
1 
 

Improving the hydrological consistency of a process-based 
solute-transport model by simultaneous calibration of 
streamflow and stream concentrations 
 

Jordy Salmon-Monviola1, Ophélie Fovet1, Markus Hrachowitz2 5 
 
1 UMR SAS, INRAE, Institut Agro, Rennes, France 
2 Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of 
Technology, Stevinweg 1, 2628CN Delft, Netherlands 
 10 
Corresponding author: J. Salmon-Monviola (jordy.salmon-monviola@inrae.fr) 
 
Abstract. The consistency of hydrological models, i.e. their ability to reproduce observed system dynamics, needs 

to be improved to increase their predictive power. As using streamflow data alone to calibrate models is not 

sufficient to constrain them and render them consistent, other strategies must be considered, in particular using 15 

additional types of data. The aim of this study was to test whether simultaneous calibration of dissolved organic 

carbon (DOC) and nitrate (NOଷ
ି) concentrations along with streamflow improved the hydrological consistency of 

a parsimonious solute-transport model. A multi-objective approach with four calibration scenarios was used to 

evaluate the model’s predictions for an intensive agricultural headwater catchment. After calibration, the model 

reasonably reproduced simultaneously  the dynamics of discharge and DOC and NOଷ
ି concentrations in the stream 20 

of the headwater catchment from 2008-2016. Evaluation using independent datasets indicated that the model 

usually reproduced dynamics of groundwater level and soil moisture in upslope and riparian zones correctly for 

all calibration scenarios. Using daily stream concentrations of DOC and NOଷ
ି along with streamflow to calibrate 

the model did not improve its ability to predict streamflow for calibration or evaluation periods. The approach 

significantly improved significantly the representation of groundwater storage and to a lesser extent soil moisture 25 

in the upslope zone but not in the riparian zone. Parameter uncertainty decreased when the model was calibrated 

using solute concentrations, except for parameters related to fast and slow reservoir flow. This study shows the 

added value of using multiple types of data along with streamflow, in particular DOC and NOଷ
ି concentrations, to 

constrain hydrological models to improve representation of internal hydrological states and flows. With the 

increasing availability of solute data from catchment monitoring, this approach provides an objective way to 30 

improve the consistency of hydrological models that can be used with confidence to evaluate scenarios. 
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1. Introduction 

Hydrological models are important tools for short-term forecasting of river flows and long-term predictions for 

strategic water management planning, as well as for improving understanding of hydrological processes and the 

complex interactions of water storage and release processes at the catchment scale (Bouaziz et al., 2021; Lan et 

al., 2020; Minville et al., 2014). In the wide spectrum of modelling, which ranges from simple to complex (Adeyeri 40 

et al., 2020; Gharari et al., 2014; Hrachowitz and Clark, 2017), conceptual models, in which only the dominant 

processes are represented and/or several processes may be lumped into a single expression (Pettersson et al., 2001),  

are widely used to simulate hydrological dynamics of catchments. In these models, only the dominant processes 

are represented and/or several processes may be lumped into a single expression (Pettersson et al., 2001). 

Conceptualising the system as a set of storage components connected by flows representing the perceived 45 

dominant processes of a catchment provides a certain degree of flexibility. The ability to customize these models 

to the environmental conditions in a given catchment can ensure an appropriate level of complexity to reproduce 

response patterns of hydrology and water quality (Hrachowitz et al., 2016). Major advantages of conceptual models 

include their relatively low data and computational requirements, which makes them suitable for studies at 

different scales or for catchments about which little information is available (Gharari et al., 2014; Huang and 50 

Bardossy, 2020). However, ad hoc implementation of conceptual models frequently lacks a plausible theoretical 

basis and thus a meaningful connection of model structure and parameters to observable quantities when 

representing integrated system processes (Clark et al., 2016). As such, the ability of models, including conceptual 

ones, to reproduce a system’s dynamics is also undermined not only by random uncertainties in the data, but also 

by epistemic or ontological uncertainties and thus by limited knowledge of the physical processes that underlie the 55 

system’s response (Beven, 2013; Beven and Westerberg, 2011; Gupta et al., 2012). These uncertainties and the 

few observations in a continuous spatial domain make such models ill-posed inverse problems (Beven, 2006; 

Hrachowitz et al., 2014; Pettersson et al., 2001). In hydrology, frequently referred to as equifinality (Beven, 

2006)these insufficient model constraints thus can result in many, equally good alternative model solutions, 

frequently referred to as equifinality (Beven, 2006). Hydrological models with many parameters thus tend to adapt 60 

to errors and to compensate for inadequate representation of processes through the model parameters (Wang et al., 

2012). For example, well-predicted river discharge is often associated with poorly predicted evaporation flows, 

because evaporation compensates for errors and closes the hydrological balance (Minville et al., 2014). Thus, 

deceptively high calibration accuracy may reflect mathematical fitting of an often overparameterized model, which 

may generate undesirable internal dynamics that decrease accuracy in independent evaluation periods (Fovet et 65 

al., 2015a; Hrachowitz et al., 2014). Robust model calibration and evaluation procedures are thus needed to address 

issues of parameter identifiability (Beven, 2006; Guillaume et al., 2019) and transferability (Hartmann and 

Bárdossy, 2005; Kreye et al., 2019; Minville et al., 2014), and to avoid models that act as “mathematical 

marionettes” dancing to match the calibration data (Kirchner, 2006) but often fail to reproduce internal system 

dynamics. 70 

Recently, a trend toward more comprehensive assessment of the structural adequacy of models has emerged during 

the calibration process (Rakovec et al., 2016; Yen et al., 2014), with the overall goal of improving the 

representation of multiple hydrological processes in a model (Clark et al., 2011; Euser et al., 2015; Gupta et al., 

2012). The rationale behind this goal is the need to obtain the “right answers for the right reasons” (Blöschl, 2001; 

Kirchner, 2006), which goes beyond simply comparing model predictions to observed streamflow or associated 75 

signature measurements (Euser et al., 2013; Fovet et al., 2015a; Rakovec et al., 2016). Indeed, reflecting the results 

of many studies, Rakovec et al. (2016) showed that streamflow data are necessary but not sufficient to warrant 
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constraining model components by dividing incoming precipitation among storage, evaporation and drainage 

(Bouaziz et al., 2021). Thus, multiple strategies have been developed to improve the physical realism of conceptual 

models (i.e. model consistency) (Efstratiadis and Koutsoyiannis, 2010), including using additional data that 80 

represent internal hydrological states and flows other than streamflow when estimating parameters. Treating the 

system more holistically (i.e. forcing models to simulate multiple response variables adequately) has considerable 

potential to improve model accuracy (Hrachowitz et al., 2014). The value of such multi-variable and/or multi-

objective strategies has been demonstrated using groundwater levels (Fenicia et al., 2008; Freer et al., 2004; 

Giustolisi and Simeone, 2006; Molenat et al., 2005), near-surface soil moisture (Brocca et al., 2010; Kunnath-85 

Poovakka et al., 2016; López López et al., 2017; Rajib et al., 2016; Sutanudjaja et al., 2014), saturated contributing 

areas (Blazkova et al., 2002; Franks et al., 1998; Güntner et al., 1999), snow cover (Bennett et al., 2019; Gao et 

al., 2017; Riboust et al., 2019), evaporation (Bouaziz et al., 2018; Demirel et al., 2018; Hulsman et al., 2020), 

streamflow at subcatchment outlets (Moussa et al., 2007), satellite-based total water storage anomalies (Werth and 

Güntner, 2010; Yassin et al., 2017) and tracer data (Birkel et al., 2011; Capell et al., 2012; Birkel et al., 2015; 90 

Kuppel et al., 2018a; Piovano et al., 2019; Stadnyk and Holmes, 2023). Alternately, one may seek to extract more 

information from the available data, for example by developing signatures that represent different aspects of the 

data (Euser et al., 2013; Fenicia et al., 2018; Gharari et al., 2014), and then compare the signatures of the observed 

and simulated time series. For streamflow, the hydrological signatures can include quantiles of the streamflow 

distribution (values of the flow duration curve (FDC)), the base flow index, the flashiness index and many others 95 

(e.g., Kavetski et al., 2018). 

Simultaneously calibrating hydrological models with streamflow and tracer or other solute concentrations in the 

stream may decrease their uncertainty and increase their physical plausibility because of the need to reproduce 

both hydrological and biogeochemical dynamics (Birkel et al., 2017; Fovet et al., 2015b; Pesántez et al., 2023; 

Pettersson et al., 2001; Strohmenger et al., 2021; Woodward et al., 2013a). The value of this strategy has been 100 

demonstrated, for example using concentrations of chloride (Hrachowitz et al., 2013) or nitrate (NOଷ
ି) and sulphate 

(Hartmann et al., 2013; Pettersson et al., 2001). As the movement of water and solutes through the landscape is 

inherently coupled (Knapp et al., 2020), using time series of multiple elements along with streamflow during 

calibration may provide additional insights into the flow paths of water through the catchment (Strohmenger et al., 

2021). This potential may be particularly high when using solutes that differ in their sources and flow paths across 105 

spatial and temporal scales in a catchment. Calibration that includes streamflow along with solutes that have 

distinct dynamics, as frequently observed with dissolved organic carbon (DOC) and NOଷ
ି (Inamdar and Mitchell, 

2006; Taylor and Townsend, 2010), such as in headwater agricultural catchments (Aubert et al., 2013; 

Strohmenger et al., 2020; Thomas et al., 2016), thus has high potential to constrain models to adequately reproduce 

water storage dynamics and flow paths.  110 

The objective of this study was thus to test the hypotheses that, by including daily in-stream DOC and NOଷ
ି 

concentrations simultaneously in a parsimonious conceptual model in a multi-objective and multi-variable 

calibration and evaluation strategy, we could increase the model's (1) ability to predict streamflow for calibration 

or evaluation periods and (2) internal consistency, and (3) reduce the uncertainty in hydrological parameters. 

 115 
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2. Materials and Methods 

2.1. Study site 

The Kervidy-Naizin catchment is located in western France (48° 0’ N, 2° 5’ W) (Fig. 1) and forms part of the 

Agro-Hydro Systems (AgrHyS) Critical Zone Observatory (Fovet et al., 2018). It is a 4.82 km² headwater 120 

catchment of the 12 km² Naizin catchment (Fig. 1), which is drained by a second-Strahler-order intermittent stream 

that frequently dries up from July to October. The climate is temperate oceanic, with a mean ± standard deviation 

of annual temperature of 11 ± 0.6°C, annual cumulative precipitationrainfall of 894 ± 170 mm yr-1 and specific 

discharge of 350 ± 140 mm yr-1 from 2008-2016. The topography is relatively flat, with few slopes reaching a 

gradient of 5%, and an elevation range of 98-140 m above sea level. The soil is a silty loam 0.5-1.5 m deep, with 125 

well-drained Cambisols in the upslope zone and poorly drained Epistagnic Haplic Luvisols and Albeluvisols in 

the downslope riparian zone (FAO classification (WRB, 2006)). At the global scale, Kervidy-Naizin is 

representative of headwater catchments underlain by bedrock in temperate climates. The bedrock consists of 

impervious, locally fractured Brioverian schists and lies below a fissured and fractured weathered layer of variable 

thickness 1-30 m deep (Molenat et al., 2005). A shallow, perennial groundwater body develops in the soil and 130 

weathered bedrock. In the upland domain, consisting of well-drained soils, the water table remains below the soil 

surface throughout the year, varying in depth from 1-5 m (Molenat et al., 2005). In the wetland domain, developed 

near the stream and consisting of hydromorphic soils (hereafter, “riparian zone”), the water table is shallower, 

remaining near the soil surface generally from October to April/May each year. The seasonal fluctuation of the 

water table in this catchment has been described as a succession of three hydrological periods (Aubert et al., 2013; 135 

Lambert et al., 2013): (i) rewetting of riparian wetland soils after the dry summer season, (ii) rise of groundwater 

in the upland domain that leads to prolonged waterlogging of wetland soils and establishes a marked hydraulic 

gradient in groundwater between upland and wetland domains and (iii) drawdown of groundwater that leads to 

drying of the stream (Humbert et al., 2015). 

