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Abstract. Machine learning (ML) has played an increasing role in the hydrological sciences. In particular, certain types of

time series modeling strategies
::::
Long

::::::::::
Short-Term

::::::::
Memory

::::::::
networks

::::::::
(LSTMs)

:
are popular for rainfall–runoff modeling. A

large majority of studies that use this type of model do not follow best practices, and there is one mistake in particular that is

common: training deep learning models on small, homogeneous data sets(i.e., data from one or a small number of watersheds)
:
,

:::::::
typically

::::
data

::::
from

::::
only

::
a
:::::
single

:::::::::::
hydrological

:::::
basin. In this position paper, we show that Long Short Term Memory (LSTM )5

streamflow
::::::
LSTM

::::::::::::
rainfall-runoff models are best when trained with a large amount of hydrologically diverse data

:::
data

::::
from

::
a

::::
large

:::::::
number

::
of

:::::
basins.

1 Machine learning requires different intuitions about hydrological modeling

Regionalizing rainfall–runoff models across multiple watersheds is a longstanding problem in the hydrological sciences (Guo

et al., 2021). The most accurate streamflow predictions from conceptual and process-based hydrological models generally10

require calibration to long data records in individual watersheds. Hydrology models based on machine learning (ML) are

different – ML models work best when trained on data from many watersheds (Nearing et al., 2021). In fact, this is one of the

main benefits of ML-based streamflow modeling.

Because ML models are trained with data from multiple watersheds, they are able to learn hydrologically diverse rainfall–

runoff responses (Kratzert et al., 2019b) in a way that is useful for example for prediction in ungauged basins (Kratzert et al.,15

2019a).

Prediction
:::::::
However,

:::::::::
prediction in ungauged basins is not the only reason to train ML models on data from many

::::::
multiple

:
wa-

tersheds. Models trained this way have better skill even in individual, gauged watersheds with long training data records(Nearing et al., 2021)

, and they are also better at predicting extreme events (Frame et al., 2022).

The purpose of this position paper is to suggest
:::::
effect a change in intuition. ML requires a top-down modeling approach,20

in contrast to traditional hydrological modeling that is usually most effective with a bottom-up approach. We do not mean

top-down vs. bottom-up in the sense discussed by Hrachowitz and Clark (2017),
::::
who

::::
use

::::
these

:::::
terms

::
to

:::::::::::
differentiate

:::::::
between

:::::::
lumped,

::::::::::
conceptual

:::::::::
(top-down)

:::
vs.

:::::::::
distributed,

::::::::::::
process-based

::::::::::
(bottom-up)

::::::
models. Instead, we mean that traditional hydrology

models (both lumped conceptual models and process-based models) are typically developed, calibrated, and verified
::::::::
evaluated
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at a local scale, ideally using long and comprehensive data recordsfrom experimental watersheds. Then, in the
:::
this bottom-up25

approach, after a model is developed, we might work on regionalization strategies to extrapolate parameters and parameteri-

zations to larger areas (e.g., Samaniego et al., 2010; Beck et al., 2016). With ML modeling ,
:
In

::::::::
contrast,

::::
with

::::
ML

::::::::
modeling

the best approach is to start by training on all available data from as many watersheds as possible, and then work to fine tune

models for individual catchments. The effort
::::
then goes into localizing large scale models, instead of regionalizing small scale

models.30

We focus
::::
This

:::::
paper

:::::::
focuses on rainfall–runoff modeling with Long Short Term

:::::::::
Short-Term

:
Memory (LSTM) networks

because this is currently the most common type of ML model
::::
used in surface hydrology. The use of LSTMs for rainfall–runoff

modeling
:
is
:::::::::
motivated

::
by

:::
the

:::
fact

::::
that

::::::
LSTMs

:::
are

:::::::::
state-space

:::::::
models

:::
and

:::
are

::::::::
therefore

::::::::
structured

::::::::
similarly

::
to

:::
how

:::::::::::
hydrologists

:::::::::::
conceptualize

:::::::::
watersheds

::::::::::::::::::
(Kratzert et al., 2018)

:
.
:::
The

::::
use

::
of

:::::::
LSTMs

::
in

:::::::::
hydrology

:::::::
research has increased exponentially in the

last several years (see Fig. 1). We see no reason to suspect that the lessons learned about big data with this type of model are35

not general, and several reasons to suspect that they are;
:::::::
namely

:
it
::
is
::::::::
important

:::
to

::::::::
recognize

::::
that,

:::::
across

::::::::::
application

::::::::
domains,

:::::::
machine

:::::::
learning

::::::
models

::::::
trained

:::
on

::::
large

:::::::
training

::::
data

:::
sets

::::::::::
out-perform

:::::::
smaller,

:::::
more

:::::::::
specialized

::::::
models

:
(Sutton, 2019).
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Figure 1.
::::::
Number

::
of

:::::::::
hydrological

::::::::::
publications

:::::
related

::
to
::::::::::::

rainfall–runoff
:::::::
modeling

::::
with

::::::
LSTMs

::::
over

::::
time,

:::::
based

::
on

::::
data

:::::::
retrieved

::::
from

:::::
Google

::::::
Scholar

::
in

::::
April

:::::
2024.

To understand the current state of practice with LSTM-based rainfall runoff modeling, we collected the top 100 papers

returned by a keyword search on Google Scholar for "rainfall-runoff modeling LSTM streamflow" with publication year 2021

sorted by relevance
:
.
:::::
From

:::
this

::::::
search,

:::
we

::::::::
surveyed

:::
the

:::
top

::
50

::::::
papers

:::
per

::::
year

:::
for

::
the

:::::
years

:::::
2021, and skipping

:::::
2022,

:::
and

:::::
202340

:::
and

:::::::
skipped papers that did not involve training models or developing systems for training models. Of those 100

:::
150

:
papers

surveyed, 79
:::
122

:
trained models on individual catchments , and 6 of the remaining 21 papers (that

:::
and

:::
28

:
trained models

on multiple catchments )
::
(of

::::::
which

::::
four were co-authored by one or more of the authors of the paperthat you are currently
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reading
::::::
authors

::
of

::::
this

:::::
paper)

:::::
(Fig.

::
2). We collected these 100

:::
150 papers for review in September, 2022, nearly three

:::::
April,

:::::
2024,

::::
more

::::
than

::::
four

:
years after the original regional LSTM rainfall–runoff modeling papers (Kratzert et al., 2019a, b) were45

published. The list of 100
:::
150 papers is included in the published data repository

:::
data

:::::::::
repository

:::::::
released

::::
with

::::
this

:::::
paper.
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Figure 2. Number
:::::::
Fractions

:
of hydrological publications related to

::
50

::::::::::::
peer-reviewed

:::::::
research

:::::::
articles

::::::
papers

::::
per

:::::
year

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(starting one year after the original LSTM regional modeling papers were published Kratzert et al., 2019a, b)

:::
that

:::::
train

::::::
LSTM

::
rainfall–

runoff modeling with LSTMs over time
:::::
models

:::
on

:::::
single

:::
vs.

::::::
multiple

::::::
basins, based on data

:::::
articles

:
retrieved from Google Scholar in

September 2022.
::::
April

::::
2024.

