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Abstract. Machine learning (ML) has played an increasing role in the hydrological sciences. In particular, Long Short-Term

Memory networks (LSTMs) are popular for rainfall–runoff modeling. A large majority of studies that use this type of model

do not follow best practices, and there is one mistake in particular that is common: training deep learning models on small,

homogeneous data sets, typically data from only a single hydrological basin. In this position paper, we show that LSTM

rainfall-runoff models are best when trained with data from a large number of basins.5

1 Machine learning requires different intuitions about hydrological modeling

Regionalizing rainfall–runoff models across multiple watersheds is a longstanding problem in the hydrological sciences (Guo

et al., 2021). The most accurate streamflow predictions from conceptual and process-based hydrological models generally

require calibration to data records in individual watersheds. Hydrology models based on machine learning (ML) are different

– ML models work best when trained on data from many watersheds (Nearing et al., 2021). In fact, this is one of the main10

benefits of ML-based streamflow modeling.

Because ML models are trained with data from multiple watersheds, they are able to learn hydrologically diverse rainfall–

runoff responses (Kratzert et al., 2019b) in a way that is useful for prediction in ungauged basins (Kratzert et al., 2019a).

However, prediction in ungauged basins is not the only reason to train ML models on data from multiple watersheds. Models

trained this way have better skill even in individual, gauged watersheds with long training data records, and they are also better15

at predicting extreme events (Frame et al., 2022).

The purpose of this paper is to effect a change in intuition. ML requires a top-down modeling approach, in contrast to

traditional hydrological modeling that is usually most effective with a bottom-up approach. We do not mean top-down vs.

bottom-up in the sense discussed by Hrachowitz and Clark (2017), who use these terms to differentiate between lumped,

conceptual (top-down) vs. distributed, process-based (bottom-up) models. Instead, we mean that traditional hydrology models20

(both lumped conceptual models and process-based models) are typically developed, calibrated, and evaluated at a local scale,

ideally using long and comprehensive data records. Then, in this bottom-up approach, after a model is developed, we might

work on regionalization strategies to extrapolate parameters and parameterizations to larger areas (e.g., Samaniego et al., 2010;

Beck et al., 2016). In contrast, with ML modeling the best approach is to start by training on all available data from as many
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watersheds as possible, and then work to fine tune models for individual catchments. The effort then goes into localizing large25

scale models, instead of regionalizing small scale models.

This paper focuses on rainfall–runoff modeling with Long Short-Term Memory (LSTM) networks because this is currently

the most common type of ML model used in surface hydrology. The use of LSTMs for rainfall–runoff modeling is motivated by

the fact that LSTMs are state-space models and are therefore structured similarly to how hydrologists conceptualize watersheds

(Kratzert et al., 2018). The use of LSTMs in hydrology research has increased exponentially in the last several years (see Fig. 1).30

We see no reason to suspect that the lessons learned about big data with this type of model are not general, and several reasons

to suspect that they are; namely it is important to recognize that, across application domains, machine learning models trained

on large training data sets out-perform smaller, more specialized models (Sutton, 2019).
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Figure 1. Number of hydrological publications related to rainfall–runoff modeling with LSTMs over time, based on data retrieved from

Google Scholar in April 2024.

To understand the current state of practice with LSTM-based rainfall runoff modeling, we collected papers returned by a

keyword search on Google Scholar for "rainfall-runoff modeling LSTM streamflow" sorted by relevance. From this search, we35

surveyed the top 50 papers per year for the years 2021, 2022, and 2023 and skipped papers that did not involve training models

or developing systems for training models. Of those 150 papers surveyed, 122 trained models on individual catchments and

28 trained models on multiple catchments (of which four were co-authored by one or more authors of this paper) (Fig. 2). We

collected these 150 papers for review in April, 2024, more than four years after the original regional LSTM rainfall–runoff

modeling papers (Kratzert et al., 2019a, b) were published. The list of 150 papers is included in the data repository released40

with this paper.