The land use of Kervidy-Naizin consists mainly of agriculture with intensive mixed crop-livestock farming, with 140 

maize (36% of the area), cereals (32%) and grasslands (13%), and a high density of livestock (i.e. dairy cattle, pigs 

and poultry) of 5 livestock units ha-1 (Benoit and Veysset, 2021) according to farm surveys performed in 2008 and 

2013 and annual land‐use surveys (Casal et al., 2018, 2019; Viaud et al., 2018). From 2002–2015, mean N inputs 

on the catchment equalled 257 kg ha-1 yr-1, coming from slurry and manure fertilization (69%), inorganic 

fertilization (21%, mainly ammonium nitrate), cattle excretion in pastures (5%) and nitrogen (N) fixation (5%) 145 

(Casal et al., 2019). Kervidy-Naizin is representative of intensive agricultural areas that have an excess of reactive 

N due to the application of livestock waste and inorganic fertilisers in excess of crop requirements.  

In this landscape, most DOC and NOଷ
ି accumulate in riparian-zone soils and groundwater, respectively (Aubert et 

al., 2013; Strohmenger et al., 2020). Using end-member mixing analysis to identify DOC sources and quantify 

their contributions to the DOC stream in Kervidy-Naizin, Morel et al. (2009) estimated that 64-86% of the DOC 150 

that entered the stream during storms, when much of the DOC export from soils to streams and rivers occurs 

(Lambert et al., 2014), came from riparian wetland soil. This result confirmed previous studies that found that 

riparian soils are the main source of DOC in most headwater catchments (Lambert et al., 2013). Morel et al. (2009) 

also demonstrated that this riparian wetland zone in Kervidy-Naizin behaved as non-limiting storage of DOC 

during flushing. Hillslope soils in this catchment also contribute to stream DOC export, but dissolved organic 155 

matter (DOM) in upland soils is supply-limited and seasonally depleted after groundwater rises. Upland DOC 

contribution decreases from ca. 30% of the stream DOC flow at the beginning of the high-flow period to < 10% 
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later in this period (Lambert et al., 2013, 2014). In addition, in a high-frequency, multi-solute 10-year monitoring 

(2000-2010) study of Kervidy-Naizin, Aubert et al. (2013) identified that NOଷ
ି accumulated in groundwater at a 

concentration of ca. 20.7 mg N-NO3 L-1 compared to 1.6 mg N-NO3 L-1 in riparian wetland. 160 

Long‐term analysis of the dynamics of nutrient concentrations and hydroclimatic variables at multiple time scales 

in Kervidy-Naizin highlighted the opposition contrasting of dynamics of DOC and NOଷ
ି concentrations due to 

opposition in their spatial sources. DOC concentrations peaked under wet or stormflow conditions, when 

NOଷ
ି concentrations were lowest. In contrast, NOଷ

ି concentrations peaked under high‐water‐table and drier 

conditions, when DOC concentrations were lowest. This opposition between maxima and minima of daily DOC 165 

and NOଷ
ି concentrations can be interpreted as the result of relative mixing contributions of soil‐surface riparian 

flows (i.e. DOC‐rich and NO3‐poor) and upslope groundwater flows (i.e. NO3‐rich and DOC‐poor) (Strohmenger 

et al., 2020). 

 
Figure 1. Map of the nested Kervidy-Naizin and Naizin catchments (4.82 and 12.00 km², respectively), in western 170 

France. Data from the weather station and Toullo station, which lie outside Kervidy-Naizin but inside Naizin, were 

used in this study.  

2.2. Data monitoring 

We used daily aggregated meteorological and streamflow measurements collected from 2002-2017. The weather 

station in Kervidy-Naizin (Cimel Enerco 516i), located ca. 1 km from the outlet of the catchment (Fig. 1), records 175 

hourly precipitationrainfall, air and soil temperatures, air humidity, global radiation, wind direction and wind 

speed, which allowed for calculation of potential evapotranspiration using the Penman equation (Penman, 1956). 

Stream level was recorded every minute at the outlet using a float-operated shaft-encoder level sensor and a data 

logger (Thalimedes OTT) and then converted to streamflow using a rating curve (Carluer, 1998). 

Stream water was manually sampled daily at ca. 17:00 at the outlet station. These instantaneous grab samples were 180 

immediately filtered (pore size: 0.22 μm) on site and stored in the dark at 4°C in propylene bottles. Analyses were 

performed within a maximum of two weeks. NOଷ
ି concentrations were measured by ionic chromatography 

(DIONEX DX 100, (ISO, 1995), precision: ±2.5%). DOC was estimated as total dissolved carbon (C) minus 

dissolved inorganic C, both measured using a C analyser (Shimadzu TOC 5050A, precision: ±5%). 
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Shallow-groundwater data were collected by a piezometer at mid-slope point (PG5, Fig. 1). The groundwater level 185 

at PG5, which has been measured every 15 min (Orpheus OTT) since 2000 using pressure probes, was used 

because its variations are representative of mean variations in the shallow groundwater in Kervidy-Naizin. The 

volumetric soil water content was measured in upland and riparian zones of the catchment using time domain 

reflectrometry (TDR) probes. In the upland zone (Toullo station, Fig.1), it was measured at three depths (i.e. 5, 20 

and 50 cm), with three replicates per depth, at 30 min intervals from 1 Jan 2016 to 1 Jan 2019; these data were 190 

first averaged by depth and then aggregated into daily values. Although the Toullo station lies outside Kervidy-

Naizin, we assumed that , as Kervidy-Naizin and Naizin are nested, it could represent Kervidy-Naizin’s soil 

moisture conditions in the upland zone. This assumption is supported by the fact that Kervidy-Naizin and Naizin 

are nested and have similar characteristics, such as soil types, slopes, and elevation (Matos-Moreira et al., 2017; 

Sorel et al., 2010). In the riparian zone (point PG2, Fig. 1), the volumetric soil water content was measured at a 195 

depth of 5 cm, with three replicates, at 30 min intervals from 3 Dec 2013 to 1 Jan 2017; these data were also 

averaged and then aggregated into daily values.  

2.3. Rationale for the solute-transport model 

We used a parsimonious semi-distributed solute-transport model, implemented in Python, that was iteratively 

customized and tested within the DYNAMITE modular modelling framework (Fovet et al., 2015a; Hrachowitz et 200 

al., 2014, 2021). The processes are represented by linear or non-linear equations that connect the flows to model 

reservoirs (Beven, 2012). This representation of storage-discharge relationships directly connects water flows to 

biogeochemical processes, which facilitates simultaneous simulation of both water and solute flows (Birkel et al., 

2017).  

2.3.1. Hydrology 205 

The model spatially distinguishes two functionally distinct response units: hillslope and riparian zones. It 

represents them as two parallel suites of reservoirs connected by a common groundwater reservoir (Fig. 2). The 

hillslopes are represented as two reservoirs: the rooting-zone reservoir (SU) [L] and a fast-responding reservoir 

(SF) [L] (e.g. preferential flow structures). As riparian zones often have a distinct hydrological function (Molenat 

et al., 2005; Seibert et al., 2003, 2009), the model also represents them as two reservoirs: an unsaturated-zone 210 

reservoir (SUR) [L] and a fast-responding reservoir (SR) [L]. The two parallel suites are connected by a slow 

groundwater reservoir (SS) [L], characterized by a threshold from which the groundwater feeds the SUR reservoir 

that represents a groundwater mixing volume (SS_mix) [L]. See Table 1 for the relevant model equations. More 

detailed model description and justifications for the processes modelled can be found in previous studies 

(Hrachowitz et al., 2013, 2014, 2015). 215 

The rainfall-runoff model uses daily precipitationrainfall (PP) [L T-1] and potential evapotranspiration (EP) [L T-

1] to simulate daily specific discharge at the outlet (QT) [L T-1]. Upon reaching the soil, P is divided into water that 

infiltrates into SU (RU, Table 1) and excess water by a hillslope runoff-generation coefficient (CH,R) routed to SF (RF) 

and SS (RP). CH,R is estimated by a logistic function representing the catchment-wide soil water holding capacity 

in the rooting zone (SU_max), which roughly reflects soil water content at field capacity, and a shape factor (ߚு). 220 

Percolation of water from SU to SS (RSS) is estimated by a linear function of the water storage in SU and a maximum 

percolation capacity (Pmax). Evapotranspiration from SU (EU) is estimated by a linear function of the relative soil 

moisture and a transpiration threshold (LP), which is the fraction of SU_max below which potential 

evapotranspiration (EP) is constrained by the water available in SU. 
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Fast reservoir SF receives water (RF) from SU (Table 1, Eq. (8)) and drains into reservoir SUR according to a linear 225 

storage-discharge relationship that is controlled by parameter kF. Slow reservoir SS is recharged by RSS and RP 

from SU and slowly drains according to a linear storage-discharge relationship that is controlled by parameter kS. 

The water drained from SS is redistributed between SUR and the stream according to parameter fSUR. Deep-

infiltration losses from SS, represented by calibration parameter QL, are used to explicitly represent inter-catchment 

groundwater flows (i.e. groundwater flows that cross topographic divides), implying that precipitation that falls in 230 

one catchment influences the streamflow in another catchment (Bouaziz et al., 2018). Analysis of the long-term 

water balance of a headwater catchment with similar physiography in Brittany revealed a large deficit (Hrachowitz 

et al., 2014). There is evidence that many catchments have such deficits, which are caused, at least in part, by large 

inter-catchment groundwater flow (Hrachowitz et al., 2014; Le Moine et al., 2007), although this cannot be verified 

completely, as highlighted by Beven (2001). In addition, data from 58 catchments in the Meuse basin indicated 235 

that large net inter-catchment groundwater flows likely existed, mainly in small headwater catchments underlain 

by fractured aquifers (Bouaziz et al., 2018), such as Kervidy-Naizin. The parameter for deep-infiltration losses is 

also used to reproduce the zero flow at the outlet and groundwater dynamics with a long recession observed during 

the summer, regardless of the piezometer (Humbert et al., 2015). Consequently, we explicitly modelled inter-

catchment groundwater flows for Kervidy-Naizin. Common conceptual models rarely include deep-infiltration 240 

losses, which may not prevent them from simulating streamflow accurately, but may cause them to misrepresent 

the natural system, particularly by overestimating actual evaporation rates in compensation (Bouaziz et al., 2018). 

In the present study, in the absence of detailed knowledge of the underlying processes, deep-infiltration losses 

from Kervidy-Naizin were conceptualized as a loss term QL from SS. 

Riparian reservoir SUR receives water from SF, SS and precipitationrainfall (Table 1, Eq. (13)). Excess water, 245 

estimated using a runoff-generation coefficient (ܥோ,ோ), is routed to SR (RR). The water that remains in SUR is 

available for transpiration (ܧ௎ோ, Table 1, Eq. (14)). SR drains into the stream according to a linear storage-discharge 

relationship that is controlled by parameter kR (Table 1, Eq. (18)). The total simulated stream discharge equals the 

sum of slow and fast contributions from SS and SR, respectively (Table 1, Eq. (19)). 
 250 
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Figure 2. Conceptual model structure used to represent the Kervidy-Naizin catchment. S are storage components, 255 

R are recharge flows between reservoirs, Q are liquid flows that leave the system and E are evaporative flows that 

leave the system. Dark blue and light blue arrows represent water flows and water with solutes, respectively. 

