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Abstract. The hydrology of the catchments is primarily shaped by the intricate and dynamic interactions between surface 

water and groundwater. This is particularly evident in lowland catchments, where these interactions assume a complex 10 

nature. This study investigated the complex interaction between surface water and groundwater in the transboundary 

catchment Aa of Weerijs, shared by the Netherlands and Belgium. A hydrological model, MIKE SHE coupled with MIKE 

11, was calibrated and validated over twelve years using streamflow, groundwater levels, and evapotranspiration data. The 

model performance was analyzed using model efficiency parameters i.e., correlation coefficient (R) and Nash-Sutcliffe 

Efficiency coefficient (NSE). The model performed well, with satisfactory simulations of streamflow, groundwater levels, 15 

and evapotranspiration dynamics. Groundwater levels rose in winter and declined from April to September due to increased 

evapotranspiration in summer. Precipitation drove the water balance, with 60% lost through evapotranspiration. Base flow 

from subsurface drainage networks significantly contributed to river water. Spatial variability in precipitation minimally 

impacted streamflow but caused localized fluctuations in groundwater levels. Higher spatial resolution precipitation data led 

to fluctuations due to local recharge points, yet overall catchment hydrology was unaffected. The findings highlight the 20 

importance of surface water-groundwater interactions in lowland catchments. The developed model provides insights for 

water resource planning and climate change adaptation in the catchment. 
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1 Introduction 

The understanding of interaction between surface water and groundwater is essential for managing hydro systems (Jeannot et 25 

al., 2019). By using a multi-scale approach that combines various techniques from different disciplines, we can reduce 

uncertainties and gain a comprehensive understanding of the dynamics between groundwater and surface water (Ntona et al., 

2022). Surface water and groundwater, the main components of the hydrological system, are often analyzed separately. 

However, their interaction is vital for hydrosystem functionality. This interaction occurs through gaining stream and losing 

stream, depending on hydraulic head. Seasonal precipitation variations and events can impact groundwater tables and stream 30 
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stages, thereby influencing the exchange flow (Kalbus et al., 2006). The dynamic interplay between surface water and 

groundwater is intricately influenced by various factors, including the unique characteristics of the catchment area and the 

temporal variations in climate conditions. To deepen our comprehension of this hydrological relationship, researchers have 

employed two primary approaches: empirical field-based techniques and numerical modelling (Nippgen et al., 2011; Woods, 

2005).  35 

Traditionally, empirical field-based approaches have been employed to assess and quantify exchange flow in stream-aquifer 

systems. The literature offers several techniques, each with varying applicability depending on the study's focus and 

spatiotemporal scope (Kalbus et al., 2006). The interaction within the lowland stream-aquifer system was analysed by 

Krause et al. (2012) utilizing the heat tracer method to assess exchange fluxes, and Poulsen et al. (2015) employed isotopic 

tracer methods to qualify groundwater fluxes to the stream.  Landon et al. (2001) on the other hand, employed hydraulic 40 

conductivity to develop an appropriate technique for sandy bed rivers. These studies demonstrate the diverse range of 

methods used to investigate and understand the interaction between surface water and groundwater.  

Although these approaches have been widely used, particularly at a small scale and under current conditions, their 

applicability may be limited when considering future scenarios involving changes in land use and climate conditions (Yang 

et al., 2017). In contrast, numerical modelling is a valuable tool for assessing and quantifying this interaction at a regional 45 

scale. Unlike traditional field-based methods, numerical modelling provides a structured approach to analyse and 

comprehend the intricate dynamics of water interactions (Zhou et al., 2022). In literature, two types of models, the 

conceptual model and the physical-based model are being used for surface and groundwater interaction. Conceptual models 

use the movement of water between different conceptual stores to represent surface-water groundwater interaction (Herron 

and Croke, 2009; Kazumba et al., 2008). While the physical-based distributed model uses the hydraulic properties of the 50 

water and soil to represent the interaction (Yi-Luo, 2011).   

Physical-based fully distributed hydrological models, such as MIKE SHE, offer a means to simulate the complex interactions 

between hydrological processes within catchments. These models rely on accurately representing various input parameters to 

ensure realistic results. However, the reliability of hydrological models greatly depends on the availability of high-quality 

hydrological datasets, encompassing essential variables like precipitation, wind speed, temperature, and solar radiation, 55 

which are crucial for precise streamflow simulation (Price et al., 2014).   

