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Abstract.  Seasons are known to have a major influence on groundwater recharge and therefore groundwater levels, however, 

underlying relationships are complex and partly unknown. The goal of this study is to investigate the influence of the seasons 

on groundwater levels (GWL), especially on low-water periods. For this purpose, we train artificial neural networks on data 

from 24 locations spread throughout Germany. We exclusively focus on precipitation and temperature as input data and apply 10 

layer-wise relevance propagation to understand what relationships are learned by the models to simulate GWLs. We find that 

the learned relationships are plausible and thus consistent with our understanding of the major physical processes. Our results 

show that for the investigated locations the models learn summer as the key season for periods of low GWL in fall, a connection 

to the preceding winter is usually only subordinate. Specifically, dry summers show strong influence on low-water periods and 

generate a water deficit, that (preceding) wet winters cannot compensate. Temperature is, thus an important proxy for 15 

evapotranspiration in summer and overall identified as more important than precipitationthe more important variable, but only 

on average. Single precipitation events show by far the highest influences on GWL and summer precipitation seems to mainly 

control the severeness of low GWL periods in fall, while higher summer temperatures do not systematically cause more severe 

low-water periods. 

1 Introduction 20 

Groundwater is a major source of drinking water globally, and is also used for agricultural irrigation, industrial purpose and to 

supply terrestrial and aquatic groundwater-dependent ecosystems (Gleeson et al., 2016; Siebert et al., 2010). However, 

groundwater resources are under increasing pressure resulting from climate change, intensified land use and increasing 

groundwater abstraction (Famiglietti, 2014; Green et al., 2011). Low-water periods are thereby of particular interest since they 

often cause problems, e.g., for groundwater dependent ecosystems or water supply. Moreover, they mostly coincide in time 25 

with periods of higher water demand and therefore increased abstraction rates, which exacerbates the problem. The sustainable 

availability of groundwater resources is chiefly determined by groundwater recharge. Overexploitation occurs when 

abstraction exceeds recharge. Recharge is difficult to quantify directly and precisely on large areas, but in shallow, unconfined, 

and unused aquifers, groundwater levels (GWL) are a good , although not fully quantitative, proxy indicator of for recharge. 
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Quantitative calculation of recharge based on groundwater levels would require detailed knowledge on soil water dynamics, 30 

effective storage porosity and hydraulic gradients controlling groundwater flow., Similarly, and changes in groundwater levels 

are a straightforward way to identify and estimate quantify changes in groundwater availability , with the limitations mentioned 

above (Hartmann et al., 2012). On long time scales, recharge is the difference between precipitation and actual 

evapotranspiration (minus overland flow if present), including transpiration from groundwater, which can be relevant in 

shallow aquifers; on shorter time scales, the previous saturation state of the soil (i.e., the soil water deficit) and changes in soil 35 

moisture storage play a major role in recharge and, consequently, groundwater levels. During the vegetation period, most of 

the precipitation is used by the vegetation for evapotranspiration. After long dry periods, large quantities or rainfall are needed 

to replenish the soil water deficit, before recharge can start (Döll and Fiedler, 2008). In the cold season, however, when soils 

are typically water saturated, most of the precipitation water is available for recharge, unless it is stored in the snow cover 

(Petitta et al., 2022). 40 

These generalized relations show that the seasons have a major impact on groundwater recharge, although the underlying 

processes and relationships are quite complex and still not completely understood. From glaciology, it is known that the 

summer season often has a larger impact on glacier retreat that the winter season (Fujita and Ageta, 2000; Thibert et al., 2013; 

Trachsel and Nesje, 2015). To put it simply, a long, hot, and dry summer can cause more damage to the glacier than a long 

winter with plenty of snow can repair. Similar relationships have been observed in soil science, where long-term lysimeter 45 

data have shown that hot, dry summers have a much greater negative impact on soil water storage than the positive influence 

of a wet winter season (Merk et al., 2021). The principal goal of this study is to investigate the influence of the seasons on 

groundwater levels, especially on low water periods, and our initial hypothesis is that hot dry summers have a stronger negative 

influence on groundwater resources than could be compensated for by (preceding) wet winters. 

