observation and knowledge of the process of interest; (ii), deduce models and diagnostic tools that are

consistent with those assumptions; (iii) compare model output and observations; (iv) update assumptions and/or models based

on the outcome of stage (iii); and (v) iterate the procedure if required.275

In the present case, the first two steps of the foregoing procedure specializes as follows:

(i) Since precipitation process exhibits recognizable spatio-temporal patterns evolving over various spatio-temporal scales,

the assumptions of independence and distributional identity are reasonably untenable. Therefore, we relax the assumption

of independence for Z while retaining that of stationarity. The aim is to keep the modeling task as simple as possible and

check whether models/methods incorporating spatio-temporal dependence provide a reasonable description of Z.280

(ii) Based on the assumption of dependence, we introduce models for marginal distributions and temporal dependence at-

tempting to balance parsimony and generality. These models are complemented with diagnostic diagrams and statistical

tests purposely selected to be consistent with the assumption of dependence. Note that the statistical tests are introduced

in the model-based framework only to allow comparison with the test-based procedure, although they are not even appli-

cable to data from unrepeatable hydro-climatic processes (see further discussion in Section 6.1).285

Sections 4.1, 4.2, and 4.3 introduce the above-mentioned models and methods in more detail, highlighting their logical consis-

tency against the logical contradictions affecting test-based methods.

4.1 Modeling marginal distributions

The choice of potential distributions for Z should considers four factors: (i) size of the blocks of observations over which we

compute Z values, (ii) finite sample size of Z records, (iii) threshold used to select OT events, and (iv) effect of dependence.290

The number of OT events Z is calculated over 365-day time windows, meaning that Z can be interpreted as the number

of successes/failures occurring over a finite number of Bernoulli trials. The sample size of the resulting time series of Z is

at most 100, which is the number of available years of records, excluding possible missing values. Moreover, assuming a

realistic average probability of zero daily P equal to p0 = 0.7 and OT probability p= 0.95 in the ECDF (including zeros),

the corresponding nonexceedance probability of non-zero P is p+ = p−p0

1−p0

∼= 0.83, which is not a very high threshold for P if295

one would like to focus on extreme values. For p= 0.95, the probability p+ becomes at most ∼= 0.92 for p0 = 0.4, which is

quite a reasonable value for p0 in wet climates (e.g., Harrold et al., 2003; Robertson et al., 2004; Serinaldi, 2009; Mehrotra

et al., 2012; Olson and Kleiber, 2017). Therefore, the OT processes analyzed and the corresponding Z unlikely fulfill the
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assumptions required by asymptotic models such as Poisson or compound Poisson (Berman, 1980; Leadbetter et al., 1983) in

terms of sample size, block size, and threshold, whereas models devised for finite-size counting processes, such as Binomial,300

might be more appropriate.

More importantly, spatio-temporal dependence affects the marginal distribution of Z and the (inter-)arrival times of OT

events over finite-size blocks of observations (such as the 365 days forming one-year blocks). As mentioned in Section 3.2,

spatio-temporal dependence results in information redundancy and over-dispersion, so that the distribution of (inter-)arrival

times is expected to depart from exponential (which is instead valid for independent events) becoming sub-exponential Weibull-305

like (see e.g., Eichner et al., 2007, 2011; Serinaldi and Kilsby, 2016b, and references therein). Similarly, the distribution of

Z departs from Binomial (or Poisson) and tends to be closer to over-dispersed distributions like the Beta-Binomial (βB)

distribution (see e.g., Serinaldi and Kilsby, 2018; Serinaldi and Lombardo, 2020). In particular, the βB model is a conve-

nient theoretically-based distribution, as it is an extension of the Binomial distribution that accounts for over-dispersion by

an additional parameter summarizing the average correlation over the spatio-temporal block of interest (see Section S2 in the310

Supplement and references therein).

Recalling that a Poisson distribution is characterized by equi-dispersion (i.e., equality of mean and variance), plotting sample

variances (σ̂2) versus means (µ̂) can provide an effective diagnostic plot to check whether a Poisson distribution can be a valid

model for Z.

To allow a direct and fair comparison with the test-based methodology described in Section 3.1, we complemented the315

Kolomogorov-Smirnov test with two additional tests whose test statistics are (i) the Pearson product moment correlation

coefficient (PPMCC) on the probability-probability plots (e.g., Wilk and Gnanadesikan, 1968), and (ii) the variance-to-mean

ratio (VMR) σ2/µ, which is also known as index of dispersion (see e.g., Karlis and Xekalaki, 2000; Serinaldi, 2013, and

references therein). For all tests, the reference hypothesis H0 is that the data are drawn from a Poisson distribution, although

such an H0 is expected to be untenable according to foregoing discussion.320

These tests are purposely chosen to highlight the inconsistencies resulting from a test-based methodology if we neglect the

rationale of the tests as well as informative exploratory analysis. In fact, as the PPMCC test relies on empirical and theoretical

frequencies, that is, standardized ranks, it misses the information about the absolute values of Z, and it is therefore the less

powerful test among the three. On the other hand, the KS test includes such information. However, it is also a general test

devised for any distribution, while the VMR test focuses on a specific property characterizing the Poisson distribution, meaning325

that it is specifically tailored for the problem at hand. Therefore, the VMR test tends to have higher discrimination power under

the expected over-dispersion of correlated OT events. Indeed, it was found to be the most powerful among several alternatives

in these circumstances (Karlis and Xekalaki, 2000; Serinaldi, 2013).

For each location, the distributions of the test statistics under H0 are estimated by simulating S = 1000 samples with the

same size of the observed Z time series from a Poisson distribution with rate parameter equal to the observed rate of occurrence.330
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4.2 Modeling dependence and nonstationarity: Distinguishing assumptions and models

The aim of the test-based methodology described in Section 3.1 is to investigate the nature of possible trends in Z time series.

The underlying idea is that such trends could be spurious effect of serial dependence or vice versa the serial dependence could

be a spurious effect of deterministic trends. Therefore, Poisson-INAR(1) model is used to check the former case, while NHP

the latter.335

While this approach seems to be reasonable at a first glance, it suffers from technical problems related to neglecting formal

definitions of ‘stationarity’ and ‘trend’ along with clear distinction between population and sample properties. Note that the

word ‘stationarity’ used throughout this study refers to the formal definition given by Khintchine (1934) and Kolmogorov

(1938), which is the basis of theoretical derivations in mathematical statistics. The word ‘stationarity’ is often used with

different meanings in hydro-climatological literature. However, such informal definitions do not apply to statistical inference340

and might generate confusion. These issues are discussed in depth by Koutsoyiannis and Montanari (2015), Serinaldi et al.

(2018, sections 4 and 5), and references therein (see also Section S3 in the Supplement for a summary). Here, we focus on

additional epistemological aspects that precede such technical issues and call into question the underlying rationale of the

test-based approach independently of specific models and tests used.