It is important to recognize that there is usually no reason in practice to train LSTM streamflow models using data from only

a small number of watersheds. There is enough publicly available streamflow data to train robust ML models. For example,
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Figure 2. Fractions of 50 peer-reviewed research articles papers per year (starting one year after the original LSTM regional modeling papers

were published Kratzert et al., 2019a, b) that train LSTM rainfall–runoff models on single vs. multiple basins, based on articles retrieved

from Google Scholar in April 2024.

the various CAMELS datasets such as CAMELS-US (Newman et al., 2015), the Global Runoff Data Center (BAFG), or the

Caravan dataset and its extensions (Kratzert et al., 2023). It is possible to fine tune large–sample models to individual locations45

and/or for specific purposes (e.g., Ma et al., 2021), however fine tuning is outside the scope of this paper. It is sufficient for our

purpose to show that training large-scale ML models is better than training small-scale ML models for streamflow prediction

and fine tuning would only widen this difference.

In summary, the large majority of LSTM papers published in hydrology journals train models on small datasets from single

catchments. This is unfortunate because it does not leverage the primary benefit of machine learning, which is the ability to50

learn and generalize from large datasets. The rest of this paper illustrates how and why that is a problem when using LSTMs

specifically for rainfall-runoff modeling.

2 Skill gaps between local and regional models

Figure 3 shows differences in performance between models trained on single basins vs. multiple basins (regional). Subpanel

(a) shows this comparison for two traditional hydrology models and subpanel (b) shows the comparison for LSTM models.55

Notice that in subpanel (a), single-basin models perform better than regional models, and in subpanel (b) this is reversed.

Subpanel (a) of Fig. 3 shows cumulative density functions (CDFs) over Nash–Sutcliffe Efficiencies (NSEs) for 489 CAMELS

basins from a conceptual model (mHM) and a process-based model (VIC). These models were calibrated and run by other re-

search groups without our involvement, and the data from these models were borrowed from the benchmarking study by
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Kratzert et al. (2019b). The fact that conceptual and process-based hydrological models perform worse when regionally cali-60

brated is, to our knowledge, a consistent finding across hydrological modeling studies (e.g., Beck et al., 2016; Mizukami et al.,

2017).

Subpanel (b) of Fig. 3 shows the same NSE CDFs for LSTM models. We tuned the hyperparameters and trained an ensemble

of ten single-basin LSTM models separately for each of 531 basins in the CAMELS data set (Newman et al., 2015; Addor et al.,

2017) using a standard train/validation/test data split with approximately ten years of data in each split. We similarly trained an65

ensemble of ten LSTM regional models with data from all 531 CAMELS catchments simultaneously using hyperparameters

taken from Kratzert et al. (2021). Details about how LSTM models were hypertuned, trained, and tested can be found in

Appendix A.

The choice to use 531 CAMELS basins for training and testing LSTMs comes from the suggestion by Newman et al. (2017),

who selected these basins from the full CAMELS dataset for model benchmarking. We use this set of CAMELS benchmark70

gauges for the remainder of this study. Figure B1 in Appendix B shows the same comparison as Fig. 3, but subpanel (b) in that

figure shows NSE CDFs for only the 489 CAMELS basins with mHM and VIC runs.
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Figure 3. Cumulative Density Functions (CDF) of Nash–Sutcliffe Efficiencies (NSE) of simulated volumetric discharge over watersheds in

the CAMELS data set for models trained on individual basins (basin; orange lines) vs. on multiple basins (regional; blue lines). Subplot (a)

shows a conceptual model (mHM) and a process-based model (VIC), both calibrated using data from 489 watersheds by (different) research

groups that are familiar with each model – VIC single basins: Newman et al. (2017), VIC regional: Mizukami et al. (2017), mHM single

basins: Mizukami et al. (2019), and mHM regional: Rakovec et al. (2019). Subplot (b) shows the same NSE CDFs from LSTMs trained in

two ways: regional LSTMs (blue) were trained using data over the training period from all 531 CAMELS basins, and single-basin LSTMs