Data-driven groundwater modelling based on Machine Learning (ML) methods is now an established yet still emerging field, 50 

as shown in a recent review by Tao et al. (2022). The ability of ML models to simulate GWLs based on historic groundwater 

and meteorological data alone and without comprehensive knowledge and data of the underground structure makes them 

appealing methods compared to physically based and numerical methods (Adamowski and Chan, 2011), and it was found that 

Artificial Intelligence (AI) methods (including ML) can successfully be used to simulate and predict GWL time series in 

different aquifers (Rajaee et al., 2019). Despite their success in terms of good model performance, one often mentioned 55 

drawback of AI/ML models is their “black-box” characteristics, as they do not rely on known physical relationships. However, 

explainable AI (XAI) methods can help to overcome this problem. They allow to interpret model behavior, and thus not only 

build trust in the models, but also may help to get new insights that are not apparent from the data alone. A good overview of 

XAI methods, including their history, motivation, goals, and types is given by Samek et al. (2019) and Holzinger et al. (2022). 

Popular types range from surrogate functions (e.g., Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al. 60 

2016)), local perturbation based (sensitivity) methods (e.g., SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 

2017)) to propagation-based approaches, which integrate the internal structure of the model into the explanation process. 

Layer-wise Relevance Propagation (LRP) (Bach et al., 2015; Montavon et al., 2019) is a propagation-based explanation 
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framework, which is applicable to artificial neural networks (ANN). It decomposes the output of the nonlinear decision 

function in terms of the input variables, forming a vector of input features scores that constitute the ‘explanation’ (Lapuschkin 65 

et al., 2019). LRP has been extensively applied and validated in numerous disciplines including computer vision, medicine, 

natural language processing, economy, and others. However, to the best of our knowledge the application in earth science is 

limited to Toms et al. (2020) and Mirzavand Borujeni et al. (2023), who use it in the context of El Niño–Southern Oscillation 

and surface sea temperature forecasts, as wells as air pollution, respectively. We chose this method, since it is rather 

straightforward, easy to understand and interpret, and applicable to sequence-alike/time series input data with deep learning 70 

models. Moreover, it has some advantages to other XAI methods such as its high computational efficiency and its theoretical 

underpinning based on Deep Taylor Composition (Montavon et al., 2017), making it a trustworthy and robust explanation 

method (Arras et al., 2022). 

This study aims to explore different research questions:  

1. Is it possible to use LRP to explore what ANNs learn when simulating GWLs with meteorological input data, and 75 

disentangle the temporal component of such learned relationships? 

2. Do these relationships coincide with our existing conceptual understanding of the relevant processes? 

3. What do the models identify as key drivers for periods of low GWL? 

4. What is the specific influence of each season and the temporal precipitation and temperature patterns during these 

seasons? 80 

To answer these questions, we train one-dimensional convolutional neural networks (CNN) at 24 example locations spread 

throughout Germany and apply LRP to explore what these models learn when they receive meteorological input data to 

simulate groundwater levels over time. In terms of model choice, we prefer CNNs over recurrent alternatives such as long 

short-term memory networks (LSTM) (Hochreiter and Schmidhuber, 1997), because they proved to be well suited and reliable 

in earlier studies (e.g., Wunsch et al., 2022). As input forcing data, we use exclusively precipitation and temperature, which 85 

yields good simulation results, and, due to the low variable number, simplifies later interpretation of the learned relationships. 

