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Abstract. Improving the consistency of hydrological models, i.e. their ability to reproduce observed system 

dynamics, is required to increase their predictive power. As the use of streamflow data for calibration is necessary 

but not sufficient to constrain model and warrant model consistency, other strategies must be considered, in 15 

particular the use of additional data sources. The aim of this study is to test whether simultaneous calibration of 

dissolved organic carbon (DOC) and nitrate (NO ) concentrations along with streamflow improves the 

hydrological consistency of a parsimonious solute-transport model. A multi-objective and multi-variable approach 

was used to evaluate the model in an intensive agricultural headwater catchment. Our results showed that using 

daily stream concentrations of DOC and NO  together with streamflow data during calibration did not improve 20 

the model's ability to accurately predict streamflow for calibration or evaluation periods. However, the internal 

consistency of the model was improved for the simulation of low flows, groundwater storage and upstream soil 

storage, but not for the simulation of riparian soil storage. Parameter uncertainty decreased when the model was 

calibrated using solute concentrations, except for parameters related to fast and slow reservoir flow. This study 

shows the added value of using multiple data sources in addition to streamflow data for calibration, in particular 25 

DOC and NO  concentrations, to constrain hydrological models for a better representation of internal hydrological 

states and flow. With the increasing availability of solute data from catchment monitoring, this approach provides 

an objective way to improve the internal consistency of hydrological models that can be used with confidence in 

scenario evaluation. 

 30 

Keywords: Hydrological models, Equifinality, Consistency, Multi-objective calibration, Stream DOC and nitrate 

concentrations, parsimony. 
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1. Introduction 

Hydrological models are important tools for short-term forecasting of river flows and long-term predictions for 35 

strategic water management planning, as well as for improving understanding of hydrological processes and the 

complex interactions of water storage and release processes at the catchment scale (Minville et al., 2014; Lan et 

al., 2020; Bouaziz et al., 2021). In the wide spectrum of modelling, which ranges from simple to complex (Gharari 

et al., 2014; Hrachowitz and Clark, 2017; Adeyeri et al., 2020), conceptual models, in which only the dominant 

processes are represented and/or several processes may be lumped into a single expression (Pettersson et al., 2001), 40 

are widely used to simulate hydrological dynamics of catchments. Conceptualising the system as a set of storage 

components connected by fluxes representing the perceived dominant processes of a catchment provides a certain 

degree of flexibility. The ability to customize these models to the environmental conditions in a given catchment 

can ensure an appropriate level of complexity to reproduce response patterns of hydrology and water quality 

(Hrachowitz et al., 2016). Major advantages of conceptual models include their relatively low data and 45 

computational requirements, which makes them suitable for studies at different scales or for catchments about 

which little information is available (Gharari et al., 2014; Huang and Bardossy, 2020). However, ad hoc 

implementation of conceptual models frequently lacks a plausible theoretical basis and thus a meaningful 

connection of model structure and parameters to observable quantities when representing integrated system 

processes (Clark et al., 2016). As such, the ability of models, including conceptual ones, to reproduce a system’s 50 

dynamics is also undermined not only by random uncertainties in the data, but also by epistemic or ontological 

uncertainties and thus by limited knowledge of the physical processes that underlie the system’s response (Beven 

and Westerberg, 2011; Gupta et al., 2012; Beven, 2013). These uncertainties and the few observations in a 

continuous spatial domain make such models ill-posed inverse problems (Pettersson et al., 2001; Beven, 2006; 

Hrachowitz et al., 2014). In hydrology, frequently referred to as equifinality (Beven, 1993), these insufficient 55 

model constraints thus result in many, equally good alternative model solutions. Hydrological models with many 

parameters thus tend to adapt to errors and to compensate for inadequate representation of processes through the 

model parameters (Wang et al., 2012). For example, well-predicted river discharge is often associated with poorly 

predicted evaporation fluxes, because evaporation compensates for errors and closes the hydrological balance 

(Minville et al., 2014). Thus, deceptively high calibration accuracy may reflect mathematical fitting of an often 60 

overparameterized model, which may generate undesirable internal dynamics that decrease accuracy in 

independent evaluation periods (Hrachowitz et al., 2014; Fovet et al., 2015a). Robust model calibration and 

evaluation procedures are thus needed to address issues of parameter identifiability (Beven, 2006; Guillaume et 

al., 2019) and transferability (Hartmann and Bárdossy, 2005; Minville et al., 2014; Kreye et al., 2019), and to 

avoid models that act as “mathematical marionettes” dancing to match the calibration data (Kirchner, 2006) but 65 

often fail to reproduce internal system dynamics. 

Recently, a trend toward more comprehensive assessment of the structural adequacy of models has emerged during 

the calibration process (Yen et al., 2014; Rakovec et al., 2016), with the overall goal of improving the 

representation of multiple hydrological processes in a model (Clark et al., 2011; Gupta et al., 2012; Euser et al., 

2015). The rationale behind this goals is the need to obtain the “right answers for the right reasons” (Blöschl, 2001; 70 

Kirchner, 2006), which goes beyond simply comparing model predictions to observed streamflow or associated 

signature measurements (Euser et al., 2013; Fovet et al., 2015a; Rakovec et al., 2016). Indeed, reflecting the results 

of many studies, Rakovec et al. (2016) showed that streamflow data are necessary but not sufficient to warrant 

constraining model components by dividing incoming rainfall among storage, evaporation and drainage (Bouaziz 

et al., 2021). Thus, multiple strategies have been developed to improve the physical realism of conceptual models 75 
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(i.e. model consistency) (Efstratiadis and Koutsoyiannis, 2010), including using additional data that represent 

internal hydrological states and fluxes other than streamflow when estimating parameters. Treating the system 

more holistically (i.e., forcing models to simulate multiple response variables adequately) has considerable 

potential to improve model accuracy (Hrachowitz et al., 2014). The value of such multi-variable and/or multi-

objective strategies has been demonstrated using groundwater levels (Freer et al., 2004; Molenat et al., 2005; 80 

Giustolisi and Simeone, 2006; Fenicia et al., 2008), near-surface soil moisture (Brocca et al., 2010; Sutanudjaja et 

al., 2014; Rajib et al., 2016; Kunnath-Poovakka et al., 2016; López López et al., 2017), saturated contributing 

areas (Franks et al., 1998; Güntner et al., 1999; Blazkova et al., 2002), snow cover (Gao et al., 2017; Bennett et 

al., 2019; Riboust et al., 2019), evaporation (Bouaziz et al., 2018; Demirel et al., 2018; Hulsman et al., 2020), 

streamflow at subcatchment outlets (Moussa et al., 2007), satellite-based total water storage anomalies (Werth and 85 

Güntner, 2010; Yassin et al., 2017) and tracer data (Birkel et al., 2011; Capell et al., 2012; Birkel et al., 2015; 

Kuppel et al., 2018a; Piovano et al., 2019; Stadnyk and Holmes, 2023). Alternately, one may seek to extract more 

information from available data, for example by developing signatures that represent different aspects of the data 

(Euser et al., 2013; Gharari et al., 2014; Fenicia et al., 2018). 