As mentioned in Sections 1 and 3.2, a selected statistical model should describe the stochastic properties of the observed345

process, and results should be interpreted according to the constraints posed by model assumptions. In the case of Z, the

underlying question is whether possible ‘monotonic’ fluctuations are deterministic (resulting from a well identifiable generating

mechanism) or stochastic (as an effect of dependence, for instance). In the former case, we work under the assumption of

independence and nonstationarity, whereas in the latter under the assumption of dependence and stationarity. Both assumptions

are very general and correspond to a virtually infinite set of possible model classes and structures. Therefore, we need to recall350

that:

1. Every model developed under a specific set of assumptions is only valid under its own set of assumptions and cannot

be used to validate the assumptions it relies on, as it cannot exist under different assumptions. For example, Poisson-

INAR(1) cannot be used to assess the stationarity assumption, as it is not defined (it does not exist) under nonstationarity.

2. No specific model can be representative of the infinite types of models complying the same set of assumptions. For355

example, if Poisson-INAR(1) models do not provide a good description of Z, this does not exclude that other dependent

and stationarity models with different marginal distribution and linear or nonlinear dependence structure can faithfully

describe Z.

3. Every model developed under a specific set of assumptions cannot provide information about different sets of assump-

tions. For example, if we assume independence and nonstationarity, and show that the NHP models describe all the360

properties of interest of an observed process, we can conclude that the NHP models provide a good description of data,

but we cannot say anything about the performance of models complying the assumption of dependence and stationarity,

and vice versa.
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Therefore, using Poisson-INAR(1) and NHP (with linearly varying rate of occurrence) to assess stationarity or nonstation-

arity of Z is conceptually problematic for two key reasons:365

– Stationarity and nonstationarity are not properties of the observed hydro-climatic processes (finite-size observed time

series), but assumptions of the models we deem suitable to describe physical processes.

– Poisson-INAR(1) and NHP are valid only under their own assumptions, and do not represent the entire classes of possible

stationary and nonstationary models. Therefore, discarding one of them does not imply invalidating their own assump-

tions (and the corresponding infinite classes of models), and, for sure, it does not allow invalidation of the assumptions370

of the alternative model, as each model could not even exist under the assumptions of the other one.

In a model-based approach, we do not compare specific models that are valid under different assumptions, but try to find

models that describe as closely as possible the observed processes under a specific set of assumptions that are considered

realistic. In this context, the Poisson-INAR(1) model is not a suitable option, as the marginal distribution of Z is expected to

be over-dispersed under dependence, and the first-order autoregressive structure can be too restrictive. In other words, while375

Poisson-INAR(1) is legitimate from mathematical perspective, it lacks conceptual consistency with the investigated process.

In this study, we use so-called ‘surrogate’ data to represent the class of stationary dependent models, minimizing the number

of additional assumptions and constraints. In particular, we apply Iterative Amplitude Adjusted Fourier Transform (IAAFT),

which is a simulation framework devised to preserve (almost) exactly the observed marginal distribution and power spectrum,

and therefore autocorrelation function (ACF), under the assumption of stationarity (see Section S4 in the Supplement). In the380

present context, IAAFT can be considered a ‘semi-parametric’ approach. Indeed, it does not make any specific assumption on

the shape of the distribution of Z (preserving the empirical one), while a parametric dependence structure is needed to correct

the bias of the empirical periodogram caused by temporal dependence (see Section S4 in the Supplement).

If the model of choice is well devised, it is expected to mimic the observed fluctuations of Z, including apparent trends.

It follows that the statistical tests for trends used in the test-based methodology are expected to yield rejection rate close the385

nominal significance level. Here, we use IAAFT samples as a more general stationary alternative closer to the observed time

series in terms of marginal distribution and ACF. IAAFT simulations are used to derive the sampling distributions of the MK

and PR tests under the assumption of temporal dependence.

4.3 Field significance under dependence

The FDR approach is devised to control the rate of false rejections with respect to the number of rejections rather than the signif-390

icance level, that is, the rate of false rejections with respect to the total number of performed tests. As a consequence, Benjamini

and Hochberg (1995) highlighted that “The power of all the methods [Bonferroni, Hochberg, and Benjamini-Hochberg meth-

ods] decreases when the number of hypotheses tested increases – this is the cost of multiplicity control”. However, the decreased

power does not justify the recommendation of going back to at-site results, as suggested in the literature (Farris et al., 2021),

thus overlooking de facto the field significance. In fact, the latter might be affected by unknown factors generating spurious395

results of statistical tests at local, regional, or global scale. In this respect, looking for instance at clusters of rejections of the
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hypothesis of ‘no trend’, whereby trends have the same sign in a given area, as suggested for instance by Farris et al. (2021),

might be misleading as this is exactly the expected behavior under spatio-temporal dependence or dependence on an exogenous

(common) forcing factor (see e.g., Serinaldi and Kilsby, 2018). In other words, the dependence of extreme P upon large-scale

processes does not increase the ‘power’ (evidence) of regional trend analysis. On the contrary, it is a sign of redundancy, as the400

common local/regional behavior of multiple P series in a given area might just be the expression of the common forcing factor

(e.g., regional weather systems) driving the P process. However, since the effect cannot precede its cause, the question is no

longer if local trends in the P process in a given area are similar/homogenous but what is the nature of the possible trends of

the forcing factor. In this respect, local/areal effects (e.g., homogeneous regional patterns of P ) can only reflect the behavior

of their common cause and cannot provide information about the nature of the cause itself. Data analysis in the next sections405

further clarifies these issues.

Technically, the output of all statistical tests is analyzed in terms of p-values and FDR diagrams reporting the sorted p-values

versus their ranks (Wilks, 2016, fig. 3). When needed, we also report results at local significance level α= 0.05. This allows a

fair comparison with results reported in the existing literature as well as a discussion about global (field) significance αglobal

and FDR control level αFDR (Wilks, 2016).410

4.4 Summary of model-based analysis

Summarizing Sections 4.1, 4.2, and 4.3, in a model-based approach, marginal distributions are parametrized by βB models

(when needed), which are consistent with the assumption of spatio-temporal dependence. Goodness of fit is checked by suitable

diagnostic diagrams, such as plots of σ̂2 versus µ̂ and probability plots, and statistical tests purposely devised to discriminate415

under-/equi-/over-dispersion.

For the sake of comparison with results reported in the existing literature, IAAFT is used to simulate synthetic samples of Z.

This simulation method is ‘semi-parametric’ in the sense that it uses the empirical marginal distributions of Z, whereas a Hurst-

Kolmogorov parametric dependence structure (also known as fractional Gaussian noise (fGn), Koutsoyiannis, 2003, 2010;

Iliopoulou and Koutsoyiannis, 2019) is used to allow the correction of the bias of the empirical periodogram caused by temporal420

dependence (see Section S4 in the Supplement).

IAAFT samples are used to build the empirical distribution of the test statistics of MK and PR tests accounting for the effect

of dependence in trend analysis. Such tests are performed both locally and globally, accounting for test’s multiplicity via FDR.

