
General comments: 

In the manuscript “Never train an LSTM on a single basin” by Krazert et al., the authors convincingly 
address the very important subject of confron�ng hydrological models for training/calibra�on with data 
that include a sufficiently large variability of environmental condi�ons. While it is widely acknowledged in 
the community that the “richness” of a training dataset plays a crucial role for iden�fying meaningful and 
robust models (read as: model architectures and parameters), the advent of powerful ML techniques, such 
as LSTMs has further exacerbated this issue and, as demonstrated by the authors, many studies do not 
fully (or not sufficiently well) exploit available data.  

This manuscript is therefore a very welcome and probably even necessary reminder for the community to 
avoid being lured into ques�onable generaliza�ons that may follow from insufficiently trained/tested ML 
models that are not actually supported by data. Overall, I find that this manuscript is built on an excellent 
level of reflec�on and is very well argued. I also believe that the clear focus on LSTMs, as emergent and 
powerful tool, is important and jus�fied. Having said that, I nevertheless believe the manuscript could 
benefit from a somewhat wider view beyond LSTMs. Thus, while the focus on LSTMs is fine and important, 
I also believe that it would be helpful for the reader to project the LSTM focus onto a wider background 
canvas that, as a star�ng point, provides a more general modelling perspec�ve as well as, here and there, 
more precise formula�ons with respect to process-based models (herea�er PB; including the en�re 
spectrum from lumped conceptual to spa�ally explicit “physics-based” models). 

As a baseline, ML approaches typically offer sufficient freedom and flexibility to iden�fy the most efficient 
connec�on structure in a system, as next to the data fed into ML, in most cases (except for mass conserving 
ML models) litle to no further mechanis�c assump�ons are imposed onto these models. This is their 
strength. In the theore�cal case of “complete” knowledge, i.e. sufficient data, ML would without doubt be 
able to converge towards unique (and possibly �me-variable) connec�on structures for each system (or 
catchment). The limi�ng factor here is, quite obviously, our lack of “complete” knowledge. 

PB approaches, in contrast, typically impose very strict constraints on the func�onal architecture of models 
and thus on the connec�ons in the system. This is done by imposing specific parametric rela�onships that 
are meant to describe various storage/gradient – resistance processes in the system, which are known or 
assumed to be relevant in that specific system, but poten�ally not elsewhere. HOWEVER,  in reality, these 
rela�onships are rarely or never known. In addi�on, these parametric rela�onships (e.g. linear reservoir 
as example for a very simple storage discharge rela�onship) are in most cases smooth and regular, while 
real world processes at scales larger than the lab-scale – mostly due to spa�o-temporal heterogenei�es in 
environmental condi�ons – need to be expected to be more jagged and irregular. From a historical 
perspec�ve, PB models have indeed for a long �me been developed and calibrated for specific loca�ons. 
Applying these models to other catchments, using the same func�onal rela�onships (or at least 
rela�onships  from the same family of func�ons/distribu�ons) then frequently fails to reproduce the 
hydrological response elsewhere. That mo�vated the first atempts of flexibiliza�on and customiza�on of 
using modular PB model frameworks star�ng from Leavesley et al. (1996) up to more recent ini�a�ves 
(e.g. Fenicia et al., 2011; Clark et al., 2015 and others). Other studies have demonstrated that allowing PB 
models more flexibility, either in terms process resolu�on and thus in the number of parameterized 
processes, spa�al resolu�on or prior parameter distribu�ons (e.g. Hrachowitz et al., 2014; Mendoza et al. 
2015) can drama�cally increase their performance, if at the same �me balanced with more data to 
confront the model with. Related to that are of course also the many model regionaliza�on atempts. The 



most successful so far is arguably the MPR scheme used in the mhM model (e.g. Samaniego et al., 2010), 
which the authors have cited in their manuscript. The culmina�on of the development so far is the recent 
paper by Gharari et al. (2021), in which it is argued that, in the absence of more detailed knowledge, the 
constraints of func�onal parametric rela�onships in PB models should in principle be relaxed to the point 
that they only have to sa�sfy mass conserva�on and the condi�on of being monotonic, which are 
essen�ally fundamental physical constraints. The training process of such a PB model would then, 
reflec�ng that of a ML approach, allow the model to flexibly generate and test parametric or poten�ally 
even non-parametric rela�onships, e.g. storage-discharge rela�onships, that are most consistent with 
available data.   