(orange) were trained using data over the training period from each CAMELS basin individually. An ensemble of ten LSTM models were

trained in all cases, where randomness in the LSTM repetitions is due to randomness in the initial weights prior to training. We recommend

averaging hydrographs from this kind of repetition, as was done by Kratzert et al. (2019a) and Kratzert et al. (2019b).
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The takeaway from Fig. 3 is that whereas traditional hydrological models are more accurate when calibrated to a single

watershed, LSTMs are more accurate when trained on data from many watersheds. Other hydrological metrics are reported in

Appendix E, however the main point of our argument holds regardless of which metric is used for evaluation.75

3 Why this matters for extreme events

Training on large-sample data sets with hydrologic diversity means that the training envelope is larger, making it less likely

that any new prediction will be an extrapolation. Intuitively, the training envelope refers to the ranges of data where model

performance is well-supported by the training process. If the training set includes a very humid basin, then the model is more

likely to have seen large precipitation events, so that a new extreme precipitation event seen during inference is less likely to80

be outside of the training envelope. As an example of this, Nearing et al. (2019) discussed how watersheds can move within

the training envelope as (e.g., climate) conditions within a catchment change, and how this causes changes in the modeled

rainfall–runoff response in individual watersheds.

We can look at the target data to see an example of how this diversity in training data helps. The LSTM model used by

Kratzert et al. (2019a) and Kratzert et al. (2019b) have a linear “head” layer that produces a scalar estimate of streamflow at85

each timestep by taking a weighted sum of the values of the LSTM hidden state. The weights for this weighted sum in the head

layer are parameters that are tuned during training. The LSTM hidden state is a real-valued vector in (-1, 1), and has a size

equal to the number of cell states or memory states in the LSTM (for a hydrologically-centered overview of the structure of

an LSTM, please see Kratzert et al., 2018), which means that the maximum (limiting) value of the scalar streamflow estimate

from the model is defined by the sum of the absolute values of weights in the head layer (see also Appendix C). More diversity90

in training data (here, training targets) causes the model to expand the range of weights in the head layer to accommodate

higher flow values.

This effect can be seen in Fig. 4, which shows the theoretical maximum prediction from each of 531 single-basin LSTM

models and from a single LSTM model trained on all 531 CAMELS basins. During inference (test period) there are a total of 10

streamflow observations across all 531 catchments that are above the regional model’s theoretical maximum when trained on95

data from all 531 watersheds. However when separate models are trained per catchment, there are more than 6,000 streamflow

observations that are above the theoretical maximums for each model in its respective catchment. Figure 5 shows how this

effect manifests in an example hydrograph from one particular basin (not chosen at random). More examples are given in

Appendix D. Notice that no model captures all of the extreme events, even in the training data set (which is common for

physically-based models as well; Frame et al., 2022).100

In summary, training on a larger dataset means the model is able to adapt internal weights and biases to account for more

extreme events.
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Figure 4. Theoretical maximum streamflow prediction of an LSTM model with a linear head layer when trained per basin (blue dots) and for

all 531 CAMELS basins together (blue line). Orange dots represent the maximum streamflow values per basin in the train period (subpanel

a) and test period (subpanel b). In the test period, there are 10 flow values above the maximum prediction of the regional model, while there

are more than 6,346 flow values above the theoretical maximums of their respective single-basin models across all basins.

4 How many basins are necessary?

Figure 6 shows how test period performance increases as more basins are added to the training set. The blue line in this figure

was created by grouping 531 CAMELS basins into different sized training and test groups randomly without replacement. This105

was done using k-fold cross-validation so that all models were tested on the same basin(s) where they were trained (during

different time periods) and every basin was used as a test basin exactly once in each grouping size. For example, the 531 basins

were grouped into, e.g., 5 disjoint groups (each with around 107 basins), then data from the training period (1999 - 2000) of one

group was used to train an ensemble of ten LSTM models, and data from the test period (1980 - 1989) of the same group was

used to evaluate that ensemble of trained LSTM models. This procedure was repeated for each of the remaining four groups,110

and a similar procedure was used for each different size of basin grouping shown along the x-axis of Fig. 6. Figure 6 plots the

average (over ten ensemble members) of the median (over 531 CAMELS basins) test-period NSE for various basin groupings.