Note that the use of statistical tests is not much meaningful in the context of unrepeatable processes. They are used for the sake

of comparison with test-based approach to highlight their inherent redundancy and/or inconsistency.425

Finally, we stress once again that, in a model-based approach (i.e. standard statistical inference as it should be), the choice

of the foregoing candidate models and methods was based on theoretical considerations about the effect of finite sample size,

threshold selection, and dependence discussed in Sections 4.1, 4.2, and 4.3. This contrasts with the test-based approach, which

relies instead on several distributions, diagnostic plots, and statistical tests that correspond to heterogeneous assumptions. Such

test-based methods are generally selected without paying attention to their fit-for-purpose, and they are used neglecting the430
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effect of their assumptions on the inference procedure. This approach yields contradictory results that are further discussed in

Section 5.

5 Data analysis

5.1 Marginal distribution of extreme P occurrences: Poissonian?

As mentioned in Section 4, preliminary exploratory analysis based on simple but effective diagnostic plots is often neglected435

even though it might be more informative than the binary output of statistical tests. Graphical diagnostics are a key step of the

model-based approach. Concerning the marginal distribution of Z, the most obvious preliminary check consists of checking

under-/equi-/over-dispersion.

Figures 2a-f show the diagrams of variance versus mean (σ̂2 versus µ̂), comparing the scatter plots corresponding to observed

OT values over the 95% and 99.5% thresholds with those corresponding to samples of the same size drawn from Poisson, NHP,440

and βB distributions with parameters estimated on the observed samples. In more detail, for each of the 1,106 records, 100

synthetic time series of Z are simulated from Poisson, NHP, and βB models, thus calculating the ensemble averages of the 100

sample means and variances estimated for each simulated sample of Z. Figures 2a-f displays such ensemble averages as circles

along with horizontal and vertical segments denoting the range of mean and variance values obtained over 100 simulations for

each of the 1,106 records.445

As expected, the variance and mean of observed Z are not aligned along the theoretical 1:1 line (dashed line) characterizing

the Poisson behavior, not even considering the sampling uncertainty (Figures 2a-f). The patterns of observed means and vari-

ances of OT data do not even match those of NHP samples, which under-represent the expected and remarkable over-dispersion

(Figure 2b and 2e). On the other hand, the βB distribution provides variance values closer to the observed ones, indicating that

the variance inflation is consistent with the assumption of temporally dependent occurrences, as expected from preliminary450

theoretical considerations.

For the sake of completeness, we also considered the peaks over threshold (POT), that is, the maximum values of independent

clusters of OT values, where each cluster is considered as a single event. Clusters are identified as sequences of positive values

of daily precipitation separated by one or more dry days. Different inter-arrival times for cluster identification can be used, but

this parameter is secondary in the present context.455

The Poisson distribution might be a valid asymptotic model for peaks over high threshold under suitable conditions (e.g.,

Davison and Smith, 1990), whereas there is no theoretical argument supporting its validity for OT data, especially if they are

expected to be dependent, and the used threshold is not very high. Sample means and variances of POT show a behavior closer

to Poisson and NHP for both thresholds (Figure 2g-2l). However, Poisson and NHP models still under-represent the observed

variances for the 95% threshold, while βB distributions provide a faithful reproduction. According to the foregoing theoretical460

remarks, this is not surprising, as the 95% threshold is not high enough to identify independent events, resulting in occurrences

that are still temporally dependent. As expected, observed mean and variances of POT start to exhibit a Poissonian behavior

only for the high 99.5% threshold. In this case, both NHP and βB provide results close to those of the Poisson distribution, as
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Figure 2. Diagrams of sample variance versus sample mean of the annual occurrences of OT values and POT for the 95% and 99.5%

thresholds. Observed values are compared with those corresponding to simulated samples from Poisson, NHP, and Beta-Binomial (βB)

distributions. See the main text for more details.
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Figure 3. Panels (a-d) show the ECDFs of Z for the 95% and 99.5% thresholds and each of the 1,106 rain gauges. ECDFs are complemented

with the median, lower and upper limits of the ensemble of Poisson and Beta-Binomial (βB) models corresponding to each rain gauge.

Panels (e-h) show median, lower and upper limits of the differences δ(z) between ECDFs and Poisson and βB distributions. Medians, lower

and upper values are computed point-wise for each value z of the number of OT events Z.

the parameters accounting for nonstationarity in NHP and autocorrelation in βB tend to zero, and these models converge to the

Poisson distribution, which is a special case of both.465

Since Poisson and NHP provide similar results in terms of VMR for all cases, we retain the former and use probability

plots (probability versus quantiles) to further check the agreement between observed data and models. We compare ECDFs

Fn(z) with the CDFs FP(z) and FβB(z) of Poisson and βB models, respectively. Probability plots are complemented with

diagrams of the differences δ(z) = Fn(z)−Fmodel(z) versus z. For the 95% threshold, Figures 3a and 3b show that the

Poisson distribution cannot account for the observed variability of the empirical distributions, while βB models cover the470

range of variability thanks to the additional parameter summarizing the intra-block autocorrelation. This is consistent with the

interpretation of over-dispersion as an effect of temporal dependence already highlighted in Figure 2. The diagrams of δ(z)

versus z in Figures 3e and 3f confirm that the βB models are closer to the empirical distributions for a wider range of Z

values compared with Poisson. For the 99.5% threshold, we have similar results (Figures 3c, 3d, 3g, and 3h), indicating that the

temporal dependence of the generating processes Y still plays a role despite the apparently low correlation of Z time series.475

The outcome of our exploratory analysis disagrees with results of goodness-of-fit tests reported by Farris et al. (2021), who

concluded that the hypothesis of Poisson distribution for Z cannot be rejected in more than 95% of the gauges at αglobal = 0.05
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Figure 4. Illustration of FDR criterion for αFDR
∼= 0.10 (gray diagonal line) corresponding to αglobal

∼= 0.05 (Wilks, 2016). Plotted points

are the sorted p-values of 1,106 local tests for KS, PPMCC, and VMR tests. Points below the diagonal lines represent significant results (i.e.,

rejections of H0) according to FDR control level.

for all values of percentage threshold and number of years. Therefore, we applied the three goodness-of-fit tests described in

Section 4.1 to double check results of our exploratory analysis and allow a direct comparison. Figure 4 shows the FDR diagrams

reporting the sorted p-values versus their ranks (Wilks, 2016, fig. 3). The number of p-values underneath the reference FDR480

line, which represent significant results according to the FDR control level αFDR = 0.10 (Wilks, 2016), strongly depends on

the specific test and threshold used. For the 95% threshold, the FDR rejection rates are 21%, 3%, and 53%, for KS, PPMCC,

and VMR tests, respectively. For the higher 99.5% threshold, the number of events decreases, and OT values tend to correspond

to POT. Therefore, the rejection rates decrease, becoming 1%, 0.1%, and 12% for KS, PPMCC, and VMR tests, respectively.

As anticipated in Section 4.1, these results highlight that the choice of statistical tests characterized by different power can lead485

to completely different and ambiguous conclusions.

