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Abstract. Global statistical irrigation modeling relies on geospatial data and traditionally adopts a discrete global grid based

on longitude-latitude reference. However, this system introduces area distortion, which may lead to biased results. We propose

using the ISEA3H geodesic grid based on hexagonal cells, enabling efficient and distortion-free representation of spherical

data. To understand the impact of discrete global grid choice, we employ a non-parametric statistical framework, utilizing

random forest methods, to identify
::
the

:
main drivers of historical global irrigation expansion amongst others, also using

:::::
using,5

:::::
among

:::::
other

::::
data,

:
outputs from the global dynamic vegetation model LPJmL.

Irrigation is critical for food security amidst growing population
::::::::::
populations, changing consumption patterns, and climate

change. It significantly boosts crop yields but also alters the natural water cycle and global water resources. Understanding past

irrigation expansion and its drivers is vital for global change research, resource assessment, and predicting future trends.

We compare the predictive accuracy, the simulated irrigation patterns and identification of irrigation drivers between the two10

grid choices. Results demonstrate that using
:::::::
systems.

:::::
Using

:
the ISEA3H geodesic grid

:::::
system

:
increases the predictive accu-

racy by 29
::
up

::
to

::
28% compared to the longitude-latitude grid. The model identifies population density, potential productivity

increase, evaporation, precipitation, and water discharge as key drivers of historical global irrigation expansion. GDP per capita

also shows minimal
:::::
some influence.

We conclude that the geodesic discrete global grid
::::::
system significantly affects predicted irrigation patterns and identification15

of drivers, and thus has the potential to enhance statistical modeling, which warrants further exploration in future research

across related fields. This analysis lays the foundation for comprehending historical global irrigation expansion.
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1 Introduction

About 80% of data being produced is of geospatial nature (Hahmann and Burghardt, 2013). While the construction of maps and

the referencing of locations on the Earth’s surface has a very long history, it is becoming increasingly important to find efficient20

ways to process, integrate and analyze geospatial data to solve problems in times of globalization. To that end, geographic grid

systems are used to project the geographic space into a mathematical space where algorithms and statistical methods can be

applied.

The most widely used grid system is the geographic coordinate system (using latitude and longitude lines), which dates back

to the third-century BCE (McPhail, 2011; Ware et al., 2020). A great advantage of this system is that it can be stored compactly25

and used easily for computations (Ware et al., 2020). Unfortunately, when portrayed on a sphere, grids based on geographic

coordinates suffer from cell area distortion due to the converging lines of equal longitude. In the context of global statistical

modelling, this ultimately results in oversampling of the northernmost regions.

A great number of alternative Discrete Global Grid Systems (DGGS) have emerged to fulfill the needs of different re-

search fields and modelling strategies . Specific criteria for what comprises a DGGS have evolved over time, starting from30

Goodchild’s critera (Goodchild, 1994)
:::::::::::::::
(Goodchild, 1994).

:::::
Since

:::::
these

::::
grid

::::::
systems

:::::
offer

:::::::::
significant

:::::::
benefits

::
for

::::
Big

::::
Data

::::
and

::::::
Digital

:::::
Earth

:::::::
research,

:::::
there

::::
have

:::::
been

::::::::
numerous

:::::::::::::
advancements,

:::
new

:::::::::::::::
implementations,

:::
and

::::::::
example

::::::::::
applications

::
in

:::::::
various

::::
fields

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sahr, 2011; Jendryke and McClure, 2019; Sirdeshmukh et al., 2019; Bousquin, 2021, e.g.). Today, standard Earth grid

systems
:
,
::::::::
including

::::::
DGGS,

:
are documented by the Open Geospatial Consortium (OGC) and the International Organization for

Standardization (ISO) (ISO, 2021; Purss, 2015).
::::
Even

:::::::
though

::::::
current

::::::::::::::
implementations

:::::
might

:::
not

::::
yet

::::
fully

:::::::
comply

::::
with

:::
all35

::::
these

::::::::
standards

:::::::::::::::::::
(Bondaruk et al., 2020)

:
,
::::
there

::
is

:
a
:::::
clear

::::::
benefit

::
to

::::::
starting

:::
the

:::::::::
integration

:::
of

::::
these

::::
data

:::::::::
structures.

In this paper, we propose to use a global DGGS based on a hexagonal tessellation of the Earth’s surface in the context of

modelling global historical irrigation expansion. This grid was introduced by Sahr et al. (2003) and has gained large popularity

in many research contexts. Two recent examples of open-source DGGS libraries that are based on hexagonal grid structures are

the H3 system, developed by Uber (2022) and DGGRID (Barnes and Sahr, 2017). Mechenich and Zliobaite (2023) recently40

presented the Eco-ISEA3H database that consists of global spatial data characterizing climate, geology, land cover, physical

and human geography, and the geographic ranges of nearly 900 large mammalian species. In contrast to grid cells induced by

the longitude-latitude graticule, hexagonal cells are able to cover almost the entire surface of the Earth without suffering from

area distortion. That way, all regions have the same influence in the
:
a
:
statistical model.

Recently, hexagonal mesh grids have gained popularity among hydrology researchers
::::::::::
hydrologists

:
(Li et al., 2022). A group45

of hydrological functions on hexagonal meshes, such as flow direction and accumulation, stream networks, or watershed

boundary extraction, were explored by Liao et al. (2020). The authors show that their algorithm’s performance is better when

considering the hexagonal-mesh-based output compared to the traditional square-mesh-based output. Wang et al. (2020) study

::::::
studied valley networks and model valley lines based on hexagonal grids. Compared to traditional square grids, the study shows

that using the hexagonal grid leads to a higher location accuracy. In another study, Wright (2019) develops
::::::::
developed

:
a regular50

hierarchical surface model where hydrological computation was generalized on hexagonal and triangular grids. Additionally,
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there has been an increasing interest in managing geospatial data and developing models to solve real-world problems by using

the open-source DGGRID library (Hojati and Robertson, 2020; Li et al., 2021; Chaudhuri et al., 2021; Robertson et al., 2020;

Li et al., 2022).

:::
Our

:::::
study

::::
aims

::
to

::::::
predict

:::::
global

::::::::
historical

::::::::
irrigation

:::::::
patterns.

:::::
Since

::::
both

::::::
rainfed

::::
and

:::::::
irrigated

:::
grid

::::
cells

:::
are

:::::::
equally

::::::::
important55

::
for

::::
our

:::::::
analysis,

:::::::::
addressing

:::
the

:::::
issue

::
of

::::
area

::::::::
distortion

::
is

:::::::
crucial. To the best of our knowledge, we are the first to utilize the

Icosahedral Equal Area aperture 3 Hexagon geodesic Discrete Global Grid System
:::::::::
Icosahedral

:::::
Equal

:::::
Area

:::::::
aperture

:
3
::::::::
Hexagon

:::::::
geodesic

:::::::
Discrete

:::::::
Global

::::
Grid

:::::::
System (ISEA3H ) DGGSin the contextof building a statistical model for historical global

irrigation expansion
::::::
DGGS)

::
in
::::
this

:::::::
context.