In lowland catchments, where the interplay between surface water and groundwater becomes complex, the influence of 

climate drivers, particularly precipitation, becomes more pronounced due to shallow groundwater levels (GWL). 

Consequently, acquiring detailed and accurate catchment water balance information becomes increasingly important to 

effectively manage water resources (Walsum et al., 2001; Waseem et al., 2020).  60 

Precipitation is one of the most critical hydrological parameters that require accurate representation in fully distributed 

hydrological models. It serves as the primary driver of the hydrological cycle, and its spatial and temporal variability greatly 

affects the estimation of water balance components such as runoff, infiltration, and groundwater recharge. That makes the 

accurate representation of precipitation essential for predicting properly hydrological processes in a catchment (Fu et al., 
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2011). Numerous studies have emphasized the importance of accurately representing precipitation in hydrological 65 

modelling, including the utilization of remote sensing data (Ali et al., 2023; Cui et al., 2019; Hiep, et al., 2018) 

The impact of rain gauge station density on hydrological simulated runoff has been investigated, indicating that a decrease in 

density leads to lower-quality outcomes in hydrological models (Bárdossy and Das, 2008). However, factors such as 

precipitation type, catchment size, behaviour, model type, and watershed characteristics also contribute to the results 

(Bredesen and Brown, 2019; Price et al., 2014).  Wiebe and Rudolph (2020) studied the influence of spatial density of rain 70 

gauges on numerical estimation of groundwater recharge for the Alder Creek watershed, Waterloo Canada and concluded 

that the recharge is quite sensitive to rain gauge network. However, the impact of spatial variability in precipitation data on 

the interaction between surface-subsurface hydrology has gained little attention and may influence catchment water budget 

estimation.  

Previous research in this field has predominantly concentrated on either surface water or groundwater dynamics in isolation, 75 

often disregarding the intricate interplay between these vital components within lowland catchments. Additionally, the 

current body of literature offers limited insights into the influence of climate drivers, particularly precipitation patterns, on 

these interactions, particularly in the context of shallow groundwater systems. This research centers its attention on the Aa of 

Weerijs catchment, also characterized as a lowland mesoscale catchment grappling with drought issues attributable to 

climate change. This study aims to enhance our understanding of the intricate interplay between surface water and 80 

groundwater, facilitating the successful implementation of adaptation strategies to mitigate the effects of climate change. 

Therefore, this paper aims to present, firstly, insights into the hydrological behavior and complex interaction between surface 

water and groundwater for a mesoscale lowland catchment. Secondly, it aims to explore the impact of spatial variability in 

precipitation data on the interaction between surface water and groundwater, as well as on the overall hydrology of the 

catchment. A physically-based fully distributed hydrological model MIKE SHE coupled with MIKE 11, has been used and 85 

applied to the small lowland catchment located in the Netherlands, the Aa of Weerijs. 

After this introduction, the paper provides an overview of the study area. It then presents the research materials and methods 

used in the study. The results obtained from the research are presented, followed by a comprehensive discussion of the 

findings. Finally, the paper concludes with a summary of the key findings and their implications. 

2 Study area 90 
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The research focuses on investigating the hydrological dynamics of the Aa of Weerijs catchment, a transboundary catchment 

shared by Belgium and the Netherlands, as depicted in Fig. 1. This catchment spans an area of 346 km2, with 199 km2 

located in Belgium and 147 km2 in the Netherlands. The Aa of Weerijs River originates in the Flanders region of Belgium 

near Brecht and flows towards Breda in the Netherlands, eventually converging into small canals. 

Figure 1: Aa of Weerijs catchment 95 

The historical background of the catchment reveals its initial state as a vast swamp, which was later reclaimed for 

agricultural purposes in the 14th century. To manage water resources effectively, various water regulation structures were 

installed on the river, particularly in the late 1960s. These structures play an important role in regulating the flow and water 

levels within the catchment. The climate in the region is characterized as temperate maritime, with precipitation occurring 

fairly evenly throughout the year. The average annual precipitation ranges between 700 mm to 900 mm. Rainfall patterns are 100 

influenced by the North Atlantic climate, resulting in relatively mild winters and cool summers (Lu et al., 2022). 