Therefore, the theoretical arguments discussed in Section 4.1 and the foregoing exploratory analysis indicate that the βB
distribution might be a good candidate distribution to describe Z, while neither Poisson nor NHP are suitable options. This

calls into question the use of Poisson-INAR(1) model as a stationary dependent reference to be used in the subsequent trend

analysis. Note that the emergence of βB distribution is inherently related to the assumption of serial dependence. In other490

words, even though we can build autocorrelated processes with whatever marginal distribution, and these models (e.g., Poisson-

INAR(1)) can be technically correct from a mathematical standpoint, they are not necessarily consistent with the studied

process. In the present case, theoretical reasoning tells us that the distribution of Z over finite-size blocks under the assumption

of temporal dependence is over-dispersed and cannot be Poissonian. It follows that autocorrelated processes with Poisson

marginal distributions are known in advance to be unsuitable for these OT processes, albeit they can be mathematically correct495

and suitable in other circumstances.
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It is also worth noting how simple diagnostic plots supported by theoretical arguments concerning stochastic properties of

the studied process provide more information than the binary output (rejection/no rejection) of whatever statistical test, and

also help identification of consistent models. On the other hand, statistical tests might be misleading. They suffer not only

from several logical and technical inconsistencies but also from trivial problems related to the their choice (see discussion in500

Section 6.1). In fact, while KS, PPMCC, and VMR tests seem to be suitable choices, they have very different power for the

specific problem at hand, and can lead to contrasting conclusions, without providing insights about the actual nature of the

investigated process.

5.2 Stationary or nonstationary models?

5.2.1 Linear correlation versus linear trends: Practical consequences of confusing assumptions with models505

The test-based approach led Farris et al. (2021) to discard temporal dependence as a possible cause of apparent trends in Z

time series based on disagreement between trend slopes estimated on observed data and Poisson-INAR(1) simulated samples,

respectively. In particular, their conclusion is based on diagrams of lag-1 autocorrelation coefficient ρ̂1 versus slope of linear

trend ϕ̂ estimated on observed Z time series, and sequences simulated by NHP and Poisson-INAR(1). Since the foregoing

exploratory analysis indicated that NHP and Poisson-INAR(1) models are not consistent with the marginal distributions of Z,510

we used IAAFT samples as a more realistic alternative.

Figure 5a compares the observed pairs (ρ̂1, ϕ̂) with those resulting from Poisson-INAR(1) models. Figure 5a is similar to

Figure 4a in Farris et al. (2021), which however compares observed pairs (ρ̂1, ϕ̂) with those corresponding to independent

Poisson variables. Figure 5a confirms that the Poisson-INAR(1) models do not provide a good description of the observed

behavior, as expected for models that cannot even reproduce marginal distributions. On the other hand, the pattern of the pairs515

(ρ̂1, ϕ̂) estimated from IAAFT samples matches that of the observed pairs much better (Figure 5b).

Following Farris et al. (2021), we also simulated 10,000 samples from (i) NHP model for fixed values of ϕ ranging between

-0.2 and 0.2, (ii) Poisson-INAR(1) for ρ1 ranging between 0 and 0.8, and additionally (iii) IAAFT. The 10,000 samples from the

three models allow the estimation of two different conditional probabilities, that is, P[P1 ≤ ρ1|Φ= ϕ] and P[Φ≤ ϕ|P1 = ρ1],

respectively. Therefore, we can estimate the confidence intervals (CIs) of the conditional variables (ρ1|Φ= ϕ) for NHP and520

(ϕ|P1 = ρ1) for Poisson-INAR(1). Figures 5c and 5d show these point-wise CIs. Even though their comparison in unfair as

they refer to different conditional distributions, Farris et al. (2021) discarded Poisson-INAR(1) as CIs of (ρ1|Φ= ϕ) for NHP

cover the observed pairs (ρ̂1, ϕ̂) better than CIs of (ϕ|P1 = ρ1).

However, as mentioned in Section 4.2, if a specific model in the class of stationary models does not fit well, this does

not enable to discard the entire class. In fact, the conditional CIs of (ρ1|Φ= ϕ) built from the IAAFT samples indicate that525

alternative stationary processes can yield results similar to NHP. On the other hand, IAAFT CIs of (ϕ|P1 = ρ1) are much wider

than those from Poisson-INAR(1) samples, thus confirming that such a model is clearly inappropriate to describe Z. Therefore,

the class of dependent stationary models and the assumption of stationarity cannot be discarded based on the poor performance

of a single misspecified stationary model that does not even reproduce the marginal distribution of the observed data.
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Figure 5. Scatter plots of the pairs (ρ̂1, ϕ̂) for the 1,106 observed Z time series over the 95% threshold and 100 years (1916-2015) along

with pairs corresponding to Poisson-INAR(1) samples (a), pairs corresponding to IAAFT samples (b), 95% CIs of (ϕ|P1 = ρ1) for IAAFT

and NHP (c), and 95% CIs of (ρ1|Φ= ϕ) for IAAFT and Poisson-INAR(1) (d).
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Figure 6. (a) Scatter plot of the pairs (ϕ̂, ϕ̂k), where ϕ̂ is the slope of the linear trend estimated on the observed Z time series for the 95%

threshold and 100 years, while ϕ̂k (with k = 1, ...,4) are the slopes estimated on four sub-samples of length equal to 25 years. (b and c)

Similar to (a) but for time series simulated from NHP and IAAFT, respectively.

The foregoing analysis is complemented by an additional one focusing on sub-samples. Following Farris et al. (2021), we530

sampled Z values recorded every four years, thus extracting four sub-series of size 25, and therefore removing the effect

of potential autocorrelation at lags from 1 to 3 years. For each sub-sample, we estimated the linear trend slopes ϕ̂k (with

k = 1, ...,4) and plotted it against the slope estimated on the full series.

Figures 6a and 6b reproduce Figure 5 in Farris et al. (2021). Figure 6a shows the scatter plot of the pairs (ϕ̂, ϕ̂k) of the

observed Z, while Figure 6b displays the pairs (ϕ̂, ϕ̂k) for synthetic series from the NHP model. The similarity of the patterns535

led Farris et al. (2021) to conclude that the serial dependence does not play any significant role, and observed trends are con-

sistent with NHP behavior. However, the additional Figure 6c shows that also the pairs (ϕ̂, ϕ̂k) from stationary and temporally

correlated IAAFT samples exhibit a behavior similar to that of the observed Z, thus contradicting the foregoing conclusion.