::::
This

::::
grid

::::::
system

:::::::
enables

::
us

::
to

:::::::
directly

::::::
analyse

::::::
global

::::::::
irrigation

:::::::
patterns

:::::::
without

:::
area

:::::::::
distortion.

:::::::::::
Additionally,

:::
the

::::
grid

:::::::
system

:::
has

::::::::
potential

:::
for

:::::::::
improving

:::
the

:::::::
mapping

:::
of

::::::
spatial

::::::
clusters

::::
and

::::::::::::
neighborhood60

:::::::
patterns,

::
as

::::
each

::::
grid

:::
cell

:::
has

::
a
::::::
unique

::
set

:::
of

::::::::
neighbors.

The second aim of this paper is to contribute to the literature on global irrigation expansion. Irrigation is crucial to ensure the

world’s food security. A growing human population, shifting consumption patterns and climate change increase the pressure on

agricultural production (Foley et al., 2011). To meet the growing human food demand, irrigation has rapidly increased over the

last century as it increases crop yields (Siebert et al., 2015). In the year 2000, approximately 40% of the global food production65

was harvested on irrigated land, utilizing only 20% of the total farming area (Schultz et al., 2005). To achieve this agricultural

intensification, a large amount of fresh water is needed. Consequently, irrigation alters the hydrological cycle significantly

(Zohaib and Choi, 2020). At a global scale, irrigation is responsible for about 60% of total fresh water withdrawals and 80% of

total fresh water consumption (Döll et al., 2014; Siebert et al., 2015). It is therefore important to understand the past evolution

of irrigation expansion and its main drivers for global change research, the assessment of resources and for predicting future70

developments.

There have been a few studies on the drivers of global irrigation in previous years. Neumann et al. (2011) investigate

::::::::::
investigated the global irrigation pattern in the year 2000. Using a multilevel approach, they model

:::::::
modeled irrigation as a

function of biophysical and socioeconomic factors. Their results show that biophysical factors have significant influence on

irrigation. Additionally, the authors provide suggestive evidence that socioeconomic factors play a role for irrigation. However,75

it is emphasised that the model suffers from uncertainty due to the lack of spatially explicit socioeconomic information and

the possibility of external influences, such as public investments. While our model also faces these limitations, we are able to

extend the analysis by including a historical dimension.

Puy et al. (2020) investigate
::::::::::
investigated

:
uncertainties in published projections of global irrigation expansion for the year

2050. By comparing different projected estimates of irrigated area to a simple model predicting irrigated area as a function of80

only population size, constrained by water and land availability, taking into account parametric and model uncertainties, the

authors postulate, that current models underestimate future irrigated areas.

Further, recent studies attempt to develop
:::::
Other

:::::
recent

::::::
studies

:::::::::
developed global irrigation maps, mostly using a combination

of remote sensing, machine learning methods and climate data , to enhance knowledge about current irrigated areas (Meier

et al., 2018; Salmon et al., 2015; Nagaraj et al., 2021).85
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We contribute to the literature on global irrigation expansion by investigating the drivers of the historical expansion between

1902 and 2000, using a novel method to statistically modelglobal irrigation. In that, we
::::::::::::
non-parametric

::::::::
statistical

:::::::
model.

:::
We

distinguish between the factors that influence the probability of a grid cell being irrigated, i.e. the decision to irrigate instead

of remaining rainfed, and the irrigation intensity, once a grid cell is irrigated.

Our results show, that using an ISEA3H grid based on hexagonal grid cells, instead of the common longitude-latitude grid,90

leads to an increase in mapping accuracy of 28%. Overall, our results show that population density has the strongest influence

on the decision to irrigate. We also find that the median increase in potential productivity and the predictors related to water

availability play a role for the likelihood of irrigation occurring. Considering the drivers of the amount of irrigation , we see

that population density has a large positive impact. In addition evaporation, discharge, and the median increase in potential

productivity have a positive influence on the irrigation amount. Precipitation influences the irrigation amount negatively. We95

also find that GDP per capita plays a role for the amount or irrigation used ina grid cell
::
We

:::::::
employ

:
a
:::::::
stacked

:::::::
random

:::::
forest

:::::::::
framework

::
to

:::::
assess

:::
the

::::::
quality

:::::::
between

::::::::
statistical

::::::::
irrigation

::::::
models

:::::
based

:::
on

:::
two

::::::::
different

:::
grid

::::::::
systems.

:::
Our

:::::
main

::::
focus

::
is
:::
on

::
the

::::::::
influence

::
of

:::
the

::::
grid

:::
the

::::
data

::
is

::::::::
presented

::
in.

2 Data

Our
:::
first

:
objective in this study is to analyze the choice of discrete global grid system when

::
for

:
modelling the historical100

evolution of global irrigation expansion. Therefore, we use a study area that covers all of the
::
To

:::::::
achieve

::::
this,

:::
we

:::::
focus

:::
on

::
the

::::::
entire global land surface, excluding Antarctica. Furthermore, we consider data between

::
We

:::::::
consider

::::
data

:::::
from 1902 and

::
to 2005 to be able to fully

::::::::::::::
comprehensively capture the historical evolution of irrigation expansion of the last

::::
over

:::
the

::::
past

century.

Our analysis builds on a data set that consists of a simulation output from the Lund-Potsdam-Jena managed Land (LPJml)105

model (Sitch et al., 2003; Bondeau et al., 2007) and historical economic data from the Maddison Project Database (Inklaar

et al., 2018).

LPJmL is a process-based dynamical global vegetation, hydrology, and crop model simulating natural and managed vege-

tation growth based on soil, climate, and management input at a daily resolution and at a global 0.5◦× 0.5◦ spatial grid scale,

resulting in a total amount of 67420 terrestrial grid cells per time unit in each variable (Schaphoff et al., 2018).110

We prescribe an agricultural land use data set based on the History Database of the Global Environment (HYDE) (Klein Gold-

ewijk et al., 2017) with additional assumptions on irrigation systems and extent of areas equipped for irrigation by Jägermeyr

et al. (2015) and based on the Global Historical Irrigation Data Set (HID). One advantage of the HID is, that the evolution

of land irrigation was implemented using official land use data and is therefore independent of socioeconomic information,

such as gross domestic product or population density (Siebert et al., 2015). Hence, the relationship of irrigation and socioeco-115

nomic variables can safely be analyzed. As climate input, the Climatic Research Unit Timeseries (Harris et al., 2014) is used.