Simultaneously calibrating hydrological models with streamflow and tracer or other solute concentrations in the 90 

stream may decrease their uncertainty and increase their physical plausibility because of the need to reproduce 

both hydrological and biogeochemical dynamics (Pettersson et al., 2001; Woodward et al., 2013a; Fovet et al., 

2015b; Birkel et al., 2017; Strohmenger et al., 2021; Pesántez et al., 2023). The value of this strategy has been 

demonstrated, for example using concentrations of chloride (Hrachowitz et al., 2013) or nitrate (NO ) and sulphate 

(Pettersson et al., 2001; Hartmann et al., 2013). This potential is particularly important when the spatial distribution 95 

of solutes differs significantly from that of the dynamics of stream concentrations (Woodward et al., 2013a; Shafii 

et al., 2019), as often observed for dissolved organic carbon (DOC) and NO  (Taylor and Townsend, 2010; 

Strohmenger et al., 2021). Indeed, previous studies have shown that seasonal variations in DOC and NO  are 

closely related to fluctuations in the groundwater level in groundwater-fed catchments (Aubert et al., 2013; Birkel 

et al., 2014; Humbert et al., 2015; Tunaley et al., 2016; Abbott et al., 2018; Birkel et al., 2020; Strohmenger et al., 100 

2020). In contrast, short-term variations in DOC and NO  have been related to the activation of subsurface and 

surface flow pathways during storm events and the subsequent hydrological connection of DOC-rich and NO -

poor riparian soils to the stream, particularly for near-surface soil layers (Dick et al., 2015; Strohmenger et al., 

2021).  

The objective of this study was thus to test the hypotheses that, by including daily in-stream DOC and NO  105 

concentrations simultaneously in a parsimonious conceptual model in a multi-objective and multi-variable 

calibration and evaluation strategy, we could increase the model's (1) ability to predict streamflow for calibration 

or evaluation periods, (2) internal consistency, and (3) reduce the uncertainty in hydrological parameters. 

 

 110 
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2. Materials and Methods 

2.1. Study site 

The Kervidy-Naizin catchment is located in western France (48° 0’ N, 2° 5’ W) (Fig. 1) and forms part of the 115 

AgrHyS Critical Zone Observatory (Fovet et al., 2018). It is a 4.82 km² headwater catchment of the 12 km² Naizin 

catchment (Fig. 1), which is drained by a second-Strahler-order intermittent stream that frequently dries up from 

July to October and has a mean specific runoff (± standard deviation) of 296 ± 150 mm yr-1.  

The climate is temperate oceanic, with a mean annual temperature of 11.2 ± 0.6°C and mean annual rainfall of 810 

± 180 mm. The topography is relatively flat, with few slopes reaching a gradient of 5%, and an elevation range of 120 

98-140 m above sea level. The soil is a silty loam 0.5-1.5 m deep, with well-drained Cambisols in the upslope 

zone and poorly drained Epistagnic Haplic Luvisols and Albeluvisols in the downslope riparian zone (FAO 

classification (WRB, 2006)). The bedrock consists of a variety of Brioverian schists of low permeability and lies 

below a fissured and fractured weathered layer of variable thickness 1-30 m deep (Molenat et al., 2005). A shallow, 

perennial groundwater body develops in the soil and weathered bedrock. Near the river (hereafter, “riparian zone”), 125 

the groundwater level fluctuates within 1 m of the surface, while upslope it always remains deeper than 4 m, with 

an increased seasonal fluctuation that can descend to 6 m in depth (Molenat et al., 2005).  

The land use of Kervidy-Naizin consists mainly of agriculture with intensive mixed crop-livestock farming, with 

maize (36% of the area), cereals (32%) and grasslands (13%), and a high density of livestock (i.e. dairy cattle, pigs 

and poultry) of 5 livestock units ha-1 (Viaud et al., 2018; Casal et al., 2018, 2019). From 2002–2015, mean N 130 

inputs on the catchment equalled 257 kg ha-1 yr-1, coming from slurry and manure fertilization (69%), inorganic 

fertilization (21%, mainly ammonium nitrate), cattle excretion in pastures (5%) and nitrogen (N) fixation (5%) 

(Casal et al., 2019). Kervidy-Naizin is representative of intensive agricultural areas that have an excess of reactive 

N due to the application of livestock waste and inorganic fertilisers in excess of crop requirements. In this 

landscape, most DOC and NO  accumulate in riparian-zone soils and groundwater, respectively (Aubert et al., 135 

2013; Strohmenger et al., 2020); thus, biogeochemical and hydrological dynamics and processes in this headwater 

catchment can be analysed in the context of unlimited DOC and N supply. At the global scale, Kervidy-Naizin is 

also representative of headwater catchments underlain by bedrock in temperate climates. 
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 140 
Figure 1. Map of the Kervidy-Naizin catchment (4.82 km2, western France) 

2.2. Data monitoring 

We used daily aggregated meteorological and streamflow measurements collected from 2002-2017. The weather 

station at Kervidy (Cimel Enerco 516i), located ca. 1 km from the outlet of the catchment (Fig. 1), records hourly 

rainfall, air and soil temperatures, air humidity, global radiation, wind direction and wind speed, which allowed 145 

for calculation of potential evapotranspiration using the Penman equation (Penman, 1956). Stream level was 

recorded every minute at the outlet using a float-operated shaft-encoder level sensor and a data logger (Thalimedes 

OTT) and then converted to streamflow using a rating curve (Carluer, 1998). 

Stream water was manually sampled daily at ca. 17:00 at the outlet station. These instantaneous grab samples were 

immediately filtered (pore size: 0.22 μm) on site and stored in the dark at 4°C in propylene bottles. Analyses were 150 

performed within a maximum of two weeks. NO  concentrations were measured by ionic chromatography 

(DIONEX DX 100, (ISO, 1995), precision: ±2.5%). DOC was estimated as total dissolved carbon (C) minus 

dissolved inorganic C, both measured using a C analyser (Shimadzu TOC 5050A, precision: ±5%). 

Shallow-groundwater data were collected by a piezometer at mid-slope point (PG5, Fig. 1). The groundwater level 

at PG5, which has been measured every 15 min (Orpheus OTT) since 2000 using pressure probes, was used 155 

because its variations are representative of mean variations in the shallow groundwater in the Kervidy-Naizin. The 

volumetric soil water content was measured in upland and riparian zones of the catchment using TDR probes. In 

the upland zone (Toullo station, Fig.1), it was measured at three depths (i.e. 5, 20 and 50 cm), with three replicates 

per depth, at 30 min intervals from 1 Jan 2016 to 1 Jan 2019; these data were first averaged by depth and then 

aggregated into daily values. Although the Toullo station lies outside the Kervidy-Naizin catchment, it represents 160 

the catchment’s soil moisture conditions in the upland zone. In the riparian zone (point PG2, Fig. 1), the volumetric 

soil water content was measured at a depth of 5 cm, with three replicates, at 30 min intervals from 3 Dec 2013 to 

1 Jan 2017; these data were also averaged and then aggregated into daily values.  
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2.3. Rationale for the solute-transport model 

We used a parsimonious semi-distributed solute-transport model, implemented in Python, that was iteratively 165 

customized and tested within the DYNAMITE modular modelling framework (Hrachowitz et al., 2014, 2021; 

Fovet et al., 2015a). The processes are represented by linear or non-linear equations that connect the fluxes to 

model reservoirs (Beven, 2012). This representation of storage-discharge relationships directly connects water 

fluxes to biogeochemical processes, which facilitates simultaneous simulation of both water and solute fluxes 

(Birkel et al., 2017).  170 

2.3.1. Hydrology 

The model spatially distinguishes two functionally distinct response units: hillslope and riparian zones. It 

represents them as two parallel suites of reservoirs connected by a common groundwater reservoir (Fig. 2). The 

hillslopes are represented as two reservoirs: the rooting-zone reservoir (SU) [L] and a fast-responding reservoir 

(SF) [L] (e.g. preferential flow structures). As riparian zones often have a distinct hydrological function (Seibert et 175 

al., 2003; Molenat et al., 2005; Seibert et al., 2009), the model also represents them as two reservoirs: an 

unsaturated-zone reservoir (SUR) [L] and a fast-responding reservoir (SR) [L]. The two parallel suites are connected 

by a slow groundwater reservoir (SS) [L], characterized by a threshold from which the groundwater feeds the SUR 

reservoir that represents a groundwater mixing volume (SS_mix) [L]. See Table 1 for the relevant model equations. 