Biochemical parameters are shown in red for each reservoir. See Table 2 for definitions of the parameters and 

Table A1 for definitions of the variable abbreviations.  

 260 
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Table 1. State and flow equations of the model. See Table A1 for definitions of the variable abbreviations. 

 

2.3.2. Nitrate transfer and transformation 

N inputs to reservoirs SU and SUR are the daily N surplus (kg N ha-1), which correspond to soil N balances. N inputs 

consist of inorganic and organic fertilisers (i.e. slurry and manure), biological N fixation and atmospheric N 265 

deposition. N outputs equal the sum of N exported by each crop type. In this study, the N surplus was considered 

as a net (N inputs - N outputs) diffuse N source for the catchment (Dupas et al., 2020). Farm surveys performed 

in 2008 and 2013 led to estimates of a mean annual surplus over the study period (2002–2017) of ca. 90 kg N 

ha-1 y-1 (Casal, 2018). Given the uncertainty in the estimated N surplus, we considered it as a calibration parameter 

(surplusN, Table 2). 270 

Due to the lack of relevant studies, the period with the highest heterotrophic denitrification rate is unknown for 

Kervidy-Naizin. In agricultural headwaters, denitrification rates are usually low at the end of winter, increase in 

spring, peak in summer and decrease in autumn before reaching their lowest in the middle of winter (Anderson et 

al., 2014). In agricultural landscapes where N availability exceeds plant requirements, denitrification is limited 

mainly by C availability, O2 concentration and temperature (Barton et al., 1999). Riparian zones of these 275 

landscapes often contain large amounts of C. Thus, denitrification rates are expected to be highest from late spring 

to early autumn, when temperatures are highest and, as long as soils remain wet, O2 concentrations are lowest 

(Anderson et al., 2014). We also had no observations of biological transformation of NOଷ
ି through consumption 

by aquatic primary producers, although we assumed that it was highest in spring and summer. Thus, in the absence 

of detailed knowledge of the temporal pattern of biological NOଷ
ି removal in Kervidy-Naizin, we represented 280 

biological transformation of NOଷ
ି as a constant annual amount of NOଷ

ି removal (Rc) (kg N ha-1 yr-1) from reservoir 

SR
 (Table 2). We assumed that if this constant overestimated the biological NOଷ

ି removal usually observed in 
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agricultural landscapes in winter, it would influence NOଷ
ି concentration little given the Kervidy-Naizin’s high NOଷ

ି 

load in winter. Thus, representing biological removal as a constant was assumed to be reasonable in a parsimonious 

model approach (Fovet et al., 2015b). 285 

Denitrification can be a sink for NOଷ
ି in streams, particularly small (low-order) ones (Böhlke et al., 2009). 

However, methods for measuring in-stream denitrification are difficult and have high uncertainty, and the 

controlling variables are not known well enough to make reliable predictions for targeted management decisions 

(Böhlke et al., 2009). Given the lack of in-stream denitrification observations and the low potential for in-stream 

NOଷ
ି removal (estimated at ca. 4% per year; Salmon-Monviola et al. (2013)) in Kervidy-Naizin, we did not model 290 

it and thus assumed zero in-stream denitrification. 

2.3.3. Dissolved organic carbon transfer and transformation 

The conceptualization of biogeochemical processes used to simulate DOC dynamics, similar to that of Birkel et 

al. (2014), is based on a simple production-loss mass balance and transport along the main flow pathways to the 

stream. The DOC mass balance (∆ݏݏܽ݉ܯ஽ை஼೔  [M]) during time step ∆ݐ [T] (∆1 = ݐ day, in this study) of each 295 

reservoir i (i.e. SU, SUR and SS) differs from more complex C-process models by being simplified into a grouped 

representation of DOC production (ܲ݊݋݅ݐܿݑ݀݋ݎ஽ை஼೔ [M]) (processes that transform C were not distinguished) and 

loss (ݏݏ݋ܮ஽ை஼೔  [M]) (processes that consume, retain and mineralize DOC were not distinguished) (Di Grazia et al., 

2023; Koch et al., 2013) : 

஽ை஼೔ܯݏݏܽ݉∆                                  = ஽ை஼೔݊݋݅ݐܿݑ݀݋ݎܲ −  ஽ை஼೔  300ݏݏ݋ܮ

           (21) 

DOC production (ܲ݊݋݅ݐܿݑ݀݋ݎ஽ை஼೔ [M]) of reservoir i are calculated by multiplying DOC concentration ([ܥܱܦ]௜ 

[M L-1]) with the total water stored ( ௜ܵ [L]) at the beginning of each time step. DOC production was assumed to 

increase as temperature and soil water content increased (Birkel et al., 2020) :  

௜[ܥܱܦ]                                = ݇஽ை஼೔ ∙ ௌ೔
ௌ೔_೘ೌೣ

∙ ௔ܧ
൫்ି்൯                                          305 

(22) 

where ݇஽ை஼೔ [M L-1] is the concentration at which DOC is produced daily in a reservoir i, EA (dimensionless) is a 

calibrated temperature-dependent activation energy, T [°C] is the observed daily air temperature, ܶ [°C] is the 

mean annual air temperature for the study period, ௜ܵ_௠௔௫ and ௜ܵ the capacity [L] and total water stored [L], 

respectively, of reservoir i. DOC was assumed not to be produced in the groundwater reservoir (SS), as deeper 310 

mineral horizons in soil are considered to be DOC sinks instead (Kalbitz and Kaiser, 2008) and low DOC 

concentrations have been observed in Kervidy-Naizin’s groundwater (mean of ca. 1 mg L-1; Aubert et al. (2013)). 

However, DOC can accumulate in SS due to recharge from the hillslope reservoir (SU). 

Potential DOC losses (ݏݏ݋ܮ஽ை஼೔  [M]) in the form of mineralization (Köhler et al., 2002), absorption or 

consumption in reservoirs SU, SUR and SS are calculated using a loss coefficient (݈ܮ஽ை஼೔) (dimensionless) (Table 2) 315 

applied to the DOC mass of reservoirs at the beginning of each time step. 

We assumed that in-stream processes have negligible influence on DOC concentrations. Some studies found that 

agricultural land use can increase the production of autochthonous DOM in streams (Shang et al., 2018). For 

example, in an agricultural catchment (Lower Austria, 66 ha), one large DOC source was the stream itself, as in-

stream processes caused 37% of the total DOC load measured at the catchment outlet during base flow conditions 320 

from November to May (Eder et al., 2022). Nevertheless, end-member mixing analysis of DOC in Kervidy-Naizin 
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found that stream DOC dynamics during winter storm events could be explained by catchment processes, with 

little contribution from in-stream sources (Morel et al., 2009). These results confirmed that most of the DOC in 

streams that drain headwater catchments is likely to be of external origin (i.e. allochthonous), resulting from 

interactions between biogeochemical and hydrological processes in soils, at least during the wet season (Dalzell 325 

et al., 2007; Fovet et al., 2020; Lambert et al., 2013, 2014; Raymond and Saiers, 2010). This is also consistent with 

the theory of DOM transformation along a fluvial continuum (Creed et al., 2015) and the dynamics of DOM 

fluorescence observed for example by Shang et al. (2018), who found increasing contribution of protein-like 

autochthonous DOM, accompanied by decreasing contribution of allochthonous DOM, from low-order to high-

order systems. For Kervidy-Naizin, these results are supported by two arguments. First, some processes associated 330 

with DOC production in summer are unlikely to occur in Kervidy-Naizin’s stream, which frequently dries up from 

July to October. Second, riparian vegetation is dense and covers the entire length of Kervidy-Naizin’s network, 

which decreases primary production of DOC. Thus, we considered the assumption regarding the negligible 

influence of in-stream processes on DOC concentrations to be valid for Kervidy-Naizin. 

 335 

The daily solute (NOଷ
ିor DOC) concentration at the outlet (ܥ௢௨௧ೞ೚೗ೠ೟೐ [M L-1]) is then calculated according to the 

relative contribution of reservoirs SS and SR: 

௢௨௧ೞ೚೗ೠ೟೐ܥ                      =
஼ೞ೚೗ೠ೟೐ೄೄ

∙ொೄା஼ೞ೚೗ೠ೟೐ೄೃ
∙ொೃ

ொ೅
            (23) 

 

Table 2. Definitions and uniform prior distributions of the parameters of the solute-transport model. 340 
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2.3.4. Mixing assumption 345 

Each reservoir in the model is assumed to be completely mixed to simulate solute dynamics. This approach, used 

in most studies based on conceptual models (Birkel et al., 2020; McMillan et al., 2012; Pesántez et al., 2023), 

     (24) 
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assumes instantaneous and complete mixing of the incoming water and solute masses in each reservoir, according 

to a solute-balance equation: 
d(ܿ௜ ∙ ௜ܵ)

dݐ
=  ෍ ܿூ,௝

௝

∙ ௝ܫ − ෍ ܿை,௞
௞

∙ ܱ௞ 350 

where Si is the amount of water stored in reservoir i [L], ci is the associated solute concentration [M L-1], I are the 

j water-inflow [L T-1] to a given reservoir (e.g. RSS and RP from SU to SS) (Fig. 2) with the corresponding solute-

inflow concentrations cI,j [M L-1], and O are the k water-outflow [L T-1] from a given reservoir with the 

corresponding solute-outflow concentrations cO,k [M L-1] (e.g. RSR and QS from SS) (Fig. 2). 

The model tracks the distribution of ages of the water outflow (pOutflow (T, t), where T is the transit time at time t) 355 

(Benettin et al., 2022) using a time stamp for each daily incoming and outflowing water flow in reservoirs, similar 

to the approach of Birkel and Soulsby (2016). The distribution of ages of water in a reservoir (pS (T, t)) can be 

derived in a similar way to tracking the ages of water in outflow (pOutflow (T, t)), as they are related by a StorAge-

Selection (SAS) function developed by Botter et al. (2011): 

                  ωOutflow(T,t) = 
௣ೀೠ೟೑೗೚ೢ(்,௧)

௣ೄ(்,௧)
         (25) 360 

The SAS function can be considered a statistical summary of the transport behaviour of a hydrological system that 

quantifies the release of water of different ages from a reservoir to an outflow (Rinaldo et al., 2015). According to 

the complete mixing assumption of the model, the age distributions of storage and flow are identical to each other 

(i.e. the outflow composition perfectly represents the storage composition) (Benettin et al., 2022). Thus, the solute 

concentration of outflow equals the solute concentration of the reservoir. This “well-mixed” situation corresponds 365 

to uniform sampling in which ωOutflow(T,t) = 1 and implies that water storage is uniformly sampled by an outflow 

(Benettin et al., 2013). 