More details about basin groupings can be found in Appendix A3.

The blue line in Fig. 6 shows performance (median NSE) increasing as the size of the training dataset increases. This effect

continues up to the maximum size of the CAMELS data set (531 basins). In other words, it is better to have more basins in the115

training set, and even these 531 basins are most likely not enough to train optimal LSTM models for streamflow.
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Figure 5. Observed and simulated hydrographs from the test period (1989 - 1999) in a particular basin (13011900). Notice how the high-

flow effect outlined in Fig. 4 manifests in the differences between hydrographs predicted by a regional LSTM (subpanel a) vs. a single-basin

LSTM (subpanel b). This example was chosen to highlight this effect (not chosen randomly), however the effect is similar in most basins.

This gauge is on Lava Creek in Wyoming with a drainage area of 837 square kilometers and exhibits a strong seasonal flow pattern.

5 Is hydrological diversity always an asset?

There are at least two factors to consider when choosing training data: volume and variety. Volume refers to the total amount

of data used for training (more is always better, as far as we have seen), and variety refers to the (hydrologic) diversity of

data. Diversity might be in the form of different geophysical catchment attributes, different types and magnitudes of events, or120

different hydrological behaviors.

Figure 6 provides examples of training on less hydrologically diverse basin groups. The orange line in Fig. 6 shows the

mean (over ten ensemble members) of the median NSE (over 531 CAMELS basins) from training and testing models on

basins grouped by USGS hydrological unit codes (HUCs). There are 18 HUCs represented in the CAMELS data set, with

between 2 and 79 basins per HUC. The green line in Fig. 6 shows the mean (over ten ensemble members) of the median125
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Figure 6. Median NSE scores of simulated volumetric discharge over 531 CAMELS basins for LSTM models trained and tested on splitting

the 531 CAMELS basins into different groupings for training and testing. All models were tested on the same basins where they were trained

(during different time periods). The blue line represents basin groupings of different sizes chosen randomly without replacement so that all

531 basins were modeled exactly once for each grouping size. Orange and green lines show results from grouping the 531 basins into sets

based on USGS hydrological unit codes (orange), and k-means clustering of basin attributes (green). Dots on the orange and green lines

indicate the sizes of the (18 and 6) basin groups used in those splits, since there are a different number of CAMELS basins in each HUC and

a different number of basins in each attribute cluster. Blue dots and solid orange and green lines represent the median model performance

over 531 basins, while blue error bars and dashed orange and green lines represent the standard deviation of this median over a ten-member

ensemble.

NSE (over 531 CAMELS basins) from training and testing models on basin groups derived from k-means clustering on static

catchment attributes. The CAMELS data set includes catchment attributes related to climate, vegetation, pedology, geology,

and topography, and we clustered using 25 catchment attributes described in Tab. A1 in Appendix A5. We selected a k-means

cluster model based on a maximin criterion on silhouette scores, which resulted in a model with 6 clusters ranging from 59

to 195 basins per cluster. Details about how models were trained and tested on HUCs and attribute clusters can be found in130

Appendices A4 and A5.

Figure 6 provides evidence that there might be ways to construct training sets that could potentially result in better mod-

els than simply training on all available streamflow data. This conclusion is hypothetical because in all examples shown in

Fig. 6, models trained on any subset of the 531 CAMELS basins performed worse, on average, than models trained on all

531 CAMELS basins. However, separating the training set into hydrologically similar groups of basins results in models that135

perform better than models trained on random basin groups of similar size. It is an open question as to whether a larger

data set than CAMELS (e.g., Kratzert et al., 2023) might be divisible into hydrologically similar groups that individ-

ually perform better than a model trained on all available data. This could happen if, for example, the curve in Fig. 6

becomes asymptotic at some point beyond the size of the CAMELS data set, and if the performance of models trained on
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hydrologically-informed basin groups continues to increase with sample size. Note that this analysis does not account for the140

value of hydrologic diversity for prediction in ungauged basins.