Why did I now throw an almost one-page comparison of PB approaches at the authors? Because what the 
authors describe in their manuscript fundamentally applies to both, ML and PB, and should also be 
reflected at least in the context given in the introduc�on. From my perspec�ve the only difference 
between ML and PB is the level of constraints (and thus assumed or real knowledge) imposed on the 
models: very low for ML, very high for PB. From the historical perspec�ve PB has not been flexible due to 
(1) insufficient data before the availability of large sample and/or remote sensing datasets and (2) lack of 
computa�onal capacity (in par�cular, for spa�ally explicit models). However, although so far it has not 
systema�cally been done, there is nothing to suggest that it could not be done. I therefore believe, it would 
be very valuable for the community if this clearly came across in the introduc�on that the value of data 
“richness” used for training is a general issue in modelling and not limited to ML.  

In the end, I am convinced that ML and PB models are merely two sides of the same medal (i.e. the 
observed hydrological system) and that eventually they will in their func�onality converge towards each 
other. 

 

Specific comments: 

p.1, l.8: conceptual models are a category of process-based models. Probably less ambiguous if 
“con�nuum-based” or “physics-based” used instead of “process-based” 

 

p.1, l.9: this statement is not sufficiently precise and actually incorrect: PB models do not specifically 
require long data records. What they require instead is (as any model, one would plausibly assume) 
sufficient data support. The difference being that the lengths of the records could just as well be balanced 
with the variety of data and loss func�ons, e.g. short �me series can be complemented by mul�ple other 
�me series of other variables, such as soil moisture, snow cover, groundwater levels, storage changes, 
evapora�on, etc. (e.g. Nijzink et al., 2018; Dembélé et al., 2020; Hulsman et al., 2021). In the contrary, the 
use of long �me series bears the risk of averaging out temporal variability in the model parameters, caused 
e.g. by natural or directly human-induced changes in vegeta�on (e.g. Hrachowitz et al., 2021; Tempel et 
al., 2024)   

 

p.1, l.10-16: I disagree. This is not a unique characteris�c of ML. Flexibilize PB models and train them to 
mul�ple catchments will eventually converge to the same effects. In my opinion the difference is rather in 



the level of imposed constraints (see above). Thus, the fact that it is not yet done with PB models, does 
not mean that it cannot be done. I think it would be very helpful for the reader to make this difference 
clear here. 

 

p.1, l.17: not sure if “intui�on” is the best term to use here 

 

p.1, l.20: please see above: conceptual models are process-based models. In addi�on, conceptual models 
can be implemented at any spa�al resolu�on from lumped, over semi-distributed to fully distributed 
(frequently referred to as data-gridded models then). Please adjust the statement. 

 

p.1, l.20: I am not sure that in environmental sciences we can actually “verify” anything, given the 
uncertain�es (or incomplete knowledge) in every part of the system. Perhaps beter to rephrase to “test” 
or “evaluate” 

 

p.2, l.37: idem for PB models – nothing speaks against them being trained to a large sample either. 

 

p.3, l.43: this does not really come as a surprise. The more variable and *rich* a data set is used for training 
the more robust the model. But should this not be true for any type of model in any discipline? 

 

p.3, 46ff: Figure 2 is a great comparison that I have already found very useful when it was originally 
published a few years ago (Kratzert et al., 2019). However, what I have never managed to get my head 
around is the following: the PB models tested have between ~ 15 (VIC) and >50 (mhM) calibra�on 
parameters, although the calibra�on strategy does not become en�rely clear from that paper. On the 
other hand, and apologies if I understand something wrong here, LSTMs are defined by a handful of 
hyperparameters, that regulate the number of actual trainable model parameters (or “weights” or any 
other jargon term that is equivalent to “parameters” in PB models). In my understanding and without 
looking up the input size used in the experiment underlying the Kratzert et al. (2019, 2021) analysis then 
leads me, assuming for the moment a lower limit of the input size as 1, using the following expression for 
the number of trainable parameters n = 4*(Input size + Hidden size + 1)*Hidden size, to a bare minimum 
of 320 (Hidden size = 8 as reported in Appendix A2 and A3, p.10ff) or 264192 (Hidden size = 256 in 
Appendix A1, p.9ff) trainable parameters in the LSTMs used here. It leaves me profoundly confused, how 
models with such an elevated number of trainable parameters can be in a fair way compared to models 
that have at least one order of magnitude fewer parameters. This would be like comparing the �me of a 
sprinter to the �me of a person shackled in chains to finish a 100m race. For example, and although I have 
not tested this, I do not see a compelling reason why increasing the number of parameters in a PB model 
for calibra�on in a single basin from ~15 to >320, would not improve the model, plausibly even to the level 
of a LSTM trained for that basin. The same can of course be said for mul�-basin calibra�on. As expressed 
above, the fact that standard PB models do not do that is different from the no�on that they cannot do it. 