Whether a crop actually needs irrigation is internally decided by the LPJmL simulation based on biophysical constraints, and

constrained by surface water availability (Schaphoff et al., 2018).
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From the simulation, we obtain the direct output variables precipitation, evaporation, discharge, crop yield, and the actually

irrigated fraction for each grid cell. Additionally the median potential increase in crop yield productivity is derived. It
::::
This is120

estimated from two separate synthetic simulations, where potential yields for each crop and grid cell are compared with and

without irrigation. The variables are summarized to yearly estimates
:::::::::
aggregated

::::::::
annually for each grid cell to obtain a time

series for the years 1901 to 2005.

To complement the LPJmL data , we use
:::
The

:::::::
LPJmL

::::
data

:::
are

::::::::::::
complemented

:::
by

:
the Maddison Project database on the

historical performance of the world economy (Inklaar et al., 2018; Bolt and Zanden, 2014). Of particular interest is the gross125

domestic product (GDP) per capita time series, consisting of estimates of comparative levels of real GDP per capita in recent

time periods, combined with long-term time series growth of GDP per capita. Even though the Maddison Project database

yields state of the art historical economic data, there are many countries without an estimation of GDP per capita in the time

period 1900 to 1960, leading to missing data.

2.1 Variables130

As dependent variable we
:::
We use the fraction of a grid cell that is actually irrigated . If the area of

::
as

:::
the

::::::::
dependent

::::::::
variable.

:
If
:
a grid cell is fully irrigated, the variable will have the value ”

::
is

:::::::
assigned

::
a

::::
value

:::
of

:
"1“,

:
";

:
if none of the area is irrigated, the

variable will have the value ”0“. Note, since the
:
is

:::::::
assigned

::
a
:::::
value

::
of

::::
"0."

::
It

::
is

::::::::
important

::
to

::::
note

::::
that

::::
since

:
grid cells in the

standard longitude-latitude grid change area in proportion
:
in

::::
area

::::::
relative

:
to latitude, the values of irrigation fraction

::::::::
irrigation

::::::
fraction

::::::
values between grid cells can not be directly compared. The

::
are

:::
not

:::::::
directly

::::::::::
comparable.

:::::
Figure

:::
A4

:::::::
displays

:::
the

:
global135

irrigation fraction map, based on HID data from 2000, is displayed in Figure A4.
:::::
2000.

The selection of potential drivers of irrigation expansion was led by existing literature and data availability (see Table 1).

We consider the following variables for explaining irrigation fraction: population density, precipitation, discharge, evaporation,

potential yield increase through irrigation, and GDP per capita.

The GDP per capita data is available at national level and broken down to a 0.5◦× 0.5◦ grid scale, by assigning the country’s140

value to all grid cells in a country. Since there are observations missing, especially in the earlier time periods, the variable is split

up into the categories ”high income”, ”upper middle income”, ”lower middle income”, ”low income” and ”missing”, following

the methodology of Hastie et al. (2009) and the World Bank’s classification of GDP per capita from 2011 (World Bank, 2011).

The classification can be found in the supplementary material (Table A2). That way, we treat the missing values as an additional

category and are able to include all observations in our analysis.145

We report the pairwise Pearson correlation coefficients (supplementary material, Table A3) and variance inflation factors

(supplementary material, Table A4) to investigate multicollinearity between the continuous predictor variables, following the

methodology in Rufin et al. (2018). We find that all pairwise Pearson correlation coefficients are below the threshold of 0.7

(Dormann et al., 2013), except for the pair ”Precipitation” and ”Evaporation”, where we find a value of 0.72. The variance

inflation factors are below the tight threshold of 5, indicating that the predictor variables are sufficiently independent for our150

analysis (James et al., 2013).
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Table 1: Potential predictors and hypotheses

Predictor Variable Hypothesis Supporting Literature

Precipitation (mm/year) Irrigation requirements increase in cropland regions

where precipitation levels are declining. (Neumann et al. (2011)),

(Döll and Siebert (2002)),

(Siebert et al. (2015))

Discharge (hm3/year) Surface water availability allows for irrigation water

withdrawals. (Neumann et al. (2011)),

(Gerten et al. (2008))

Evaporation (mm/year) High evaporation leads to an increasing demand of

water and therefore increases the probability of irri-

gation.

(Neumann et al. (2011)),

(Rufin et al. (2018))

Median Increase in Productivity (% of ∆ gC/m2) If the potential increase in agricultural productivity is

large, the corresponding area is more likely to receive

irrigation.

(FAO and of the United Nations

(2011)),

(Sauer et al. (2010))

Population Density (cap/m2) Intensive irrigation occurs under high population den-

sities. The rapidly growing world population in-

creases the demand for food and, therefore, leads to

an expansion or intensification of agriculture globally

but also around high-density centres.

(Neumann et al. (2011)),

(Rufin et al. (2018)),

(Boretti and Rosa (2019)),

(Sauer et al. (2010))

GDP ($ US /cap) A high GDP per capita leads to a higher probability of

irrigation, since farmers can afford irrigation systems

or are more likely to receive subsidies. GDP is also

highly correlated with government effectiveness and

hence serves as a proxy. A high national government

effectiveness strengthens irrigation infrastructure.

(Neumann et al. (2011)),

(Rufin et al. (2018)),

(Boretti and Rosa (2019)),

(Sauer et al. (2010))

2.2 Descriptive Statistics
::::::::
statistics

Overall, irrigated area is expanding over the whole
:::
the

:::::::
irrigated

:::
area

::::::::
expanded

::::::::::
throughout

::
the

:
study period. The share

::::::::
proportion

of grid cells in which irrigation is observed increases from about
:::
with

::::::::
observed

::::::::
irrigation

::::::::
increased

::::
from

:::::::::::::
approximately 10%

in 1902 to about 31% in 2005. The largest increase
::::
most

::::::::
significant

::::::::
increases

:
in irrigated area can be seen

:::::::
occurred

:
in south-155

eastern Asia, Middle and South America, central America
::::::
Central

::::::::
America, and eastern Asia. These statistics are in accordance

::::
align

:
with the findings by

::
of Siebert et al. (2015), who investigate

::::::::::
investigated areas equipped for irrigation.

Even though irrigated landis expanding
::::::
Despite

:::
the

:::::::::
expansion

::
of

::::::::
irrigated

::::
land, the data is highly imbalanced: looking at

the whole
::::::::
throughout

:::
the

:
study period, about 75% of the observed irrigation fractions are zero, whereas only about 25% are

non-zero. Figure A2 in the appendix shows the histogram of the irrigation fraction.160
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The summary of the overall descriptive statistics of irrigation fraction and the potential predictors can be found in Table A1.

The dependent variable, irrigation fraction, ranges from zero to 0.922 with a mean of 0.008 in the longitude-latitude grid.

The global temporal evolution of the predictor variables is illustrated in Figure A1 in the appendix. The global mean evapo-

ration is
:::
has

::::
been

:
increasing over the last century as well as the GDP per capita. We also see a slightly increasing trend of the

global amount of precipitation. For the remaining variables, there is no clear detectable trend in the global mean. However, it165

is expected that there are local trends that are not captured in the global mean values.