The hydrology of the Aa of Weerijs catchment is influenced by various factors, including topography, land use, soil type, 

and climate. The main river, Aa of Weerijs, maintains a relatively constant discharge and is regulated by controlled 

structures. It receives contributions from several tributaries, including Kleine Beek, Bijloop, and Turfvaart. The discharge 

hydrograph at the outlet point of the catchment exhibits variations throughout the year, with an average annual peak 105 

discharge of 23 m3 s-1. Geologically, the catchment primarily consists of Quaternary deposits, including sand, gravel, and 
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clay. Sandy soils are prevalent in the Dutch part of the catchment, with sand ridges found in areas such as Zundert and 

Rijsbergen. The catchment's geological composition significantly impacts its hydrological behaviour, influencing factors 

such as groundwater recharge, surface water runoff, and erosion. Currently, the dominant land use in the catchment is 

agriculture, with grassland covering the majority of the area (Beers et al., 2018). 110 

3 Materials and Methods 

Numerical modelling has been extensively employed by researchers to investigate the surface-subsurface hydrology of 

catchments. However, its applicability in lowland catchments, where surface-subsurface interactions are more intense and 

complex due to shallow GWL remains limited. MIKE SHE is a powerful tool for distributed hydrological modelling, 

providing a comprehensive framework for simulating all the major components of the hydrological cycle and integrating 115 

detailed spatial information into the model.  

This study aims to setup a distributed hydrological model by coupling MIKE SHE and MIKE 11. The focus is on 

investigating the intricate interaction between surface water and groundwater in a mesoscale lowland catchment. 

Additionally, the study examines the impact of spatial variability in precipitation on catchment hydrology. The methodology 

employed to achieve these objectives is described in the following section, which begins with a concise introduction to the 120 

study area. 

3.1 Model Setup and Input Data 

The hydrological analysis of the study area i.e., Aa of Weerijs utilized the MIKE SHE modelling system. Derived from the 

SHE model, MIKE SHE is a deterministic, distributed, and physically-based hydrological model. It incorporates the 

complete land phase of the hydrological cycle, encompassing both surface water and sub-surface water (Abbott et al., 1986; 125 

Refsgaard and Abbott, 1996). However, model input requirements may vary depending on the complexity of the model setup 

and the goals of the simulation. The model resolution was set at 500 m x 500 m, and it utilized the digital elevation model 

EU-DEM version 1.1 (Copernicus n.d.). The simulation period covered the timeframe from 15-09-2009 to 31-12-2016. 

To incorporate the river network and hydraulic structures, the MIKE SHE model was coupled with MIKE 11. The river 

cross-section data for the Dutch part of the catchment were obtained from the SOBEK model provided by Waterschap 130 

Brabantse Delta, while for the Belgian part, the cross-sectional data was derived from the catchment's topography. A total of 

twenty-nine hydraulic structures were included in the river network, exclusively located in the Dutch part of the catchment 

out of which 22 are fixed weirs and 07 are automated weirs. Regulatory effect was considered on the 07 automated weir to 

maintain the upstream water level as per the operation guidelines of Waterschap Brabantse Delta. 

Climate data, a key parameter for hydrological analysis, was obtained from radar data for the Netherlands and three rain 135 

gauge stations. A data shift issue was discovered during pre-processing with the Dutch rain gauge stations which was 

corrected with time-weighted factors. The main land use types observed in the catchment is complex cultivation patterns also 
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referred as permanent grass land as per National Hydrologic Instrumentation-NHI sub-report on crop characteristics (NHI, 

2007) and five soil textures cover the catchment area with sandy loam and loam being the dominant as shown in the 

supplementary material (Fig. S1). The model's saturated zone consists of a single 80 m deep aquifer layer. To define the 140 

movement of water in and out of the catchment, the outer boundary condition was divided into twenty-nine segments, using 

an average of seven years of GWL (2010-2016).  Summary of the input data set and its sources are summarized in Table 1.  
Table 1: Summary of model input datasets 

 

3.2 Model performance analysis 145 

The model performance was evaluated at multi-site through multi-variable. The variables considered are discharge, 

groundwater levels, and actual evapotranspiration. Discharge results were compared at three specific locations in the Dutch 

part of the catchment, namely the outlet, the middle of the catchment, and the NL-BE border. For groundwater levels, a total 

of 13 locations were selected based on the availability of data. Further, for actual evapotranspiration, 13 points were selected 

to cover each land-use type in the catchment. These points were distributed throughout the catchment, as illustrated in Fig. 2.  150 

Data Set Source Resolution Data 
Availability 

Digital elevation model (DEM) EU-DEM version 1.1 25m X 25m - 
Precipitation 
(i) Rain gauge stations 
(ii) Radar Data 

 
(Flanders n.d.), (Meteobase, n.d.) 
(Meteobase, n.d.) 