The takeaway is that even if enough basins exist to divide your training data into hydrologically-informed training sets, one

is likely better off simply training a single model with all available data. At least, one should perform an analysis like what is

shown in Fig. 6 to understand whether splitting the training set helps or hurts. We are interested to see (through future work)

what these tradeoffs look like with larger training sets.145

6 Are bigger models better everywhere?

Even though the best model on average is the model trained on all 531 CAMELS basins, it is not the case that the model

trained on all 531 CAMELS basins is better in every basin. Figure 7 shows the number of basins for which models trained on

each grouping (size, HUC, attributes cluster) perform statistically better than (green), not statistically different than (orange),

or statistically worse than (blue) the regional model trained on all 531 basins. These statistical tests were done using two-sided150

Wilcoxon signed-rank test over ten repetitions of each model with a significance level of α= 0.05. All models perform worse

than the full regional model in more basins than they perform better.

We have not found a way to (reliably) predict which model will perform best in any particular basin. It is not possible to

use train period or validation period metrics to (reliably) choose the best model in the test period. Additionally, we have tried

extensively to construct a separate predictor model that uses catchment attributes and/or hydrological signatures to predict155

whether one model will perform better or worse than other models in specific basins. We have not been able to construct a

model that performs well at this task. Details of these predictability experiments are out-of-scope for this paper, but a relevant

example was given by Nearing et al. (2024).

7 Conclusion

The main point that we would like for readers to take from this opinion paper is that training LSTMs for rainfall-runoff160

modeling requires using data from many basins. We have seen a number of papers that train large ML models (LSTMs or

similar) on very small data sets, and many of these papers then go on to test some type of adaptations that seems to offer

improvement. Of course, it is trivial (but most likely uninteresting) to beat improperly trained models. It would be interesting

to show that adding physics to a well-trained ML model adds information – so far, to our knowledge, all attempts to add physics

to (properly trained) streamflow LSTMs in hydrology have produced lower-performing models.165

Whatever goal a researcher might have for training an ML-based rainfall-runoff model, there is no reason not to train the

model with a large-sample data set. There is enough publicly available streamflow data that there should never be an excuse

not to use at least hundreds of basins for training. This is true even if the focus of a particular study is on one or a small number

of watersheds.
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Figure 7. Counts of basins for which models trained on each grouping (sizes, HUC, attributes cluster) perform statistically better than

(green), not statistically different than (orange), or statistically worse than (blue) the regional model trained on all 531 basins. Significance

was assessed using a two-sided Wilcoxon signed-rank test over ten repetitions of each model with a significance level of α= 0.05.

Code and data availability. The run directories of all experiments, including model weights, simulations and pre-computed metrics are170

available at https://zenodo.org/records/11247607. The code that was used for analysing all experiments and to create all figures, based on the

run directories, can be found at https://github.com/kratzert/never-paper. We used the open source Python package NeuralHydrology (Kratzert

et al., 2022) to run all experiments. The forcing and streamflow data as well as the catchment attributes used in this manuscript are from the

publicly available CAMELS dataset by Newman et al. (2015) and Addor et al. (2017). The simulations from the two hydrological models

that were used to create Fig. 3 are available at https://doi.org/10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1.175

Appendix A: Hyperparameter tuning, training, and testing

All models in this paper were trained using data from the CAMELS data set (Newman et al., 2015; Addor et al., 2017). Building

on the community benchmarking experiment proposed by Newman et al. (2017), and used by many LSTM modeling studies

(e.g., Kratzert et al., 2019a, b, 2021; Frame et al., 2021, 2022; Klotz et al., 2022; Nearing et al., 2022), we trained and tested

models on 531 CAMELS basins using time periods for training (1 October 1999 through 30 September 2008), validation (1180

October 1980 through 30 September 1989), and testing (1 October 1989 through 30 September 1999). All models were trained

and evaluated using NeuralHydrology v.1.3.0 (Kratzert et al., 2022) with an NSE loss function. All LSTMs consist of a single

layer LSTM with a linear head layer.
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A1 Regional LSTM

The regional LSTM uses hyperparameters from Kratzert et al. (2021). The most important hyperparameters are:185

Hidden size 256.