3 Method

3.1 Spatial Resolution
:::::::::
resolution

The latitude-longitude projection yields a world map which appeals to the human eye for its plane appearance but also faces

some limitations. The grid cells that are induced by the longitude-latitude graticule are not of the same area. One degree of170

latitude represents the same horizontal distance anywhere on the Earth’s surface. However, because lines of equal longitude

are farthest apart at the equator and converge to single points at the geographic poles, the horizontal distance equivalent to

one degree of longitude, varies with latitude (Budic et al., 2016). For
:
a
::::::
simple

:
statistical analysis, this means

::::::
implies

:
that

regions nearer the poles, which are smaller in area yet weighted the same as
::::::
equally

::
to larger areas nearer the equator, overly

:::::::::::::::
disproportionately contribute to models and have therefore a higher

:::
thus

:::::
have

:
a
::::::
greater influence on the results. For land-based175

analysis such as ours this
::::
This is particularly relevant for the northern hemisphere were a considerable land mass is located

nearer
:::::::::
land-based

:::::::
analysis

::::
like

::::
ours,

::
as

::
a

::::::::
significant

::::
land

:::::
mass

::
in

:::
the

:::::::
northern

::::::::::
hemisphere

::
is

::::::
located

:::::
closer

::
to

:
the poles.

The disadvantages
:::::::::
limitations of discrete global grids based on

:::::
rooted

::
in

:
the geographic coordinate system led to a number

of
::::
have

::::::
spurred

:::
the

::::::::::
exploration

::
of

:::::::
various alternatives. One first idea, could be

::::
idea,

::
is
:
to weight each grid cell by its area and

therefore its relative importance for the statistical model. A more direct approach would be
::
is to use a discrete grid system180

that subdivides the Earth’s surface into equally sized grid cells, allowing for an efficient identification of patterns, trends and

relationships across different
:::::
diverse

:
geographic scales.

Sahr et al. (2003) introduced a class of reference grids based on convex regular polyhedra, called geodesic Discrete Global

Grid Systems (geodesic DGGS). The underlying idea is to use the topological equivalence of regular polyhedra and the sphere.

Based on five design choices, the resulting grid partitions the Earth into equally-sized cells. The first choice involves picking185

a base polyhedron. The distortion of area tends to be smaller the smaller the faces of the base polyhedron (Sahr et al., 2003).

Therefore, in this study we choose the icosahedron as a starting point, as it has the smallest face sizes compared to the other

regular polyhedra. The second design choice requires to pick a method of partitioning the surface of the icosahedron. Hexagons

have been found in many research fields to be the optimal choice for discrete gridding and location representation (Apte et al.,

2013; Uher et al., 2019). One unique property of a hexagonal grid is its uniform adjacency; each cell in a hexagonal grid has190

six neighbors, all of which share an edge with the cell, and all of which have centers exactly the same distance away from their

neighbouring cells.
:::
This

::::::::
property

:
is
:::::::::
beneficial

:::
for

::
all

:::::::
analyses

::::::::
involving

::::::::::::
neighborhood

:::::::::
properties.

:

7



Thirdly, one has to decide on the orientation of the base icosahedron relative to the Earth’s surface. In other words, it is

required to choose the location of the pentagonal cells
:
is
::::::::

required, as they are located at the vertices of the icosahedron.

The most common choice is to place the pentagons, such that only one is centered on land (Sahr et al., 2015). This specific195

orientation is also symmetric about the equator.

In a fourth step, a method for the transformation between the surface of the Earth and the surface of the icosahedron, upon

which the hexagonal grid is constructed has to be selected. Our choice is the only known equal-area icosahedral geodesic DGG

projection, called the Snyder Icosahedral Equal Area (ISEA) projection (Snyder, 1992).

Lastly, a recursive partitioning method must be picked in order to create different spatial resolutions. Such method is charac-200

terized by the ratio of cell areas at a given grid resolution and the next coarser resolution. This ratio is called aperture. We will

consider aperture 3 hexagonal grid cells, meaning that the increase of the resolution by one, leads to grid cells with an area of

a third of the original cell area. Figure A5 in the appendix illustrates the partitioning method.

After making these five basic construction choices, the result can be referred to as an Icosahedral Snyder Equal Area aperture

3 Hexagon geodesic Discrete Global Grid System (ISEA3H DGGS).205

3.2 Data Transformation
:::::::::::::
transformation

Our data set is originally structured upon
:::::::
initially

::::::::
organized

:::::
based

:::
on

:
the standard longitude-latitude reference systemat a

:
,

::::
with

:
a
::::::
spatial

::::::::
resolution

::
of

:
0.5◦× 0.5◦spatial resolution, where .

::
In

::::
this

::::::
system,

:
the location of a grid cell is accessible through

:::::::::
determined

:::
by the latitude and longitude of its center point. This leaves us with a number

:::::
results

::
in

::
a
::::
total of 67,420 land grid

cells per year. To understand the role of the
::::
assess

::::
the

::::::
impact

::
of

::::::::
different discrete global grid choice

::::::
choices and compare210

between the standard approach and the distortion-free geodesic alternative, we construct
:::::::
constrict a geodesic DGG reference

frame
:::::::::
framework and transform our observations accordingly.

Using
:::::::
Utilizing the freely available R package dggridR provided by Barnes and Sahr (2017), we construct an

:::::::
generate

ISEA3H discrete global grid at resolution 7.
::::
grids

::
at
::::::::::

resolutions
::
7,

::
8

:::
and

:::
9. This translates to a hexagonal grid

::::::::
hexagonal

:::
grid

:::::::::
structures, where the grid cell centers are

::::::
centers

::
of

::::
grid

::::
cells

:::
are

:::::::
spaced 160 kmapart from each other. After ,

:::
95

::::
km,215

:::
and

::
55

::::
km

:::::
apart.

::::::::
Following

:
the transformation, we have a number of

:::::
obtain 7,383,

:::::::
65,612,

:::
and

:::::::
196,832

:::::::::
terrestrial grid cells

per year,
:::::::::::
respectively.

:::
We

:::
use

:::::
three

:::::::
different

::::::::::
resolutions

::
to

:::::::
explore

:::
the

:::::::
model’s

:::::::::
sensitivity

::
to

::::
grid

::::::::
resolution

::::
and

::::::
ensure

:::
the

::::::::
robustness

:::
of

:::
our

:::::::
findings.

:::
We

::::
start

::::
with

:::::::::
resolution

:
7
::::
due

::
to

::
its

:::::::::
efficiency.

:::
The

:::::::::
resolution

:
8
::::
grid

:::::::
contains

::
a
::::
total

::
of

::::::
65,612

::::
grid

::::
cells,

::::::::::
comparable

::
to

:::
the

:::::::::::::::
longitude-latitude

:::::
grid’s

::::::
67,420

::::
cells.