More detailed model description and justifications for the processes modelled can be found in previous studies 180 

(Hrachowitz et al., 2013, 2014, 2015). 

The rainfall-runoff model uses daily precipitation (P) [L T-1] and potential evapotranspiration (EP) [L T-1] to 

simulate daily specific discharge at the outlet (QT) [L T-1]. Upon reaching the soil, P is divided into water that 

infiltrates into SU (RU, Table 1) and excess water by a hillslope runoff-generation coefficient (CH,R) routed to SF (RF) 

and SS (RP). CH,R is estimated by a logistic function representing the catchment-wide soil water holding capacity 185 

in the rooting zone (SU_max), which roughly reflects soil water content at field capacity, and a shape factor ( ). 

Percolation of water from SU to SS (RSS) is estimated by a linear function of the water storage in SU and a maximum 

percolation capacity (Pmax). Evapotranspiration from SU (EU) is estimated by a linear function of the relative soil 

moisture and a transpiration threshold (LP), which is the fraction of SU_max below which potential 

evapotranspiration (EP) is constrained by the water available in SU. 190 

Fast reservoir SF receives water (RF) from SU (Table 1, Eq. (8)) and drains into reservoir SUR according to a linear 

storage-discharge relationship that is controlled by parameter kF. Slow reservoir SS is recharged by RSS and RP 

from SU and slowly drains according to a linear storage-discharge relationship that is controlled by parameter kS. 

The water drained from SS is redistributed between SUR and the stream according to parameter fSUR. Additional 

deep-infiltration losses (QL, a calibration parameter) from SS represent groundwater export to adjacent catchments. 195 

Riparian reservoir SUR receives water from SF, SS and rainfall (Table 1, Eq. (13)). Excess water, estimated using a 

runoff-generation coefficient ( , ), is routed to SR (RR). The water that remains in SUR is available for transpiration 

( , Table 1, Eq. (14)). SR drains into the stream according to a linear storage-discharge relationship that is 

controlled by parameter kR (Table 1, Eq. (18)). The total simulated stream discharge equals the sum of slow and 

fast contributions from SS and SR, respectively (Table 1, Eq. (19)). 200 
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Figure 2. Conceptual model structure used to represent the Kervidy-Naizin catchment. See Table A1 for 

definitions of the variable abbreviations. 

 205 

Table 1. State and flux equations of the model. See Table A1 for definitions of the variable abbreviations. 
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2.3.2. Nitrate transfer and transformation 

N inputs to reservoirs SU and SUR are the daily N surplus (kg N ha-1), which correspond to soil N balances. N inputs 

consist of inorganic and organic fertilisers (i.e. slurry and manure), biological N fixation and atmospheric N 210 

deposition. N outputs equal the sum of N exported by each crop type. In this study, the N surplus was considered 

as a net (N inputs - N outputs) diffuse N source for the catchment (Dupas et al., 2020). Farm surveys performed 

in 2008 and 2013 led to estimates of a mean annual surplus over the study period (2002–2017) of ca. 90 kg N 

ha-1 y-1 (Casal, 2018). Given the uncertainty in the estimated N surplus, we considered it as calibration parameter 

(surplusN, Table 2). 215 

Biological transformation of NO , either by denitrification in the riparian zone or by consumption in the stream 

by aquatic primary producers, was simulated as a constant annual amount of NO  removal (Rc) (kg N ha-1 yr-1) in 

reservoir SR. The main factors that limit denitrification are NO  availability, temperature, soil moisture and light 

(Billen et al., 1994; Oehler et al., 2009). These factors vary seasonally and, to some extent, are likely to compensate 

for each other; for example, in winter, riparian-zone saturation favours anoxic conditions and often higher N 220 

concentrations, whereas in summer, temperature and light intensity favour biological activity. Furthermore, even 

if NO  removal were higher in winter, its effect on NO  concentration would be negligible given the large NO  

load. Therefore, representing biological removal as a constant (Rc, Table 2) was assumed to be reasonable in a 

parsimonious model approach (Fovet et al., 2015b).  

2.3.3. Dissolved organic carbon transfer and transformation 225 

The conceptualization of biogeochemical processes used to simulate DOC dynamics, similar to that of Birkel et 

al. (2014), is based on a simple production-loss mass balance and transport along the main flow pathways to the 

stream. The DOC mass balance (∆  [M]), during a time step ∆  [T], of each reservoir i (i.e. SU, SUR and 

SS) differs from more complex carbon process models by being simplified into a grouped representation of DOC 

production (  [M]) (processes that transform carbon were not distinguished) and loss 230 

(  [M]) (processes that consume, retain, and mineralize DOC were not distinguished) (Koch et al., 2013; 

Di Grazia et al., 2023). We assumed that in-stream processes have negligible influence on DOC concentrations 

(Birkel et al., 2014, 2020): 

             ∆ = −                       (21) 

DOC was assumed not to be produced in the groundwater reservoir (SS) because empirical studies usually find no 235 

DOC sources in it (Kalbitz and Kaiser, 2008); however, DOC can accumulate in SS due to recharge from the 

hillslope reservoir (SU). DOC production of reservoir i (i.e. SU and SUR), during a time step ∆ , was assumed to 

increase as temperature and soil water content increased:  

                 =
_

∗                      (22) 

where  [M L-3] is the concentration at which DOC is produced daily in a reservoir i, EA (dimensionless) is a 240 

calibrated temperature-dependent activation energy, T [°C] is the observed daily air temperature,  [°C] is the 

mean annual air temperature for the study period, _  and Si the capacity [L] and total water stored [L], 

respectively, of reservoir i, and  the water volume of reservoir i [L3]. In this study we applied a time step of ∆  

= 1 day. 
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Potential DOC losses (  [M]) in the form of mineralization (Köhler et al., 2002), absorption or 245 

consumption in reservoirs SU, SUR and SS are calculated using a loss coefficient parameter ( ) (dimensionless, 

see Table 2) applied to the DOC mass of reservoirs at the beginning of time step. 

 

The daily solute (NO or DOC) concentration at the outlet (  [M L-3]) is then calculated according to the 

relative contribution of reservoirs SS and SR: 250 

                     =
. .

            (23) 

 

Table 2. Definitions and uniform prior distributions of the parameters of the solute-transport model. 

 

2.3.4. Mixing assumption 255 

Each reservoir in the model is assumed to be completely mixed to simulate solute dynamics. This approach, used 

in most studies based on conceptual models (McMillan et al., 2012; Birkel et al., 2020; Pesántez et al., 2023), 

assumes instantaneous and complete mixing of the incoming water and solute masses in each reservoir, according 

to a solute-balance equation: 
d( )

d
=  , − ,  260 

where Si is the amount of water stored in reservoir i [L3], ci is the associated solute concentration [M L-3], I are the 

j water-inflow [L3 T-1] to a given reservoir (e.g. RSS and RP from SU to SS) (Fig. 2) with the corresponding solute-

inflow concentrations cI,j [M L-3], and O are the k water-outflow [L3 T-1] from a given reservoir with the 

corresponding solute-outflow concentrations cO,k [M L-3] (e.g. RSR and QS from SS) (Fig. 2). 