2.4. Sensitivity analysis of the solute-transport model 

A global sensitivity analysis (GSA) was carried out to determine the effect of the model calibration scenarios on 

the most sensitive hydrological parameters. GSA allows to identify the extent to which changes in different 370 

parameters influence changes in the hydrological model output, and to determine the most important parameters 

(i.e. that need to be calibrated) and the least important parameters (i.e. that can be fixed as constants) (Reusser et 

al., 2011; Wang and Solomatine, 2019). GSA, which ranks the relative influence of model parameters on model 

output (Sun et al., 2022), is generally recommended for hydrological models due to its advantages over local 

sensitivity analysis methods. Indeed, GSA can consider the influence of input parameters over their entire range 375 

of variation and is suitable for non-linear and non-monotonic models, providing results that are independent of 

modeller bias and a particular site (Song et al., 2015). Among the GSA methods widely applied to hydrological 

models, we chose a variance-based method as it can provide the most accurate and robust sensitivity indices for 

complex non-linear models (Reusser et al., 2011; Song et al., 2015; Wang and Solomatine, 2019). Variance-based 

methods assume that a parameter’s influence can be measured by the contribution of the parameter itself or its 380 

interactions with two or more other parameters to the variance of the output. The main advantage of variance-

based methods is that they can calculate the main and higher-order effects of parameters, which identifies which 

ones strongly influence the output on their own, and which ones strongly influence the output due to their 

interactions with other parameters (Wang and Solomatine, 2019). We used the Fourier Amplitude Sensitivity Test 

(FAST) (Saltelli et al., 1999) from the SPOTPY Python framework (Houska et al., 2015) to calculate variance-385 

based sensitivity indices that ranged from 0-1. FAST calculates a first-order sensitivity index (Si), which measures 
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the effect of each parameter on the output, and a total sensitivity index (STi), which measures the effect of each 

parameter and its interactions with the other parameters on the output (Shin and Kim, 2017). Because STi provides 

more reliable results than Si when investigating the overall influence of each parameter on the output (Saltelli et 

al., 2009), we used it to investigate parameter sensitivity, as defined by Saltelli and Annoni (2010): 390 

                                 STi = 
ா೉~೔ ∙൬௏೉೔(௒|௑~೔)൰

௏(௒)
         (26) 

where Xi is the ith parameter, and X∼i is the vector of all parameters except Xi.  

The variance between parentheses in the numerator denotes that the variance of Y, the value of the scalar objective 

function, is considered over all possible values of Xi while keeping X∼i fixed. The expectation operator outside the 

parentheses is considered over all possible values of X∼i, while the variance V(Y) in the denominator is the total 395 

(unconditioned) variance (Shin and Kim, 2017). The numerator represents the expected variance if all parameters 

except Xi are fixed (Saltelli and Annoni, 2010). 

Calculating STi for a single parameter requires n×(p+2) model runs, where n is the sample size and p is the number 

of parameters (Saltelli, 2002). To determine an appropriate sample size for this GSA, we relied on the experiment 

of Nossent et al. (2011), in which the sensitivity index did not converge until n = 12,000; thus, with 14 hydrological 400 

parameters, we performed 192,000 model runs. In this GSA, the Nash-Sutcliffe model efficiency coefficient (Nash 

and Sutcliffe, 1970) was used to assess daily streamflow output, as suggested by Nossent et al. (2011).  

2.5. Model calibration and evaluation  

To limit adverse effects of equifinality and ensure robust posterior parameter distributions to represent processes 

meaningfully, extensive multi-objective and multi-variable calibration was performed by calibrating hydrological 405 

and biogeochemical model predictions simultaneously. When using multi-objective optimization to calibrate a 

model, the goal is to find a set of solutions that simultaneously optimize several, potentially conflicting, objective 

functions that measure individual processes. The interaction of multiple objectives leads to a set of compromised 

solutions known as Pareto-optimal front (Mostafaie et al., 2018). As none of the solutions can be considered 

superior when there is more than one objective to optimize, Pareto-optimal solutions (hereafter, “Pareto front”) 410 

are also called non-dominated solutions (Yeste et al., 2023) with equally good parameter sets, which provides an 

uncertainty boundary of the predictive model. The caRamel algorithm (Monteil et al., 2020) used in this approach 

combines the multi-objective evolutionary annealing-simplex algorithm (Efstratiadis and Koutsoyiannis, 2008) 

and the non-dominated sorting genetic algorithm II (Reed and Devireddy, 2004). The caRamel algorithm produces 

an ensemble of parameter sets (i.e. a “generation”) to run the model, downscales the generation to the parameter 415 

sets that optimize the objective functions and generates a new parameter set that produces more accurate results. 

The research hypotheses of this study were tested using a stepwise strategy with four model-calibration scenarios 

based on different combinations of model-performance metrics (Table 3): 

 Scenario 1 (S1): only data on streamflow used for calibration, with six metrics used to describe the 

predicted streamflow signatures 420 

 Scenario 2 (S2): data on streamflow and stream DOC concentration used for calibration, with two metrics 

including the mean of the metrics in S1 and the Kling–Gupta efficiency (Gupta et al., 2009) used to assess 

the predicted DOC concentrations 

 Scenario 3 (S3): same as S2, but the solute was NOଷ
ି instead of DOC 
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 Scenario 4 (S4): data on streamflow and stream DOC and NOଷ
ି concentrations used for calibration, with 425 

three metrics including the mean of the metrics in S1 and the Kling–Gupta efficiency used to assess the 

predicted DOC and NOଷ
ି concentrations 

The calibration period was set from 1 Jan 2013 to 1 Sep 2016, while the evaluation period was set from 1 Aug 

2008 to 31 Dec 2011, each simulated after 3 years of initialization. These periods, the same as those of Strohmenger 

et al. (2021), were chosen to be able to compare model performance to two approaches to solute modelling. The 430 

hydrological year 2012 was excluded from these periods due to a problem with laboratory analysis of NOଷ
ି 

concentrations that year. The uniform prior parameter distributions were based on previous studies of headwater 

catchments in similar physiographic contexts (Fovet et al., 2015a; Hrachowitz et al., 2015) (Table 2). The prior 

distribution of storage coefficient kS had been narrowly constrained based on previous baseflow-recession analysis 

using a correlation method (Yang et al., 2018). Three prior parameter constraints (Gharari et al., 2014; Hrachowitz 435 

et al., 2014) were added to the calibration algorithm to reduce parameter uncertainties: kS < kF, kF < kR and SUR_max 

< SU_max. 

Up to 70,000 model runs were used for each calibration scenario, with several successive optimizations to confirm 

reproducibility of the results, as recommended by Monteil et al. (2020). All parameter sets that belonged to the 

final Pareto fronts (hereafter, “envelope”) were retained as feasible solutions for each calibration scenario (Table 440 

3). To illustrate the results for the predicted discharges and solute concentrations, a “best-compromise” set was 

selected from the Pareto front that minimized the Euclidean distance to the optimal point in the multi-objective 

space of each calibration scenario. All simulated discharges and concentrations using all parameter sets of the 

Pareto front provided information about the uncertainty in the model’s output.  

In the later evaluation step, observed soil water content and groundwater level measurements were used as 445 

independent data to assess the consistency of internal processes of the best-compromise model for each scenario.  

Soil moisture is a key variable for the energy and water balance at the land surface. It affects the partitioning of 

solar radiation into latent and sensible heat as well as the partitioning of precipitation into direct runoff and 

catchment storage (Duethmann et al., 2022). Accurate prediction of soil moisture is thus essential for simulating 

streamflow, evapotranspiration and percolation (Rajat and Athira, 2021; Rajib et al., 2016) and for constraining 450 

the parameters of hydrological models. The role of groundwater in the seasonal and multi-year dynamics of 

streamflow is also essential: in many temperate catchments, groundwater stores water during wet periods and 

releases it throughout the year, thus contributing greatly to low flows (Pelletier and Andréassian, 2022). These 

variables are important for characterizing the internal hydrological dynamics of a catchment and are therefore 

relevant for assessing the internal consistency of the model. 455 

The data observed for soil water content at Toullo and PG2 were normalized (from 0-1) as a function of their 

minimum and maximum values over all of the periods studied. All normalized data observed at Toullo station and 

point PG2 were compared to the normalized simulated water content in the hillslope reservoir (SU) and riparian 

reservoir (SUR), respectively. To compare to the observed groundwater level, the simulated groundwater level was 

estimated from simulated water storage in the groundwater reservoir (SS) (Seibert, 2000) using the exponential 460 

function z = -݁஺∗ௌೄା஻, where SS is water storage in the slow reservoir, and z is the groundwater level. Coefficients 

A and B were determined by linear regression between the simulated water storage and the observed groundwater 

level. The non-parametric Mann-Whitney U test was used to test whether model predictions of calibration 

scenarios S2, S3 and S4 differed significantly (p < 0.05) from those of the baseline scenario S1. 

 465 
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Table 3. Signatures for streamflow, dissolved organic carbon (DOC) and nitrate (NOଷ
ି) and the associated 

performance metrics used for model calibration scenarios and evaluation. The size of the Pareto front was the 

number of solutions. NSE: Nash–Sutcliffe model efficiency coefficient, KGE: Kling–Gupta efficiency. See 

Appendix C for definitions of the signatures and performance metrics. 

 470 

 

3. Results 

3.1. Global sensitivity analysis of parameter influence on streamflow 

The hydrological parameters that influenced predicted streamflow the most were related to recharge (CP; ST = 

0.59), deep-infiltration losses (QL; ST = 0.25), percolation capacity (Pmax; ST = 0.18), storage capacity of the 475 

hillslope unsaturated zone (SU_max; ST = 0.15) and storage coefficient of the fast-responding reservoir in riparian 

zone reservoir (kR; ST = 0.14) (Fig. 3). The strong influence of CP was logical, as it determines the recharge from 

SU to SS and SUR to SR (i.e., how water from runoff is redistributed between the riparian zone and groundwater). 

Parameters related to the area of the riparian zone (f) and the transpiration threshold (LP) had less influence.  
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 480 

Figure 3. Total sensitivity indices estimated using the Fourier Amplitude Sensitivity Test of the influence of 

hydrological parameters on predicted streamflow. The red dashed line represents the minimum total sensitivity 

index. 

 

3.2. Prediction of streamflow and solute concentrations 485 

Overall, the model reproduced the main features of the observed hydrological response (Fig. 4) in both the 

calibration (NSEQ, NSElogQ and KGEQ > 0.8) and evaluation (NSEQ, NSElogQ and KGEQ > 0.7) periods for all 

scenarios. The predicted streamflow reproduced the seasonal dynamics observed during the wetting-up (rising 

limb of the hydrograph), wet and recession periods. The high flow variations associated with storm events were 

usually represented relatively well (NSEQ > 0.75) in calibration and evaluation periods, with good synchronicity, 490 

particularly in winter 2010 and 2014. Overall, model performances for the evaluation period were only slightly 

lower than those for the calibration period for all four scenarios (Figs. 4 and A1). Performance of the best-

compromise model was slightly higher for S1 than for the other scenarios, for both calibration and evaluation 

periods (e.g. comparing S1 (NSEQ = 0.91, NSElogQ = 0.95, KGEQ = 0.92) to S4 (NSEQ = 0.87, NSElogQ = 0.92, 

KGEQ = 0.84) for the calibration period) (Fig. 4). The difference in performance between S1 and S2 was smaller. 495 

The uncertainty in predicted streamflow estimated from the envelope was low for the calibration and evaluation 

periods, but appeared to peak during low flow periods. The calibrated model provided similarly reasonable 

representations of DOC (Fig. 5) and NOଷ
ି (Fig. 6) concentrations. Predicted DOC concentrations for the calibration 

period were slightly more accurate for S2 (Fig. 5a) (i.e. KGEDOC = 0.78, RMSEDOC= 2.14 mg L-1) than for S4 (Fig. 

5b) (i.e. KGEDOC = 0.76, RMSEDOC = 2.28 mg L-1). Predicted NOଷ
ିconcentrations for the calibration period were 500 

slightly more accurate for S3 (Fig. 6a) (i.e. KGENO3 = 0.76, RMSENO3 = 1.87 mg N-NO3 L-1) than for S4 (Fig. 6b) 

(i.e. KGENO3 = 0.74, RMSENO3 = 1.95 mg N-NO3 L-1). The model reproduced the contrasting dynamics of stream 

DOC and NOଷ
ି (Aubert et al., 2013; Strohmenger et al., 2020), with maximum DOC and minimum NOଷ

ି 

concentrations occurring in autumn. During this period, the median simulated DOC concentration was ca. 8.7 mg 

L-1, while that of NOଷ
ି concentration was ca. 11 mg N-NO3 L-1. During the wetting-up period, DOC concentrations 505 

decreased to a median of 2.5-3.5 mg L-1, while NOଷ
ି concentrations increased to a median of 14-16 mg N-NO3 L-1. 