Similarly to the analysis of pairs (ρ̂1, ϕ̂), the analysis of the pairs (ϕ̂, ϕ̂k) seems to be reasonable at a first glance. However,

it suffers from similar inconsistencies:540

– Four-year lagged sub-samples are supposed to be approximately independent based on the belief that the correlation is

week and the value of ACF terms is generally low. However, this assumption misses the fact that, under dependence,

the ACF estimates on finite samples are negatively biased and need to be adjusted according to a parametric model of

choice. In this respect, Figure 5 and the corresponding Figure 4 in Farris et al. (2021) are not even consistent because all

panels show the ρ1 values obtained by standard estimators that are only valid under independence, whereas the panels545

referring to Poisson-INAR(1) and IAAFT should show ρ1 values adjusted for estimation bias. This further confirms that

assumptions like (in)dependence and (non)stationarity influence not only the model parametrization (e.g., Poisson with

or without linear trend), but the entire inference procedure, including diagnostic plots and their interpretation.
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– The performance of a specific independent nonstationary model (NHP) is incorrectly considered to be informative about

the performance of an entire alternative class of dependent stationary models, while NHP is not even defined under those550

alternative assumptions. The ability of NHP to reproduce the patterns of (ϕ̂, ϕ̂k) cannot exclude the existence of equally

good or better models based on different assumptions. The only way to understand if a class of models (and the underly-

ing assumptions) is suitable for a given data set is to use credible members of such a class. This conceptual mistake is the

same one affecting statistical tests, where the rejection of H0 is often misinterpreted and leads to uncritically embrace

the alternative hypothesis H1, while rejection can be due to unknown factors that are not included in either H0 or H1555

(see discussion in Section 6.1).

To summarize, our analysis shows that neither NHP nor Poisson-INAR(1) are suitable models for Z in the considered range

of thresholds. On the other hand, for POT and high thresholds, we recover the theoretically expected Poissonian behavior, and

NHP and Poisson-INAR(1) models tend to converge to Poisson model, thus becoming almost indistinguishable.

5.3 Trend analysis of observed extreme P occurrences: The actual role of spatio-temporal dependence560

After analyzing marginal distributions and temporal dependence, we study spatio-temporal fluctuations of Z, comparing

model-based and test-based methods. We expand the analysis of Z (number of annual OT at each gauging location) con-

sidering the number of daily and annual OT events aggregated over the five regions described in Section 2 and shown Figure 1.

This allows us to check if the assumption of dependence and the corresponding models provide a reasonable description of OT

frequency over a range of spatio-temporal scales.565

5.3.1 Trend analysis under temporal dependence

We analyze the presence of trends in Z time series recorded at the 1,106 stations selected from the GHCN gauge network.

For the sake of comparison with test-based results, trends are investigated applying the same MK and PR tests. However, the

distributions of test statistics (and therefore critical values) are estimated from 10,000 IAAFT samples to properly account for

the over-dispersion of the marginal distributions and temporal correlation. Moreover, tests are firstly performed at the local 5%570

significance level without applying FDR to check if the empirical rejection rate is close to the nominal one, as expected under

correct model specification.

Figures 7 and 8 show the maps of trend test results for the 95% threshold, 100-year sample size, and the three regions North

America, Eurasia, and Australia, with and without FDR, respectively (results for the other combinations of thresholds and

sample sizes with and without FDR are reported in Figures S2-S7 in the Supplement). Results in Figures 7 and 8 are different575

from those reported by Farris et al. (2021) in their analogous Figure 9. To better understands such differences, we examine the

rejection rates of both MK and PR tests for the four combinations of two thresholds (95% and 99.5%) and two sample sizes

(50 and 100 years), and four different cases: (A) critical values of test statistics obtained by IAAFT without bias correction of

the autocorrelation and without FDR, (B) critical values obtained by IAAFT with bias correction and without FDR, (AFDR)

critical values obtained by IAAFT without bias correction and FDR, and (BFDR) critical values obtained by IAAFT with bias580
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Figure 7. Maps of statistically significant trends at the GHCN gauges of the three regions North America (a), Eurasia (b), and Australia

(c). Results refer to MK and PR tests applied to Z time series for 100-year sample size and the 95% threshold without FDR. Statistical

tests are performed at the local 5% significance level without applying FDR. The distributions of test statistics (and therefore critical values)

are estimated from 10,000 IAAFT samples. Gray circles ‘◦’ denote lack of rejection by both tests. Results for the other combinations of

thresholds and sample sizes are reported in Figures S2-S4 in the Supplement.

correction and FDR (Table 1). The second case highlights the effect of neglecting the bias of classical ACF estimators under

the assumption of temporal dependence, while the third and fourth ones show the effects of spatial correlation (albeit indirectly

via FDR).

Focusing on case A, for 50-year time series, local rejection rates are always close to the nominal 5%, as expected. For

100-year time series, local rejection rates corresponding to 95% and 99.5% thresholds reach a maximum of 22% and 14%,585

respectively. These values seems to be higher than expected. However, after correcting ACF bias (case B), the maximum

rejection rate for the 95% threshold drops to 13%, whereas the rejection rates for the 99.5% threshold stay almost unchanged.

This is due to the higher (lower) autocorrelation of OT values corresponding to lower (higher) thresholds, and therefore stronger

(weaker) bias correction. Overall, accounting for ACF bias results in rejection rates ranging between 9% and 13%. After

considering (indirectly) the effects of spatial correlation via FDR (cases AFDR and BFDR), the rejection rate drops to zero in590

all cases if we correct ACF bias (case BFDR), meaning that all tests are globally not significant at αFDR
∼= 0.10. If we do not
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Figure 8. Similar to Figure 7 but with FDR. Results for the other combinations of thresholds and sample sizes are reported in Figures S5-S7

in the Supplement.

adjust ACF bias (case AFDR) a small percentage of tests indicates global significance at αFDR
∼= 0.10 for sample size 100 and

threshold equal to the 95%. This is expected as the correction of ACF bias is more effective for larger sample sizes and lower

thresholds. In fact, decreasing thresholds generally correspond to increasing temporal correlation of Z samples, and larger

samples allow a better quantification of the properties of a correlated process.595

Some simple diagnostic plots can provide a clearer picture. Figure 9 shows the scatter plots of the pairs (ρ̂1, ϕ̂) with the

rejections highlighted by different markers. Figure 9 is analogous to Figure 10 in Farris et al. (2021), but using IAAFT samples

and considering the cases A, B, AFDR, and BFDR. It shows how the number of rejections decreases as the effects of temporal

and spatial correlation are progressively compounded. Focusing on case B, rejections tend to occur for higher values of |ϕ̂|
conditioned to the value of ρ̂1, but there is no systematic rejection for all |ϕ̂| exceeding a specified value as for the case A.600

On the contrary, the pairs marked as ‘rejections’ overlap the pairs marked as ‘no rejection’ indicating that we can have both

‘rejections’ and ‘no rejections’ for time series with similar values of ρ̂1 and ϕ̂.