 265 

     (24) 
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The model tracks the distribution of ages of the water outflow (pOutflow (T, t), where T is the transit time at time t; 

see Benettin et al., 2022)) using a time stamp for each daily incoming and outflowing water flux in reservoirs, 

similar to the approach of Birkel and Soulsby (2016). The distribution of ages of water in a reservoir (pS (T, t)) can 

be derived in a similar way to tracking the ages of water in outflow (pOutflow (T, t)), as they are related by a StorAge-

Selection (SAS) function developed by Botter et al. (2011): 270 

                  ωOutflow(T,t) = 
( , )

( , )
         (25) 

The SAS function can be considered a statistical summary of the transport behaviour of a hydrological system that 

quantifies the release of water of different ages from a reservoir to an outflow (Rinaldo et al., 2015). According to 

the complete mixing assumption of these model, the age distributions of storage and flux are identical to each 

other, i.e the outflow composition is perfectly representative of the storage composition (Benettin et al., 2022). 275 

Thus, the solute concentration of outflow equals the solute concentration of the reservoir. This “well-mixed” 

situation corresponds to uniform sampling in which ωOutflow(T,t) = 1 and implies that water storage is uniformly (or 

randomly) sampled by an outflow (Benettin et al., 2013). 

2.4. Sensitivity analysis of the solute-transport model 

A global sensitivity analysis (GSA) was carried out to determine the effect of the model calibration scenarios on 280 

the most sensitive hydrological parameters. GSA allows to identify the extent to which changes in different 

parameters influence changes in the hydrological model output, and to determine the most important parameters 

(i.e. that need to be calibrated) and the least important parameters (i.e. that can be fixed as constants) (Reusser et 

al., 2011; Wang and Solomatine, 2019). GSA, which ranks the relative influence of model parameters on model 

output (Sun et al., 2022), is generally recommended for hydrological models due to its advantages over local 285 

sensitivity analysis methods, such as its ability to consider the influence of input parameters over their entire range 

of variation and its suitability for non-linear and non-monotonic models, thus providing results that are independent 

of modeller bias and a particular site (Song et al., 2015). Among the GSA methods widely applied to hydrological 

models, we chose a variance-based method as it can provide the most accurate and robust sensitivity indices for 

complex non-linear models (Reusser et al., 2011; Song et al., 2015; Wang and Solomatine, 2019). Variance-based 290 

methods assume that a parameter’s influence can be measured by the contribution of the parameter itself or its 

interactions with two or more other parameters to the variance of the output. The main advantage of variance-

based methods is that they can calculate the main and higher-order effects of parameters, which identifies which 

ones strongly influence the output on their own, and which ones strongly influence the output due to their 

interactions with other parameters (Wang and Solomatine, 2019). We used the Fourier Amplitude Sensitivity Test 295 

(FAST) (Saltelli et al., 1999) from the SPOTPY Python framework (Houska et al., 2015) to calculate variance-

based sensitivity indices that ranged from 0-1. FAST calculates a first-order sensitivity index (Si), which measures 

the effect of each parameter on the output, and a total sensitivity index (STi), which measures the effect of each 

parameter and its interactions with the other parameters on the output (Shin and Kim, 2017). Because STi provides 

more reliable results than Si when investigating the overall influence of each parameter on the output (Saltelli et 300 

al., 2009), we used it to investigate parameter sensitivity, as defined by Saltelli and Annoni (2010): 

                                 STi = ~ ( | ~ )

( )
         (26) 

where Xi is the ith parameter, and X∼i is the vector of all parameters except Xi.  

The variance between parentheses in the numerator denotes that the variance of Y, the value of the scalar objective 

function, is considered over all possible values of Xi while keeping X∼i fixed. The expectation operator outside the 305 
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parentheses is considered over all possible values of X∼i, whereas the variance V(Y) in the denominator is the total 

(unconditioned) variance (Shin and Kim, 2017). The numerator represents the expected variance if all parameters 

except Xi are fixed (Saltelli and Annoni, 2010). 

Calculating STi for a single parameter requires n×(p+2) model runs, where n is the sample size and p is the number 

of parameters (Saltelli, 2002). To determine an appropriate sample size for this GSA, we relied on the experiment 310 

of Nossent et al. (2011), in which the sensitivity index did not converge until n = 12,000; thus, with 14 hydrological 

parameters, we performed 192,000 model runs. In this GSA, the Nash-Sutcliffe model efficiency coefficient (Nash 

and Sutcliffe, 1970) was used to assess daily streamflow output, as suggested by Nossent et al. (2011).  

2.5. Model calibration and evaluation  

To limit adverse effects of equifinality and ensure robust posterior parameter distributions to represent processes 315 

meaningfully, extensive multi-objective and multi-variable calibration was performed by calibrating hydrological 

and biogeochemical model predictions simultaneously. The caRamel algorithm (Monteil et al., 2020) used in this 

approach combines the multi-objective evolutionary annealing-simplex algorithm (Efstratiadis and Koutsoyiannis, 

2008) and the non-dominated sorting genetic algorithm II (Reed and Devireddy, 2004). The caRamel algorithm 

produces an ensemble of parameter sets (i.e. a “generation”) to run the model, downscales the generation to the 320 

parameter sets that optimize the objective functions and generates a new parameter set that produces more accurate 

results. The research hypotheses of this study were tested using a stepwise strategy with four model-calibration 

scenarios based on different combinations of model-performance metrics (Table 3): 

 Scenario 1 (S1): only data on streamflow used for calibration, with six metrics used to describe the 

predicted streamflow signatures 325 

 Scenario 2 (S2): data on streamflow and stream DOC concentration used for calibration, with two metrics 

including the mean of the metrics in S1 and the Kling–Gupta efficiency (Gupta et al., 2009) used to assess 

the predicted DOC concentrations 

 Scenario 3 (S3): same as S2, but the solute was NO  instead of DOC 

 Scenario 4 (S4): data on streamflow and stream DOC and NO  concentrations used for calibration, with 330 

three metrics including the mean of the metrics in S1 and the Kling–Gupta efficiency used to assess the 

predicted DOC and NO  concentrations. 

The calibration period was set from 1 Jan 2013 to 1 Sep 2016, while the evaluation period was set from 1 Aug 

2008 to 31 Dec 2011, each simulated after 3 years of initialization. These periods, the same as those of Strohmenger 

et al. (2021), were chosen to be able to compare model performance to two approaches to solute modelling. The 335 

hydrological year 2012 was excluded from these periods due to a problem with laboratory analysis of NO  

concentrations that year. The uniform prior parameter distributions are based on previous studies of headwater 

catchments in similar physiographic contexts (Fovet et al., 2015a; Hrachowitz et al., 2015) (Table 2). The prior 

distribution of storage coefficient kS had been narrowly constrained based on previous baseflow-recession analysis 

using a correlation method (Yang et al., 2018). Three prior parameter constraints (Gharari et al., 2014; Hrachowitz 340 

et al., 2014) were added to the calibration algorithm to reduce parameter uncertainties: kS < kF, kF < kR and SUR_max 

< SU_max. 

Up to 70,000 model runs were used for each calibration scenario, with several successive optimizations to confirm 

reproducibility of the results, as recommended by Monteil et al. (2020). All parameter sets that belonged to the 

final Pareto fronts (hereafter, “envelope”) were retained as feasible solutions for each calibration scenario (Table 345 

3). To illustrate the results for the predicted discharges and solute concentrations, a “best-compromise” set was 
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selected from the Pareto front that minimised the Euclidean distance to the optimal point in the multi-objective 

space of each calibration scenario. All simulated discharges and concentrations using all parameter sets of the 

Pareto front provided information about the uncertainty in the model’s output.  

In the later evaluation step, observed soil water content and groundwater level measurements were used as 350 

independent data to assess the consistency of internal processes of the best-compromise model for each scenario.  