 
- 
1000m X 1000m 

 
2009-2021 
2009-2021 

Potential evapotranspiration Gilze-Rijen weather station 
Netherlands (Makkink) Uniform 2009-2021 

Actual evapotranspiration Satellite data (Meteobase, n.d.) 100m X 100 m 2012-2016 

Land use map Corine land cover (CLC-2018) 
(Copernicus n.d.) 100m X 100m - 

Land use parameters NHI sub-report crop characteristics - - 

Overland flow computation Manning M 
Papaioannou et al. (2018). 500m X 500m - 

Unsaturated flow computation Richard’s Eq. (Rosetta program – H1) 
(Schaap, et al. 2001) - - 

Soil map European soil data centre database 
(ESDAC) 500m X 500m - 

Soil hydraulic properties Rosetta program, USA - - 
Saturated hydraulic 
conductivity 
(i) Netherlands 
(ii) Belgium 

 
 
REGIS II V2.2 model, Netherlands 
Iterative interpolations  

500m X 500m 2009-2021 

Ground water level 
(i) Netherlands 
(ii) Belgium 

 
WBD water board & (DINOloket n.d.) 
Databank Ondergrond (Flanders n.d.) 

500m X 500m 2009-2021 

Subsurface drainage component WBD water board 500m X 500m - 
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For the evaluation of model performance two commonly used performance metrics, the correlation coefficient (R) and the 

Nash-Sutcliffe Efficiency coefficient (NSE) were used.  In addition to that, Kling Gupta Efficiency (KGE) is used as an 

evaluation indicator specifically for GWL model performance. The KGE metric is used to address some of the limitations of 

the NSE, which can place greater emphasis on peak values. The KGE metric provides a comprehensive evaluation of the 

model's ability to capture the observed variability, correlation, and mean values of the hydrological system being studied (El-155 

Nasr et al., 2005).  

 
Figure 2: Location of points for model performance evaluation (a) streamflow & GWL (b) actual evapotranspiration 

3.3 Calibration and validation 

The calibration of hydrological models plays a crucial role in ensuring accurate model predictions. By comparing the model's 160 

predictions to observed outcomes, researchers can identify areas where the model deviates from reality and make necessary 

adjustments. This iterative process helps improve the model's accuracy and reduces the risk of drawing incorrect conclusions 

from the data (Rajib et al., 2016). 

For the application of a distributed hydrological model in watershed management, detailed model calibration is essential to 

obtain consistent and reliable results. Previous studies (Ambroise et al., 1995; Refsgaard, 1997) have highlighted that 165 

calibrating a distributed hydrological model solely against single-point hydrological parameters may not yield satisfactory 

results for the entire catchment. The criteria to calibrate and evaluate the hydrological models play an important role in its 

performance (Cinkus et al., 2022). To achieve better performance, it is recommended to employ multiple variables and 

multiple site calibration strategies in distributed hydrological modelling. 
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The use of multiple sites for calibration is a valuable strategy for reducing uncertainties and improving the overall quality of 170 

model simulations (Bekele and Nicklow, 2007; Chiang et al., 2014). However, the effectiveness of this approach is 

influenced by the distribution and location of observation points across the catchment area (Migliaccio and Chaubey, 2007). 

Vázquez et al. (2008) employed a multi-framework approach to calibrate a distributed hydrological model and suggested that 

the multi-criteria calibration approach enhances the model's ability to replicate the physical phenomena within the 

catchment. Similarly, Wang et al. (2012) compared single-site and multi-site calibration approaches in a study of a 175 

catchment in north China and found that the multi-site calibration strategy was necessary to capture the spatial variability of 

hydrological processes. 