::::::::::
Meanwhile,

:::
the

:::::::::
resolution

:
9
::::
grid

:::::::
features

::::::
average

::::
grid

:::
cell

:::::
sizes

::::::
similar

::
to

:::::
those

::
in

:::
the

:::::::::::::::
longitude-latitude

::::
grid,

::::
with

:::::
cells

::::::::
spanning

::::::::
2,591.402

:::::
km2,

::::::::
compared

:::
to

:::
the

:::::::::::::::
longitude-latitude

:::::
grid’s220

::::::
average

::
of

:::::::::
2,171.119

::::
km2.

The original data are projected into the hexagonal cells. Depending on the degree of latitude, different amounts of cell centers

of the original grid end up in each hexagon. The center counts pattern is
:
at
:::::::::
resolution

:
7
:::
are

:
visualized in Figure 1.

After mapping the original cell centers into the ISEA3H grid
::::
grids, the mean of all observations within each hexagonal cell

is taken as the new value in the transformed data set.225
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Figure 1. Number of grid cell centers of the longitude-latitude grid that fall into each hexagonal grid cell of the resolution 7 ISEA3H grid .

:
at
::::::::
resolution

::
7. The color

::::
colour

:
pattern shows that in the northern (and southern) parts, more grid cell centers fall into each hexagonal cells

:::
cell compared to the areas around the equator.

3.3 Random Forest
::::
Area

:::::::
weights

::::::
Instead

::
of

::::::
directly

:::::::::
converting

:::
the

::::
data

:::
into

:::
the

:::::::::::::
area-preserving

:::::::
ISEA3H

::::
grid

::::::
system,

:::
one

:::::
could

:::::::::::
alternatively

:::::
adjust

::
the

:::::::::::
observations

::::
from

:::
the

:::::::::::::::
longitude-latitude

::::
grid

::
by

:::::::::
weighting

::::
them

:::::::::
according

::
to

::::
their

::::
cell

:::
size

:::
to

::::::
account

:::
for

:::
the

::::
area

:::::::::
distortion.

::::
The

::::::
weight

::
wi::

of
::::
grid

:::
cell

::
i
::
is

::::
then

::::::
defined

::
as

:::::::::::::::::
wi = area of cell i

maximum cell area .
:::
By

::::::::
including

:::::
these

:::
area

::::::::
weights,

::::::::::
observations

:::::
from

:::::
larger

::::
cells

::::
have

::
a

::::::
greater

:::::::
influence

:::
on

:::
the

::::::::
statistical

::::::
model

::::
than

::::
cells

::::
from

:::::::
smaller

:::::
cells.

:::
We

:::
use

::::
this

:::::::
approach

:::
as

:
a
::::::::::
comparison

::
to

:::::
better

::::::
assess230

::
the

:::::::::::
effectiveness

::
of

:::::
using

:::::::::
traditional

::::
area

::::::
weights

::
to

:::::::
address

::::
area

::::::::
distortion,

::
in

:::::::
contrast

::
to

:::
the

:::::::::
equal-area

:::::::
ISEA3H

::::
grid

::::::
system.

:

3.4
:::::::

Random
:::::
forest

We model the observed variation of irrigation fraction with a set of biophysical and socioeconomic predictor variables using a

random forest framework.

A random forest consists of a set of individual decision trees that operate as an ensemble. The method was introduced by235

Breiman (2001) and is nowadays
:::
now

:
a widely used machine learning technique, because it tends to have high prediction

9



power with little tuning of its parameters. A random forest captures non-linearity
::::::::
non-linear

:::::::::::
relationships

:::::::
between

:::
the

::::::::
predictor

:::::::
variables

::::
and

:::
the

:::::::
outcome, is able to deal with imbalanced data

:
, and estimates of variable importance are readily available

(Strobl et al., 2009).

Depending on the response variable, the decision trees of the random forest perform either classification or regression, based240

on a recursive partitioning method. At each step, a decision tree finds the optimal split that minimises ”impurity“, until a

specific stopping criterion is met. Impurity is a measure of
:::::
serves

::
as

:
a
::::::
metric

::
for

:
the homogeneity of the class labels at a certain

node in
::::::::
particular

:::::
node

:::::
within

:
the decision tree. There are several different ways

::::::
Various

::::::::
methods

::::
exist to define the impurity

measure. Following Wright and Ziegler (2017), we use the estimated response variance for regression trees and the Gini-

index for classification trees as measures for impurity. Please find the precise definitions
::::
steps

:
in Algorithm 1. Ultimately, the245

recursive partitioning method repeatedly splits the data into potentially high-dimensional rectangular partitions of the predictor

space, choosing those for which the response data are relatively homogeneous (Strobl et al., 2009).

Synthetic representation of the random forest method.

Usually, a random forest
::
A

::::::
random

::::::
forest

:::::::
typically

:
consists of several hundred or thousands of trees and combines the

results of their predictions (Strobl et al., 2009). The trees are built on bootstrapped samples of
:::::
These

:::::
trees

:::
are

::::::::::
constructed250

::::
using

:::::::::::
bootstrapped

:::::::
samples

::::
from

:
the training data. On average, each bootstrap sample contains

:
,
::::
with

::::
each

::::::
sample

::::::::::
containing,

::
on

:::::::
average,

:
63.2% unique observations (Breiman, 2001), which are called

:::::
known

::
as

:
in-bag samples. Samples not selected are

called out-of-bag (OOB) samples and are used to estimate the prediction accuracy, also called OOB error. These error estimates

provide an accurate measurement of the generalization error as they are similar to the results obtained through K-fold cross-

validation (Wolpert and Macready, 1996). However, the OOB error can be sensitive to the number of random predictors used255

at each split (mtry) and the number of trees (ntree) in the random forest (Huang and Boutros, 2016). Generally, the accuracy

is increasing
:::::::
increases

:
as the number of trees increases. However, literature has shown that the accuracy levels

::
the

::::::::
accuracy

:::
may

:::::
level

:::
off at a certain number of trees, depending on the specific learning task (Oshiro et al., 2012). The parameter mtry

has been found to have a high influence on prediction accuracy and should be selected carefully (Huang and Boutros, 2016;

Bernard et al., 2009; Probst et al., 2019). We focus on ntree and mtry as tuning parameters in our model set-up, to achieve a260

high performing random forest model. Figure ?? illustrates the random forest framework.

The step-by-step process of building a classification and regression random forest follows Algorithm 1. To cope with

the imbalance of our dependent variable,
::
we

:::::
train two random forests are trained to build

:::
and

::::::::
construct

:
a hurdle model. A

classification random forest is trained to predict
::::::
predicts

:
whether a grid cell is irrigated or notand

:
,
:::::
while a regression random

forest is trained to predict
::::::
predicts

:
the magnitude of irrigation. The idea is, to use both models to build

::::
These

:::::::
models

:::
are

::::
then265

::::::::
combined

::
to

:::::
create

:
a stacked final model that predicts

:::
the irrigation fraction based on the available predictors. That way, we

account for
:::
This

::::::::
approach

:::::::::
effectively

::::::
handles

:
the zero-inflated distribution of

:::
the irrigation fraction.