Soil moisture is a key variable for the energy and water balance at the land surface. It affects the partitioning of 

solar radiation into latent and sensible heat as well as the partitioning of precipitation into direct runoff and 

catchment storage (Duethmann et al., 2022). Accurate prediction of soil moisture is thus essential for simulating 

streamflow, evapotranspiration and percolation (Rajib et al., 2016; Rajat and Athira, 2021) and for constraining 355 

the parameters of hydrological models. The role of groundwater in the seasonal and multi-year dynamics of 

streamflow is also essential: in many temperate catchments, groundwater stores water during wet periods and 

releases it throughout the year, thus contributing greatly to low flows (Pelletier and Andréassian, 2022). Therefore, 

the model’s representation of processes can be improved by evaluating its ability to reproduce these key variables 

dynamics. 360 

The data observed for soil water content at Toullo and PG2 were normalized (from 0-1) as a function of their 

minimum and maximum values over all of the periods studied. All normalized data observed at Toullo station and 

point PG2 were compared to the normalized simulated water content in the hillslope reservoir (SU) and riparian 

reservoir (SUR), respectively. To compare to the observed groundwater level, the simulated groundwater level was 

estimated from simulated water storage in the groundwater reservoir (SS) (Seibert, 2000) using the exponential 365 

function z = - ∗ , where SS is water storage in the slow reservoir, and z is the groundwater level. Coefficients 

A and B were determined by linear regression between the simulated water storage and the observed groundwater 

level. 

 

Table 3. Signatures for streamflow, dissolved organic carbon (DOC) and nitrate (NO ) and the associated 370 

performance metrics used for model calibration scenarios and evaluation. The size of the Pareto front was the 

number of solutions. NSE: Nash–Sutcliffe model efficiency coefficient, KGE: Kling–Gupta efficiency. 

 
 

 375 

https://doi.org/10.5194/hess-2023-292
Preprint. Discussion started: 5 January 2024
c© Author(s) 2024. CC BY 4.0 License.



13 
 

3. Results 

3.1. Global sensitivity analysis of parameter influence on streamflow 

The hydrological parameters that influenced predicted streamflow the most were related to recharge (CP; ST = 

0.59), deep-infiltration losses (QL; ST = 0.25), percolation capacity (Pmax; ST = 0.18), storage capacity of the 

hillslope unsaturated zone (SU_max; ST = 0.15) and storage coefficient of the fast-responding reservoir in riparian 380 

zone reservoir (kR; ST = 0.14) (Fig. 3). The strong influence of CP was logical, as it determines the recharge from 

SU to SS and SUR to SR (i.e., how water from runoff is redistributed between the riparian zone and groundwater). 

Parameters related to the area of the riparian zone (f) and the transpiration threshold (LP) had less influence.  

 
Figure 3.  Total sensitivity indices estimated using the Fourier Amplitude Sensitivity Test of the influence of 385 

hydrological parameters on predicted streamflow. The red dashed line represents the minimum total sensitivity 

index. 

3.2. Prediction of streamflow 

Overall, the model reproduced the main features of the observed hydrological response (Fig. 4) in both the 

calibration (NSEQ, NSElogQ and KGEQ > 0.8) and evaluation (NSEQ, NSElogQ and KGEQ > 0.7) periods for all 390 

scenarios. The predicted streamflow reproduced the seasonal dynamics observed during the wetting-up (rising 

limb of the hydrograph), wet and recession periods. Daily streamflow peaks associated with storm events were 

reproduced relatively well. Overall, model performances for the evaluation period were only slightly lower than 

those for the calibration period for all four scenarios. Performance of the best-compromise model was slightly 

higher for S1 than for the other scenarios, for both calibration and evaluation periods (e.g. comparing S1 (NSEQ = 395 

0.91, NSElogQ = 0.95, KGEQ = 0.92) to S4 (NSEQ = 0.87, NSElogQ = 0.92, KGEQ = 0.84) for the calibration period) 
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(Fig. 4). The difference in performance between S1 and S2 was smaller. The uncertainty in predicted streamflow 

estimated from the envelope was low for the calibration and evaluation periods, but appeared to peak during low 

flow periods. The calibrated model provided similarly reasonable representations of DOC (Fig. 5) and NO  (Fig. 

6) concentrations. Predicted DOC concentrations in the calibration period were slightly more accurate for S2 (Fig. 400 

5A) (i.e. KGEDOC = 0.78, RMSEDOC= 2.14 mg/l) than for S4 (Fig. 5B) (i.e. KGEDOC = 0.76, RMSEDOC = 2.28 

mg/l). Predicted NO concentrations in the calibration period were slightly more accurate for S3 (Fig. 6A) (i.e. 

KGENO3 = 0.76, RMSENO3 = 1.87 mg/l) than for S4 (Fig. 6B) (i.e. KGENO3 = 0.74, RMSENO3 = 1.95 mg/l).  

The simulated hydrological signatures for all solutions on the Pareto front provide evidence that including solute 

data in the calibration improves the ability of the model to reproduce certain streamflow characteristics. While the 405 

performance based on median hydrological metrics (NSEQ, NSElogQ, KGEQ, VEQ, NSEFDC) was lower overall for 

S2 and S4 than for S1 for both calibration and evaluation periods (Fig. 7), the median runoff ratio (RRUNOFF) was 

higher for S4 than for S1 in the evaluation period. In contrast, the performance based on median NSEQ, NSElogQ 

and VEQ metrics was higher for S3 than for S1 for the calibration and evaluation periods. In addition, the runoff 

ratio (RRUNOFF) was also higher for S3 than for S1 in the evaluation period. These results suggest that 410 

simultaneously evaluating model predictions of streamflow and NO  concentration improves the model’s ability 

to reproduce streamflow, especially low flows, due to the improvement in NSElogQ. Compared to S1, the model’s 

hydrological performance decreased the most for S2 and the least for S3. The hydrological metrics for S2 also had 

wider ranges than those for the other scenarios. Evaluation using DOC concentration showed lower performance 

for S4 than for S2, while that using NO3
- concentration showed lower performance for S4 than for S3 (Fig. 7). 415 

These results, consistent for both calibration and evaluation periods, supported the observations (Figs. 5 and 6), 

which suggests that calibrating the model with each solute individually with streamflow better reproduced solute 

concentrations than calibrating the model with all solutes and streamflow simultaneously.  
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Figure 4. Observed and simulated flows for the calibration and evaluation periods according to the four scenarios: 420 

a) S1 (Hydro only), b) S2 (Hydro + dissolved organic carbon (DOC)), c) S3 (Hydro + nitrate (NO )) and d) S4 

(Hydro + DOC + NO ). The simulated data for each scenario correspond to the best-compromise simulated 

discharge of the set of optimal solutions. “Envelope” refers to the simulated discharge envelope using all parameter 

sets on the Pareto front. Model-performance metrics are defined in Table 3. 

 425 
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Figure 5. Observed and simulated dissolved organic carbon (DOC) concentrations for the calibration and 

evaluation periods according to two scenarios: a) S2 (Hydro + DOC) and b) S4 (Hydro + DOC + NO ). The 

simulated data for each scenario correspond to the best-compromise simulated DOC concentration of the set of 430 

optimal solutions. “Envelope” refers to the simulated DOC concentration envelope using all parameter sets on the 

Pareto front. KGE: Kling–Gupta efficiency, RMSE: Root-mean-square error.  
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 435 

 
Figure 6. Observed and simulated nitrate (NO  ) concentrations for the calibration and evaluation periods 

according to two scenarios: a) S3 (Hydro + NO ) and b) S4 (Hydro + DOC + NO ). The simulated data for each 

scenario correspond to the best-compromise simulated NO  concentration of the set of optimal solutions. 