2 Data and Methods 

2.1 Data and locations 

In this study we use groundwater data from 24 different locations throughout Germany. All locations represent the uppermost, 

unconfined aquifer and exhibit weekly groundwater timeseries with a minimum length of 24 years (1997-2020) up to 66 years 90 

(1955-2020). Most wells are located in very shallow porous aquifers; two wells each are, however, located in fractured and 

karst aquifers, with slightly higher depth to groundwater. The locations, the start year of the weekly data records, the aquifer 

type, and the depth to groundwater are depicted in Fig. 1. The groundwater data until 2015 are a subset of publicly available 

data (Wunsch et al., 2021b) and preprocessed as described in Wunsch et al. (2022). More recent data were added using openly 

available and gapless groundwater data from the respective online services of the federal environmental agencies.  95 
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Input data are precipitation and temperature from the respective locations within the HYRAS v5.0 dataset by the German 

Meteorological Service (Rauthe et al., 2013; Razafimaharo et al., 2020). The HYRAS v5.0 dataset is a downscaled raster 

dataset with a cell size of 1 km², based on observations from meteorological stations, and is openly available via DWD 

Opendata (2022). Conceptually, precipitation serves as a proxy for potential groundwater recharge after compensating deficits 

of soil water, while temperature represents evapotranspiration processes. Usually, higher temperature also means higher 100 

evapotranspiration and thus less potential groundwater recharge, however, the relationships are complex and partly dependent. 

For example, in winter, higher temperature often goes along with higher precipitation intensity, thus higher potential recharge, 

because very cold conditions (<< 0°C) are usually dry, whereas in summer precipitation intensity decreases with increasing 

temperatures (e.g., Berg et al., 2009). 

 105 

Figure 1: Map of the considered locations in Germany, depicting the aquifer type of each well (color), the depth to groundwater (symbol 
size) and an ID with the start year of the data records in parenthesis (label). The background shows the aquifer type based on IMHE. 
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2.2 Model selection and evaluation 

To perform this study, we use convolutional neural networks (CNN) (LeCun et al., 2015), which are commonly applied to 

image-like data but have also shown to be valuable for the simulation of sequential data such as water related time series (Duan 110 

et al., 2020; Wunsch et al., 2021a, 2022). The CNNs applied in this study comprise the layers shown in Fig. 2 and use the 

hyperparameters listed in Table 1. All models are applied in a sequence-to-value forecasting mode and use a fixed input 

sequence length of 52 weeks (1 year), as illustrated in Fig. 2. This is necessary to answer the research questions of this study, 

and to enable comparability between models. A Bayesian optimization (Nogueira, 2014) is applied to select the optimal 

configuration for training batch size, number of filters in the 1D convolutional layer and the number of neurons in the first 115 

dense layer according to the range listed in Table 1. Between 80 and 200 optimization steps are performed, above 80 the 

process stops if no improvement occurs for 25 steps. Because the models depend on a random initialization, we use a model 

ensemble of 20 independently trained CNNs (only 5 for each optimization step to save computation time). We derive a 90% 

confidence preditionprediction interval from the model ensemble based on these 20 model initializations, meaning that 18 of 

20 model runs lie within the shown interval. All models are implemented in Python 3.8, using TensorFlow 2.7 (Abadi et al., 120 

2015), Keras (Chollet, 2015) and the libraries Numpy (van der Walt et al., 2011), Pandas (Reback et al., 2020), Scikit-learn 

(Pedregosa et al., 2011), and Matplotlib (Hunter, 2007). 

 

 

Figure 2: Structure of the CNN models (upper part) and illustration of the sequence-to-value forecasting mode with a fixed input sequence 125 
of one year (lower part). 

 

Table 1: Summary of model hyperparameters and important parts of the modelling and evaluation strategy. 