We use the freely available R package ranger, developed by Wright and Ziegler (2017) for the training and validation of the

random forests.

10
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Algorithm 1 Random Forest
Given a data set {(xi,yi) : i = 1, ...,n}, where yi is the ith observed dependent variable and xi = (X1, ...,Xp) is a p-

dimensional predictor vector.

Step 1. Draw a number of ntree bootstrap samples sets from the training data set. Each sample is the same size as the training

data set. The number ntree is a tuning parameter, also referred to as the number of trees in the forest.

Step 2. At each node split a random number of mtry predictors out of all P predictors are considered, i.e. Xi, i = 1, ...,mtry

with mtry < P . The number mtry is another tuning parameter.

Step 3. Predictor j splits the observations {yi}, i = 1, ...,n into the most uniform binary regions Rl := {X|Xj ≤ c} and

Rr := {X|Xj > c} according to the following impurity measures:

– (Regression) weighted residual sums of squares

minj,c

(
p(Rl)

∑
j:yj∈Rl

(yj − ȳRl
)2 + p(Rr)

∑
j:yj∈Rr

(yj − ȳRr
)2
)
, (1)

where ȳRl
and nl are the mean and number of observations in region Rl, ȳRr and nr are the mean and number of

observations in region Rr and p(Rk) = nk/n is the proportion of observations in Region k ∈ {l, r}.

– (Classification) Gini impurity

minj,c

(
nlp̂l(1− p̂l) +nrp̂r(1− p̂r)

)
, (2)

where p̂k is the proportion of sample points that were sent to node k ∈ {l, r} from the previous node.

Step 4. Repeat steps 2-3 until each terminal node reaches the predefined minimum number of observations min.node.size.

Output. The algorithm forms a partition of the data into M regions R1, ...,RM , and model the response as a constant rm, i.e.:

fRF (x) =

M∑
m=1

rmI(x ∈Rm). (3)



3.4.1 Parameter Tuning
::::::
tuning and Model Setup

:::::
model

::::::
setup270

We use cross-validation (CV) to tune our random forest models and find the values of the parameters
::::::::
determine

:::
the

::::::
values

::
for

:
ntree , i.e. the

:
(number of decision trees,

:
)
:
and mtry , i.e. the

:
(number of predictors to be considered at each split, that

yield the highest )
::::
that

::::::::
maximize

:
predictive accuracy. Data from the years 1902 to 1999 are taken

::::
serve

:
as the training sample,

observations from the years
::::
data

::::
from

:
2001 to 2005 are used as the validationsample and the remaining

::
for

:::::::::
validation,

::::
and

data from 2000 serves as a
:::
act

::
as test sample. Due to computational constraints, we apply a sub-sampling routine in order to275

find
:
to

:::::::
identify

:
our model parameter values in a reasonable amount of time

::::::::
efficiently. For the classification random forests,

::
we

:::::
draw a balanced sample of 10% is drawn in each CV fold, with

::::::::
consisting

::
of
:

50% irrigated and 50% rainfed grid cells,
:
.

::::
This

:
is
::::::::

achieved
:
using random over- and under-sampling methods from the R

::
R package ROSE, made available

:::::::
provided

:
by

Lunardon et al. (2014). For the regression random forest, all irrigated grid cells are used for training.

As accuracy measures, we take
:::
We

:::
use the OOB error and the validation error

::
as

::::::::
accuracy

::::::::
measures. We set the minimal280

number of data points at each terminal node , i.e. min.node.size equal to 10, which serves
:::::
serving

:
as a stopping criterion. For

the parameter ntree, we consider the values 50, 300, 500, 800, 1000,2000, 3000,4000 and 5000 and for
:::::
1,000,

:::::
2,000,

::::::
3,000,

:::::
4,000

:::
and

:::::
5,000.

::::
For mtry we try

::
test

:
all values between 1 and 5 at 0.5 increments for both the classification and the regression

random forest. We perform
:::::::
conduct 50-fold CV to train the classification and regression random forests for both grid choices

separately
::::::::
separately

:::
for

::::
each

::::
grid

::::::
choice.285

The resulting accuracy for each forest and each tuning parameter value can be seen in Figures A6 and A7. Taking the OOB

error and the validation error into account, we choose ntree = 1000
::::
1,000

:
and mtry = 1.5 for the classification random forest

and ntree = 4000
:::::
4,000

:
and mtry = 5 for the regression random forest for the longitude-latitude grid. In the ISEA3H grid

we set ntree = 1000 and mtry = 5 for the classification random forest and ntree = 4000 and mtry = 5 for the regression

random forest.290

After setting the tuning parametersaccording to the optimal values, ,
:::

we
::::::::

evaluate
:::
the

:::::::::
prediction

:::::::
accuracy

:::
of

:
the stacked

random forest model can be used to produce predictions. We use
::
on

:
the test datato evaluate the prediction accuracy. The final

prediction of the model
:::::
model

::::::::
prediction

:
is obtained by multiplying the prediction of

:::::::::
predictions

:::::
from the classification random

forest and prediction of
::::
with

::::
those

:::::
from the regression random forest. We

:::
We

::::
then compare the final prediction results for both gridchoices.

::::::
models

::::
build

:::
on

:::
the

:::::::
original

::::::::::::::
longitude-latitude

:::::
grid,

:::
the295

::::::::::::::
longitude-latitude

::::
grid

:::::
using

::::
area

:::::::::
weighting,

:::
and

:::
the

:::::::
ISEA3H

:::::
grids

::
at

:::::::::
resolutions

::
7,

::
8

:::
and

::
9.

4 Results
:::
and

:::::::::
discussion

4.1 Grid choice

We compare the longitude-latitude grid with
::
to the ISEA3H grid

::::
grids

:
based on their predictive power and their ability to

identify the drivers of the global irrigation expansion. To get a first intuition about differences in predictive powerof the two300

model setups, we create a binned scatterplot
::::::
binned

::::::::::
scatterplots of the predicted irrigation fraction of the test data against

12



the actual
:::::::
observed values of irrigation fraction for both grids

::
all

::::
grid

::::::
choices. In that way, the 45 degree line mechanically

indicates correctly predicted irrigation fraction values. Figure ?? shows the result for the longitude-latitude grid model and

Figure ?? displays the result for the ISEA3H grid model
:
2
:::::
shows

:::
the

::::::
results. The comparison suggests that the ISEA3H grid

model has
::::::
models

::
at

::::::::
resolution

::
7

:::
and

::
8

::::
have

:
a higher prediction accuracy, since the point values scatter more closely around305

the 45 degree line.
::::::::
However,

:::::
there

::
is

::
no

:::::
clear

:::::
visual

:::::::::
difference

:::::::
between

:::
the

::::::::
predictive

::::::::
accuracy

::
of

:::
the

:::::::::::::::
longitude-latitude

::::
grid

:::
and

:::
the

:::::::
ISEA3H

::::
grid

::
at

::::::::
resolution

::
9.
:

To further evaluate the difference in predictive accuracy between the two grid choices, we compute the root mean square

error (RMSE) and the normalized root mean square error (NRMSE) . The RMSE and the NRMSE indices are calculated as

RMSE =

√√√√1/n

n∑
i=1

(yi− ŷi)2 (4)310

and

NRMSE =
RMSE

sd(y)
, (5)

where yi is the actual
:::::::
observed

:
value, ŷi the prediction and sd(y) the standard deviation over all actual

:::::::
observed values. The

RMSE and NRMSE were calculated for the prediction on the test data and compared between grid choices. We additionally

evaluate the NRMSEfor both grid choices, after restricting the sample to observations with non-zero irrigation. The results315

::::::::
outcomes are reported in Table 2. The model with the lower NRMSE is considered the better choice to model irrigation

fraction.