“Envelope” refers to the simulated NO  concentration envelope using all parameter sets on the Pareto front. KGE: 440 

Kling–Gupta efficiency, RMSE: Root-mean-square error. 
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Figure 7. Boxplots of performance metrics for predictions of hydrological and solute concentration according to 

four scenarios: S1 (Hydro Only), S2 (Hydro + DOC), S3 (Hydro + NO ) and S4 (Hydro + DOC + NO ) for the a) 

calibration period and b) evaluation period. Whiskers represent 1.5 times the interquartile range. Black circles 445 

indicate the best-compromise solution of the Pareto front. The boxplot of KGENO3 for scenarios S1 and S2 are 

absent because their values were negative. 

3.3. Effects on the distribution of hydrological parameters  

Overall, the posterior distribution of hydrological parameters differed among the four calibration scenarios (Fig. 

8), except for fSUR and kR, which were less sensitive to the calibration method (i.e. similar optimal values and 450 

distributions), indicating that they had been identified well (Fig. 8i, n). For some parameters, the distributions 

differed only for one scenario, such as SU_max for S3 (Fig. 8a) and Pmax for S3 (i.e. smaller values and a narrower 

range of uncertainties) (Fig. 8d). The latter suggests that calibration using NO  concentration strongly influenced 

soil parameters, decreasing percolation of water from SU to SS. Similarly, the distribution of SUR_max for S2 differed 

from, and had a range of uncertainties narrower than, those of other scenarios, suggesting that calibration using 455 

DOC concentration improved identification of SUR_max (Fig. 8l) and that reservoir SUR needs a lower capacity to 

reproduce both streamflow and DOC concentrations. In addition, for S4, distributions of the most influential 

hydrological parameters (i.e. CP and QL) (Fig. 8b and 8j), as well as of groundwater parameters kS, SS_mix and QL, 
differed from those of the other scenarios. Comparing distributions of the groundwater mixing volume in the slow 

reservoir (SS_mix) for S2 and S3 showed that its size could be decreased by a factor of ca. 3 when calibrating using 460 

NO  concentrations instead of DOC concentrations (Fig. 8h). S1 had the lowest values and widest distribution of 

Lp (Fig. 8e), suggesting that the simulated actual evapotranspiration needed to be lower to reproduce both 

streamflow and solute concentrations than it did to reproduce streamflow only.  

Overall, all parameters except for kF and kS had lower uncertainty when the model was calibrated using solute 

concentrations, whether simultaneously or separately (Fig. 8). More specifically, the uncertainty in βH, fSUR, βR 465 

and kR decreased for S2, S3 and S4. The uncertainty in SU_max and CP decreased only for S2, while that in Pmax 

decreased only for S3. For deep-infiltration losses (QL), only calibration using DOC and NO   concentrations 

simultaneously (S4) decreased its uncertainty compared to those for other scenarios (Fig. 8j). 
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 470 
Figure 8. Posterior cumulative distribution functions of hydrological parameters for the four scenarios: S1 (Hydro 

Only), S2 (Hydro + DOC), S3 (Hydro + NO ) and S4 (Hydro + DOC + NO ). The circle on each curve indicates 
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the parameter’s value in the best-compromise set on the Pareto front for each scenario. Numbers in the graphs 

show means and standard deviations of each parameter distribution for each scenario. Signs after standard 

deviations indicate whether the uncertainty in a parameter was lower (-) or higher (+) than that of scenario S1. 475 

3.4. Internal model states and consistency 

3.4.1. Groundwater level 

The model reproduced the observed magnitude and seasonality of the groundwater level relatively well (NSE = 

0.76-0.93, depending on the scenario) (Fig. 9). Low levels of water table were less accurately reproduced in 2009 

and 2013. Overall, the calibration that included solute concentrations with streamflow (S2, S3 and S4) greatly 480 

improved simulation of groundwater level. In S1, performance metrics NSE and KGE were indeed the lowest, and 

PBIAS and RMSE were the highest. S3 and S4 reproduced groundwater levels (NSE = 0.92 and 0.93, respectively) 

better than S2, while S3 reproduced best the low groundwater levels in 2009, 2011 and 2013. However, for S3 and 

S4, the model tended to slightly overestimate the low groundwater levels in 2010 and 2015. 

 485 
Figure 9. Observed and simulated groundwater levels for the four scenarios: S1 (Hydro Only), S2 (Hydro + DOC), 

S3 (Hydro + NO ) and S4 (Hydro + DOC + NO ). NSE: Nash–Sutcliffe model efficiency coefficient, KGE: Kling–

Gupta efficiency, PBIAS = Percent bias, RMSE: Root-mean-square error. 

3.4.2. Soil moisture  

The model reproduced major features of the observed dynamics of normalized soil moisture at PG2 (i.e. the 490 

riparian zone) (NSE = 0.58-0.79, depending on the scenario) (Fig. 10). It also reproduced well drying rates at the 

end of summer and wetting rates, except in 2015 and 2016, respectively, when it tended to underestimate soil 

moisture. Overall, evaluating the model with streamflow and solute concentrations simultaneously did not improve 

simulation of soil moisture dynamics in the riparian zone. The model reproduced observed soil moisture better 
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when it was calibrated using DOC and NO   simultaneously (S4, with NSE = 0.73 and KGE = 0.78) than when 495 

using only one solute (S2 or S3, with NSE = 0.58 and 0.69, respectively, and KGE = 0.74 and 0.75, respectively). 

The model reproduced the observed dynamics of normalized soil moisture at Toullo (i.e. the upslope zone) (NSE 

= 0.79-0.92, depending on the scenario) (Fig. 11). For S3 and S4, the model did not reproduce the wetting rate 

well at the beginning of 2017, when it overestimated soil moisture. S2 reproduced soil moisture in the upslope 

zone better than S1 did (NSE = 0.94 and 0.92, respectively).  500 

 
Figure 10. Observed (point PG2) and simulated soil moisture for the for scenarios: S1 (Hydro Only), S2 (Hydro 

+ DOC), S3 (Hydro + NO ), S4 (Hydro + DOC + NO ). NSE: Nash–Sutcliffe model efficiency coefficient, KGE: 

Kling–Gupta efficiency, PBIAS = Percent bias, RMSE: Root-mean-square error. 
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 505 
Figure 11. Observed (Toullo point) and simulated normalized soil moisture for four calibration scenarios: S1 

(Hydro Only), S2 (Hydro + DOC), S3 (Hydro + NO ), S4 (Hydro + DOC + NO ). NSE: Nash–Sutcliffe model 

efficiency coefficient, KGE: Kling–Gupta efficiency, PBIAS = Percent bias, RMSE: Root-mean-square error. 

3.5. Water balances 

Calibrating the model with DOC and NO  concentrations along with streamflow data influenced water-balance 510 

components and changed the storage in reservoirs SU, SS and SUR. Median simulated total evaporative flux (EU and 

EUR) was highest for S1 (470 mm yr-1) and lowest for S4 (372 mm yr-1) (Fig. 12a). Median deep-infiltration losses 

(QL) were highest for S4 (128 mm yr−1) and lowest for S1 (57 mm yr-1). The median contribution of SR to discharge 

(QR) was slightly higher for S3 and S4 (108 and 109 mm yr-1, respectively) than for S1 (100 mm yr-1). The median 

contribution of SS to discharge (QS) was significantly higher for S2 (293 mm yr-1) than for S1 (242 mm yr-1). SS 515 

and SUR stored water during the simulation, while SU lost water. SS tended store more water for S4 (2.7 mm yr-1) 

than it did for S1 (1.2 mm yr-1). SU lost more water for S3 (-21 mm yr-1) than for S1 (-12 mm yr-1) and lost the 

least for S4 (-10.6 mm yr-1). 
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 520 
Figure 12. a) Boxplots of simulated annual water budgets for all Pareto fronts of each scenario (S1-S4) during the 

calibration and evaluation periods combined (1 Aug 2008-1 Sep 2016). Precipitation was 852 mm yr-1 during the 

period. b) Boxplots of changes in simulated storage of the main reservoirs of the model for all Pareto fronts of 

each scenario during the period. Whiskers represent 1.5 times the interquartile range. 