In this research, a comprehensive approach involving multiple sites and variables was employed for model calibration. The 

calibration process began with a sensitivity analysis to identify the most influential parameters. Weighted objective functions 

were then developed, considering appropriate weights for multiple variables and locations. This step ensured that the 180 

calibration process accounted for the spatially distributed behaviour of the model. To achieve a fully distributed behaviour of 

the model, calibration parameters were uniformly and spatially distributed. This approach considered the heterogeneity of 

the catchment and aimed to capture the spatial variability of model parameters across the study area. By distributing the 

calibration parameters, the model was better able to represent the complex hydrological processes occurring within the 

catchment. 185 

3.3.1 Weighted objective function 

To account for multiple variables and different locations during the calibration of the distributed hydrological model, a 

weighted objective function was utilized. This objective function incorporated the correlation coefficient and Nash-Sutcliffe 

Efficiency (NSE) as evaluation metrics and assigned specific weights to each variable and location. The weighted objective 

functions are presented below in Eq. 1 and 2: 190 

MNSE = w1 (NSE-Q) +w2(NSE-E) +w3(NSE-G)        (1) 

MR = w1(R-Q) +w2(R-E) +w3(R-G)         (2) 

Where 

MNSE= Mean weighted Nash-Sutcliffe Efficiency, MR = Mean weighted correlation coefficient, w = Weights 

Assigning appropriate weights is crucial for an effective calibration process. Different approaches have been used by 195 

researchers to determine the weights, but a consensus on the optimal weight selection process has not been reached. Some 

studies, such as Rode et al. (2007) and Abbaspour et al. (2007), assigned weights inversely proportional to the variance of 

the observed data. Rientjes, et al. (2013) used weights inversely proportional to the coefficient of variation. However, due to 

the lack of clear justification for selecting appropriate weights, assigning equal weights has been commonly adopted in 

calibration studies (Franco and Bonumá, 2017; Rajib et al., 2016). 200 

In this study, equal weights of 0.333 were assigned to each variable type to ensure equal consideration. However, different 

weights are assigned to observation locations where the variable is being measured. Important locations received higher 
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weights. For streamflow, a higher weight of 0.4 was assigned to the outlet point due to its importance in water management 

and policy-making. The other two points received equal weights of 0.3. For groundwater levels, all points were considered 

equally important, and thus an equal weight of 0.08 was assigned to each point. In the case of actual evapotranspiration, 205 

weights were assigned based on the abundance of land use types in the catchment, with higher weights ranging from 0.1 to 

0.05 given to the most prevalent land use types. The detailed weights assigned for each variable and locations are presented 

in supplementary material (Table S1). 

3.3.2 Multi-site and multi-variate calibration 

The distributed hydrological model used in this research considered multiple variables at different locations to evaluate its 210 

performance. Manual calibration was chosen over automated calibration as it provided valuable insights into catchment 

behaviour by allowing for the examination of changes in calibration parameters. This approach facilitated a better 

understanding of the model's deficiencies and shortcomings.  

A sensitivity analysis was performed to determine the most influential parameters affecting catchment hydrology and the 

interaction between surface water and groundwater. During the sensitivity analysis, each parameter was adjusted individually 215 

while keeping the others constant, allowing for a comprehensive understanding of their impact on catchment hydrology. The 

parameters considered in the sensitivity analysis, along with their associated model components, are contained in 

supplementary material (Table S2). After the sensitivity analysis, the fully distributed hydrological model MIKE SHE 

coupled with MIKE 11 was calibrated by using the mean weighted objective function which considers all three variables 

distributed throughout the catchment. The parameter considered in the calibration process and their optimal values are 220 

mentioned below in Table 2. 
Table 2: Model parameters for calibration along with value ranges 

Parameter Distribution Initial Value Range Final Value 

Manning’s roughness coefficient (M) Uniform 30 20-50 30 

Leakage Coefficient Uniform 4.0e-7 4.0e-5–4.0e-7 4.0e-7 

Specific storage Uniform 0.0001 0.0001-0.0002 0.0001 

Specific yield Uniform 0.2 0.1-0.3 0.2 

Horizontal hydraulic conductivity 
 

Spatially  
Distributed 2.8e-5–6.3e-5 2.5e-5–10e-5 2.6e-5–7.2e-5 

Vertical hydraulic conductivity 
 Uniform 4.36e-5 4.36e-5– 4.36e-7 4.36e-5 

Time Constant Spatially  
Distributed 2.3e-7–3.44e-7 2.0e-7–5.0e-7 2.0e-7–5.0e-7 
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The calibration process for the horizontal hydraulic conductivity parameter involved deriving a range of values from the 

National hydrogeological model of the Netherlands REGIS II v2.2 (DINO n.d.) An iterative approach was employed to 225 

develop a distributed map by starting with the minimum value and gradually increasing it until the optimal model 

performance was achieved. This iterative process allowed for the identification of the hydraulic conductivity values that best 

represented the hydrological behaviour of the catchment. Similarly, an iterative interpolation technique using Inverse 

Distance Weighting (IDW) was employed to determine the optimal value set for the drainage time constant. 