These results disagree with those reported by Farris et al. (2021), who found that the hypothesis of significant trend is always

rejected for |ϕ̂|> 0.05 events/year, and concluded that “the occurrence of the different cases is controlled by ϕ̂, while ρ̂1 is
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Figure 9. Scatter plots of the pairs (ρ̂1, ϕ̂) with the rejections highlighted by different markers. Markers refer to rejection of MK test, PR

test, or both for Z time series corresponding to the four combinations of two thresholds (95% and 99.5%) and two sample sizes (50 and

100 years) and the three cases A= {Biased ACF | w/o FDR}, B = {Bias adjusted ACF | w/o FDR}, AFDR = {Biased ACF | w/ FDR}, and

BFDR = {Bias adjusted ACF | w/ FDR}. Gray circles ‘◦’ denote lack of rejection by both tests.
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Table 1. Rejection rates of PR and MK tests for the four combinations of two thresholds (95% and 99.5%) and two sample sizes (50 and 100

years) and different treatment of spatio-temporal dependence (cases A= {Biased ACF | w/o FDR}, B = {Bias adjusted ACF | w/o FDR},

AFDR = {Biased ACF | w/ FDR}, and BFDR = {Bias adjusted ACF | w/ FDR})

Test Threshold [%] Sample size [years] Rejection rate [%]

case A case B case AFDR case BFDR

PR 95 100 22.3 13.4 3.0 0

MK 20.3 12.6 0 0

PR & MK 18.2 9.9 4.6 0

PR 95 50 6 5.8 0 0

MK 6 5.6 0 0

PR & MK 3.9 3.9 0 0

PR 99.5 100 13.7 12.6 0 0

MK 14.2 11.9 0 0

PR & MK 11 9.1 0 0

PR 99.5 50 5.5 5.4 0 0

MK 5.6 5.3 0 0

PR & MK 3.7 3.6 0 0

not influential, thus providing additional evidence on the limited effect of autocorrelation on trend detection”. However, those605

rejections result from MK and PR tests performed under the assumption of temporal independence (case “ρ= 0; φ= 0” in

Farris et al. (2021)). In this case, rejections are necessarily independent of ρ̂1 due to the implicit model under which the tests

are performed. As recalled in Section 1, results should be interpreted in light of the underlying statistical model and not vice

versa.

As mentioned throughout this study, a suitable diagnostic plot might be more informative than just reporting the number/rate610

of rejections. Figure 10 displays the FDR diagrams of the sorted p-values versus their ranks for MK and PR tests. All p-

values are above the FDR reference line. Independently of the geographic region one focuses on, all tests are not significant at

αFDR
∼= 0.10, and H0 cannot be rejected at global level. Moreover, FDR diagrams provide additional information. In fact, when

H0 is consistent with the underlying (implicit or explicit) model and corresponding assumptions, p-values are expected to be

uniformly distributed, that is, aligned along a straight line connecting the origin (0,0) and the point with abscissa equal to the615

maximum rank and ordinate equal to the maximum p-value, where the latter is equal to 1 (0.5) for one-sided (two-sided) tests

(e.g., Falk and Michel, 2006; Serinaldi et al., 2015). Figure 10 shows that the estimated p-values are reasonably aligned along

such a line, thus confirming the overall (global) consistency of H0 with a temporally correlated and over-dispersed process for

Z.
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Figure 10. Illustration of FDR criterion with αFDR
∼= 0.10 (gray diagonal line). Plotted points are the sorted p-values resulting from the

application of MK and PR tests to data recorded at each location. Results are reported for the five regions described in Section 2. The

distributions of test statistics (and therefore critical values) are estimated from 10,000 IAAFT samples. Points below the diagonal lines

represent significant results (i.e., rejections of H0) according to FDR control levels.
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5.3.2 Space beyond time: The non-negligible effects of spatial dependence620

Figure 7 (and Figures S2-S4 in the Supplement) shows that the locally significant trends tend to cluster in geographic areas

where such trends exhibit the same sign (e.g., South-Western Australia, North America, and European coastal areas around the

North Sea). Often this behavior is interpreted as further evidence of trend existence. However, this interpretation neglects that

the spatial clustering is also an inherent expression of spatial dependence in the same way temporal clustering is the natural

expression of temporal dependence (see e.g., Serinaldi and Kilsby, 2016b, 2018; Serinaldi and Lombardo, 2017a, b, 2020, for625

examples of spatio-temporal clustering).

For example, Farris et al. (2021) state that the detection of significant trends with similar sign/magnitude over spatially

coherent areas “is also supported by the physical argument that extreme P is often controlled by synoptic processes (Barlow et

al., 2019), and that their occurrence is changing in time (Zhang & Villarini, 2019)”. However, while similar evolution of the

occurrence of extreme P and synoptic systems is due to their physical relationships, statistical tests for trends cannot provide630

information about the nature of the temporal evolution of such processes. Indeed, as shown in Section 5.3.1, the outcome of

statistical tests depends on the underlying assumptions. Therefore, the jointly evolving fluctuations of both processes (extreme

P and synoptic systems) can be identified as ‘not significant’ or ‘significant’ based on the assumptions used to perform the

statistical tests. Loosely speaking, if we observe an ‘increasing trend’ in the occurrence of synoptic systems, a similar behavior

likely emerges in local P records observed over the area interested by the synoptic processes, as the latter cause the former.635

Therefore, what we actually need is to identify the physical mechanism causing trends in the synoptic systems, as trends in

extreme P are just a consequence. In this respect, performing massive statistical testing is rather uninformative, as it does not

matter if the observed fluctuations are statistically significant or not. Detecting trends in multiple local processes that are known

to react to fluctuations of synoptic generating processes does not add evidence, and just reflects information redundancy due to

their common causing factor.640

To support the foregoing statements with quantitative analysis, we checked the consistency of the spatio-temporal behavior

of observed OT occurrences with the assumption of spatio-temporal dependence. Following the model-based approach, we

avoid statistical tests for trend detection and rely on theoretical reasoning to formulate a coherent model, thus checking the

agreement with observations by simple but effective diagnostic plots.

We firstly check the role of possible spatial dependence of OT occurrences focusing on the distribution of the number ZS of645

daily OT occurrences over the five regions introduced in Section 2 (i.e., World, North America, Eurasia, North-Western Europe,

and Australia). Daily time scale is selected to isolate the effect of spatial dependence from that of temporal dependence, as it

is the finest time scale, and the counting procedure does not involve any aggregation over time. The occurrence of OT events

over m locations can be seen as the outcome of m Bernoulli trials. Under dependence, the distribution of ZS can be described

by a βB distribution, where the parameter ρβB controlling over-dispersion can be expressed as the average of the off-diagonal650

terms of the lag-0 correlation matrix of the process Y describing the daily occurrence/non occurrence of OT events at each

spatial location (see Section S4 in the Supplement). In other words, if the spatial correlation is sufficient to describe the spatial
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Figure 11. ECDFs of number of OT events (for the 95% and 99.5% thresholds) occurring at daily time scale over different regions along

with Binomial and βB CDFs.

clustering, we expect that the βB distribution with ρβB estimated as the average cross-correlation between binary time series

of daily OT occurrences faithfully matches the empirical distribution of ZS over any region.

Figure 11 shows that the βB distribution reproduces accurately the above-mentioned empirical distributions for any threshold655

and region. Note that North America, Eurasia, Australia, and North-Western Europe are nested regions of World, and North-

Western Europe is also a nested region of Eurasia. Therefore, the remarkable fit of βB indicates that the spatial correlation is

sufficient to describe the spatial clustering both globally and locally. In other words, the simultaneous occurrence of daily OT

events in North America or North-Western Europe, for instance, is consistent with a stationary spatially correlated process.