4. Discussion 525 

4.1. Effect on streamflow, groundwater and soil moisture 

We found that including solute (DOC and NO ) data along with streamflow data in a multi-objective calibration 

strategy improved the model’s internal consistency, as demonstrated by improved performance for simulations of 

groundwater storage and soil moisture in the upslope zone (Figs. 9 and 11). Studies have shown that using 

additional information to constrain hydrological models usually improves spatial and/or temporal patterns of 530 

internal state variables and fluxes but does not necessarily improve the accuracy of predicted runoff (López López 

et al., 2017; Tong et al., 2021). Woodward et al. (2013b) developed a catchment simulation model that predicted 

streamflow and water chemistry by connecting a model of soil water balance to two groundwater reservoirs. They 

found that calibrating the model using daily streamflow and monthly NO  data simultaneously from a small 

lowland milk-production-oriented catchment improved hydrological understanding and estimated catchment NO  535 

fluxes relatively well. In particular, they were able to infer daily contributions of near-surface water, fast shallow 

groundwater, and slower, deeper groundwater to water and NO  discharge. However, including NO  data in the 

calibration overpredicted low flows compared to calibration using streamflow data alone. Yen et al. (2014) used 

regional estimates of annual denitrification mass and the percentage of NO  load at the catchment outlet that had 

come from groundwater as soft data to constrain water-flow partitioning, which yielded realistic internal catchment 540 

behaviour but decreased the accuracy of predicted streamflow. In the present study, when considering only the 

best-compromise model for each scenario, the use of solute data improved the internal consistency but slightly 

decreased the accuracy of predicted streamflow in both calibration and evaluation periods (Fig. 4). In contrast, 

considering all hydrological signatures for discharge obtained from the envelope, S3 improved the model’s ability 
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to reproduce streamflow characteristics, especially low flows (Fig. 7) and groundwater level (Fig. 9). In addition, 545 

calibrating the model with streamflow and solute concentrations simultaneously improved the internal consistency 

of the groundwater reservoir, with better reproduction of groundwater level for S3 and S4 (Fig. 9) than that of the 

soil compartment, with a relatively small improvement in the normalized soil moisture only for S2 in the upslope 

zone (Fig. 11). 

The factors that improve internal hydrological consistency when solute data are included are not well understood. 550 

Streamflow aggregates information from many catchment-scale processes, but this information is too ambiguous 

to determine the exact catchment configuration (Kuppel et al., 2018b) or flow pathways that produced the observed 

signal (Woodward et al., 2017). This is because streamflow aggregates downstream along a convergent network 

towards a single outlet, but the divergent nature of an upstream network makes it impossible to uniquely backtrack 

the locations where the flow was generated (Kirchner et al., 2001). Thus, streamflow can be simulated well with 555 

many alternative model parameterizations, whether or not they are physically consistent (Kirchner, 2006). Results 

of the present study thus suggest that if streamflow alone is used for calibration, the model predicts discharge 

correctly for the wrong reason, as the internal consistency is not guaranteed. The model thus simulates water 

pathways and storage dynamics that do not represent those in the actual catchment. Consequently, it appears that 

the hydrological behaviour of the catchment required to reproduce the observed DOC and NO  concentrations in 560 

the stream is different from that required to reproduce only the observed discharge. This hypothesis is supported 

by the fact that the calibration scenarios influenced the main components of the water balance differently. For 

example, S3 yielded better internal consistency of the groundwater reservoir, with good reproduction of the 

groundwater level (Fig. 9), but lower evapotranspiration and higher water loss from the SU reservoir than S1 (Fig. 

12). In comparison, S2 yielded better simulation of upslope soil water storage (Fig. 11) and a higher contribution 565 

of SS to discharge than S1 (Fig. 12). The large amount of information in the solute time series thus constrained 

internal storage components and water fluxes more than a streamflow-only approach, which increased internal 

consistency of the hydrological model. This occurs because a hydrological model needs to represent only an input-

output response, whereas when biogeochemistry is included, a model needs to represent both residence-time 

distributions and biogeochemical processing to reproduce the observed stream water concentrations (Medici et al., 570 

2012) and the decrease in solute-input signals. The use of solute time series, which mitigates the equifinality 

problem, thus excluded infeasible model configurations that would have also yielded high performance (Yen et 

al., 2014; Kuppel et al., 2018b; Dimitrova-Petrova et al., 2020). 

An additional step is needed to understand the benefits of including solute data for internal hydrological 

consistency by analysing effects of including DOC and NO  concentration data on the storage dynamics (state and 575 

fluxes) of model components and hydrological processes and pathways. For example, the simulations showed that 

including NO  data decreased kS and SS_mix (Fig. 8g and 8h), suggesting that simulations of NO  dynamics were 

optimized at a lower groundwater mixing volume and lower flow rate in SS. However, it is important to go further 

to understand why including NO  concentration data improved simulation of groundwater level (Fig. 9) and low 

flow (Fig. 7). In this landscape, most of the NO  leached from the unsaturated reservoir accumulates in the shallow 580 

groundwater (Aubert et al., 2013; Strohmenger et al., 2020). The groundwater, with a legacy mass storage of NO  

(Molenat et al., 2008; Basu et al., 2010), thus contributes water to the stream that sustains the base flow and export 

of NO  (Molenat et al., 2008; Aubert et al., 2013). Given these characteristics, good reproduction of NO  

concentrations and fluxes in the stream, supplied mainly by groundwater, can be assumed to constrain the model 

sufficiently to yield good reproduction of water fluxes from the groundwater to the stream and thus good 585 

representation of groundwater level. 
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4.2. Effects on parameter uncertainties 

Using a parsimonious hydro-chemical model without explicit biogeochemical processes, Strohmenger et al. (2021) 

found that overall parameter uncertainties were higher when calibrating using solute data (DOC, NO ) along with 

streamflow data than when calibrating using streamflow data alone. They assumed that DOC and NO  sources 590 

behave as infinite pools with a fixed concentration in each reservoir contributing to the stream. The modelling 

approach in the present study was relatively similar, but explicitly represented biochemical processes related to 

DOC and NO . Parameter uncertainty decreased when solute concentrations were included in calibration, except 

for storage coefficients of the fast (kF) and slow reservoirs (kS) (Fig. 8). Comparing the results of these two studies 

suggests that the infinite-solute-pool assumption is sufficient to reproduce annual and storm-event dynamics of 595 

discharge and DOC and NO  concentrations in the stream but is insufficient to improve the internal consistency 

or constrain the model to reduce uncertainties in hydrological parameters. In the infinite-solute-pool assumption, 

hydrological parameters are less sensitive to solute concentrations than they are in models that explicitly represent 

biogeochemical processes and dynamic solute concentrations in reservoirs. Notably, the results highlight that S4 

significantly influenced the distributions of the most influential hydrological parameters, specifically CP and QL 600 

(Fig. 8). The model conceptualizes biogeochemical processes for DOC and NO  in a relatively simple way, but 

has reduced the uncertainties of the parameters. An additional step in future studies will be to analyse whether 

more complex representation of biogeochemical processes in the model can further reduce uncertainties in 

hydrological parameters. 