It is important to recognize that there is usually no reason in practice to train LSTM streamflow models using data from only

a small number of watersheds. There is enough publicly available streamflow data to train robust ML models. For example,

the various CAMELS datasets such as CAMELS-US (Newman et al., 2015), the Global Runoff Data Center (BAFG), or

the Caravan dataset and its extensions (Kratzert et al., 2023). The NeuralHydrology software package (Kratzert et al., 2022)50

is set up to train ML models on multiple basins by default. It is possible to fine tune large-sample
:::::::::::
large–sample

:
models to

individual locations and/or for specific purposes (e.g., Ma et al., 2021), however fine tuning is outside the scope of this paper.

It is sufficient for our purpose to show that training large-scale ML models is better than training small-scale ML models for

streamflow prediction and fine tuning would only widen this difference.

::
In

::::::::
summary,

:::
the

::::
large

::::::::
majority

::
of

::::::
LSTM

:::::
papers

:::::::::
published

::
in

::::::::
hydrology

:::::::
journals

:::::
train

::::::
models

::
on

:::::
small

:::::::
datasets

::::
from

::::::
single55

:::::::::
catchments.

:::::
This

::
is

:::::::::
unfortunate

:::::::
because

::
it
::::
does

::::
not

:::::::
leverage

:::
the

:::::::
primary

::::::
benefit

::
of

::::::::
machine

:::::::
learning,

::::::
which

::
is

:::
the

::::::
ability

::
to

::::
learn

:::
and

:::::::::
generalize

:::::
from

::::
large

::::::::
datasets.

:::
The

::::
rest

::
of

:::
this

:::::
paper

:::::::::
illustrates

::::
how

:::
and

::::
why

::::
that

::
is

:
a
:::::::
problem

:::::
when

:::::
using

:::::::
LSTMs

:::::::::
specifically

:::
for

::::::::::::
rainfall-runoff

::::::::
modeling.

:

3



2 Skill gaps between local and regional models

Figure ??
:
3
:
shows differences in performance between LSTM models trained on single basins vs. multiple basins (regional).60

The
:::::::
Subpanel

:::
(a)

::::::
shows

:::
this

::::::::::
comparison

:::
for

::::
two

:::::::::
traditional

:::::::::
hydrology

::::::
models

::::
and

::::::::
subpanel

:::
(b)

::::::
shows

:::
the

::::::::::
comparison

:::
for

:::::
LSTM

:::::::
models.

::::::
Notice

:::
that

:::
in

:::::::
subpanel

:::
(a),

:
single-basin models were optimized and trained separately for

:::::::
perform

:::::
better

::::
than

:::::::
regional

::::::
models,

::::
and

::
in

:::::::
subpanel

:::
(b)

::::
this

:
is
::::::::
reversed.

:

:::::::
Subpanel

:::
(a)

::
of

::::
Fig.

:
3
:::::
shows

::::::::::
cumulative

::::::
density

::::::::
functions

::::::
(CDFs)

::::
over

::::::::::::
Nash–Sutcliffe

::::::::::
Efficiencies

::::::
(NSEs)

:::
for

:::
489

:::::::::
CAMELS

:::::
basins

:::::
from

:
a
:::::::::
conceptual

::::::
model

:::::::
(mHM)

:::
and

::
a
::::::::::::
process-based

::::::
model

:::::
(VIC).

::::::
These

::::::
models

:::::
were

::::::::
calibrated

::::
and

:::
run

:::
by

:::::
other65

:::::::
research

::::::
groups

:::::::
without

:::
our

::::::::::::
involvement,

:::
and

::::
the

::::
data

:::::
from

::::
these

:::::::
models

:::::
were

::::::::
borrowed

:::::
from

:::
the

:::::::::::::
benchmarking

:::::
study

::
by

::::::::::::::::::
Kratzert et al. (2019b)

:
.
::::
The

:::
fact

::::
that

::::::::::
conceptual

:::
and

::::::::::::
process-based

:::::::::::
hydrological

::::::
models

:::::::
perform

::::::
worse

:::::
when

:::::::::
regionally

::::::::
calibrated

::
is,

::
to

:::
our

::::::::::
knowledge,

:
a
::::::::
consistent

::::::
finding

::::::
across

::::::::::
hydrological

::::::::
modeling

::::::
studies

::::::::::::::::::::::::::::::::::::::
(e.g., Beck et al., 2016; Mizukami et al., 2017)

:
.

:::::::
Subpanel

::::
(b)

::
of

::::
Fig.

::
3
::::::
shows

:::
the

:::::
same

:::::
NSE

:::::
CDFs

:::
for

:::::::
LSTM

:::::::
models.

:::
We

:::::
tuned

::::
the

::::::::::::::
hyperparameters

::::
and

::::::
trained

:::
an70

::::::::
ensemble

::
of

:::
ten

::::::::::
single-basin

::::::
LSTM

::::::
models

::::::::
separately

:::
for

::::
each

:::
of 531 basins of

::
in the CAMELS data set (Addor et al., 2017)

::::::::::::::::::::::::::::::::::
(Newman et al., 2015; Addor et al., 2017) using a standard train/validation/test data split with approximately 10

:::
ten years of

data in each split.
:::
We

:::::::
similarly

::::::
trained

:::
an

::::::::
ensemble

::
of

:::
ten

::::::
LSTM

:::::::
regional

::::::
models

::::
with

::::
data

::::
from

::
all

::::
531

::::::::
CAMELS

::::::::::
catchments

::::::::::::
simultaneously

:::::
using

::::::::::::::
hyperparameters

:::::
taken

::::
from

::::::::::::::::::
Kratzert et al. (2021).

:
Details about how LSTM models were hypertuned,

trained, and tested can be found in Appendix A.75

The
:::::
choice

::
to

:::
use

:::
531

:::::::::
CAMELS

:::::
basins

:::
for

:::::::
training

:::
and

::::::
testing

:::::::
LSTMs

:::::
comes

:::::
from

::
the

:::::::::
suggestion

:::
by

::::::::::::::::::
Newman et al. (2017)

:
,
:::
who

:::::::
selected

:::::
these

::::::
basins

::::
from

:::
the

:::
full

:::::::::
CAMELS

::::::
dataset

:::
for

:::::
model

:::::::::::::
benchmarking.

:::
We

:::
use

::::
this

::
set

:::
of

::::::::
CAMELS

::::::::::
benchmark

::::::
gauges

::
for

:::
the

:::::::::
remainder

::
of

:::
this

::::::
study.

:::::
Figure

:::
B1

::
in

::::::::
Appendix

::
B
::::::
shows

:::
the

::::
same

::::::::::
comparison

::
as

::::
Fig.

::
3,

:::
but

:::::::
subpanel

:::
(b)

::
in

::::
that

:::::
figure

:::::
shows

::::
NSE

::::::
CDFs

::
for

::::
only

:::
the

::::
489

:::::::::
CAMELS

:::::
basins

::::
with

:::::
mHM

::::
and

::::
VIC

::::
runs.

:

:::
The

:
takeaway from Fig. ?? is that large-sample

:
3

:
is
::::

that
:::::::
whereas

:::::::::
traditional

:::::::::::
hydrological models are more accurate overall80

than models trained for specific locations
::::
when

:::::::::
calibrated

::
to

:
a
::::::
single

:::::::::
watershed,

:::::::
LSTMs

:::
are

:::::
more

:::::::
accurate

:::::
when

::::::
trained

:::
on

:::
data

:::::
from

:::::
many

:::::::::
watersheds. Other hydrological metrics are reported in Appendix E, however the main point of our argument

holds regardless of which hydrological metric (s)
:::::
metric is used for evaluation.