These concentrations remained relatively stable during the wet and recession periods. At the end of the recession 
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period, DOC concentration increased slightly to a median of ca. 5.5-6 mg L-1, while NOଷ
ି concentration decreased 

to a median of ca. 12 mg N-NO3 L-1. The model simulated high NOଷ
ି concentrations in summer, when streamflow 

and NOଷ
ି concentrations had not been observed. During summer dry periods, the stream effectively dries up and 510 

no water flows at the outlet, which made it more difficult to calibrate the model to predict their solute 

concentrations. The model simulated near-zero water flow during dry periods, but occasionally simulated flow on 

certain days when zero flow had been observed, which yielded relatively high simulated NOଷ
ି concentrations. The 

lack of observed NOଷ
ି concentrations during dry periods also provided no constraints that could help the model 

represent NOଷ
ି concentrations realistically. 515 

The simulated hydrological signatures for all solutions on the Pareto front provide evidence that including solute 

data in the calibration improves the ability of the model to reproduce certain streamflow characteristics. While the 

performance based on median hydrological metrics (NSEQ, NSElogQ, KGEQ, VEQ, NSEFDC) was lower overall for 

S2 and S4 than for S1 for both calibration and evaluation periods (Fig. 7), the median NSE runoff ratio (NSERUNOFF) 

was significantly higher for S4 than for S1 for the evaluation period (Fig. 7b). In contrast, the performance was 520 

significantly higher for S3 than for S1 based on median NSElogQ and VEQ metrics for the calibration period and on 

median NSEQ, NSElogQ, VEQ and NSERUNOFF metrics for the evaluation period. These results suggest that 

simultaneously evaluating model predictions of streamflow and NOଷ
ି concentration improves the model’s ability 

to reproduce streamflow, especially low flows, due to the improvement in NSElogQ. Compared to S1, the model’s 

hydrological performance decreased the most for S2 and the least for S3. The hydrological metrics for S2 also had 525 

wider ranges than those for the other scenarios.  

Including DOC concentration with streamflow in the calibration showed lower performance for S4 than for S2, 

while that using NO3
- concentration showed lower performance for S4 than for S3 (Fig. 7). These results, consistent 

for both calibration and evaluation periods, supported the observations (Figs. 5 and 6), which suggests that 

calibrating the model with each solute individually with streamflow better reproduced solute concentrations than 530 

calibrating the model with all solutes and streamflow simultaneously.  
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Figure 4. Observed and simulated flows for the calibration and evaluation periods according to the four scenarios: 

a) S1 (Hydro only), b) S2 (Hydro + dissolved organic carbon (DOC)), c) S3 (Hydro + nitrate (NOଷ
ି)) and d) S4 535 

(Hydro + DOC + NOଷ
ି). The simulated data for each scenario correspond to the best-compromise simulated 

discharge of the set of optimal solutions. “Envelope” refers to the simulated discharge envelope using all parameter 

sets on the Pareto front. See Table 3 for definitions of model-performance metrics. 
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Figure 5. Observed and simulated dissolved organic carbon (DOC) concentrations for the calibration and 540 

evaluation periods according to two scenarios: a) S2 (Hydro + DOC) and b) S4 (Hydro + DOC + NOଷ
ି). The mean 

(± standard deviation) observed DOC concentration was 4.8 ± 3.5 and 4.5 ± 3.1 mg DOC L-1 for the calibration 

and evaluation period, respectively. The simulated data for each scenario correspond to the best-compromise 

simulated DOC concentration of the set of optimal solutions. “Envelope” refers to the simulated DOC 

concentration envelope using all parameter sets on the Pareto front. KGE: Kling–Gupta efficiency, RMSE: Root-545 

mean-square error. See Table 3 for definitions of model-performance metrics. 

 

 

 

 550 
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Figure 6. Observed and simulated nitrate (NOଷ
ି ) concentrations for the calibration and evaluation periods 

according to two scenarios: a) S3 (Hydro + NOଷ
ି) and b) S4 (Hydro + DOC + NOଷ

ି). The mean (± standard 555 

deviation) observed NOଷ
ି concentration was 13.4 ± 2.7 and 16.6 ± 2.8 mg N-NO3 L-1 for the calibration and 

evaluation period, respectively. The simulated data for each scenario correspond to the best-compromise simulated 

NOଷ
ି concentration of the set of optimal solutions. “Envelope” refers to the simulated NOଷ

ି concentration envelope 

using all parameter sets on the Pareto front. KGE: Kling–Gupta efficiency, RMSE: Root-mean-square error. See 

Table 3 for definitions of model-performance metrics. 560 

 



22 
 

 

Figure 7. Boxplots of performance metrics for predictions of hydrological and solute concentration according to 

four scenarios: S1 (Hydro Only), S2 (Hydro + DOC), S3 (Hydro + NOଷ
ି) and S4 (Hydro + DOC + NOଷ

ି) for the a) 

calibration period and b) evaluation period. Whiskers represent 1.5 times the interquartile range. Black circles 565 

indicate the best-compromise solution of the Pareto front. The boxplots of KGENO3 for scenarios S1 and S2 are 

not shown, as their values were negative (median = -1) because the model was not calibrated to represent NOଷ
ି 

concentrations in these scenarios. An asterisk above a boxplot indicates values significantly (p < 0.05) larger than 

those for scenario S1 (one-sided Mann-Whitney test). See Table 3 for definitions of model-performance metrics. 

 570 

 

 
Figure 3. Total sensitivity indices estimated using the Fourier Amplitude Sensitivity Test of the influence of 

hydrological parameters on predicted streamflow. The red dashed line represents the minimum total sensitivity 

index. 575 
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3.3. Effects on the distribution of hydrological parameters  

Overall, the posterior distribution of hydrological parameters differed among the four calibration scenarios (Fig. 

8), except for fSUR and kR, which were less sensitive to the calibration method (i.e. similar optimal values and 

distributions), indicating that they had been identified well (Fig. 8i, n). For some parameters, the distributions 

differed only for one scenario, such as SU_max for S3 (Fig. 8a) and Pmax for S3 (i.e. smaller values and a narrower 580 

range of uncertainties compared to other scenarios, considering both the interquartile range and the total whisker 

range) (Fig. 8d). The latter suggests that calibration using NOଷ
ି concentration strongly influenced soil parameters, 

decreasing percolation of water from SU to SS. Similarly, the distribution of SUR_max for S2 differed from other 

scenarios and had a narrower range of uncertainties, considering both the interquartile range and the total whisker 

range. This suggests that calibration using DOC concentration improved identification of SUR_max (Fig. 8l) and that 585 

reservoir SUR needs a lower capacity to reproduce both streamflow and DOC concentrations. In addition, for S4, 

distributions of the most influential hydrological parameters (i.e. CP and QL) (Fig. 8b and 8j), as well as of 

groundwater parameters kS and SS_mix, differed from those of the other scenarios. Comparing distributions of the 

groundwater mixing volume in the slow reservoir (SS_mix) for S2 and S3 showed that its size could be decreased 

by a factor of ca. 3 when calibrating using NOଷ
ି concentrations instead of DOC concentrations (Fig. 8h).  590 

Overall, all parameters except for kF and kS had lower uncertainty when the model was calibrated using solute 

concentrations, whether simultaneously or separately (Fig. 8). More specifically, the uncertainty in βH, fSUR, SS_mix 

and kR decreased for S2, S3 and S4. The uncertainty in CP, βR and SUR_max decreased for S2 and S3, while that in 

Pmax and Lp decreased for S3 and S4. The uncertainty in SU_max decreased only for S2, while that in f decreased 

only for S3. For deep-infiltration losses (QL), only calibration using DOC and NOଷ
ି  concentrations simultaneously 595 

(S4) decreased its uncertainty compared to those for other scenarios (Fig. 8j). 
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Figure 4. Observed and simulated flows for the calibration and evaluation periods according to the four scenarios: 600 

a) S1 (Hydro only), b) S2 (Hydro + dissolved organic carbon (DOC)), c) S3 (Hydro + nitrate (NOଷ
ି)) and d) S4 

(Hydro + DOC + NOଷ
ି). The simulated data for each scenario correspond to the best-compromise simulated 

discharge of the set of optimal solutions. “Envelope” refers to the simulated discharge envelope using all parameter 

sets on the Pareto front. See Table 3 and Appendix C for definitions of model-performance metrics. 
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 605 
Figure 5. Observed and simulated dissolved organic carbon (DOC) concentrations for the calibration and 

evaluation periods according to two scenarios: a) S2 (Hydro + DOC) and b) S4 (Hydro + DOC + NOଷ
ି). The mean 

(± standard deviation) observed DOC concentration was 4.8 ± 3.5 and 4.5 ± 3.1 mg DOC L-1 for the calibration 

and evaluation period, respectively. The simulated data for each scenario correspond to the best-compromise 

simulated DOC concentration of the set of optimal solutions. “Envelope” refers to the simulated DOC 610 

concentration envelope using all parameter sets on the Pareto front. KGE: Kling–Gupta efficiency, RMSE: Root-

mean-square error. See Table 3 and Appendix C for definitions of model-performance metrics. 

 

 

 615 
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Figure 6. Observed and simulated nitrate (NOଷ

ି ) concentrations for the calibration and evaluation periods 620 

according to two scenarios: a) S3 (Hydro + NOଷ
ି) and b) S4 (Hydro + DOC + NOଷ

ି). The mean (± standard 

deviation) observed NOଷ
ି concentration was 13.4 ± 2.7 and 16.6 ± 2.8 mg N-NO3 L-1 for the calibration and 

evaluation period, respectively. The simulated data for each scenario correspond to the best-compromise simulated 

NOଷ
ି concentration of the set of optimal solutions. “Envelope” refers to the simulated NOଷ

ି concentration envelope 

using all parameter sets on the Pareto front. KGE: Kling–Gupta efficiency, RMSE: Root-mean-square error. See 625 

Table 3 and Appendix C for definitions of model-performance metrics. 
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Figure 7. Boxplots of performance metrics for predictions of hydrological and solute concentration according to 

four scenarios: S1 (Hydro Only), S2 (Hydro + DOC), S3 (Hydro + NOଷ
ି) and S4 (Hydro + DOC + NOଷ

ି) for the a) 630 

calibration period and b) evaluation period. Whiskers represent 1.5 times the interquartile range. Black circles 

indicate the best-compromise solution of the Pareto front. The boxplots of KGENO3 for scenarios S1 and S2 are 

not shown, as their values were negative (median = -1) because the model was not calibrated to represent NOଷ
ି 

concentrations in these scenarios. An asterisk above a boxplot indicates values significantly (p < 0.05) larger than 

those for scenario S1 (one-sided Mann-Whitney test). See Table 3 and Appendix C for definitions of model-635 

performance metrics. 

 

 
Figure 8. Boxplots of hydrological parameters values for the four scenarios: S1 (Hydro Only), S2 (Hydro + DOC), 

S3 (Hydro + NOଷ
ି) and S4 (Hydro + DOC + NOଷ

ି). Whiskers represent 1.5 times the interquartile range. The circle 640 

on each boxplot indicates the parameter’s value in the best-compromise set on the Pareto front for each scenario. 
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3.4. Internal model states and consistency 

3.4.1. Groundwater level 

Overall, the calibration that included solute concentrations with streamflow (S2, S3 and S4) significantly improved 

simulation of groundwater level compared to S1 (Fig. 9). S1, performance metrics NSE and KGE were indeed the 645 

lowest, and PBIAS (Moriasi et al., 2007) and RMSE were the highest. S3 and S4 reproduced groundwater levels 

(NSE = 0.92 and 0.93, respectively) better than S2, while S3 reproduced best the low groundwater levels in 2009, 

2011 and 2013. However, for S3 and S4, the model tended to slightly overestimate the low groundwater levels in 

2010 and 2015. Overall, the model reproduced the observed magnitude and seasonality of the groundwater level 

relatively well (NSE = 0.76-0.93, depending on the scenario). PBIAS values were negative for all scenarios, 650 

indicating that the model tended to underestimate groundwater level. 