Hyperparameters (fixed)  

Length of input sequence 52 steps (1 year) 
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1D-Convolution kernel size 3 

Dropout rate 10 % 

Loss function Mean squared error (MSE) 

Optimizer (initial learning rate) ADAM (0.001) 

Max. training epochs 500 

Early stopping patience 30 

Hyperparameters (optimized) Range 

Batch size between 24 (16) and 29 (512) 

Size of first dense layer between 24 (16) and 28 (256) 

Number of 1D-convolution filters between 24 (16) and 29 (512) 

Training and optimization strategy  

Optimization period 2015 – 2016 

Testing period 2017 – 2020 

Training and early stopping (splitting ratio) Before 2015 (90% / 10%) 

Bayesian optimization steps (Min, Max) 80, 200 

Size of model ensemble (pseudorandom):  

during optimization 5 

final 20 

Optimization target MSE 

 

We selected only those locations where the tested models achieve particularly good scores in the test set (Fig. 3b, details on 130 

each location in the supplementary material). This way, we reduce uncertainty from model inaccuracies during the following 

analyses. However, because we will analyze the model not only in the test period, but selected periods of the complete 

individual time series, we explored the model fit for the full time series and selected only locations with a highly accurate fit 

throughout the complete simulation (Fig. 3a). The simulation accuracy is demonstrated in Fig. 3 using Nash-Sutcliffe 

Efficiency (NSE) (Nash and Sutcliffe, 1970), coefficient of determination (R²) and Kling-Gupta Efficiency (Gupta et al., 2009). 135 

We further rigorously judged the fit between observed and simulated values in all parts visually, to reduce possible influence 

of counterbalancing error effects. An example simulation and an illustration of the time series partition for training, 

optimization and testing is depicted in Fig. 4 for location P11.  
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Figure 3: Model performance at all 24 locations for the (a) the complete time series (a) and (b) for the test period only (b) (at all 24 140 
locations). 

 

Figure 4: Model fit with high accuracy for all parts of the respective time series (location: P11, compare Fig. 1). 

2.3 Layer-Wise Relevance Propagation  

Layer-wise relevance propagation (LRP) (Bach et al., 2015) is a framework to explain model predictions by decomposition. 145 

LRP redistributes the prediction f(x) backwards throughout all layers of a neural network (in our case) using local redistribution 

rules and assigns a relevance score Ri to each input (Samek et al., 2017), hence in in our case a score for each value within the 

input sequence of both input variables P and T is calculated. LRP further is a local explanation method that explains each 

prediction using a single set of inputs. An important part of LRP is the conservation property, which means that each Ri of 

each input determines its individual contribution to the model output f(x), and no relevance is added or removed during the 150 

relevance redistribution procedure (Samek et al., 2017). LRP thus exhibits the additive feature attribution property, which 

means the sum of all Ri(x) equals f(x). Several redistribution or attribution rules exist, the most basic one is the LRPz-rule, 

which performs a proportional decomposition and which we use in this study (e.g., Kohlbrenner et al., 2020). We implement 

LRP using the iNNvestigate toolbox by Alber et al. (2019). As we use a model ensemble of 20 CNNs per location, for each 

individual Ri value we investigate the mean Ri value of all 20 models for further interpretation during our analyses. 155 
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3 Results and Discussion 

For the following analyses, we refer to the four seasons as the 3-month periods D-J-F (winter), M-A-M (spring), J-J-A 

(summer) and S-O-N (fall). At the investigated locations the annual minimum usually occurs during September, which is why 

we distinguish between summer (JJA) and a so-called low-water period that we define as the 3 months from July to September 

(JAS). Besides the annual minimum, this period also nicely catches the strongest downward trends of the considered 160 

groundwater hydrographs. The corresponding high-water period that includes the annual maximum in January or February, 

and the strongest increasing groundwater levels of the annual cycle equals the winter period and does not need a separate 

definition.  