Cumulative Density Functions (CDF) of Nash–Sutcliffe Efficiencies (NSE) over watersheds in the CAMELS data set

(Addor et al., 2017) for models trained on individual basins (basin) vs. on multiple basins (regional). The left-hand subplot85

shows a conceptual model (mHM) and a process-based model (VIC), both calibrated using data from 400+ watersheds

by (different) research groups that are familiar with each model – VIC single basins: Newman et al. (2017), VIC regional:

Mizukami et al. (2017), mHM single basins: Mizukami et al. (2019), and mHM regional: Rakovec et al. (2019). The right-hand

subplot shows the NSE CDFs over 531 CAMELS basins for ten regional LSTM models and ten single-basin LSTM models.

Randomness in the LSTM repetitions is due to randomness in the initial weights prior to training, and we recommend averaging90

hydrographs from this kind of repetition, as was done by Kratzert et al. (2019a) and Kratzert et al. (2019b).
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Figure 3.
:::::::::
Cumulative

::::::
Density

:::::::
Functions

::::::
(CDF)

::
of

:::::::::::
Nash–Sutcliffe

:::::::::
Efficiencies

:::::
(NSE)

::
of

:::::::
simulated

::::::::
volumetric

::::::::
discharge

:::
over

:::::::::
watersheds

::
in

::
the

::::::::
CAMELS

:::
data

:::
set

:::
for

:::::
models

::::::
trained

::
on

::::::::
individual

:::::
basins

:::::
(basin;

:::::
orange

:::::
lines)

::
vs.

:::
on

::::::
multiple

:::::
basins

::::::::
(regional;

:::
blue

:::::
lines).

::::::
Subplot

:::
(a)

::::
shows

::
a
::::::::
conceptual

:::::
model

::::::
(mHM)

:::
and

:
a
:::::::::::
process-based

:::::
model

:::::
(VIC),

:::
both

::::::::
calibrated

::::
using

::::
data

::::
from

:::
489

::::::::
watersheds

::
by

::::::::
(different)

:::::::
research

:::::
groups

:::
that

:::
are

::::::
familiar

::::
with

::::
each

:::::
model

::
–

:::
VIC

:::::
single

::::::
basins:

::::::::::::::::
Newman et al. (2017)

:
,
:::
VIC

:::::::
regional:

:::::::::::::::::
Mizukami et al. (2017)

:
,
:::::
mHM

:::::
single

:::::
basins:

:::::::::::::::::
Mizukami et al. (2019)

:
,
:::
and

:::::
mHM

::::::
regional:

::::::::::::::::
Rakovec et al. (2019)

:
.
::::::
Subplot

:::
(b)

:::::
shows

::
the

:::::
same

:::
NSE

:::::
CDFs

::::
from

::::::
LSTMs

::::::
trained

::
in

:::
two

::::
ways:

:::::::
regional

::::::
LSTMs

:::::
(blue)

::::
were

:::::
trained

:::::
using

:::
data

::::
over

::
the

::::::
training

::::::
period

::::
from

::
all

:::
531

::::::::
CAMELS

:::::
basins,

::::
and

:::::::::
single-basin

::::::
LSTMs

::::::
(orange)

::::
were

::::::
trained

::::
using

::::
data

:::
over

:::
the

::::::
training

:::::
period

::::
from

::::
each

::::::::
CAMELS

::::
basin

::::::::::
individually.

:::
An

:::::::
ensemble

::
of

:::
ten

:::::
LSTM

::::::
models

::::
were

:::::
trained

::
in

::
all

:::::
cases,

:::::
where

:::::::::
randomness

::
in

::
the

::::::
LSTM

::::::::
repetitions

:
is
:::
due

::
to
:::::::::
randomness

::
in

:::
the

:::::
initial

::::::
weights

::::
prior

:
to
:::::::
training.

:::
We

:::::::::
recommend

:::::::
averaging

:::::::::
hydrographs

::::
from

:::
this

::::
kind

::
of

::::::::
repetition,

::
as

:::
was

::::
done

::
by

:::::::::::::::::
Kratzert et al. (2019a)

:::
and

::::::::::::::::
Kratzert et al. (2019b)

:
.

3 Why this matters for extreme events

Training on large-sample data sets with hydrologic diversity means that the training envelope is larger, making it less likely that

any new prediction will be an extrapolation. Intuitively, the training envelope refers to the region
::::::
ranges of data where model

performance is well-supported by the training process. If the training set includes a very humid basin, then the model is more95

likely to have seen large precipitation events, so that a new extreme precipitation event seen during inference is less likely to

be outside of the training envelope. As an example of this, Nearing et al. (2019) discussed how watersheds can move within

the training envelope as (e.g., climate) conditions within a catchment change, and how this causes changes in the modeled

rainfall–runoff response in individual watersheds.

We can look at the target data to see an example of how this diversity in training data helps. The LSTM model used by100

Kratzert et al. (2019a) and Kratzert et al. (2019b) have a linear “head” layer that condenses the LSTM hidden state into
:::::::
produces

a scalar estimate of streamflow at each timestep
::
by

::::::
taking

:
a
::::::::
weighted

::::
sum

::
of

:::
the

:::::
values

::
of

:::
the

::::::
LSTM

::::::
hidden

::::
state.

::::
The

:::::::
weights

::
for

::::
this

::::::::
weighted

::::
sum

::
in

:::
the

::::
head

:::::
layer

:::
are

:::::::::
parameters

:::
that

:::
are

:::::
tuned

::::::
during

:::::::
training. The LSTM hidden state is a vector that

5



is bounded bounded to 1
:::::::::
real-valued

:::::
vector

::
in (-1) ,

:::
1), and has a size equal to the number of cell states . This

::
or

:::::::
memory

:::::
states

::
in

::
the

::::::
LSTM

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for a hydrologically-centered overview of the structure of an LSTM, please see Kratzert et al., 2018),

:::::
which

:
means105

that the maximum (limiting) value of the scalar streamflow estimate from the model is defined by the sum of the absolute values

of weights in the linear head layer (see also Appendix C
:
). More diversity in training data (here, training targets) causes the

model to expand the range of weights in the head layer to accommodate higher flow values.
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Figure 4. The theoretical
::::::::
Theoretical

:
maximum streamflow prediction of an LSTM model with a linear head layer when trained per basin

(blue dots) and for all 531 CAMELS basins together (blue line). Orange dots represent the maximum streamflow values per basin in the train

period (left
:::::::
subpanel

:
a) and test period (right

:::::::
subpanel

:
b). In the test period, there are 10 flow values above the maximum prediction of the

regional model, while there are more than 6,346 flow values above the theoretical maximums of their respective single basin
:::::::::
single-basin

models across all basinsand all timesteps.

This effect can be seen in Fig. 4, which shows the theoretical maximum prediction from each of 531 single basin
::::::::::
single-basin

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
*
::::::::::::
frame2022deep

:
. All of the LSTM models described in this paper were trained individually, and we also chose the model hyperparameters individually per model (e.g. , per basin for basin-specific models), as described in Appendix A2

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
In summary, training on a larger dataset means the model is able to adapt internal weights and biases to account for more extreme events. 4 How many basins are necessary?

::

LSTM models and from a single LSTM model trained on all 531 CAMELS basins. During inference (test period) there are
:::
110

::

in total
:
a

::::
total

::
of

:
10 timesteps of streamflow observations across all 531 catchments that are above the regional model’s

::

theoretical maximum when trained on data from all 531 watersheds. However when separate models are trained per catchment,
::

there are more than 6,000 timesteps of streamflow observations that are above the theoretical maximums for each model in its
::

respective catchment. Notice that no model captures all of the extreme events, even in the training data set (which is common
::

for physically-based models as well; Frame et al. (2022)). Figure ?? shows how this effect manifests in an example hydrograph
:::
115

::

from one particular basin (not chosen at random).
:::::
More

::::::::
examples

:::
are

:::::
given

::
in

::::::::
Appendix

:::
D.