 

 

 
 655 

Figure 9. Observed and simulated groundwater levels for the four scenarios: S1 (Hydro Only), S2 (Hydro + DOC), 

S3 (Hydro + NOଷ
ି) and S4 (Hydro + DOC + NOଷ

ି). NSE: Nash–Sutcliffe model efficiency coefficient, KGE: Kling–

Gupta efficiency, PBIAS = Percent bias, RMSE: Root-mean-square error, S: Significance level. An asterisk in the 

significance level column indicates values that differed significantly (p < 0.05) from those for scenario S1 (two-

sided Mann-Whitney test). See Appendix Table C 3 for definitions of the performance metrics. 660 

3.4.2. Soil moisture 

Overall, calibrating the model with streamflow and solute concentrations simultaneously did not improve 

simulation of soil moisture dynamics in the riparian zone compared to S1 (Fig. 10a). The calibration that included 

DOC concentrations with streamflow (S2) had significantly lower performance to reproduce normalized soil 

moisture at PG2 (NSE = 0.58 and KGE = 0.74) compared to S1. The model reproduced observed soil moisture 665 

better when it was calibrated using DOC and NOଷ
ି  simultaneously (S4, with NSE = 0.73 and KGE = 0.78) than 

when using only one solute (S2 or S3, with NSE = 0.58 and 0.69, respectively, and KGE = 0.74 and 0.75, 

respectively). The model reproduced major features of the observed dynamics of normalized soil moisture at PG2 

(i.e. the riparian zone) (NSE = 0.58-0.79, depending on the scenario). It also reproduced drying rates at the end of 

the summer and wetting rates well overall. However, the model tended to slightly underestimate soil moisture in 670 

summer 2015 and winter 2016. PBIAS values were negative for all scenarios, indicating that the model tended to 

underestimate normalized soil moisture at PG2. 
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Only S2 reproduced soil moisture in the upslope zone significantly better than S1 did (NSE = 0.94 and 0.92, 

respectively) (Fig. 10b). For S3 and S4, the model did not reproduce the wetting rate well at the beginning of 2017, 

when it overestimated soil moisture. S3 and S4 had significantly lower performance than S1 did. Overall, the 675 

model reproduced the observed dynamics of normalized soil moisture at Toullo (i.e. the upslope zone) (NSE = 

0.79-0.94, depending on the scenario).  

 

 
Figure 10. a) Normalized observed (point PG2) and simulated soil moisture in the SUR reservoir and b) Normalized 680 

observed (Toullo point) and simulated soil moisture in the SU reservoir for four calibration scenarios: S1 (Hydro 

Only), S2 (Hydro + DOC), S3 (Hydro + NOଷ
ି) and S4 (Hydro + DOC + NOଷ

ି). NSE: Nash–Sutcliffe model 

efficiency coefficient, KGE: Kling–Gupta efficiency, PBIAS = Percent bias, RMSE: Root-mean-square error, S: 

Significance level. An asterisk in the significance level column indicates values that differed significantly (p < 

0.05) from those for scenario S1 (two-sided Mann-Whitney test). See Appendix CTable 3 for definitions of the 685 

performance metrics. 

3.5. Water balances 

Calibrating the model with DOC and NOଷ
ି concentrations along with streamflow data influenced water-balance 

components and changed the storage in reservoirs SU, SS and SUR. Median simulated total evaporative flow (EU 

and EUR) was highest for S1 (470 mm yr-1) and lowest for S4 (372 mm yr-1) (Fig. 11a). Median deep-infiltration 690 

losses (QL) were highest for S4 (128 mm yr−1) and lowest for S3 (54 mm yr-1). The median contribution of SR to 

discharge (QR) was slightly but significantly higher for S3 and S4 (108 and 109 mm yr-1, respectively) than for S1 

(100 mm yr-1). The median contribution of SS to discharge (QS) was significantly higher for S2 (293 mm yr-1) than 

for S1 (242 mm yr-1). SS and SUR stored water during the simulation, while SU lost water. SS tended store 
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significantly more water for S4 (2.7 mm yr-1) than it did for S1 (1.2 mm yr-1) (Fig. 11b). SU lost significantly more 695 

water for S3 (-21 mm yr-1) than for S1 (-12 mm yr-1) and lost the least for S4 (-10.6 mm yr-1). 

 

 
Figure 11. a) Boxplots of simulated annual water budgets for all Pareto fronts of each scenario (S1-S4) during the 

calibration and evaluation periods combined (1 Aug 2008-1 Sep 2016). Boxplots of changes in simulated storage 700 

of the main reservoirs of the model for all Pareto fronts of each scenario during the period. Whiskers represent 1.5 

times the interquartile range. An asterisk above a boxplot indicates values that differed significantly (p < 0.05) 

from those for scenario S1 (two-sided Mann-Whitney test).  

4. Discussion 

4.1. Effect on streamflow, groundwater and soil moisture 705 

The parsimonious solute-transport model reasonably reproduced simultaneously the dynamics of discharge, DOC 

and NOଷ
ି concentrations in the stream of the Kervidy-Naizin catchment for all scenarios. Model predictions based 

on independent data indicated that the model generally reproduced the dynamics of groundwater level and soil 

moisture in upslope and riparian zones for all scenarios. Including solute (DOC and NOଷ
ି) data along with 

streamflow data in a multi-objective calibration strategy improved the representation of groundwater storage and 710 

soil moisture in the upslope zone (Figs. 9 and 10b). The improvement in the representation of groundwater level 

was significant and relatively large for scenarios S2, S3 and S4 compared to S1 (Fig. 9). In contrast, the 

improvement in the representation of soil moisture in the upslope zone was significant but relatively small only 

for scenario S2 compared to S1 (Fig. 10b). Thus, only scenario S2 improved the representation of both groundwater 

and soil moisture in the upslope zone. 715 

Studies have shown that using additional information to constrain hydrological models usually improves spatial 

and/or temporal patterns of internal state variables and flows but does not necessarily improve the accuracy of 

predicted runoff (López López et al., 2017; Tong et al., 2021). Woodward et al. (2013b) developed a catchment 

simulation model that predicted streamflow and water chemistry by connecting a model of soil water balance to 

two groundwater reservoirs. They found that calibrating the model using daily streamflow and monthly NOଷ
ି data 720 

simultaneously from a small lowland milk-production-oriented catchment improved hydrological understanding 

and estimated catchment NOଷ
ି flows relatively well. In particular, they were able to infer daily contributions of 
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near-surface water, fast shallow groundwater, and slower, deeper groundwater to water and NOଷ
ି discharge. 

However, including NOଷ
ି data in the calibration overpredicted low flows compared to calibration using streamflow 

data alone. Yen et al. (2014) used regional estimates of annual denitrification mass and the percentage of NOଷ
ି 725 

load at the catchment outlet that had come from groundwater as soft data to constrain water-flow partitioning, 

which yielded realistic internal catchment behaviour but decreased the accuracy of predicted streamflow. In this 

study, when considering only the best-compromise model for each scenario, the use of solute data improved the 

representation of groundwater storage (S2, S3 and S4, Fig. 9) and soil moisture in the upslope zone (S2, Fig. 10b), 

but slightly decreased the accuracy of predicted streamflow in both calibration and evaluation periods (Fig. 4). In 730 

contrast, considering all hydrological signatures for discharge obtained from the envelope, S3 improved the 

model’s ability to reproduce streamflow characteristics, especially low flows (Fig. 7) and groundwater level (Fig. 

9).  

We included solutes (DOC and NOଷ
ି) that have opposite dynamics and whose conceptual models had been 

successfully tested in the literature (Birkel et al., 2014; Fovet et al., 2015b), with the aim of adding useful 735 

constraints to the hydrological modelling. However, none of the scenarios that included DOC and/or NOଷ
ି 

improved both the model’s representation of streamflow dynamics and internal consistency in representing 

groundwater level and soil moisture in the riparian and upslope zones. Given the limits of this study, it remains 

uncertain whether including solutes with streamflow in calibration improved only the representation of 

hydrological states and flows of specific reservoirs or also improved the model’s overall internal consistency. The 740 

first limit came from comparing point-scale in-situ observations to simulated soil moisture and groundwater levels 

that represented catchment-scale storage, as these observations may not have represented the actual dynamics of 

groundwater and soil storage. Furthermore, although the dynamics of DOC and NOଷ
ି concentrations in the stream 

were represented well, the conceptualization of biogeochemical processes and transport of these solutes may 

remain too simple to represent internal state variables and flows of solutes. The model represents the hydrological 745 

and biogeochemical processes that are assumed to dominate, and these assumptions are limited by incomplete 

knowledge. In addition, the representation of reactive solutes increased the number of parameters and the 

complexity of the model. Consequently, it would be interesting to compare this approach to the use of non-reactive 

solutes in calibration, such as natural tracers that are assumed to be conservative, including chloride (Clି) and 

stable isotopes of water (18O and 2H) (Kirchner et al., 2010), to assess whether the model can reproduce the 750 

dynamics of both soil moisture and groundwater better. 

The factors that improve internal hydrological consistency when solute data are included are not well understood. 

Streamflow aggregates information from many catchment-scale processes, but this information is too ambiguous 

to determine the exact catchment configuration (Kuppel et al., 2018b) or flow pathways that produced the observed 

signal (Woodward et al., 2017). This is because streamflow aggregates downstream along a convergent network 755 

towards a single outlet, but the divergent nature of an upstream network makes it impossible to uniquely backtrack 

the locations where the flow was generated (Kirchner et al., 2001). Thus, streamflow can be simulated well with 

many alternative model parameterizations, whether or not they are physically consistent (Kirchner, 2006). Results 

of the present study thus suggest that if streamflow alone is used for calibration, the model predicts discharge 

correctly for the wrong reason, as internal consistency, especially the representation of groundwater level, is not 760 

guaranteed. The model thus simulates water pathways and storage dynamics that do not represent those in the 

actual catchment. Consequently, it appears that the hydrological behaviour of the catchment required to reproduce 

the observed DOC and NOଷ
ି concentrations in the stream is different from that required to reproduce only the 

observed discharge. This hypothesis is supported by the fact that the calibration scenarios influenced the main 
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components of the water balance differently. For example, S3 yielded better representation of the groundwater 765 

reservoir, with good reproduction of the groundwater level (Fig. 9), but lower evapotranspiration and higher water 

loss from the SU reservoir than S1 (Fig. 12). In comparison, S2 yielded better representation of upslope soil water 

storage (Fig. 10b) and a higher contribution of SS to discharge than S1 (Fig. 12). The large amount of information 

in the solute time series thus constrained internal reservoirs and water flows more than a streamflow-only approach, 

which increased internal consistency of the hydrological model. This occurs because a hydrological model needs 770 

to represent only an input-output response, whereas when biogeochemistry is included, a model needs to represent 

both residence-time distributions and biogeochemical processing to reproduce the observed stream concentrations 

(Medici et al., 2012) and the decrease in solute-input signals. The use of solute time series, which mitigates the 

equifinality problem, thus excluded infeasible model configurations that would have also yielded high performance 

(Dimitrova-Petrova et al., 2020; Kuppel et al., 2018b; Yen et al., 2014). 775 

An additional step is needed to understand the benefits of including solute data for internal hydrological 

consistency by analysing effects of including DOC and NOଷ
ି concentration data on the storage dynamics (state and 

flows) of model components. For example, the simulations showed that including NOଷ
ି data decreased kS and SS_mix 

(Fig. 8g and 8h), suggesting that simulations of NOଷ
ି dynamics were optimized at a lower groundwater mixing 

volume and lower flow rate in SS. However, it is important to go further to understand why including 780 

NOଷ
ି concentration data improved simulation of groundwater level (Fig. 9) and low flow (Fig. 7). In this landscape, 

most of the NOଷ
ି leached from the unsaturated reservoir accumulates in the shallow groundwater (Aubert et al., 

2013; Strohmenger et al., 2020). The groundwater, with a legacy mass storage of NOଷ
ି (Basu et al., 2010; Molenat 

et al., 2008), thus contributes water to the stream that sustains the base flow and export of NOଷ
ି (Aubert et al., 

2013; Molenat et al., 2008). Given these characteristics, good reproduction of NOଷ
ି concentrations and flows in 785 

the stream, supplied mainly by groundwater, can be assumed to constrain the model sufficiently to yield good 

reproduction of water flows from the groundwater to the stream and thus good representation of groundwater level. 