3.3.3 Model validation 230 

Model validation is a crucial step in hydrological modelling as it ensures the reliability and accuracy of the model's 

predictions. In this study, a five-year time frame from 2017-2021 was considered for model validation, based on data 

availability. The variables considered for model validation are the same as that of model calibration. Their specific details 

and data sources, are contained in supplementary material (Table S3). To assess the performance of the validated model, 

efficiency parameters (R and NSE) were used.  235 

3.4 Impact of precipitation spatial variability   

This research paper also aimed to assess the influence of spatial variability in precipitation on catchment hydrology. This 

study employed the final calibrated model to examine the response of the catchment under different representations of 

precipitation. Precipitation data from radar measurements in the Netherlands and daily corrected time series data from three 

rain gauge stations were utilized to represent precipitation ranging from uniform to fully spatially distributed patterns. 240 

Three distinct scenarios were examined in the model using the corrected rain gauge data and radar data set. The first scenario 

involved the application of the Theisen polygon method, utilizing data from three rain gauge stations (Ginneken, Zundert, 

and Leonhout). In the second scenario, the Inverse Distance Weighting (IDW) interpolation technique was employed, 

utilizing daily time series data from the rain gauge stations. The third scenario incorporated radar data for the Dutch portion 

of the catchment, while interpolated data for Belgium was considered. The interpolation was carried out by incorporating the 245 

three locations in the Netherlands' radar data set along with data from the Leonhout rain gauge station located in Belgium, as 

depicted in Fig. 3. 
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Figure 3: Precipitation representations (a) Theisen polygon (b) Inverse distance weighting IDW (c) Radar Data 

4 Results & Discussion 250 

4.1 Calibration and validation 

The calibration process focused on adjusting calibration parameters to improve the model's performance. While exploring 

various channel flow and saturated zone parameters did not yield significant improvements, fine-tuning the horizontal 

hydraulic conductivity and drainage time constant showed promising results. It is important to note that streamflow and 

groundwater levels are interconnected through the drainage network. Hence, a reduction in drainage levels diverts more 255 

water into the stream, resulting in an improved model performance for streamflow. However, this adjustment adversely 

affected the model's performance in predicting groundwater levels (GWL). To address the interconnections between 

streamflow and groundwater, a multisite and multivariate calibration strategy using weighted objective functions (MR and 

MNSE) played a significant role. The results, including parameter variations and the weighted mean objective functions, can 

be found in Table 3. 260 
Table 3: Model results in terms of the mean weighted objective function for the calibration period (2010-2016) 

Parameter Distribution Variation Model Performance 
MR MNSE 

Hz. Hydraulic 
conductivity 

Spatial 
Distributed 

KHmin 2.9e-5 - 5.8e-5 0.840 0.547 
KHmin-I10% 3.2e-5 -6.4e-5 0.841 0.550 
KHmin-I20% 3.5e-5 - 7.0e-5 0.842 0.550 
KHmin-I25% 3.6e-5 - 7.2e-5 0.843 0.551 
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KHmin-I30% 3.8e-5 - 7.5e-5 0.843 0.550 
KHmin-I40% 4.1e-5 - 8.1e-5 0.843 0.547 
KHmin-I50% 4.4e-5 - 8.7e-5 0.845 0.546 
KHmax 5.8e-5 -11.6e-5 0.850 0.524 

Drainage time 
constant 

Uniform 

                    2.0e-07 0.841 0.541 
                    3.0e-07 0.841 0.546 
                    4.0e-07 0.836 0.534 
                    5.0e-07 0.834 0.524 

Spatial 
Distributed                     2.0e-7 - 5.0e-7 0.843 0.555 

 

Model optimal performance was achieved with spatially distributed horizontal hydraulic conductivity (KHmin-I25%) in the 

range of 3.6e-5–7.2e-5 and drainage time constant distributed values of 2.0e-7–5.0e-7. The detailed model results against these 

weighted objective functions along with model validation results can be seen in supplementary material (Table S4). 265 