:::::
Notice

::::
that

::
no

::::::
model

:::::::
captures

:::
all

::

::
of

:::
the

:::::::
extreme

::::::
events,

::::
even

::
in

:::
the

::::::
training

::::
data

:::
set

:::
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Figure
:
6
:
shows how test period performance increases as more basins are added to the training set. The blue line in this figure

was created by splitting
:::::::
grouping

:
531 CAMELS basins into different sized training and test sets

::::::
groups randomly without

replacement. Each point on the blue line shows the median test-period Nash–Sutcliffe Efficiency (NSE) over all
::::
This

:::
was

:::::
done120

::::
using

::::::
k-fold

:::::::::::::
cross-validation

::
so

::::
that

::
all

::::::
models

:::::
were

:::::
tested

::
on

:::
the

:::::
same

::::::
basin(s)

::::::
where

::::
they

::::
were

::::::
trained

::::::
(during

::::::::
different

::::
time

:::::::
periods)

:::
and

:::::
every

::::
basin

::::
was

::::
used

::
as

::
a

:::
test

:::::
basin

::::::
exactly

::::
once

::
in

::::
each

::::::::
grouping

::::
size.

:::
For

::::::::
example,

:::
the 531 basins from training

and testing modelson groups of basins of a certain size (details
::::
were

:::::::
grouped

::::
into,

::::
e.g.,

::
5

::::::
disjoint

::::::
groups

:::::
(each

:::::
with

::::::
around

:::
107

:::::::
basins),

::::
then

:::
data

:::::
from

:::
the

::::::
training

::::::
period

:::::
(1999

:
-
:::::
2000)

::
of

::::
one

:::::
group

:::
was

:::::
used

::
to

::::
train

::
an

::::::::
ensemble

::
of

:::
ten

::::::
LSTM

:::::::
models,

:::
and

::::
data

::::
from

:::
the

::::
test

:::::
period

::::::
(1980

:
-
:::::
1989)

::
of
::::

the
::::
same

:::::
group

::::
was

::::
used

:::
to

:::::::
evaluate

:::
that

:::::::::
ensemble

::
of

::::::
trained

::::::
LSTM

:::::::
models.125

::::
This

::::::::
procedure

::::
was

:::::::
repeated

:::
for

::::
each

:::
of

:::
the

::::::::
remaining

::::
four

:::::::
groups,

:::
and

::
a
::::::
similar

::::::::
procedure

::::
was

::::
used

:::
for

:::::
each

:::::::
different

::::
size

::
of

:::::
basin

:::::::
grouping

::::::
shown

:::::
along

:::
the

::::::
x-axis

::
of

::::
Fig.

::
6.

::::::
Figure

::
6

::::
plots

:::
the

:::::::
average

:::::
(over

:::
ten

::::::::
ensemble

:::::::::
members)

::
of

:::
the

:::::::
median

::::
(over

::::
531

::::::::
CAMELS

:::::::
basins)

:::::::::
test-period

::::
NSE

:::
for

::::::
various

:::::
basin

:::::::::
groupings.

:::::
More

:::::
details

:::::
about

:::::
basin

:::::::::
groupings can be found in

Appendix A3). Performance continues to increase

:::
The

::::
blue

::::
line

::
in

:::
Fig.

::
6
:::::
shows

:::::::::::
performance

:::::::
(median

:::::
NSE)

:::::::::
increasing

::
as

:::
the

:::
size

:::
of

:::
the

::::::
training

::::::
dataset

:::::::::
increases.

::::
This

:::::
effect130

::::::::
continues up to the maximum size of the CAMELS data set (531 basins). In other words,

::
it

:
is
:::::
better

::
to
:::::
have

::::
more

::::::
basins

::
in

:::
the

::::::
training

:::
set,

::::
and even these 531 basins are most likely not enough to train optimal LSTM models for streamflow.

5 Is hydrological diversity always an asset?

There are at least two factors at play
::
to

:::::::
consider

:
when choosing training data: volume and variety. Volume refers to the total

amount of data used for training (more is always better, as far as we have seen), and variety refers to the (hydrologic) diversity135

of data. Diversity might be in the form of different geophysical catchment attributes, different types and magnitudes of events,

or different hydrological behaviors.

We have some evidence that there might be ways to construct training sets that could result in better models than simply

training on all available streamflow data. We do not have results that support this directly – separating the full CAMELS data

set into hydrologically similar groups results in smaller training sets that result in models that do not perform as well as a single140

model trained on all CAMELS data. However, separating the training set into hydrologically similar groups of basins results

in models that perform better than models trained on random basin groups of similar size.

It is an open question as to whether a larger data set than CAMELS (e.g., Kratzert et al., 2023) might be divisible

into hydrologically similar groups that individually perform better than a model trained on all available data. This

could happen if, for example, the curve in Fig. A2 becomes asymptotic at some point beyond the size of the CAMELS data145

set, and if the performance of models trained on hydrologically-informed basin groupscontinues to increase with sample size.

Note that this analysis does not account for the value of hydrologic-diversity for prediction in ungauged basins.

Figure ?? shows this effect for two basin grouping strategies
:::::
Figure

::
6

:::::::
provides

::::::::
examples

:::
of

::::::
training

:::
on

:::
less

:::::::::::::
hydrologically

::::::
diverse

::::
basin

::::::
groups. The orange line in Figure ?? shows the

:::
Fig.

::
6

:::::
shows

:::
the

:::::
mean

::::
(over

:::
ten

::::::::
ensemble

::::::::
members)

:::
of

::
the

:
median

NSE (over 531 CAMELS basins) from training and testing models on individual
:::::
basins

:::::::
grouped

:::
by USGS hydrological unit150
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Figure 6. Median NSE scores
:
of
::::::::
simulated

::::::::
volumetric

:::::::
discharge

:
over 531 CAMELS basins for LSTM models trained and tested on splitting

the 531 CAMELS basins into different sized groupings for training and testing. All models were tested on the same basins where they were

trained (during different time periods). Grouping
:::
The

:::
blue

:::
line

::::::::
represents

:::::
basin

:::::::
groupings

::
of

:::::::
different sizes were chosen randomly without

replacement so that all 531 basins are
::::
were modeled exactly once for each

::::::
grouping

:
sizesplit. The dots represent

:::::
Orange

:::
and

:::::
green

::::
lines

::::
show

:::::
results

::::
from

:::::::
grouping the median NSE score across all

:::
531 basins

:::
into

:::
sets

:::::
based

::
on

:::::
USGS

::::::::::
hydrological

:::
unit

:::::
codes

::::::
(orange), average

over the ten separately-trained LSTM models. The error bars represent standard deviation
::
and

:::::::
k-means

:::::::
clustering

:
of

::::
basin

:::::::
attributes

::::::
(green).

:::
Dots

:::
on the medians over

:::::
orange

:::
and

::::
green

::::
lines

::::::
indicate

:
the ten repetitions. The ten separately-trained LSTMs all use

:::
sizes

::
of

:
the same

:::
(18

:::
and

::
6) basin

::::
groups

::::
used

::
in
:::::
those splits, so that variability is due to randomness

::::
since

::::
there

:::
are

:
a
:::::::
different

::::::
number

::
of

::::::::
CAMELS

:::::
basins in

:::
each

:::::
HUC

:::
and

:
a
:::::::
different

:::::
number

::
of
:::::

basins
::
in
::::
each

::::::
attribute

::::::
cluster.