In the following we explore the influence of the four seasons on those low-water periods. Thanks to the additive feature 

attribution property of LRP, we can sum all Ri within a certain time period (here one season) in the input sequence of a 165 

simulated groundwater level in a low-water period, to estimate the effect of the whole season on the model output. The results 

for all low-water periods at all locations are shown in Fig. 5. For spring, summer, and fall we mostly find negative contributions 

of T (i.e., higher temperatures relate to lower GWL) and positive contributions of P (i.e., higher precipitation coincide with 

higher GWL), as it can be expected. We see that summer (Fig. 5c) has the largest (generally high absolute relevance scores Ri) 

and winter (Fig. 5a) has the smallest influence on the GWLs in low-water periods, while spring and fall contributions are 170 

moderate. In winter (in parts also in spring and fall), T predominantly contributes slightly positive, while negative contributions 

are subordinate. This might be explained by correlation effects of T and P, e.g., higher temperatures in winter and some periods 

of spring and fall are often associated with higher rainfall (or snowmelt in winter), and, especially in winter, low temperatures 

can be associated with either snow (which is included in P, but does not directly lead to a groundwater level increase due to 

snow storage) or rather dry periods (Berg et al., 2009; Trenberth and Shea, 2005). The influence of summer is plausible, both, 175 

in its relative strength because of the temporal proximity (overlap even), as well as its clear positive contributions of P and 

negative contributions of T. However, the small contribution values in winter demonstrate that the models do not learn any 

strong connection between winter and low-water period, which also means that a preceding wet winter does not seem to be 

able to compensate for the negative influence of a following summer. Both spring and fall show similarly moderate influence. 

The influence of fall is even higher than of winter, despite the longer time lag and might be related to the model learning that 180 

the conditions one year earlier have a certain importance. However, our approach per se cannot account for accumulating 

effects over several years, which is a clear limitation. Especially in summer, the influence of P can be clearly distinguished 

between high groundwater levels (blue dots) and low groundwater levels (red dots, i.e., a spread of red and blue points along 

the P-axis), while the influence of T is rather uniform. That leads to the conclusion that the models learn summer P as the 

control for the severeness of a low-water period, whereas the temperature has a generally strong negative influence, but it 185 

cannot be seen that higher summer T lead to predominantly lower groundwater levels in dry periods. 
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Figure 5: Influence of seasons on low-water periods expressed as relevance scores, distinguished by input variable. Each dot represents the 
accumulated effect of an input variable during one season on a specific low-water period. 

In the following, we take a closer look on the generally identified influence of the input variables on groundwater levels (Fig. 190 

6). In contrast to the analysis above, single events (data points) are shown, not sums within specific periods. The x-axis 

represents the contribution to the model output, the color encodes the input feature value. We find results in agreement with 

the analyses above, meaning that LRP identifies T as on average more important than P (thus T is on top of the plothigher 

mean absolute value), T is clearly responsible for negative contributions, and P contributes mostly positively to the model 

output. P exhibits a clear positive correlation with the relevance scores (Pearson r = 0.60, p = 0.0), meaning that strong P events 195 

contribute stronger positively to the model output than weak events. The negative influence of T is less clear in this sense, and 

we find only a weak negative correlation (Pearson r = -0.14, p = 0.0). The reason for this could be the partly contradictory role 

of temperature depending on the season, as already discussed in the context of the positive contributions of T in winter in Fig. 

5a. In contrast to the analyses shown in Fig. 5, where the maximum importance valuerelevance scores are higher for T than 

for P, we now look at single events, and here we clearly see that, in absolute values, strong precipitation contributes up to twice 200 

as strong compared to temperature. Note, that a few LRP relevance scores for high P inputs (dark blue) exhibit negative values. 

Further investigation showed that these occur predominantly with a large temporal distance to the target. It thus might be a 

way of the model to cope with strong precipitation events in the past that do not influence the model output positively anymore. 

We speculate that this might be an effect of the long input sequence that we forced the model to use and that most certainly is 

longer than an optimization would have selected for the respective location.  205 
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Figure 6: Summary bee-swarm plots for all locations to show the learned relationships between input variables (P, T) and groundwater 
levels. One dot represents one week at one location. 