4.2. Effects on parameter uncertainties 

Using a parsimonious hydro-chemical model without explicit biogeochemical processes, Strohmenger et al. (2021) 

found that overall parameter uncertainties were higher when calibrating using solute data (DOC, NOଷ
ି) along with 790 

streamflow data than when calibrating using streamflow data alone. They assumed that DOC and NOଷ
ି sources 

behave as infinite pools with a fixed concentration in each reservoir contributing to the stream. The modelling 

approach in the present study was relatively similar, but explicitly represented biochemical processes related to 

DOC and NOଷ
ି. This approach resulted in decreased parameter uncertainty when solute concentrations were 

included in calibration, except for storage coefficients of the fast (kF) and slow reservoirs (kS) (Fig. 8). Comparing 795 

the results of these two studies suggests that the infinite-solute-pool assumption is sufficient to reproduce annual 

and storm-event dynamics of discharge and DOC and NOଷ
ି concentrations in the stream, but is insufficient in 

calibration to constrain the model to adequately reproduce water storage dynamics and flow paths and to reduce 

uncertainties in hydrological parameters. In the infinite-solute-pool assumption, hydrological parameters are 

indeed less sensitive to solute concentrations than they are in models that explicitly represent biogeochemical 800 

processes and dynamic solute concentrations in reservoirs. Notably, the results of this study highlight that S4, 

which considered all constraints (i.e. streamflow and DOC and NOଷ
ି concentrations), greatly influenced the 

distributions of the most influential hydrological parameters, specifically QL and CP, whose values were among 

the highest or lowest, respectively (Fig. 8b and 8j), and reproduced groundwater levels the best (Fig. 9). This 

highlights the importance of parameters QL and CP, which determine inter-catchment groundwater flows and the 805 
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recharge from SU to SS and SUR to SR, respectively, in ensuring that the model reproduced the observed groundwater 

dynamics. Based on these results, for the model to best reproduce the dynamics of streamflow, concentrations 

(DOC, NOଷ
ି) and groundwater, recharge should be decreased and inter-catchment groundwater flow should be 

increased to ca. 0.35 mm day-1 (best-compromise parameter value for S4, Fig. 8j). This value is consistent with 

those found in modelling studies of a similar physiographic headwater catchment in Brittany (Fovet et al., 2015a; 810 

Hrachowitz et al., 2014). 

The model conceptualizes biogeochemical processes for DOC and NOଷ
ି in a relatively simple way, but has reduced 

the uncertainties of the parameters. An additional step in future studies will be to analyse whether more complex 

representation of biogeochemical processes in the model can further reduce uncertainties in hydrological 

parameters. Results of the present study are consistent with those of other studies, in which inclusion of additional 815 

variables in multiple-objective calibration generally reduced parameter uncertainty (Tong et al., 2021). For 

example, Yen et al. (2014) found that including data related to water quality yielded lower parameter uncertainties 

than calibration using streamflow alone, especially for hydrological parameters that strongly influence 

denitrification. Silvestro et al. (2015) demonstrated that the equifinality of soil parameters was reduced by 

including satellite-derived soil moisture when calibrating a process-based, spatially distributed hydrological 820 

model. Similarly, Rajib et al. (2016) found that including satellite-derived soil moisture, especially that in the 

rooting zone, reduced parameter uncertainties, particularly for parameters related to subsurface hydrological 

processes. 

4.3. Comparability of point-scale in-situ measurements to catchment-scale storage 

A remaining issue is the limited comparability of point-scale in-situ measurements and simulated soil moisture 825 

and groundwater level to catchment-scale storage. In-situ volumetric soil moisture was calculated as the mean of 

several TDR probes, which reduces uncertainty at the point scale, but upscaling these point measurements to a 

reservoir that represents a hillslope or riparian zone is associated with uncertainties. Consequently, we considered 

normalized soil moisture as a proxy for dynamics of unsaturated storage in hillslope and riparian zones. Similarly, 

we used the daily mean normalized water level at point PG5 as a proxy for groundwater storage dynamics. An 830 

additional step in future studies will be to determine how point measurements can be upscaled to areal mean point 

scale soil moisture and groundwater measurements compatible with catchment-scale storage. A complementary 

approach is to include other promising methods, such as remote sensing, to estimate the spatial distribution of 

storage in catchments, especially of soil moisture (Duethmann et al., 2022; Tong et al., 2021). The high spatial 

resolution, worldwide spatial coverage and increasing availability of remotely sensed data may provide ample 835 

opportunities to further constrain hydrological models and their parameters (Bouaziz et al., 2021; Duethmann et 

al., 2022; Gomis-Cebolla et al., 2022; Nijzink et al., 2018; Tong et al., 2021). Recent soil moisture data from 

satellite-derived soil-moisture products (e.g. SMAPL3E, SCATSAR, ASCAT DIREX SWI) with high spatial and 

temporal resolutions (e.g. 0.5-9.0 km and 1-3 days, respectively) (Duethmann et al., 2022) would help constrain 

the model of the Kervidy-Naizin catchment. Other promising methods include cosmic-ray neutron-sensor probes 840 

to estimate dynamics of near-surface soil water storage (Dimitrova-Petrova et al., 2020) and geodesy and 

geophysical methods (Fovet et al., 2015a). Additional data can be used to assess the internal representation of 

evapotranspiration, which has a wide spatial and temporal distribution at the catchment scale, to provide more 

confidence in simulation of the partitioning of water between soil storage and groundwater recharge (Moazenzadeh 

and Izady, 2022). For example, using spatially and temporally gridded remotely sensed evapotranspiration data to 845 

calibrate the Soil and Water Assessment Tool (SWAT) hydrological model decreased the equifinality of the 
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calibrated parameters compared to calibration using only streamflow data (Shah et al., 2021). These results 

demonstrate the benefit of using increasingly available open-access remotely sensed evapotranspiration data to 

improve calibration of hydrological models. These methods provide a spatially aggregated overview of catchment 

water content and go beyond traditional methods of direct storage observations at the point scale that are limited 850 

to a single reservoir (Dimitrova-Petrova et al., 2020). 

4.4. Implications 

This study’s results indicate that solute data are important for improving the internal consistency of hydrological 

models, which can help guide collection of field data and modelling (Stadnyk and Holmes, 2023). When collecting 

field data for model calibration, it may be important to collect solute data along with streamflow data. These data 855 

can then be used in a hydrological model to which simple representations of biogeochemical processes are added 

to improve the representation of internal behaviour of the catchment by calibrating streamflow and solutes 

simultaneously. The type of solute measured is also important, as calibration using NOଷ
ି improved the internal 

consistency of the groundwater reservoir, while that using DOC improved the internal consistency of soil water 

storage in the upslope zone. With the increasing availability of solute data from catchment monitoring, this 860 

approach provides an objective way to improve representation of complex hydrological systems when information 

about their internal functioning is insufficient. A catchment model that represents observed behaviour of the system 

more accurately can then be used with confidence when assessing scenarios, such as those of nutrient remediation 

or climate change. If the internal behaviour of the hydrological system is not represented correctly, predicting 

streamflow acceptably is pointless and perhaps counter-productive, leading to erroneous conclusions and potential 865 

mismanagement of catchment resources. For example, Yen et al. (2014) showed that a lack of constraints to 

realistically represent the internal functioning of a catchment can lead to misleading assessments of pollution-

control scenarios, even when typical streamflow performance criteria are satisfied. 

The ability to apply this modelling approach to other catchments with different physiography will depend on the 

model’s ability to represent dominant sources and pathways of DOC and NOଷ
ି concentrations that differ from those 870 

of Kervidy-Naizin. To address this question, we analysed the response of streamwater chemistry to changes in 

discharge observed in this catchment and how the model represents it. Changes in solute concentrations as a 

function of discharge (i.e. concentration-discharge (CQ) relationships) (Appendix B) provide insight into how 

catchments store and release water and solutes, and can therefore be considered a “fingerprint” of catchment 

transport, mixing and reaction processes (Godsey et al., 2009; Knapp et al., 2020). Long-term seasonal CQ slopes 875 

for NOଷ
ି in Kervidy-Naizin generally indicated a chemostatic NOଷ

ି export regime (Fig. B1a). Indeed, this pattern 

often emerges in catchments with a spatially uniform distribution of abundant solute sources, such as NOଷ
ି in 

agricultural areas, which leads to a relatively constant release of solutes to the stream network (Bieroza et al., 

2018). In contrast, in the winter of a few years (2010, 2012 and 2014), the CQ slope indicates instead a slightly 

more chemodynamic export regime with a dilution pattern. Long-term seasonal CQ slopes for DOC indicate a 880 

chemodynamic export regime with an accretion pattern that changes to a chemostatic export regime in autumn 

(Fig. B1b). The model reproduced the differing export regime of each solute from 2008-2016 relatively well (Fig. 

B1). Model performance was slightly lower for DOC (RMSE = 0.13-0.27) than for NOଷ
ି (RMSE = 0.08-0.21). For 

a few years, the model did not represent the export regime accurately. The export regime for NOଷ
ି observed in 

winter 2008 and 2009 was chemostatic, but the model simulated a chemodynamic export regime with a dilution 885 

pattern. The export regime for DOC observed in autumn 2011 and 2014 and summer 2012 and 2014 was an 

chemostatic export regime, but the model simulated a more chemodynamic export regime with an accretion 
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pattern. As the model simulated hydrological dynamics relatively well during these periods (Fig. 4), it was likely 

overpredicting DOC. Analysis of the CQ relationships observed and simulated in Kervidy-Naizin highlighted two 

important points: (i) each solute in this catchment did not have a single pattern but instead seasonal and interannual 890 

differences in export regimes and (ii) the parsimonious solute-transport model was able to reproduce different 

export regimes. Thus, this modelling approach may be applicable, in particular due to its flexible structure, to 

headwater catchments whose characteristics and export regimes differ from those of Kervidy-Naizin. Applying 

the model to catchments whose streams can be intermittent would first require solving the methodological issue 

of high NOଷ
ି concentrations in summer, when no observed data are available, to prevent overpredicting 895 

concentrations and risk overestimating NOଷ
ି flows in summer. The model can also be adapted to represent 

catchments whose hydrological and biochemical patterns differ from those of Kervidy-Naizin, where most DOC 

accumulates in the soils of the riparian zone and NOଷ
ି accumulates in the groundwater. For example, the reservoirs 

in which DOC is produced or lost can be modified easily. In addition, more complex models of biogeochemical 

processes can also be considered. While we represented heterotrophic denitrification as a constant, dynamic 900 

equations (Heinen, 2006) could easily be incorporated to represent the seasonality of this process. 