::::
Blue

:::
dots

::::
and

:::
solid

::::::
orange

:::
and

::::
green

::::
lines

:::::::
represent

:
the initial weights

:::::
median

:::::
model

::::::::::
performance

::::
over

:::
531

::::::
basins,

::::
while

::::
blue

::::
error

::::
bars and biases before training

:::::
dashed

::::::
orange

:::
and

:::::
green

::::
lines

:::::::
represent

:::
the

::::::
standard

:::::::
deviation

::
of

:::
this

::::::
median

::::
over

:
a
:::::::::
ten-member

:::::::
ensemble.

codes (HUCs). There are 18 HUCs represented in the CAMELS data set, with between 2 and 79 basins per HUC. The green

line in Figure ?? shows the
:::
Fig.

::
6
::::::
shows

:::
the

:::::
mean

:::::
(over

:::
ten

::::::::
ensemble

:::::::::
members)

::
of

:::
the

:
median NSE (over 531 CAMELS

basins) from training and testing models on basin groups derived from k-means clustering on static catchment attributes. The

CAMELS data set includes catchment attributes related to climate, vegetation, pedology, geology, and topography, and we

clustered using 25 catchment attributes described in
::::
Tab.

:::
A1

::
in Appendix A5. We selected a k-means cluster model based on155

a maximin criterion on silhouette scores, which resulted in a model with 6 clusters ranging from 59 to 195 basins per cluster.

Details of HUC-based training and attribute clustering are
::::
about

::::
how

::::::
models

:::::
were

::::::
trained

::::
and

:::::
tested

::
on

::::::
HUCs

:::
and

::::::::
attribute

::::::
clusters

:::
can

:::
be

:::::
found in Appendices A4 and A5.

Median NSE scores over 531 CAMELS basins for LSTM models trained and tested on different groupings of basins. The

blue line shows results for different training set sizes selected randomly without replacement (so that all 531 basins are modeled160

exactly once for each size split), and is identical to the blue line in Figure A2. The orange and green lines show results from

splitting the 531 basins into sets based on USGS hydrological unit codes (orange), and based on k-means clustering of basin
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attributes (green). Dots on the orange and green lines indicate the sizes of the (18 and 6) basin groups used in those splits, since

there are a different number of CAMELS basins in each HUC and a different number of basins in each attribute cluster.

What we see from Figure ?? is that separating basins into groups based on hydrologically-relevant information causes165

:::::
Figure

::
6
:::::::
provides

::::::::
evidence

::::
that

::::
there

::::::
might

::
be

:::::
ways

::
to

::::::::
construct

:::::::
training

::::
sets

:::
that

::::::
could

:::::::::
potentially

:::::
result

::
in

:::::
better

:::::::
models

:::
than

::::::
simply

:::::::
training

:::
on

::
all

::::::::
available

:::::::::
streamflow

::::
data.

::::
This

::::::::::
conclusion

::
is

::::::::::
hypothetical

:::::::
because

::
in

::
all

::::::::
examples

::::::
shown

::
in

::::
Fig.

::
6,

::::::
models

::::::
trained

::
on

::::
any

:::::
subset

::
of

:::
the

::::
531

::::::::
CAMELS

::::::
basins

:::::::::
performed

:::::
worse,

:::
on

:::::::
average,

::::
than models trained on small amounts

of data to
::
all

::::
531

::::::::
CAMELS

::::::
basins.

::::::::
However,

:::::::::
separating

:::
the

:::::::
training

::
set

::::
into

::::::::::::
hydrologically

::::::
similar

::::::
groups

::
of

::::::
basins

::::::
results

::
in

::::::
models

:::
that

:
perform better than models trained on random basin groups of a similar size. However, this effect is not enough170

to make up for the fact that these hydrologically-informed training sets are necessarily smaller, since they require dividing

up the full data set.As we said previously, it is an open question whether increasing the overall
::
It

::
is

:::
an

::::
open

::::::::
question

:::
as

::
to

:::::::
whether

::
a
::::::
larger

::::
data

:::
set

:::::
than

:::::::::
CAMELS

::::::::::::::::::::::::
(e.g., Kratzert et al., 2023)

:::::
might

::
be

::::::::
divisible

::::
into

:::::::::::::
hydrologically

:::::::
similar

::::::
groups

::::
that

:::::::::::
individually

:::::::
perform

::::::
better

:::::
than

:
a
::::::

model
:::::::
trained

:::
on

:::
all

::::::::
available

:::::
data.

::::
This

:::::
could

::::::
happen

:::
if,

:::
for

::::::::
example,

::
the

:::::
curve

:::
in

:::
Fig.

::
6
::::::::
becomes

:::::::::
asymptotic

::
at

:::::
some

::::
point

:::::::
beyond

:::
the size of the data set would result in

::::::::
CAMELS

::::
data

:::
set,

::::
and175

:
if
:::
the

:::::::::::
performance

::
of

:
models trained on hydrologically-informed groups to become better than models trained on the largest

data set possible
::::
basin

::::::
groups

:::::::::
continues

::
to

:::::::
increase

::::
with

::::::
sample

::::
size.

:::::
Note

:::
that

::::
this

:::::::
analysis

::::
does

:::
not

:::::::
account

:::
for

:::
the

:::::
value

::
of

:::::::::
hydrologic

:::::::
diversity

:::
for

:::::::::
prediction

::
in

::::::::
ungauged

::::::
basins.

:::
The

::::::::
takeaway

::
is

:::
that

:::::
even

:
if
:::::::
enough

:::::
basins

:::::
exist

::
to

:::::
divide

::::
your

:::::::
training

::::
data

:::
into

:::::::::::::::::::::
hydrologically-informed

::::::
training

::::
sets,

::::
one

:
is
:::::
likely

:::::
better

:::
off

::::::
simply

:::::::
training

:
a
::::::

single
:::::
model

::::
with

:::
all

::::::::
available

::::
data.

:::
At

::::
least,

::::
one

::::::
should

:::::::
perform

::
an

:::::::
analysis

:::
like

:::::
what

::
is180

:::::
shown

::
in

::::
Fig.

::
6

::
to

:::::::::
understand

:::::::
whether

:::::::
splitting

:::
the

:::::::
training

:::
set

:::::
helps

::
or

:::::
hurts.

:::
We

:::
are

::::::::
interested

::
to
::::

see
:::::::
(through

:::::
future

::::::
work)

::::
what

::::
these

::::::::
tradeoffs

::::
look

::::
like

::::
with

:::::
larger

::::::
training

::::
sets.

That being said

6
:::
Are

::::::
bigger

:::::::
models

:::::
better

::::::::::::
everywhere?

::::
Even

::::::
though

:::
the

::::
best

:::::
model

:::
on

:::::::
average

::
is

::
the

::::::
model

::::::
trained

:::
on

::
all

::::
531

::::::::
CAMELS

::::::
basins, it is not the case that the best model185

in each basin is always the model trained on all 531 basins
::::::::
CAMELS

::::::
basins

::
is

:::::
better

::
in

:::::
every

::::
basin. Figure 7 shows the number

of basins for which models trained on each grouping (size, HUC, attributes cluster) perform statistically better than (green),

not statistically different than (orange), or statistically worse than (blue) the regional model trained on all 531 basins.
:::::
These

::::::::
statistical

::::
tests

::::
were

:::::
done

:::::
using

::::::::
two-sided

:::::::::
Wilcoxon

::::::::::
signed-rank

:::
test

::::
over

:::
ten

::::::::::
repetitions

::
of

::::
each

::::::
model

::::
with

::
a

::::::::::
significance

::::
level

::
of

::::::::
α= 0.05.