But again, I may be vic�m to a fundamental misunderstanding here. In any case, I would be glad to hear 
the authors perspec�ve on that.  

 

p.3, Figure 2 and cap�ons thereof (but also Figures 5 and 6): NSE of what? I suppose stream flow Q. But 
please make sure to explicitly state that. 

 

p.6, l.86: I would argue that volume and variety are not uncorrelated and that in the end, variety counts. 
This also seems to be the take away from Figure 6, where once variety is discounted for (e.g. atribute and 
HUC splits), volume does not really change the results. This suggests that volume does not really come 
into play. 

 

p.7, l.90ff: I completely agree. This has been shown in a considerable body of literature that demonstrates 
the beneficial effects of mul�-objec�ve, mul�-criteria and/or mul�-variable calibra�on with PB models 
going back to at least Gupta et al. (1998), and many studies since then  (e.g. Hrachowitz et al., 2014; Nijzink 
et al., 2018; Dembélé et al., 2020; Hulsman et al., 2021a,b and many others). Why should this be different 
for ML approaches? Indeed, I am convinced that also LSTMs will benefit from such a mul�-objec�ve, -
criteria or -variable approach. 

 

p.7, l.128: not only LSTMs. All inverse model approaches require sufficiently “rich” data that allow to 
balance their flexibility (read: number of training parameters) with sufficient constraints, as argued e.g. by 
Gupta et al. (2008 and in par�cular Figure 4 therein; 2012) but in the end also by Kirchner (2006) and many 
others.  

 

p.7, 132: not sure I fully understand this statement. Did not some recent papers that were partly co-
authored by some of the authors provide the first steps in “adding physics” to LSTMs by enforcing 
conserva�on of mass and/or energy (e.g. Hoedt et al., 2021; Frame et al., 2023; Pokharel et al., 2023)? 

 

p.7, l.134ff: I completely agree! There is also no reason not to train ML or any other models with mul�-
objec�ve, -criteria and/or -variable schemes no mater if long �me series are available or not and no 
mater if large samples are available or not. Any method to (further) constrain the feasible model and/or 
parameter hyperspace has the poten�al to help. 

 

p.7, l.136ff: there is similarly plenty of alterna�ve informa�on publicly available for training of models. I 
do understand that currently most if not all LSTMs are single-variable output models. But is it implausible 
to think that they can be forced to generate mul�ple output variables for which data/observa�ons are 
publicly available either globally (e.g. evapora�on, snow cover, storage changes, etc) or in many countries 
in-situ (e.g. groundwater levels) and that need to be mimicked simultaneously to stream flow? In addi�on, 



it would be surprising if LSTMs could not be improved by forcing them to simultaneously reproduce various 
streamflow signatures (e.g. Flow dura�on curves, autocorrela�on func�ons, etc) or, what is very effec�ve 
in PB models, long-term and seasonal runoff coefficients as proxy to enforce at least some level of energy 
conserva�on. 

 

Thank you for this important contribu�on and I hope you find my thoughts helpful to further strengthen 
the manuscript! 

Please note that in the comments above I have added a few references to the work of our group. I have 
done this for my own convenience and to save �me having to search other group’s references. Other 
groups will have produced work that is poten�ally more suitable to cite here. Please therefore understand 
these references as mere examples and sugges�on and feel under no obliga�on to use them in any way in 
you manuscript. 

 

Best regards, 

Markus Hrachowitz 
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