Dropout 40% dropout in the linear output layer.

Optimizer Adam.

Number of epochs 30.

Learning rate Initial learning rate 1e− 3, reduced to 5e− 4 at epoch 20, further reduced to 1e− 4 at epoch 25.190

Sequence length 365.

Loss function Adapted NSE loss, see Kratzert et al. (2019b).

After training, we picked the weights from the epoch with the highest validation metric (median NSE across all basins) and

evaluated the model with these weights on test period data from all 531 CAMELS catchments. Validation curves for all ten

regional models over 30 training epochs are shown in Figure A1195
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Figure A1. Validation scores of all ten repetitions of the regional model over training epochs.

A2 Single-basin LSTMs

Single-basin LSTMs were trained for each basin individually, and use the same basic architecture as described in Section A1: a

single layer LSTM followed by a linear head layer. Hyperparameters were tuned specifically for ech basin for the experiments

in this paper using the following two-step procedure. Both steps were done with a grid search:
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First step: We used 3 repetitions of each hyperparameter setting for each basin (n= 531) with different random seeds for200

initializing the weights. All models were run for 100 epochs using a the Adam optimizer with a learning rate of 5e− 3 and a

batch size of 256. During training, the model was validated after every 4 epochs on validation period data. Hyperparameters

were chosen using the model settings with the highest median NSE scores over the 3 repetitions in any validation epoch.

Hidden size (8, 16, 32)

Dropout rate on the head layer (0.0, 0.2, 0.4, 0.5)205

For all models, we used the same sequence length (n= 365) as for the regional model.

Second step: Using the hyperparameters chosen from the first step, we tuned the learning rate and batch size in a similar

way, maximizing over the median NSE over 3 model repetitions:

Learning rate (5e− 3,1e− 3,5e− 4,1e− 4)

Batch size (128,256,512)210

For each basin separately, we picked model weights from the best validation epoch of the model with the highest NSE score

over all validation epochs from all models in each basin.

Final training and evaluation: Given the set of per-basin optimized parameters, we trained ten models per basin, each with

a distinct random seed. All statistics reported in this paper for all models are from test period data, except where otherwise

noted.215

A3 Random size basin splits

Models reported in Fig. 6 were tuned (hyperparameters chosen), trained, and tested in a way that is similar to the single-basin

LSTMs described in Appendix A2. For random basins splits we divided the 531 CAMELS basins into random sets without

replacement using 6 different sizes of splits that were chosen by (approximately) dividing the full 531 basin group into [50, 20,

10, 5, 3, and 2] basin groups. An example of one of these random splits with 5 groups (approximately 107 basins per split) is220

shown in Fig. A2.

Choosing hyperparameters was done as described in Appendix A2, except that for these splits we did not use 3 random

repetitions and only trained up to 30 epochs to reduce computational expense. We also expanded the hyperparameter search

slightly due to our experience training larger models – the hyperparameter ranges for the two grid search stages were:

First step:225

Hidden size (8, 16, 64, 128, 256)

Dropout rate on the head layer (0.0, 0.2, 0.4, 0.5)

Second step: In the second stage, we used a batch size of 256 always (as with the regional model), and tuned over the

following multi-stage learning rates, where the index is the epoch on which the learning rate switched to the listed value:

12
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Figure A2. Basin location of random split with 5 groups of approximately 107 basins per group.

– 0: 5e-3, 10: 1e-3, 25: 5e-4230

– 0: 1e-3, 10: 5e-4, 25: 1e-4

– 0: 5e-4, 10: 1e-4, 25: 5e-5

– 0: 1e-4, 10: 5e-5, 25: 1e-5

A4 Hydrological unit code splits

The orange curve in Fig. 6 shows median NSE scores over CAMELS basins that result from LSTM models trained on basin235

groups defined by USGS HUCs. Figure A3 shows the locations of the 531 CAMELS basins by HUC region. The set of

531 basins was divided according to these geographical regions and a separate model was trained on all basins from each.