Results of the present study are consistent with those of other studies, in which inclusion of additional variables in 605 

multiple-objective calibration generally reduced parameter uncertainty (Tong et al., 2021). For example, Yen et 

al. (2014) found that including data related to water quality yielded lower parameter uncertainties than calibration 

using streamflow alone, especially for hydrological parameters that strongly influence denitrification. Other 

studies that included additional data in multi-variable calibration found that it reduced parameter uncertainties. For 

example, Silvestro et al. (2015) demonstrated that the equifinality of soil parameters was reduced by including 610 

satellite-derived soil moisture when calibrating a process-based, spatially distributed hydrological model. 

Similarly, Rajib et al. (2016) found that including satellite-derived soil moisture, especially that in the rooting 

zone, reduced parameter uncertainties, particularly for parameters related to subsurface hydrological processes. 

4.3. Comparability of point-scale in-situ measurements to catchment-scale storage 

A remaining issue is the limited comparability of point-scale in-situ measurements and simulated soil moisture 615 

and groundwater level to catchment-scale storage. In-situ volumetric soil moisture was calculated as the mean of 

several TDR probes, which reduces uncertainty at the point scale, but upscaling these point measurements to a 

reservoir that represents a hillslope or riparian zone is associated with uncertainties. Consequently, we considered 

normalized soil moisture as a proxy for dynamics of unsaturated storage in hillslope and riparian zones (e.g. 

Hrachowitz et al., 2021). Similarly, we used the daily mean normalized water level at point PG5 as a proxy for 620 

groundwater storage dynamics. An additional step in future studies will be to determine how point measurements 

can be upscaled to areal mean point scale soil moisture and groundwater measurements compatible with 

catchment-scale storage. A complementary approach is to include other promising methods, such as remote 

sensing, to estimate the spatial distribution of storage in catchments, especially of soil moisture (Tong et al., 2021; 

Duethmann et al., 2022). The high spatial resolution, worldwide spatial coverage and increasing availability of 625 

remotely sensed data may provide ample opportunities to further constrain hydrological models and their 

parameters (Nijzink et al., 2018; Bouaziz et al., 2021; Tong et al., 2021; Duethmann et al., 2022; Gomis-Cebolla 
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et al., 2022). Recent soil moisture data from satellite-derived soil-moisture products (e.g. SMAPL3E, SCATSAR, 

ASCAT DIREX SWI) with high spatial and temporal resolutions (e.g. 0.5-9.0 km and 1-3 days, respectively) 

(Duethmann et al., 2022) would help constrain the model of the Kervidy-Naizin catchment. Other promising 630 

methods include cosmic-ray neutron-sensor probes to estimate dynamics of near-surface soil water storage 

(Dimitrova-Petrova et al., 2020) and geodesy and geophysical methods (Fovet et al., 2015a). Additional data can 

be used to assess the internal representation of evapotranspiration, which has a wide spatial and temporal 

distribution at the catchment scale, to provide more confidence in simulation of the partitioning of water between 

soil storage and groundwater recharge (Moazenzadeh and Izady, 2022). For example, using spatially and 635 

temporally gridded remotely sensed evapotranspiration data to calibrate the Soil and Water Assessment Tool 

(SWAT) hydrological model decreased the equifinality of the calibrated parameters compared to calibration using 

only streamflow data (Shah et al., 2021). These results demonstrate the benefit of using increasingly available 

open-access remotely sensed evapotranspiration data to improve calibration of hydrological models. These 

methods provide a spatially aggregated overview of catchment water content and go beyond traditional methods 640 

of direct storage observations at the point scale that are limited to a single reservoir (Dimitrova-Petrova et al., 

2020). 

4.4. Implications 

This study’s results indicate that solute data are important for improving the internal consistency of hydrological 

models, which can help guide collection of field data and modelling (Stadnyk and Holmes, 2023). When collecting 645 

field data for model calibration, it may be important to collect solute data along with streamflow data. These data 

can then be used in a hydrological model to which simple representations of biogeochemical processes are added 

to improve the representation of internal behaviour of the catchment by calibrating streamflow and solutes 

simultaneously. The type of solute measured is also important, as calibration using NO  improved the internal 

consistency of the groundwater reservoir, while that using DOC improved the internal consistency of soil water 650 

storage in the upslope zone. With the increasing availability of solute data from catchment monitoring, this 

approach provides an objective way to improve representation of complex hydrological systems when information 

about their internal functioning is insufficient. A catchment model that represents observed behaviour of the system 

more accurately can then be used with confidence when assessing scenarios, such as those of nutrient remediation 

or climate change. If the internal behaviour of the hydrological system is not represented correctly, predicting 655 

streamflow acceptably is pointless and perhaps counter-productive, leading to erroneous conclusions and potential 

mismanagement of catchment resources. For example, Yen et al. (2014) showed that a lack of constraints to 

realistically represent the internal functioning of a catchment can lead to misleading assessments of pollution-

control scenarios, even when typical streamflow performance criteria are satisfied. 

 660 
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5. Conclusion 

The results of this study tend to reject the first hypothesis that using daily stream DOC and NO  concentrations 

along with streamflow data to calibrate a parsimonious conceptual model improves the model's ability to predict 

streamflow, as doing so did not improve the model's performance for simulated streamflow in the calibration or 

evaluation period. In contrast, considering all hydrological signatures for discharge obtained from the envelope, 670 

the scenario that included NO  along with streamflow improved the model’s ability to reproduce streamflow, 

especially low flows. The second hypothesis, concerning the improvement of the internal consistency of the model, 

appeared to be supported for the simulation of groundwater and upslope soil storage, but not for riparian soil 

storage. For the third hypothesis, explicitly modelling biochemical processes for DOC and NO  reduced the 

uncertainty in hydrological parameters, except the storage coefficients of the fast and slow reservoirs, compared 675 

to an approach in which sources of DOC and NO   were treated as infinite pools with fixed concentrations. The 

simultaneous inclusion of daily in-stream DOC and NO  concentrations in a parsimonious conceptual model in a 

multi-objective and multi-variable calibration and evaluation strategy influenced the distribution of the most 

influential hydrological parameters of the model. Differences among the calibration scenarios also influenced the 

main components of the water balance. Calibrating the model with streamflow and solute concentrations 680 

simultaneously reduced predictions of evapotranspiration. Compared to calibration using streamflow alone, the 

inclusion of DOC increased the predicted contribution of reservoir SS to discharge, while the inclusion of NO  

increased the predicted loss of water from reservoir SU. Including the large amount of information in solute time 

series in hydrological models provided an objective way to improve the representation of complex hydrological 

systems for which information about internal functioning was insufficient.  685 

 

Appendix  
Table A1. Symbols and definitions of variables in the hydrological model 

 
 690 

Data availability. The weather data are available obtained from the INRAE CLIMATIK platform 
(https://agroclim.inrae.fr/climatik/, in French). The hydrochemical data (streamflow, groundwater levels, soil 
water content, solutes concentrations) are available from the Observatoire de Recherche en Environnement sur les 
Agro-Hydrosystèmes (ORE AgrHyS) platform (https://www6.inra.fr/ore_agrhys_eng/Data). ORE AgrHyS, 
funded by INRAE, is part of the OZCAR French Research Infrastructure (https://www.ozcar-ri.org/agrhys-695 
observatory/). 
 
Code availability. The model code is available from https://doi.org/10.5281/zenodo.10161243 or directly from 
the first author. 
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