:
All models perform worse than the full regional model in more basins than they perform better.190

We have not found a way to (reliably) predict which model will perform best in a
:::
any particular basin. It is not possible

to use train period or validation period metrics to (reliably) choose the best model in the test period, and we have not been

able .
:::::::::::

Additionally,
:::

we
:::::

have
::::
tried

::::::::::
extensively to construct a predictor model (e.g., a random forest)

::::::
separate

::::::::
predictor

::::::
model

that uses catchment attributes and/or hydrological signatures to predict which training set will result in the best model
:::::::
whether

:::
one

:::::
model

::::
will

:::::::
perform

:::::
better

::
or

::::::
worse

::::
than

::::
other

:::::::
models in specific basins. The details

:::
We

::::
have

:::
not

::::
been

::::
able

::
to
::::::::
construct

::
a195
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:::::
model

:::
that

::::::::
performs

::::
well

::
at

:::
this

::::
task.

:::::::
Details of these predictability experiments are out-of-scope for this paper.

:
,
:::
but

:
a
:::::::
relevant

:::::::
example

:::
was

:::::
given

:::
by

:::::::::::::::::
Nearing et al. (2024).

:
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Figure 7. Counts of basins for which models trained on each grouping (sizes, HUC, attributes cluster) perform statistically better than

(green), not statistically different than (orange), or statistically worse than (blue) the regional model trained on all 531 basins. Significance

was assessed using a two-sided Wilcoxon signed-rank test over ten repetitions of each model with a significance level of α= 0.05.

The take away is that even if enough basins exist to divide your training data into hydrologically-informed training sets, one

is likely better off simply training a single model with all available data. At least, one should perform an analysis like what

is shown in Figure ?? to understand whether splitting the training set helps or hurts. We are interested to see (through future200

work) what these tradeoffs look like with larger training sets.

7 Conclusion

The main point that we would like for readers to take from this opinion paper is that training good LSTMs for rainfall-runoff

modeling requires using data from many basins. We ’ve
::::
have

:
seen a number of papers that train large ML models (LSTMs

or similar) on very small data sets, and many of these papers then go on to test some type of adaptations that seems to offer205

improvement. Of course, it is trivial (but most likely uninteresting) to beat improperly trained models. It would be interesting

to show that adding physics to a well-trained ML model adds information – so far, to our knowledge, this has not been done

in streamflow hydrology
::
all

::::::::
attempts

::
to

::::
add

:::::::
physics

::
to

::::::::
(properly

:::::::
trained)

::::::::::
streamflow

:::::::
LSTMs

::
in

:::::::::
hydrology

::::
have

:::::::::
produced

::::::::::::::
lower-performing

::::::
models.
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Whatever goal a researcher might have for training an ML-based rainfall-runoff model, there is no reason not to train the210

model with a large-sample data set. There is enough publicly available streamflow data that there should never be an excuse

not to use at least hundreds of basins for training. This is true even if the focus of a particular study is on one or a small number

of watersheds.

Code and data availability. The run directories of all experiments, including model weights, simulations and pre-computed metrics are

available at https://zenodo.org/records/11247607. The code that was used for analysing all experiments and to create all figures, based on the215

run directories, can be found at https://github.com/kratzert/never-paper. We used the open source Python package NeuralHydrology (Kratzert

et al., 2022) to run all experiments. The forcing and streamflow data as well as the catchment attributes used in this manuscript are from the

publicly available CAMELS dataset by Newman et al. (2015) and Addor et al. (2017). The simulations from the two hydrological models

that were used to create Fig. 3 are available at https://doi.org/10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1.

Appendix A: Hyperparameter tuning, training, and testing220

All models in this paper were trained using data from the CAMELS data set (Newman et al., 2015; Addor et al., 2017). Building

on the community benchmarking experiment proposed by Newman et al. (2017), and used by many LSTM modeling studies

(e.g., Kratzert et al., 2019a, b, 2021; Frame et al., 2021, 2022; Klotz et al., 2022; Nearing et al., 2022), we trained and tested

models on 531 CAMELS basins using time periods for training (1 October 1999 through 30 September 2000
::::
2008), validation

(1 October 1980 through 30 September 1989), and testing (1 October 1989 through 30 September 1999). All models were225

trained and evaluated using NeuralHydrology v.1.3.0 (Kratzert et al., 2022) with an NSE loss function. All LSTMs consist of

a single layer LSTM with a linear head layer.

A1 Regional LSTM

The regional LSTM uses hyperparameters from Kratzert et al. (2021). The most important hyperparameters are:

Hidden size 256.230

Dropout 40% dropout in the linear output layer.

Optimizer Adam.

Number of epochs 30.

Learning rate Initial learning rate 1e− 3, reduced to 5e− 4 at epoch 20, further reduced to 1e− 4 at epoch 25.

Sequence length 365.235

Loss function Adapted NSE loss, see Kratzert et al. (2019b).
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After training, we picked the weights from the epoch with the highest validation metric (median NSE across all basins) and

evaluated the model with these weights on test period data from all 531 CAMELS catchments. Validation curves for all ten

regional models over 30 training epochs are shown in Figure A1
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Figure A1. Validation scores of all ten repetitions of the regional model over training epochs.

A2 Single basin
:::::::::::
Single-basin LSTMs240

Single basin
::::::::::
Single-basin

:
LSTMs were trained for each basin individually, and use the same basic architecture as described in

Section A1: a single layer LSTM followed by a linear head layer. Hyperparameters were tuned specifically for ech basin for

the experiments in this paper using the following two-step procedure. Both steps were done with a grid search:

First step: We used 3 repetitions of each hyperparameter setting for each basin (n= 531) with different random seeds for

initializing the weights. All models were run for 100 epochs using a the Adam optimizer with a learning rate of 5e− 3 and a245

batch size of 256. During training, the model was validated after every 4 epochs on validation period data. Hyperparameters

were chosen using the model settings with the highest median NSE scores over the 3 repetitions in any validation epoch.

Hidden size (8, 16, 32)

Dropout rate on the head layer (0.0, 0.2, 0.4, 0.5)

For all models, we used the same sequence length (n= 365) as for the regional model.250

Second step: Using the hyperparameters chosen from the first step, we tuned the learning rate and batch size in a similar

way, maximizing over the median NSE over 3 model repetitions:

Learning rate (5e− 3,1e− 3,5e− 4,1e− 4)

12



Batch size (128,256,512)

For each basin separately, we picked model weights from the best validation epoch of the model with the highest NSE score255

over all validation epochs from all models in each basin.

Final training and evaluation: Given the set of per-basin optimized parameters, we trained ten models per basin, each with

a distinct random seed. All statistics reported in this paper for all models are from test period data, except where otherwise

noted.