Hyperparameter tuning was done as described in Appendix A3. Testing was done as described in Appendix A2.
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Figure A3. Spatial location of basins split by USGS hydrological unit code 02.

A5 Attribute clusters splits

The green curve in Fig, 6 shows median NSE scores over CAMELS basins that result from LSTM models trained on basin240

groups defined by k-means clustering based on static catchment attributes. The catchment attributes used for clustering are

described in Table A1. These are almost the same attributes that were used by Kratzert et al. (2019b) but without carbonate

rocks fraction and the seasonality of precipitation (the former is often zero and the latter is categorical, both of which make

clustering slightly more difficult).

We performed k-means clustering on these 25 basin attributes (all attributes were normalized), using 300 iterations and 10245

random initializations. Using a maximin criterion on silhouette scores for between 3 and 100 clusters, we chose to divide basins

into six groups with sizes of 83, 195, 67, 61, 66, and 59 basins. These clusters are mapped in Fig. A4.
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Figure A4. Spatial location of basins split by k-means clustering on the basin attributes.

Appendix B: Regional vs. Single-Basin Model Comparison

Figure 3 illustrates a difference between how LSTM models and conceptual models behave when trained regionally vs. locally

(on single basins). Specifically, the LSTM performs best when trained regionally while traditional models perform best when250

trained locally.

Figure B1 illustrates the same comparison, but where the LSTM NSE CDFs in subpanel (b) only consider the same 489

CAMELS basins that are used in the mHM and VIC NSE CDFs in subpanel (a). This is a more direct comparison than what is

shown in Fig. 3, however the results of the comparison are qualitatively identical.
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Table A1. Table of catchment attributes used in this experiments. Description taken from the data set Addor et al. (2017).

p_mean Mean daily precipitation.

pet_mean Mean daily potential evapotranspiration.

aridity Ratio of mean PET to mean precipitation.

frac_snow_daily Fraction of precipitation falling on days with temperatures below 0◦C.

high_prec_freq Frequency of high precipitation days (>= 5 times mean daily precipitation).

high_prec_dur
Average duration of high precipitation events (number of consecutive days

with >= 5 times mean daily precipitation).

low_prec_freq Frequency of dry days (< 1 mm/day).

low_prec_dur
Average duration of dry periods (number of consecutive days with

precipitation < 1 mm/day).

elev_mean Catchment mean elevation.

slope_mean Catchment mean slope.

area_gages2 Catchment area.

forest_frac Forest fraction.

lai_max Maximum monthly mean of leaf area index.

lai_diff Difference between the max. and min. mean of the leaf area index.

gvf_max Maximum monthly mean of green vegetation fraction.

gvf_diff
Difference between the maximum and minimum monthly mean of the

green vegetation fraction.

soil_depth_pelletier Depth to bedrock (maximum 50m).

soil_depth_statsgo Soil depth (maximum 1.5m).

soil_porosity Volumetric porosity.

soil_conductivity Saturated hydraulic conductivity.

max_water_content Maximum water content of the soil.

sand_frac Fraction of sand in the soil.

silt_frac Fraction of silt in the soil.

clay_frac Fraction of clay in the soil.

geol_permeability Surface permeability (log10).

Appendix C: Theoretical prediction limit255

Figure 4 shows the theoretical maximum prediction limits for regional and single-basin LSTMs. To understand how those

limits were derived, it is important to understand how the output of the LSTM layer is computed and how this output translates

into the model prediction.