::
To

:::::
verify

:::
the

:::::::::
robustness

:::
of

:::
our

:::::
result,

:::
we

::::::::
calculate

:::
the

:::::::
NRMSE

:::
by

:::::
using

:::
the

:::::
mean

:::
and

:::
the

:::::::
distance

:::::::
between

:::
the

:::::::::
minimum

:::
and

:::
the

::::::::
maximum

:::::
value

::
as

::::::::::::
standardizing

::::::::
measures.

:

::
In

:::::
order

::
to

:::::::::
investigate

:::
the

:::::::::
robustness

::
of

::::
our

::::
error

::::::::
measure,

:::
we

:::::::::
implement

:
a
::::::::::::

bootstrapping
::::::::
analysis,

::
in

:::::
which

:::
we

::::::::
generate320

::::
each

:::::
model

::
in

::::
500

:::::::::
repetitions

:::
and

::::::
predict

::::::::
irrigation

:::::::
fraction

:::::
using

:
a
:::::::
random

::::
40%

::::::
sample

::
of

:::
the

:::
test

::::
data

::
in

::::
each

:::::
step.

:::
We

::::
then

:::::::
calculate

:::
the

:::::::::
difference

::
in

::::::::
NRMSE

:::::
values

:::::::
between

::::
the

::::::::::::::
longitude-latitude

::::::::::
benchmark

:::::
model

::::
and

:::
the

:::::
other

::::::::::::
specifications.

:::
By

::::::::
examining

:::
the

::::::::::
distribution

::
of

:::::
these

::::::::::
differences,

::
we

:::
are

::::
able

::
to

::::::
assess

::::::
whether

::::::::
observed

:::::::::
differences

:::
are

::::::::::
statistically

:::::::::
significant.

:

::::::::::
Additionally,

:::
we

:::::::
include

:
a
::::::
model

:::::
based

::
on

:::
the

:::::::::::::::
longitude-latitude

:::
grid

:::::
with

::::::::
traditional

::::
area

:::::::
weights.

::::
This

::::::
allows

::
us

::
to

::::::
assess

::
the

:::::::::::
effectiveness

::
of

:::::
using

::::
area

:::::::
weights

::
to

::::::
address

::::
area

::::::::
distortion

:::
as

::::::::
compared

::
to

:::
the

:::::::::
equal-area

:::::::
ISEA3H

::::
grid.

:
325

Generally, we see that lower errors are observed when using the
::
an ISEA3H grid. We see

:::
For

::
all

:::::::::::
observations,

:::
the

::::::::
ISEA3H

::::::::
resolution

::
7

::::
grid

:::::::
exhibits a 28% reduction in the NRMSE when using the ISEA3H grid(NRMSE =

:::::::
NRMSE

::::::::
compared

:::
to

::
the

:::::::::::::::
longitude-latitude

:::::
grid,

::::
with

:
a
:::::
value

::
of

:
0.484 ) compared to

:::::::
compared

:::
to

:::::
0.676.

::::
The

:::::::
ISEA3H

:::::
grids

::
at

:::::::::
resolutions

::
8

:::
and

::
9

:::
also

:::::
show

::::::::
improved

:::::::::::
performance

::::
over the longitude-latitude grid(NRMSE = 0.676). Considering only

:
,
::::
with

:::::::
NRMSE

::::::
values

::
of

:::::
0.577

:::
and

::::::
0.645,

:::::::::::
respectively.

::::
The

::::::::::::::
longitude-latitude

::::
grid

:::::
with

::::
area

:::::::
weights

::::
does

:::
not

:::::::::::
significantly

:::::::
improve

:::
the

::::::::
NRMSE330

::::::::
compared

::
to

:::
the

:::::::
standard

:::::::::::::::
longitude-latitude

::::
grid.

:

:::::::
Focusing

:::
on irrigated areas, we see a that the ISEA3H grid (NRMSE = 0.503) corresponds to

::::::::
resolution

:
7
::::
grid

:::::::::::
demonstrates

a 29% lower NRMSE
::::::
(0.503) compared to the longitude-latitude grid (NRMSE = 0.702).

::::::
Similar

:::::
trends

:::
are

::::::::
observed

:::
for

:::
the

13
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(a) Longitude-Latitude (b) ISEA3H resolution 7

(c) ISEA3H resolution 8 (d) ISEA3H resolution 9

Figure 2. Binned scatter plot of predicted vs. actual
::::::
observed irrigation fraction valuesfor (a) the longitude-latitude grid and (b) the ISEA3H

grid. The prediction is based on the test data.



Table 2. Normalized root mean square error comparison between the longitude-latitude and the ISEA3H grid choice
:::::
choices

Longitude-Latitude grid ISEA3H grid Reduction in
:::::::::::
Longitude-Latitude

:::::
ISEA3H

:::
grid

:::::
ISEA3H

::::::
resolution

:
7 NRMSE (%)

::
area

:::::
weights

: :::::
resolution

:
8
: ::::::

resolution
:
9

(1) (2) (3)
:
(4)
: ::

(5)
::
(6)

A. All observations

Mean 0.0156 0.0168
::::
0.0156

::::
0.0177

:::
0.0183

:

:::
Mean

:::::::
(prediction)

::::
0.0162

::::
0.0161

::::
0.0171

:::
0.0191

:

SD 0.0604 0.0525
::::
0.0604

::::
0.0591

::::
0.0653

:
SD

:::::::
(prediction)

: ::::
0.0396

::::
0.0396

::::
0.0432

::::
0.0454

RMSE normalized with:

SD 0.676 0.484
::
*** 28

:::
0.676

: ::::::
0.577***

:::::
0.645***

Mean 2.618 1.508
::
*** 42

:::
2.620

: ::::::
1.928***

:::::
2.297***

Max-Min 0.047 0.037
::
*** 21

:::
0.047

: ::::
0.044**

: ::::
0.046*

B. Non-zero observations

Mean 0.0507 0.0337
::::
0.0507

::::
0.0413

:::
0.0511

:

:::
Mean

::::::
(predition)