Figure 11 also reports the Binomial distribution that would be valid under independence, thus highlighting the huge (but too660

often neglected) impact of spatial dependence on the distribution of ZS (see also Douglas et al., 2000; Serinaldi and Kilsby,

2018; Serinaldi et al., 2018, for additional examples).

Since the aim of tests for trend should be the detection of ‘deterministic’ temporal patterns, we checked the possible temporal

evolution of the distribution of ZS over the five regions. This information is summarized in Figure 12 in terms of box plots of

ZS aggregated at decadal scale to better visualize temporal patterns along the century. Figure 12 also shows the 95% prediction665

intervals from Binomial and βB distributions reported in Figure 11. Of course, these prediction intervals are constant as the

Binomial and βB distributions are unique under the assumption of stationarity. The empirical distributions of ZS do not show

any evident temporal evolution along the ten decades, and more importantly, any possible fluctuation is well within the range of
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Figure 12. Box plots summarizing the decadal distributions of the number of OT events (for the 95% and 99.5% thresholds) occurring at

daily time scale over different regions along with the 95% prediction intervals corresponding to Binomial and βB distributions.

values allowed by the βB distribution. The comparison of the 95% prediction intervals from Binomial and βB models further

highlights the huge effect of spatial dependence, which can yield prediction intervals from ∼= 2 up to ∼= 6 times wider than670

those corresponding to spatial independence.

5.3.3 Space and time: The non-negligible effects of spatio-temporal dependence

While the analysis at daily scale allowed to focus on spatial dependence, here we focus on the annual number ZST of OT events

over multiple locations. Studying the spatial clustering of such data implies aggregation in space and time. In other words, the

occurrence of OT events can be thought of as a set of Bernoulli trials over m locations (i.e., the number of stations in each675

geographic region) and n time steps (i.e., the 365 days in one-year time interval), and we are interested in the distribution of
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Figure 13. ECDFs of number of OT events (for the 95% and 99.5% thresholds) occurring at annual time scale over different regions along

with Binomial and βB distributions.

ZST resulting from m ·n Bernoulli trials. This case is analogous to that concerning daily OT occurrences. The βB distribution

is still a theoretically consistent model for ZST, and its over-dispersion parameter ρβB can be expressed as the average of

all lagged auto- and cross-correlation values of the generating binary process Y up to time lag n= 365 (see Section S4 in the

Supplement). Also in this case, we use probability plots and box plots to assess the validity of the βB distribution, and therefore680

its underlying assumption of spatio-temporal dependence.

Figure 13 shows that the βB model faithfully describes the ECDFs of ZST for any threshold and region. This means that the

local spatio-temporal correlation is sufficient to describe the differences in all regions and sub-regions without introducing any

ad hoc local models, involving for instance physically unjustified linear trends or generic links with local exogenous factors.

We stress again that the parameter ρβB is not estimated on the 100 values of ZST in each region, but it comes from the spatio-685

temporal correlation values of the generating binary process Y . Therefore, the goodness of fit of the βB distribution is not

related to the minimization of some distance metric for 100-size samples, but depends on the agreement of the observed binary

time series with the hypothesized stationary spatio-temporal stochastic process Y .

For any threshold and region, Figure 14 confirms that the temporal fluctuations of the distribution of ZST is well within

the range of values expected from a stationary stochastic process characterized by the observed spatio-temporal correlation690

structure. In this case, the 95% prediction intervals from βB models under spatio-temporal dependence are from ∼= 3 up to ∼= 13

times wider than those yielded by Binomial distribution under spatio-temporal independence. Of course, an increasing pattern

along the decades is evident in the regions of the Northern hemisphere. However, accounting for spatio-temporal correlation

dramatically changes their interpretation. Such fluctuations are obviously inconsistent with the assumption of independence
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Figure 14. Box plots summarizing the decadal distributions of the number of OT events (for the 95% and 99.5% thresholds) occurring at

annual time scale over different regions along with the 95% prediction intervals corresponding to Binomial and βB distributions.

and therefore the Binomial model. This explains the high rejection rate of the trend tests performed under independence. On695

the other hand, low-frequency fluctuations evolving over wide spatial scales, and time scales comparable or longer than the

observation period are the expected behavior of spatio-temporal dependent processes. Therefore, we should ask ourselves

whether such fluctuations can look unexpected or surprising because they are actually unusual or just because humans tend

to systematically underestimate the actual uncertainty characterizing the surrounding environments, thus looking at hydro-

climatic processes with a too anthropocentric point of view, which is inherently uncertainty-averse or behaviorally biased700

toward known outcomes.
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6 General discussion and concluding remarks

6.1 Statistical tests for trend detection: unfit for purpose!

Disagreement between model-based and test-based methods are mainly related to the inherent problems affecting statistical

hypothesis tests. They are statistical methods developed for evaluation of differences in repeatable experiments that “have been705

misused to create an illusion of a scientific analysis of unrepeatable hydrologic events” (Klemeš, 1986). Logical, conceptual,

and practical inconsistencies of statistical tests have been widely discussed in both theoretical and applied literature (Pollard

and Richardson, 1987; Gigerenzer et al., 1989; Flueck and Brown, 1993; McBride et al., 1993; Meehl, 1997; Gill, 1999;

Johnson, 1999; Nicholls, 2001; Krämer and Gigerenzer, 2005; Levine et al., 2008; Ambaum, 2010; Clarke, 2010; Beninger

et al., 2012; Ellison et al., 2014; Nuzzo, 2014; Briggs, 2016; Greenland et al., 2016; Wasserstein and Lazar, 2016; Serinaldi710

et al., 2018, 2020a; Wasserstein et al., 2019, and references therein).

One of the key drawbacks of statistical tests is the error of ‘transposed conditional’ (also known as ‘converse inequality

argument’ or ‘inverse probability problem’ (Pollard and Richardson, 1987; Gill, 1999; Krämer and Gigerenzer, 2005; Ambaum,

2010; Beninger et al., 2012; Serinaldi et al., 2018, 2022)). It consists of confusing conditional and conditioning events, so that

we are interested in the probability of the null hypothesis H0 given the observational evidence (data), and we end up calculating715

the probability observational data when H0 is assumed to be true. This is like confusing the probability P[a man is a UK citizen

| a man is the King of the UK] ∼= 1 with the probability P[a man is the King of the UK | a man is a UK citizen] ∼= 1/(33.7·106).
In the context of statistical tests for trend detection applied to hydro-climatic data, rejection of H0 (e.g., ‘no trend’) does

not provide information about the likelihood of H0 given the observations. Rejection does not allow any statement about

possible deterministic trends because deterministic trends are not a property of the model H0 assumed to perform the test.720

In other words, ‘rejection’ can be due to something that is unknown and different from deterministic trends. Similarly, ‘no

rejection’ might be related to violation of implicit assumptions of the model H0, thus introducing spurious effects due to

exogenous factors (Serinaldi et al., 2022). One of these factors is the spatio-temporal dependence. Its effects on statistical

inference have been widely studied in the literature (Jones, 1975; Katz, 1988a, b; Katz and Brown, 1991; Kulkarni and von