In the following we explore the results at location P11 in detail, which in terms of results in many ways is a typical example 

from our dataset. Figure 7 shows the raw data of the former analyses, thus input data and corresponding LRP values, temporally 210 

ordered for the test period and should be read as follows: (i) Subplot (c) shows the observed and simulated GWL within the 

test period. (ii) Each simulated GWL (e.g., at time t1 or t2) is based on input data of one year (52 values). Such raw input data 

is displayed above in subplots (a) and (b) for P and T respectively. (iii) Additionally, heatmaps in (a) and (b) show the LRP 

relevance scores for each input sequence (lines), from t-52 (left edge) to t (right edge). All subplots share the same x-axis and 

are aligned in time. Corresponding figures for all other locations are part of the supplementary material.  215 

Figure 7 visualizes well how LRP importance changes for each input value over time within the input sequence. For all P 

events, the heatmap of LRP values shows that blue fades out in columns from top to bottom, meaning the importance of P 

events decreases with the temporal distance to the target value (right edge), which is a plausible behavior. Even though some 

events (e.g., July 2017) do not seem to decrease, in reality they do, and it is only an effect of the upper limit of the color scale. 

Overall, strong events have an influence that lasts longer than that of weak events. We find that all LRP relevance scores in 220 

(a) are either positive or close to zero, while negative influences (as in Fig. 6) are not visible for P11. The above-described 

seasonal differences in P contributions are also not clearly visible for P11.  

The second heatmap of LRP values of T inputs in (b), shows that summer T causes stronger negative contributions than winter 

T in the close past, causing a periodical color pattern of dark and light red on the right edge of the diagonal. In contrast, with 

larger temporal distance to the target values (middle part of diagonal), all T inputs cause neutral (white) or even slightly positive 225 

(blue) contributions. Again, summer T causing stronger LRP contributions compared to winter T, however more positive in 

this case (white/blue diagonal). While this is only one example location, we find such patterns (summer winter periodicity 

and/or negative contribution changing to positive contribution with temporal distance) regularly in our data. When 

investigating a particularly low groundwater level in late September 2018 (t1) and examining the LRP values of the relevant 
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input sequence, we find that though the temperatures were on average higher in the months before, the T-LRP values show 230 

only moderately negative influences in this time period. Rather the temperature in the winter before has slightly lower positive 

influence, and there were exceptionally few precipitation events in the relevant time period. When looking at the low-water 

period one year before (t2), which exhibits a distinctly higher groundwater level than t1, the LRP values of T in the weeks 

before are much more negative, but obviously were counteracted by heavy rainfall events in summer 2017, also shown by 

strong positive LRP values for P. This confirms the results shown above, that summer P seems to be the most dominating 235 

factor for low groundwater levels in late-summer low-water periods. 

 

 

 

Figure 7: Breakdown of the LRP importance valuerelevance scores of each variable in the input sequence within the test set (2017-2020) at 240 
location P11. All graphs are aligned in time (x-axis). The dashed lines indicate how to read the figure. Each forecasted GWL (c) at an 
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arbitrary point in time (e.g., t1 or t2), uses an input sequence of one year (52 values) (compare raw data plots above in (a) and (b)). Hence 
each horizontal line within the LRP heatmaps for P (a) and T (b) represents the LRP relevance scores for each input value within one input 
sequence. 

By selecting specific periods and rearranging these LRP data, we can get further insights about the differences between drier 245 

(most severe) and wetter (least severe) low-water periods. Figure 8 thus shows an analysis of the three wettest and the three 

driest low-water periods at location P11. On top of the figure, seasonal P-sums (a) and T-means (b) are shown, gray bars mark 

the six selected periods evaluated below. Subplot (c) displays observed and modeled GWLs, also highlighting the selected 

periods in red and blue. 