The output of the LSTM layer, ht, is computed according to the following equation:
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Figure B1. This figure is identical to Fig. 3 except that subpanel (b) uses all 531 CAMELS basins that Newman et al. (2017) recommended

using for model benchmarking, and which were used in all other experiments reported in this study.

ht = ot ⊙ tanh(ct), (C1)260

where ot is the output gate at time step t, tanh() is the hyperbolic tangent function and ct the LSTM cell state of time step

t. The output gate is computed according to the following equation:

ot = sigmoid(Wxt +Vht−1 +b), (C2)

where sigmoid() is the logistic function, xt are the input features of time step t, ht−1 the hidden state (or LSTM output)

from the previous time step t− 1, and W, V, and b are learnable model parameters.265

Finally, in the case of our model architecture, the output of the LSTM is passed through a linear layer that maps from

the hidden size of the LSTM to 1, the models prediction. More formally, the model prediction ŷt at time step t is computed

according to the following equation:

ŷt =Wht + b, (C3)

where W and b are another set of learnable model parameters, specific to this linear layer. Since our model maps to a single270

output value, W is of shape [hidden size, 1]. With ht of shape [hidden size], we can write Eq. C3 as:
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ŷt = b+

n∑
i=0

Wi ∗hi,t (C4)

Knowing that each element of ht is in (−1,1) and that W and b are fixed after training, the maximum possible value a

trained LSTM (of our architecture) can predict can be computed by

upperlimit= b+

n∑
i=0

abs(Wi), (C5)275

where abs() is the function that returns the absolute value. Note that this value is in the space of training labels and if the

labels were normalized for training, the upperlimit needs to be re-transformed into discharge space to get the upperlimit in

e.g. mm per day.

Appendix D: Example Hydrographs

Figure 5 shows an example of simulated vs. observed hydrographs for one of the 531 CAMELS basins. Basin 13011900 shown280

in Fig. 5 has highly is on Lava Creek in Wyoming and has a drainage area of 837 square kilometers. This basin has highly

seasonal flow patterns.

Figure D1 and Fig. D2 show similar hydrographs for other basins with different hydrological behaviors. One of these is a

small basin on the Salt Creek in Kansas, and has a flashy flow pattern. The other is on the Sauk River in Washington and has

non-flashy behavior, but with significant (non-seasonal) peak flows.285

Additionally, the code and data repositories released with this paper contain everything necessary to plot simulated and

observed hydrographs for any of the 531 CAMELS basins.

Appendix E: Other hydrological metrics

There are a large number of metrics that hydrologists use to assess hydrograph simulations Gupta et al. (2012); Gauch et al.

(2023). Several of these metrics are described in Table E1, including bias, correlation, Nash–Sutcliffe Efficiency (NSE) (Nash290

and Sutcliffe, 1970), Kling–Gupta Efficiency (KGE) (Gupta et al., 2009), and metrics related to hydrograph peaks. Fig. E1

shows differences between regional and single-basin models for these metrics, similar to the NSE comparison shown in Fig. 3.

The takeaway from this figure is that the main message of this paper (do not train a rainfall-runoff LSTM on data from a

single-basin) holds regardless of the metric(s) that we focus on. The skill differences are in correlation-based metrics (NSE,

KGE, and Pearson-R) as well as variance-based metrics (Alpha-NSE). The latter is an artifact of what we saw in Fig. 4, that295

training on more, diverse data improves the ability of the model to predict high flows. Figure E1 shows only small improvements

in the timing and capture of hydrograph peaks (the Missed-Peaks metric measures whether a peak in the hydrograph was

captured at all, not whether the magnitude of the peak was predicted accurately). And we see little or no difference in the two
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Figure D1. Observed and simulated hydrographs from the test period (1989 - 1999) in a particular basin (06876700). This gauge is on the

Salt Creek in Kansas with a drainage area of 1,052 square kilometers, and represents a relatively flashy basin.

bias metrics (Beta-NSE, Beta-KGE), meaning that improvements to catchment-specific mean discharge is not strongly affected

by using training data from multiple catchments (i.e., we don’t strongly bias one type of catchment by using other types of300

catchments in training).
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Figure D2. Observed and simulated hydrographs from the test period (1989 - 1999) in a particular basin (12189500). This gauge is on the

Sauk River in Washington with a drainage area of 1,849 square kilometers, and represents a basin that with high peaks that are not dominated

by a seasonal flow pattern.
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Missed-Peaksviii Fraction of hydrograph peaks that were missed Nearing et al. (2022)
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iii: (0,∞), values close to one are desirable.
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