A3 Random size basin splits260

Models reported in Fig. ??
:
6
:
were tuned (hyperparameters chosen), trained, and tested in a way that is similar to the single basin

::::::::::
single-basin LSTMs described in Appendix A2. For random basins splits we divided the 531 CAMELS basins into random

sets without replacement using 6 different sizes of splits that were chosen by (approximately) dividing the full 531 basin group

into [50, 20, 10, 5, 3, and 2] basin groups. An example of one of these random splits with 5 groups (approximately 107 basins

per split) is shown in Fig. A2.265

Choosing hyperparameters was done as described in Appendix A2, except that for these splits we did not use 3 random

repetitions and only trained up to 30 epochs to reduce computational expense. We also expanded the hyperparameter search

slightly due to our experience training larger models – the hyperparameter ranges for the two grid search stages were:

First step:

Hidden size (8, 16, 64, 128, 256)270

Dropout rate on the head layer (0.0, 0.2, 0.4, 0.5)

Second step: In the second stage, we used a batch size of 256 always (as with the regional model), and tuned over the

following multi-stage learning rates, where the index is the epoch on which the learning rate switched to the listed value:

– 0: 5e-3, 10: 1e-3, 25: 5e-4

– 0: 1e-3, 10: 5e-4, 25: 1e-4275

– 0: 5e-4, 10: 1e-4, 25: 5e-5

– 0: 1e-4, 10: 5e-5, 25: 1e-5

A4 Hydrological unit code splits

The orange curve in Fig. ??
:
6
:
shows median NSE scores over CAMELS basins that result from LSTM models trained on

basin groups defined by USGS HUCs. Figure A3 shows the locations of the 531 CAMELS basins by HUC region. The set280

of 531 basins was divided according to these geographical regions and a separate model was trained on all basins from each.

Hyperparameter tuning was done as described in Appendix A3. Testing was done as described in Appendix A2.
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Figure A2. Basin location of random split with 5 groups of approximately 107 basins per group.

A5 Attribute clusters splits

The green curve in Fig, ??
:
6
:
shows median NSE scores over CAMELS basins that result from LSTM models trained on

basin groups defined by k-means clustering based on static catchment attributes. The catchment attributes used for clustering285

are described in Tab. ??
:::::
Table

:::
A1. These are almost the same attributes that were used by Kratzert et al. (2019b) but without

carbonate rocks fraction and the seasonality of precipitation (the former is often zero and the latter is categorical, both of which

make clustering slightly more difficult).

We performed k-means clustering on these 25 basin attributes (all attributes were normalized), using 300 iterations and 10

random initializations. Using a maximin criterion on silhouette scores for between 3 and 100 clusters, we chose to divide basins290

into 5
::
six

:
groups with sizes of 83, 195, 67, 61, 66, and 59 basins. These clusters are mapped in Fig. A4.

Appendix B:
:::::::
Regional

:::
vs.

:::::::::::
Single-Basin

::::::
Model

:::::::::::
Comparison
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Figure A3. Spatial location of basins split by USGS hydrological unit code 02.

:::::
Figure

::
3

::::::::
illustrates

:
a
:::::::::
difference

:::::::
between

::::
how

::::::
LSTM

::::::
models

:::
and

:::::::::
conceptual

:::::::
models

::::::
behave

::::
when

:::::::
trained

::::::::
regionally

:::
vs.

::::::
locally

:::
(on

:::::
single

:::::::
basins).

::::::::::
Specifically,

:::
the

::::::
LSTM

::::::::
performs

:::
best

:::::
when

::::::
trained

:::::::::
regionally

:::::
while

:::::::::
traditional

::::::
models

:::::::
perform

::::
best

:::::
when

::::::
trained

::::::
locally.295

:::::
Figure

:::
B1

:::::::::
illustrates

:::
the

:::::
same

::::::::::
comparison,

:::
but

::::::
where

:::
the

::::::
LSTM

::::
NSE

::::::
CDFs

::
in

::::::::
subpanel

:::
(b)

::::
only

:::::::
consider

:::
the

:::::
same

::::
489

::::::::
CAMELS

::::::
basins

:::
that

:::
are

::::
used

::
in

:::
the

:::::
mHM

::::
and

::::
VIC

::::
NSE

:::::
CDFs

::
in

::::::::
subpanel

:::
(a).

::::
This

::
is

:
a
:::::
more

:::::
direct

::::::::::
comparison

::::
than

::::
what

::
is

:::::
shown

::
in

::::
Fig.

::
3,

:::::::
however

:::
the

::::::
results

::
of

:::
the

::::::::::
comparison

:::
are

::::::::::
qualitatively

::::::::
identical.

:

Appendix C: Theoretical prediction limit

Figure 4 shows the theoretical maximum prediction limits for regional and single-basin LSTMs. To understand how those300

limits were derived, it is important to understand how the output of the LSTM layer is computed and how this output translates

into the model prediction.
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Figure A4. Spatial location of basins split by k-means clustering on the basin attributes.

The output of the LSTM layer, ht, is computed according to the following equation:

ht = ot ⊙ tanh(ct), (C1)

where ot is the output gate at time step t, tanh() is the hyperbolic tangent function and ct the LSTM cell state of time step305

t. The output gate is computed according to the following equation:

ot = sigmoid(Wxt +Vht−1 +b), (C2)

where sigmoid() is the logistic function, xt are the input features of time step t, ht−1 the hidden state (or LSTM output)

from the previous time step t− 1, and W, V, and b are learnable model parameters.

Given that sigmoid() is bounded by [0,1] and tanh() is bounded by [−1,1], the output of the LSTM, ht, is also bounded by310

[−1,1].
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Table A1. Table of catchment attributes used in this experiments. Description taken from the data set Addor et al. (2017).

p_mean Mean daily precipitation.

pet_mean Mean daily potential evapotranspiration.

aridity Ratio of mean PET to mean precipitation.

frac_snow_daily Fraction of precipitation falling on days with temperatures below 0◦C.

high_prec_freq Frequency of high precipitation days (>= 5 times mean daily precipitation).

high_prec_dur
Average duration of high precipitation events (number of consecutive days

with >= 5 times mean daily precipitation).

low_prec_freq Frequency of dry days (< 1 mm/day).

low_prec_dur
Average duration of dry periods (number of consecutive days with

precipitation < 1 mm/day).

elev_mean Catchment mean elevation.

slope_mean Catchment mean slope.

area_gages2 Catchment area.

forest_frac Forest fraction.

lai_max Maximum monthly mean of leaf area index.

lai_diff Difference between the max. and min. mean of the leaf area index.

gvf_max Maximum monthly mean of green vegetation fraction.

gvf_diff
Difference between the maximum and minimum monthly mean of the

green vegetation fraction.

soil_depth_pelletier Depth to bedrock (maximum 50m).

soil_depth_statsgo Soil depth (maximum 1.5m).

soil_porosity Volumetric porosity.

soil_conductivity Saturated hydraulic conductivity.

max_water_content Maximum water content of the soil.

sand_frac Fraction of sand in the soil.

silt_frac Fraction of silt in the soil.

clay_frac Fraction of clay in the soil.

geol_permeability Surface permeability (log10).

Finally, in the case of our model architecture, the output of the LSTM is passed through a linear layer that maps from

the hidden size of the LSTM to 1, the models prediction. More formally, the model prediction ŷt at time step t is computed

according to the following equation:

ŷt =Wht + b, (C3)315
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Figure B1.
:::
This

::::
figure

::
is
:::::::
identical

::
to

:::
Fig.