5. Conclusion 

The model reasonably reproduced the dynamics of discharge and solute (DOC and NOଷ
ି) concentrations in the 

stream of the headwater catchment simultaneously for all scenarios. Model predictions based on independent data 

indicated that the model generally reproduced the dynamics of groundwater level and soil moisture in upslope and 905 

riparian zones for all scenarios. Given the performance of the best-compromise model for each scenario, the results 

of this study tend to reject the first hypothesis, as using daily stream DOC and NOଷ
ି concentrations along with 

streamflow data to calibrate the model did not improve the model's performance for simulated streamflow for the 

calibration or evaluation period compared to calibration with streamflow alone. In contrast, considering all 

hydrological signatures for discharge obtained from the envelope, the scenario that included NOଷ
ି along with 910 

streamflow improved the model’s ability to reproduce streamflow, especially low flows. For the second 

hypothesis, including solute data along with streamflow data in a multi-objective calibration strategy significantly 

improved the representation of groundwater storage and soil moisture in the upslope zone. The improvement in 

the representation of groundwater level was significant and relatively large for all scenarios when using one or 

both solutes along with streamflow for calibration compared to using only streamflow. In contrast, the 915 

improvement in the representation of soil moisture in the upslope zone was significant but relatively small only 

when using DOC concentration along with streamflow for calibration compared to using only streamflow. None 

of the scenarios that included solutes improved both the model’s representation of streamflow dynamics and 

internal consistency in representing groundwater level and soil moisture in the riparian and upslope zones. Based 

on these results, it remains uncertain whether including solutes with streamflow in calibration improved only the 920 

representation of hydrological states and flows of specific reservoirs or also improved the model’s overall internal 

hydrological consistency. For the third hypothesis, explicitly modelling biochemical processes for DOC and NOଷ
ି 

reduced the uncertainty in hydrological parameters, except the storage coefficients of the fast and slow reservoirs, 

compared to an approach in which sources of DOC and NOଷ
ି were treated as infinite pools with fixed 

concentrations. The simultaneous inclusion of daily in-stream DOC and NOଷ
ି concentrations in the calibration 925 

strategy influenced the distribution of the most influential hydrological parameters of the model. Differences 

among the calibration scenarios also influenced the main components of the water balance. Calibrating the model 
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with streamflow and solute concentrations simultaneously reduced predictions of evapotranspiration. Compared 

to calibration using streamflow alone, the inclusion of DOC increased the predicted contribution of groundwater 

to discharge, while the inclusion of NOଷ
ି increased the predicted loss of water from the rooting-zone reservoir. 930 

This modelling study demonstrated that including the large amount of information in solute time series in 

hydrological models provided an objective way to improve the representation of complex hydrological systems 

for which information about internal functioning was insufficient. 

Appendix A 
Table A1. Symbols and definitions of variables in the hydrological model 935 
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Figure A1. Relationship between observed and simulated streamflow for calibration and evaluation periods for 940 
four calibration scenarios: a) S1 (Hydro Only), b) S2 (Hydro + DOC), c) S3 (Hydro + NOଷ

ି) and d) S4 (Hydro + 
DOC + NOଷ

ି). The dashed blue line is the 1:1 line. The light green or orange lines are linear regressions for the 
calibration or evaluation period, respectively. All relationships were statistically significant (p < 0.001). 

 

 945 

 

Appendix B: Concentration-discharge relationship 

In general, the concentration-discharge (CQ) relationship allows three export regimes to be distinguished: (i) 

chemodynamic with an accretion pattern, (ii) chemodynamic with a dilution pattern or (iii) chemostatic (Godsey 

et al., 2009; Musolff et al., 2017; Winter et al., 2021). “Chemodynamic” means that the variability in a solute's 950 

concentration is similar to or higher than that in Q, with concentrations either increasing (accretion) or decreasing 

(dilution) as Q increases (Winter et al., 2021). In contrast, chemostatic regimes have constant in-stream nutrient 

concentrations that are not significantly correlated with Q and have much lower variability (Bieroza et al., 2018). 

The slope of the linear relationship between ln(C) and ln(Q) (CQ-slope) determines the export regime: (i) 

chemodynamic with an accretion pattern when greater than 0.1, (ii) chemodynamic with a dilution pattern when 955 

less than −0.1 and (iii) chemostatic from −0.1 to 0.1 (Winter et al., 2021). The thresholds of -0.1 and 0.1 for the 

chemostatic regime were chosen according to Bieroza et al. (2018) and Winter et al. (2021). 
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Figure B1. a) Slope ln([N-NO3])-ln(Q) for simulated nitrate (NOଷ

ି) data from scenario S3 (streamflow and stream 960 
NOଷ

ି concentration used for calibration). b) Slope ln([DOC])-ln(Q) for simulated DOC data from scenario S2 
(streamflow and stream DOC concentration used for calibration). Horizontal grey lines identify the boundary 
between a chemodynamic regime with a dilution pattern and a chemostatic regime (-0.1) and that between a 
chemostatic regime and a chemodynamic regime with an accretion pattern (0.1). RMSE: Root-mean-square error. 
  965 
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Appendix C: Performance criteria 
 
To evaluate model performance, the study used the following criteria: 

1) Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970): 

NSE = 1 - ∑ ൫ଢ଼౟,౥ౘ౩ି ଢ଼౟,౩౟ౣ൯
మ౤

౟సభ

∑ ൫ଢ଼౟,౥ౘ౩ି ଢ଼౥ౘ౩തതതതതതത൯
మ౤

౟సభ
               (1) 970 

 
where Y୧,ୱ୧୫ is the model output, Y୧,୭ୠୱ is the observed value of variable Y for time step i, Y୭ୠୱതതതതത is the mean value 
of observation data for the study period and n is the length of the time series. NSE ranges from -∞ to 1, with NSE 
= 1 being the optimal value if the simulation represents the observations perfectly (Moriasi et al., 2007). NSE 
describes the variance in the observed values over time that is explained by the model. Negative NSE indicates 975 
that model predictions are worse than the mean of all observations. The NSE of the flows (NSEQ) and the NSE of 
the logarithm of the flows (NSE୪୭୥్) evaluated the model’s ability to reproduce high flows and low flows, 
respectively (Gharari et al., 2014). 
 
2) Kling-Gupta model efficiency (KGE) (Gupta et al., 2009):  980 
 
KGE = 1- ඥ(r − 1)ଶ + (β − 1)ଶ + (α − 1)ଶ , β=ఓ౩౟ౣ

ఓ౥ౘ౩
 , α = ஢౩౟ౣ

஢౥ౘ౩
           (2) 

 
where r is the correlation coefficient, β and α are the bias and variability ratio, respectively, between simulations 
and observations, μ and σ are the mean and standard deviation of the variable, respectively, and indices sim and 985 
obs represent simulations and observations, respectively. 
The closer the KGE is to 1, the better the model performs, and KGE = 1 expresses a perfect fit between predictions 
and observations. KGE of 0.70-0.82 is considered average to slightly good model performance, while KGE > 0.82 
is considered good to very good (Crochemore et al., 2015).  
 990 
3) The flow duration curve (FDC), which is the distribution of probabilities of streamflow being greater than or 
equal to a given magnitude (Sawicz et al., 2011). In the present study, the NSE of the FDC (NSEFDC) evaluated 
the model’s ability to reproduce FDCs:  
 

NSEFDC =1- 
∑ ൫୊ୈେౠ,౥ౘ౩ି୊ୈେౠ,౩౟ౣ൯

మభబబ
ౠసబ

∑ ൫୊ୈେ౟,౥ౘ౩ି୊ୈେ౥ౘ౩തതതതതതതതതതത൯
మభబబ

ౠసబ
               (3) 995 

 
where FDC୨,୭ୠୱ is the FDC of the observed discharge with j probability of exceedance, FDC୨,ୱ୧୫ is the FDC of the 
simulated discharge with j probability of exceedance and FDC୭ୠୱതതതതതതതതത is the mean observed discharge (Euser et al., 
2013). 
 1000 
4) Volumetric efficiency (VE):  
 
VE = 1- ∑ ห୕౟,౩౟ౣି୕౟,౥ౘ౩ห౤

౟సభ
∑ ୕౟,౥ౘ౩

౤
౟సభ

                (4) 

 
where Q୧,୭ୠୱ and Q୧,ୱ୧୫ are the observed and simulated discharge, respectively, at time step i. VE thus ranges from 1005 
0-1 and represents the fraction of simulated water delivered at the correct time (Criss and Winston, 2008). 

5) Runoff (RUNOFF [-]), which equals long-term mean streamflow (Q) divided by long-term mean precipitation 
(P) (Sawicz et al., 2011): 
 

RUNOFF = 
୕
୔
                (5) 1010 

 
RUNOFF represents the long-term water balance between water released from the catchment as streamflow and 
as evapotranspiration (assuming no net change in storage). A high or low runoff ratio indicates a large amount of 
water exiting as streamflow (dominated by streamflow or blue water) or evapotranspiration (dominated by 
evapotranspiration or green water), respectively (Sawicz et al., 2011). NSERUNOFF corresponds to the NSE with 1015 
RUNOFF as the variable. 
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6) Root-mean-square error (RMSE): 
 1020 

RMSE = ටଵ
௡

∑ ൫Y୧,୭ୠୱ − Y୧,ୱ୧୫൯ଶ୬
୧ୀଵ                (6) 

 
where Y୧,ୱ୧୫ and Y୧,୭ୠୱ are the simulated and observed value of variable Y, respectively, at time step i and n is the 
length of the time series. RMSE is easy to interpret because it uses the same units as the model output. The lower 
the RMSE, the better the model performance. 1025 
 
7) Percentage bias (PBIAS) (Moriasi et al., 2007):   
 
PBIAS = ଵ

୬
∑ ൬ଢ଼౟,౩౟ౣିଢ଼౟,౥ౘ౩

ଢ଼౟,౥ౘ౩
൰୬

୧ୀଵ *100               (7) 

 1030 
measures the mean difference between observations Y୧,୭ୠୱ and model simulations Y୧,ୱ୧୫ of variable Y at time step 
i. n is the length of the time series. The optimal value of PBIAS is 0.0, with small values indicating accurate 
prediction and larger positive or negative values indicating overprediction or underprediction bias, respectively. 
 
8) Coefficient of determination (R²): 1035 
 

R2 =
ቀ∑ ൫ଢ଼౟,౥ౘ౩ିଢ଼౥ౘ౩തതതതതതത൯౤

౟సభ ∙൫ଢ଼౟,౩౟ౣିଢ଼౩ഠౣതതതതതതത൯ቁ
మ

∑ ൫ଢ଼౟,౥ౘ౩ି ଢ଼౥ౘ౩തതതതതതത൯
మ౤

౟సభ ∙∑ ൫ଢ଼౟,౩౟ౣିଢ଼౩ഠౣതതതതതതത൯
మ౤

౟సభ
              (8) 

 
where Y୧,ୱ୧୫ and Y୧,୭ୠୱ are the simulated and observed value of variable Y, respectively, at time step i, Y୭ୠୱതതതതത and 
Yୱన୫തതതതത are the mean value for observed and simulated data for the study period, respectively, and n is the length of 1040 
the time series. R2 evaluates how accurately the model predicts the variation in observed values. It can reveal the 
strength and direction of a linear relation between predictions and observations.  
 

Data availability. The weather data are available from the INRAE CLIMATIK platform 
(https://agroclim.inrae.fr/climatik/, in French). The hydrochemical data (i.e. streamflow, groundwater levels, soil 1045 
water content and solute concentrations) are available from the Observatoire de Recherche en Environnement sur 
les Agro-Hydrosystèmes (ORE AgrHyS) platform (https://www6.inra.fr/ore_agrhys_eng/Data). ORE AgrHyS, 
funded by INRAE, is part of the OZCAR French Research Infrastructure (https://www.ozcar-ri.org/agrhys-
observatory/). 
 1050 
Code availability. The model code is available from https://doi.org/10.5281/zenodo.10161243 or directly from 
the first author. 
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