4.2 Catchment Hydrology 

4.2.1 Surface Water Dynamics 

The outcome of the simulated streamflows demonstrated satisfactory performance, as evidenced by the model efficiency 

parameters R and NSE, with values ranging from 0.76–0.90 and 0.571–0.780, respectively. In general, the model tended to 

underestimate streamflows between 5 and 20 m³s⁻¹, while overestimated low flows (below 2 m³s⁻¹) which can be seen in Fig. 270 

S2 provided in supplementary material. The primary explanation for this discrepancy may be attributed to the subsurface 

drainage network, which serves as the main contributor to streamflows. When the groundwater level (GWL) remains beneath 

the drainage level, the subsurface drainage system becomes inactive, resulting in reduced contributions to the river and, 

consequently, lower streamflow peaks. Secondly the coarse model resolution of 500 x 500 m may not be representing the 

actual field condition. Additional factors that could contribute to this observed behaviour may include the biased saturated 275 

zone (SZ) boundary conditions, hydraulic conductivity, and drainage time constant. 

4.2.2 Groundwater dynamics 

A good correlation exists between the simulated and observed groundwater levels in the catchment area. Groundwater levels 

typically rise during the winter season and decrease from April to September due to increased evapotranspiration during the 

summer months. The model tends to overestimate groundwater levels at the downstream end of the catchment while 280 

underestimating them in the upstream region, specifically in the Belgium part. However, model performance varies 

considerably from one point to another. Owing to the shallow groundwater table, groundwater levels exhibit dynamic spatial 

and temporal responses to precipitation. Precipitation events directly influence local groundwater levels, resulting in varied 

groundwater performance across the area. The model's efficacy in predicting groundwater levels was evaluated using the 
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efficiency parameters R, NSE, and KGE, which ranged from 0.608 to 0.959, -0.241 to 0.842, and -0.298 to 0.856, 285 

respectively. The variation of GWL for model calibration and validation period against observed data can be seen in Fig. S3 

provided in supplementary material. 

4.2.3 Catchment Water Balance 

The overall water balance of the catchment exhibited consistent behaviour, characterized by precipitation as the primary 

input and evapotranspiration as the major loss component. Streamflows were primarily influenced by the saturated zone 290 

drain through the subsurface drainage system, followed by contributions from base flow and overland flow. Boundary flows 

indicated a net outflow, indicating that more water left the catchment than entered it through the saturated zone. The areas at 

the upstream and downstream ends of the catchment interacted with sources outside the aquifer, emphasizing the catchment's 

subsurface hydrological connectivity. 

4.2.4 Total Water Balance  295 

The total water balance was assessed for both the calibration period (September 2009 to December 2016) and the validation 

period (January 2017 to December 2021). Precipitation emerged as the key driver of the water balance, with approximately 

60% of the total precipitation lost through evapotranspiration. The saturated zone component accounted for approximately 

40% of the total precipitation, with 55% of that water contributing to surface water via the subsurface drainage system. 

Throughout the entire simulation period, notable patterns were observed in the unsaturated zone (UZ) and saturated zone 300 

(SZ) storage. The unsaturated zone storage exhibited a decline, while the saturated zone storage showed an increase. This 

behaviour can be attributed to the relatively shallow unsaturated zone in the lowland catchment, resulting in higher levels of 

evapotranspiration. Comprehensive overview of the contributions and proportions of the water balance components during 

both the calibration and validation periods is provided in supplementary material (Table S5). 

4.2.5 Wet and dry hydrological year water balance  305 

The water balance of the catchment was examined separately for wet and dry hydrological years, which are defined as the 

periods from October 1st to September 30th. Based on the analysis of precipitation and evapotranspiration data, the year 

2010 was identified as a wet hydrological year, while 2018 was identified as a dry hydrological year. During the wet 

hydrological year, approximately 51% of the total precipitation was lost through evapotranspiration, while 41% infiltrated 

into the saturated zone (SZ). Out of this infiltrated amount, 39% drained back into the river as a base flow, resulting in 310 

positive changes in SZ and unsaturated zone (UZ) storage. Conversely, in the dry hydrological year, around 70% of the 

precipitation was lost through evapotranspiration, with only 32% infiltrating into the SZ. Among the infiltrated amount, 60% 

drained into the river as a base flow, leading to negative changes in SZ and UZ storage. These findings emphasize that 

during dry periods, the saturated zone/groundwater becomes the primary contributor to river flows. The detailed results of 

the water balance analysis can be found in supplementary material (Table S6). 315 

https://doi.org/10.5194/hess-2023-276
Preprint. Discussion started: 20 December 2023
c© Author(s) 2023. CC BY 4.0 License.