P11 is a typical example where the low-water periods are dominated by summer P. We find considerably higher LRP values 250 

for P in the close past of the wetter low-water periods (e1), compared to the drier periods where the LRP values remain 

predominantly low (d1). This observation is in agreement with subplot (a1), where we can find the drier periods to have P 

sums during summer below average of all years, whereas the wetter periods indeed show sums of at about average (1972, 

1974) or above (1977). Mean summer Ts are mild for the wetter low-water periods, in winter, there is no clear systematic for 

both P and T (b). Correspondingly, the drier periods exhibit clearly below average summer P (a), while winter P and T, again, 255 

show no systematic behavior (a, b). Interestingly we can find stronger negative contributions in terms of T for the wetter years 

(d2), which might be related to the fact that evapotranspiration (with T as its proxy here) depends on water availability, thus 

in wetter years higher evapotranspiration can occur. H, however the general shapes of (d2) and (e2) are similar, with strong 

negative values in the close past (spring/summer), neutral values during winter (approx. weeks between 20 and 40) and slight 

negative values in the far past. Corresponding figures for all other locations are part of the supplementary material to this 260 

study.  
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Figure 8: Seasonal P sum (a) and mean T (b) as well as observed and modelled GWLs (c) for the whole time series, and LRP importance 
of all input sequences for the three wettest (e) and driest (d) low-water periods respectively, separated by input variable. Location: P11. 
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4 Conclusions 265 

In this study we gained insights into the influence of seasons on groundwater levels in Germany, with an emphasis on low-

water periods. Layer-wise relevance propagation (LRP), a powerful XAI method, allowed to interpret what artificial neural 

network models learn regarding the contribution of the two input variables precipitation and temperature in each season.  

We found that LRP is a valuable tool to not only gain general insights in what ANNs learn, but also to disentangle such 

knowledge in time and thus to analyze time series models. In the specific context of GW simulation, we found that the learned 270 

relationships do well coincide with the existing conceptual understanding of the relevant physical processes. This makes such 

modeling results trustworthy and allows to confidentially interpret also yet unknown effects and relationships that can be found 

in the results.  

We find that summer is the key season for low GWL periods at our example locations. Especially summer precipitation seems 

to control the severeness of such low water periods in late summer, whereas higher summer T does not per se lead to lower 275 

GWL in fall. Wetter low-water periods result from higher summer precipitation and are only subordinately related to the 

preceding winter season, because, generally, winter exhibits only a minor influence on low GWL periods in late-summer. In 

summary, dry summers have a major influence on low-water periods and generate a deficit that apparently preceding wet 

winters cannot compensate for at the investigated locations. 

In agreement with other studies (e.g., Thober et al., 2018) that indicate that a lower water availability primarily originates from 280 

changes in temperature, in this study; T is identified as on average the more important variable. However, this seems only to 

be the case on average since single P events show twice as high LRP contributions than T in its maximum. The higher influence 

of P is especially relevant for low-water periods in late summer. 

An important limitation is definitely that we focus on only two input variables, which on the one hand allows to disentangle 

effects and draw conclusions, on the other hand conclusions are somewhat limited. The main limitation of the approach used 285 

in this paper is, however, that it cannot account for accumulating effects over several years, as only one year of input data for 

each forecast is used and the model does not contain any kind of memory. Future research should focus on such inter-annual 

relationships and should account for such accumulating effects, which of course also complicates evaluation and interpretation. 

This could be done, e.g., by using recurrent neural networks, which contain a memory state, or replacing the whole ANN-XAI 

approach with a model class that has better capabilities in this sense. 290 

Code availability 

All Python code necessary to reproduce the results, readily trained models and files containing the results, are either directly 

provided on Github (https://github.com/AndreasWunsch/influence-of-seasons-on-low-GW-periods, 

https://doi.org/10.5281/zenodo.10156637) or referenced therein and openly available on Zenodo 

(https://doi.org/10.5281/zenodo.10156582).   295 
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