Storch, 1995; Hamed and Rao, 1998; Douglas et al., 2000; Yue and Wang, 2002; Koutsoyiannis, 2003; Yue and Wang, 2004;725

Hamed, 2008, 2009a, b, 2011; Bayazit and Önöz, 2007; Serinaldi and Kilsby, 2016a, 2018; Serinaldi et al., 2018, 2020a). In

particular von Storch and Zwiers (2003, p. 97) recalled that “the use of statistical tests in a cookbook manner is particularly

dangerous. Tests can become very unreliable when the statistical model implicit in the test procedure does not properly account

for properties such as spatial or temporal correlation”. Nonetheless, the foregoing iterated warnings and recommendations are

systematically ignored.730

6.2 Models, tests, and their interpretation

The aim of most of the literature applying statistical tests for trend detection on hydro-climatic processes is to find the answer

to a question that can generally be summarized as ‘are these processes stationary or nonstationary?’. However, such a question
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is scientifically ill-posed as natural processes cannot be either stationary or nonstationary. Only mathematical models used to

describe physical processes can.735

It can be argued that ‘statistical trend testing attempts to assess whether the natural process has manifested in a stationary

or nonstationary fashion during the period of observation to ultimately support decision-making in the future’. However, this

type of statements confuses sampling fluctuations, which can look monotonic or not, with a population property such as sta-

tionarity. Statistical trend tests attempt to infer the latter, as theoretical properties/assumptions are the only one behind any

statistical method. As every statistical method, statistical tests for trend detection make inference about ‘population station-740

arity’ (Khintchine, 1934; Kolmogorov, 1938), not about sampling fluctuations, which can result from a variety of stationary

and nonstationary processes. These tests attempt to establish what kind of population behavior is compatible with observed

sampling fluctuations. Otherwise, we would not need any test to state that an observed sample shows a given (monotonic

or non-monotonic) temporal pattern, as we would just need to look at the diagrams of time series. We infer the population

properties because these allow us to assume a model and make out-of-sample predictions. We argue that the vague use of the745

term ‘stationarity’, overlooking a formal definition and its consequences, is one the main reasons of a widespread misuse and

misinterpretation of the output of statistical tests (see Koutsoyiannis and Montanari, 2015; Serinaldi et al., 2018, and Section

S3 in the Supplement for further discussion).

The comparison of test-based and model-based approaches discussed in this study attempts to clarify the foregoing concepts.

For the same physical process (i.e., the OT occurrences of P ) we showed two options. On the one side, we can choose to model750

the number Z of OT occurrences by nonstationary Poisson distributions (NHP). In this way, (i) we neglect that the Poisson

distributions are theoretically unsuitable to describe Z, and therefore do not reproduce the observed marginal distribution of

the Z process, and (ii) we assume that the rate of occurrence in NHP models change in time according to linear (or nonlinear)

laws that have no physical justification. The aim of this type of regression models is exactly to follow sampling fluctuations,

and they hardly ever provide information about the underlying population properties. This also explains why extrapolation755

for this type of models is always deprecated in textbooks and introductory courses in statistics, and when it is done, it might

yield paradoxical results (Serinaldi and Kilsby, 2015; Luke et al., 2017; Iliopoulou and Koutsoyiannis, 2020). On the other

side, we can attempt to preliminarily understand the general theoretical properties of spatio-temporal OT processes, look

for appropriate models reproducing such expected population properties, and check if these models are general enough to

reproduce the observations at various spatio-temporal scales. Using this approach, we ended up with the conclusion that the760

spatio-temporal correlation structure of a stationary stochastic process provides a good description of the behavior of the

observed OT frequencies at various spatio-temporal scales. Thus, the actual question is not about the (non)stationarity of

natural processes or ‘(non)stationary behavior of observed samples’, but which kind of model we deem more suitable in terms

of generality, reliability and parsimony.

Conversely to what is often iterated in the literature, accurate statistical trend analysis of observed and modeled P time765

series are not key to validate hypotheses on the underlying physical mechanisms and do not improve our ability to predict

the magnitude of these changes. On the contrary, the foregoing discussion shows that the statistical tests for trend detection

might generate confusion, potentially concealing model mis-specification (see also Serinaldi and Kilsby, 2016a; Serinaldi et al.,
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2018, 2020a, 2022, for further examples). Statistical tests can just reflect the properties of the underlying models at most, while

well devised models do not need any statistical test to be validated. In fact, we did not use any statistical test to show the validity770

of the model-based approach. We only needed to visually compare observed properties with those expected from theory for

a range of spatio-temporal scales. When we applied statistical tests for the sake of comparison with existing literature, tests’

outcomes just reflected what was already known and expected from a theoretical point of view.

6.3 Confirmatory versus dis-confirmatory empiricism

Why do our results contrast with those reported in most of the existing literature on trend detection? Because most of this775

literature resorts to methods based on the same unrealistic assumption of independence and corresponding trivial models such

as those discussed in this study. On the other hand, when dependence is accounted for, its true consequences on the entire

inference procedure are commonly underestimated, partially missed, or neglected (e.g., Lombardo et al., 2014; Koutsoyiannis,

2020; Dimitriadis et al., 2021, and references therein). Therefore, the resulting (expected) high rejection rates are incorrectly

interpreted as evidence of a specific alternative, whereas rejection can be due to a variety of causes that are not considered in780

the analysis. The missing key point is that the results of statistical analysis and their interpretation depend on the underlying

assumptions and models according to the rationale of statistical inference (Aitken, 1947; Cramér, 1946; Papoulis, 1991; von

Storch and Zwiers, 2003). Conversely to what is incorrectly stated in the literature too often, even the simplest diagnostic

diagram relies on an underlying model.

Why does most of the literature on trend detection rely on the same methods? There are several causes. We argue that785

the main one is a too superficial approach probability and statistics along with insufficient exposure to the epistemological

principles of science. Using similar methods based on the same assumptions always gives similar results. However, “a mil-

lion observations of white swans do not confirm the non-existence of black swans” and “a million confirmatory observations

count less than a single disconfirmatory one... What is called ‘evidence based’ science, unless rigorously disconfirmatory, is

usually interpolative, evidence-free, and unscientific” (Taleb, 2020). Since most of the literature on trend detection is just an790

iterative application of test-based approach and eventually statistical tests under the assumption of independence or ill-defined

dependence, one should wonder if the general agreement is related to the common misinterpretation of the output of the same

inappropriate methodologies rather than to physical properties. In this study, we offered an alternative point view, which is

nothing but the specialization for data analysis of the scientific method used for centuries and seemingly forgotten in the re-

cent decades in some research areas. Obviously, according to the scientific method, also the content of this study should be795

taken critically, and interested readers should independently assess which approach (test-based, model-based or something

else) looks more general, reliable and parsimonious, and eventually consistent with the epistemological principles of scientific

inquiry.

Data availability. Data are freely available from the Global Historical Climatology Network repository (Menne et al., 2012a, https://www.ncei.noaa.gov/access/metadata/landing-
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