14 
 

4.3 Precipitation spatial variability impact 

The objective of this analysis was to examine the impact of spatial variability in precipitation data on the hydrology of a 

mesoscale lowland catchment. Three different representations of precipitation, namely Theisen polygon, IDW interpolation, 

and radar data, were tested in the fully distributed hydrological model MIKE SHE.  

The study revealed that the influence of precipitation spatial variability on surface water components, specifically 320 

streamflow, was negligible. The average NSE computed for three streamflow measurement points displayed slight variations 

ranging from -1.9 % to 2.6%. However, adjustments in the spatial resolution of precipitation data did result in local 

fluctuations in groundwater levels. Notably, certain points exhibited a maximum increase of 168% and a decrease of 25% in 

NSE coefficients for groundwater levels. These observations can be attributed to the characteristics of the catchment. The Aa 

of Weerijs catchment is relatively flat, and frontal precipitation predominates the region, resulting in a relatively uniform 325 

distribution of precipitation across the catchment. Consequently, modifying the resolution of precipitation data has minimal 

to no impact on streamflows. However, the spatial variability of precipitation within the catchment does affect local 

recharge, leading to observed variations in groundwater head at specific points. Fig 4 displays the variation in groundwater 

heads in terms of R and KGE, illustrating that the transition from uniform to spatially distributed precipitation representation 

had limited and localized effects on groundwater levels throughout the catchment. 330 

 
Figure 4: Variation of GWL in terms of R and KGE for different precipitation representation 

The impact of precipitation spatial variability on the water balance of the catchment was found to be minimal. Nevertheless, 

the utilization of Radar data representation demonstrated an improved depiction of precipitation distribution across space. 

This enhancement was particularly effective in capturing local variations in groundwater levels, providing a more accurate 335 

representation of the hydrological dynamics within the catchment. The detailed catchment water balance for the calibrated 

period under different precipitation representations is presented in supplementary material (Table S7). 
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5 Conclusions 

A physically-based, fully-distributed hydrological model, MIKE SHE coupled with MIKE 11, was developed and applied to 

the Aa of Weerijis catchment, which spans across the Netherlands and Belgium. The model was successfully calibrated 340 

against three key variables: streamflow, GWL, and actual evapotranspiration, which were distributed throughout the 

catchment. To ensure accurate calibration of the model against multivariate and multisite data, we implemented an optimized 

weighted objective function using MR and MNSE. These objective functions allowed us to effectively capture the complex 

relationships and variations in the observed variables throughout the catchment.  The model successfully captured the 

hydrological dynamics of the catchment with a value of R as 0.9 at most of the observation points. Importantly, the model 345 

accurately simulated the dynamic behaviour of GWL, influenced by local precipitation events and the shallow water table, 

across multiple distributed points within the catchment. Precipitation was identified as the primary driver of catchment 

hydrology, with substantial losses through evapotranspiration. Streamflows primarily originated from baseflow through the 

subsurface drainage network. The catchment's shallow groundwater level facilitated intensive interactions between surface 

water and groundwater, which were locally influenced by precipitation events. Understanding these dynamics is crucial for 350 

effective water management strategies in the catchment. Furthermore, the impact of spatial variability in precipitation data 

on catchment hydrology using the calibrated model was analysed. Three representations of precipitation distribution were 

evaluated, ranging from a uniform distribution with Theisen polygons to fully-distributed approaches using IDW and radar 

data.  Research findings revealed that altering the spatial resolution of precipitation had no significant effect on streamflow. 

However, local variations in groundwater heads were observed due to slight spatial variations in precipitation. The Aa of 355 

Weerijs catchment is characterized by flat topography, and frontal precipitation is the primary meteorological feature in the 

region. This results in a relatively uniform distribution of precipitation throughout the catchment. Therefore, any changes in 

the spatial variability of precipitation do not significantly affect the total amount of precipitation, leading to minimal impact 

on the catchment's hydrology. Moreover, the final calibrated version of the developed distributed hydrological model for the 

Aa of Weerijs catchment holds practical value for future water resource planning to mitigate the impacts of climate change.  360 
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