:
3
:::::
except

::::
that

::::::
subpanel

:::
(b)

::::
uses

::
all

:::
531

::::::::
CAMELS

:::::
basins

:::
that

:::::::::::::::::
Newman et al. (2017)

::::::::::
recommended

::::
using

::
for

:::::
model

::::::::::::
benchmarking,

:::
and

::::
which

::::
were

::::
used

::
in

::
all

::::
other

::::::::::
experiments

::::::
reported

::
in

:::
this

:::::
study.

where W and b are another set of learnable model parameters, specific to this linear layer. Since our model maps to a single

output value, W is of shape [hidden size, 1]. With ht of shape [hidden size], we can write Eq. C3 as:

ŷt = b+

n∑
i=0

Wi ∗hi,t (C4)

Knowing that each element of ht is bounded by [−1,1]
::
in

::::::
(−1,1)

:
and that W and b are fixed after training, the maximum

possible value a trained LSTM (of our architecture) can predict can be computed by320

upperlimit= b+

n∑
i=0

abs(Wi), (C5)

where abs() is the function that returns the absolute value. Note that this value is in the space of training labels and if the

labels were normalized for training, the upperlimit needs to be re-transformed into discharge space to get the upperlimit in

e.g. mm per day.

Appendix D:
:::::::
Example

::::::::::::
Hydrographs325

:::::
Figure

:::
??

::::::
shows

::
an

::::::::
example

::
of

::::::::
simulated

:::
vs.

::::::::
observed

:::::::::::
hydrographs

:::
for

::::
one

::
of

:::
the

::::
531

:::::::::
CAMELS

::::::
basins.

:::::
Basin

:::::::::
13011900

:::::
shown

::
in

::::
Fig.

:::
??

:::
has

::::::
highly

::
is

::
on

:::::
Lava

:::::
Creek

::
in

:::::::::
Wyoming

:::
and

:::
has

::
a
:::::::
drainage

::::
area

:::
of

:::
837

::::::
square

:::::::::
kilometers.

:::::
This

::::
basin

::::
has

:::::
highly

:::::::
seasonal

::::
flow

::::::::
patterns.
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:::::
Figure

:::
D1

::::
and

::::
Fig.

:::
D2

::::
show

::::::
similar

:::::::::::
hydrographs

:::
for

:::::
other

:::::
basins

::::
with

::::::::
different

:::::::::::
hydrological

::::::::
behaviors.

::::
One

:::
of

::::
these

::
is
::
a

::::
small

:::::
basin

:::
on

:::
the

:::
Salt

::::::
Creek

::
in

:::::::
Kansas,

:::
and

:::
has

::
a

:::::
flashy

::::
flow

:::::::
pattern.

:::
The

:::::
other

::
is

::
on

:::
the

:::::
Sauk

:::::
River

::
in

::::::::::
Washington

::::
and

:::
has330

::::::::
non-flashy

::::::::
behavior,

:::
but

::::
with

:::::::::
significant

::::::::::::
(non-seasonal)

:::::
peak

:::::
flows.

:

::::::::::
Additionally,

::::
the

::::
code

::::
and

::::
data

::::::::::
repositories

:::::::
released

::::
with

::::
this

:::::
paper

:::::::
contain

:::::::::
everything

::::::::
necessary

:::
to

::::
plot

::::::::
simulated

::::
and

:::::::
observed

:::::::::::
hydrographs

:::
for

:::
any

::
of

:::
the

:::
531

:::::::::
CAMELS

::::::
basins.

:
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Figure D1.
:::::::
Observed

:::
and

:::::::
simulated

::::::::::
hydrographs

::::
from

::
the

:::
test

::::::
period

::::
(1989

:
-
:::::

1999)
::
in

:
a
::::::::
particular

::::
basin

:::::::::
(06876700).

::::
This

:::::
gauge

::
is

::
on

:::
the

:::
Salt

:::::
Creek

:
in
::::::
Kansas

::::
with

:
a
:::::::
drainage

:::
area

::
of

::::
1,052

::::::
square

::::::::
kilometers,

:::
and

::::::::
represents

:
a
:::::::
relatively

:::::
flashy

:::::
basin.

Appendix E: Other hydrological metrics

There are a large number of metrics that hydrologists use to assess hydrograph simulations Gupta et al. (2012); Gauch et al.335

(2023). Several of these metrics are described in Table E1, including bias, correlation, Nash–Sutcliffe Efficiency (NSE)

(Nash and Sutcliffe, 1970), Kling–Gupta Efficiency (KGE) (Gupta et al., 2009), and metrics related to hydrograph peaks.
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Figure D2.
:::::::
Observed

:::
and

:::::::
simulated

::::::::::
hydrographs

::::
from

::
the

:::
test

::::::
period

::::
(1989

:
-
:::::

1999)
::
in

:
a
::::::::
particular

::::
basin

:::::::::
(12189500).

::::
This

:::::
gauge

::
is

::
on

:::
the

::::
Sauk

::::
River

::
in

:::::::::
Washington

:::
with

:
a
:::::::
drainage

:::
area

::
of
:::::
1,849

:::::
square

::::::::
kilometers,

:::
and

::::::::
represents

:
a
:::::
basin

:::
that

:::
with

::::
high

::::
peaks

:::
that

:::
are

:::
not

::::::::
dominated

::
by

:
a
:::::::
seasonal

:::
flow

::::::
pattern.

Figure
:::
Fig. E1 shows differences between regional and single-basin models for these metrics, similar to the NSE comparison

shown in Fig. ??
:
3.

The takeaway from this figure is that the main message of this paper (do not train a rainfall-runoff LSTM on data from340

a single basin
::::::::::
single-basin) holds regardless of the metric(s) that we focus on. The skill differences are in correlation-based

metrics (NSE, KGE, and Pearson-R) as well as variance-based metrics (Alpha-NSE). The latter is an artifact of what we saw

in Fig. ??
:
4, that training on more, diverse data improves the ability of the model to predict high flows. Figure E1 shows only

small improvements in the timing and capture of hydrograph peaks (the Missed-Peaks metric measures whether a peak in the

hydrograph was captured at all, not whether the magnitude of the peak was predicted accurately). And we see little or no345

difference in the two bias metrics (Beta-NSE, Beta-KGE), meaning that improvements to catchment-specific mean discharge

20



Table E1. A selection of standard hydrograph evaluation metrics.

Name Description Reference

NSEi
:

Nash–Sutcliffe efficiency Eq. 3 in Nash and Sutcliffe (1970)

KGE
:

i Kling–Gupta efficiency Eq. 9 in Gupta et al. (2009)

Pearson-r
:

ii
:

Pearson correlation Pearson (1895)

Alpha-NSE
:

iii
:

Ratio of standard deviations of observed and simulated flow From Eq. 4 in Gupta et al. (2009)

Beta-NSE
::

iv Bias scaled by standard deviation of observations From Eq. 4 in Gupta et al. (2009)

Beta-KGE
:

v Bias ratio: ratio of mean simulated and mean observed flow From Eq. 10 in Gupta et al. (2009)

Peak-Timing
:

iv Mean time lag between observed and simulated peaks Appendix A in Gauch et al. (2021)

Missed-Peaks
:::

viii Fraction of hydrograph peaks that were missed Nearing et al. (2022)

i: (−∞,1], values closer to one are desirable.
ii: [−1,1], values closer to one are desirable.
iii: (0,∞), values close to one are desirable.
iv : (−∞,∞), values close to zero are desirable.
v : (−∞,∞), values close to one are desirable.
vi: (0,1), values close to zero are desirable.

is not strongly affected by using training data from multiple catchments (i.e., we don’t strongly bias one type of catchment by

using other types of catchments in training).
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Figure E1. Comparisons between CDFs over 531 CAMELS basins of regional vs. single-basin LSTMs. This is similar to Figure ??, but for

the hydrograph metrics listed in Table E1.
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