::::
0.0409

::::
0.0408

::::
0.0154

::::
0.0434

SD 0.1005 0.0703
::::
0.1005

::::
0.0847

:::
0.1010

:

:
SD

:::::::
(prediction)

: ::::
0.0619

::::
0.0618

::::
0.0401

::::
0.0667

RMSE normalized with:

SD 0.702 0.503
::
*** 29

:::
0.703

: ::::::
0.598***

:::::
0.666***

:

Mean 1.390 1.05
:::::
1.050***

:
24

:::
1.391

: ::::::
1.228***

:::::
1.317***

Max-Min 0.081 0.052
::
*** 36

:::
0.081

: ::::::
0.065***

:::::
0.077***

Notes: Column (1) shows the mean and standard deviation of the irrigation fraction, and the NRMSE values of the longitude-latitude grid choice. Column

(2) provides the same for the ISEA3H grid resolution 7 choice. In column (3) the reduction in NRMSE is documented in percent and in comparison to the

longitude-latitude grid. Column (4) presents the result for a model based on the longitude-latitude grid with additional area weights and columns (5) and (6)

provide the results for the ISEA3H resolution 8 and 9 grids. Panel A. includes all observations and gives the overall NRMSE estimates. In Panel B. only

irrigated areas are included. The NRMSE values provide insight to how the models perform on actually irrigated terrain. ∗,∗∗ and ∗ ∗ ∗ indicate 10%, 5%

and 1% significance for the t-test of difference in bootstrapped mean NRMSE values with 500 repetitions, comparing the ISEA3H models (columns 2, 5, and

6) with the longitude-latitude model (column 1).

:::::::
ISEA3H

::::
grids

::
at
::::::::::
resolutions

:
8
::::
and

::
9,

::::
with

:::::::
NRMSE

::::::
values

::
of

:::::
0.598

:::
and

::::::
0.666,

::::::::::
respectively.

::::::
Again,

:::
the

:::::::::::::::
longitude-latitude

::::
grid

::::
with

:::
area

:::::::
weights

::::::
shows

:::::::
marginal

::
or

:::
no

:::::::::::
improvement.

:
335

To check the robustness of our result, we calculate the NRMSE by using the mean and the distance between the minimum and

the maximum value as standardizing measures. The results are also reported in Table 2. The general result remains the same,

in that we observe lower NRMSE when using
:::
This

:::::
trend

:::::::
remains

:::::::::
consistent

::::::
across

::
all

::::::::::::
normalization

::::::::::::
specifications,

::::::
which

:::::::::
emphasizes

:::
the

:::::::::::
comparative

::::::::::
performance

::
of

:
the ISEA3H grid

::::::
choices

::::
and

::::
their

:::::::::
advantages

::::
over

:::::::::
traditional

:::::::::::::::
longitude-latitude

::::
grids.340

In a next step, we consider the predicted irrigation fractionpattern. In that, we aim to
:
.
:::
We

:
evaluate how accurately the

models predict high and low values of irrigation fraction across the global map
::::
globe. Figure 3 shows the difference between

the predicted irrigation fraction pattern and the actual irrigation fraction pattern for (a) the longitude-latitude grid and (b) the

ISEA3H grid
:::
and

::::::::
observed

::::::::
irrigation

:::::::
fraction

:::
for

::
all

::::
grid

:::::::
choices. The computation is based on the test data. The color scale

indicates, if the model predicts the irrigation fraction accurately or suffers from under- or over-prediction. Yellow areas are345

correctly predicted by the model, orange to red areas correspond to under-prediction and green to blue areas indicate over-
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predicted irrigation fraction values
:::::::
fractions. Considering the longitude-latitude grid, we see that, irrigation is under-predicted

in some areas in India and East Asia and also in few areas in North and South America and Europe. Except for very few parts

in India, Central-Africa and North America, we do not see any over-prediction of irrigation. Looking at the ISEA3H grid
::::
grids,

we find
:::
that the same areas in India and East Asia are slightly over-predicted as well as some areas in the United States and350

Europe. Only few areas are under-predicted in India, East-Asia, and Central-Africa. Comparing both grids
:::
grid

:::::::
systems, we find

that the ISEA3H grid is
::::
grids

:::
are

:
closer to the benchmark

::::::
original

::::::::
irrigation

::::::
pattern

:
in all areas. Especially, the highly irrigated

areas in east Asia are better captured by the ISEA3H grid model
::::::
models

:
and we also see less over-prediction in European

areas. The maps indicates
::::::
indicate

:
that the ISEA3H grid

:::::
system

:
is the better choice in predicting the global irrigation fraction

pattern.355

(a) Longitude-Latitude (b) ISEA3H resolution 7

(c) ISEA3H resolution 8 (d) ISEA3H resolution 9

a)

b)

Figure 3. Deviation of the predicted irrigation fraction from the observed irrigation fraction in (a) the longitude-latitude grid representation

and (b)
:::
-(d)the ISEA3H grid representation.

::::
grids

::
at

::::::::
resolutions

::
7,

:
8,
:::
and

::
9.
:
Green and blue areas indicate an under-prediction of the irrigation

value and orange and red values over-prediction. Yellow areas correspond to areas where irrigation values were predicted correctly. The

prediction is based on the test data.

16



4.2 Drivers of irrigation expansion

4.2.1 Variable importance

We estimate the relative importance of the predictor variables during the random forest estimations. We report the importance

of the predictors for
::::
both the classification random forests, i.e. the probability that irrigation occurs

:::::
which

::::::
predict

:::
the

:::::::::
probability

::
of

::::::::
irrigation

::::::::
occurring, and the regression random forests, i.e. the irrigation intensity,

:::::
which

::::::
predict

::::::::
irrigation

:::::::::
magnitude given360

that the area is irrigated. The relative importance in
:
In

:
the classification random forestsare measured in terms of Gini gainand

the relative importance for ,
:::::::
relative

:::::::::
importance

::
is
::::::::
measured

:::
by

::::
Gini

:::::
gain,

:::::
while

::
in the regression random forestsare captured

in
:
,
:
it
::
is

:::::::
captured

:::
by

:::
the estimated response variance. The results are displayed in Figure 4.Panels a) and b) show the results for

the longitude-latitude grid choice and panels c) and d) display the results for the ISEA3H grid choice.

The most important driver for the likelihood
:::::::::
probability that an area is irrigated is population density. This is the case for365

both
::
all

:
grid choices. The second most important driver is the median potential increase in productivity in terms of crop

yield. Evaporation, precipitation and discharge all have a similar influence on the irrigation probability. However, the order of

importance is reversed between the two grid choices. The GDP per capita only has small influence on the decision to irrigate.

The most important driver for the
::
of irrigation intensity, given that an area is already irrigated, is also population density.

This is followed by evaporation, precipitation, discharge and the median increase in potential productivity, where the order370

of discharge and the median potential productivity increase is the reversed for the ISEA3H grid choice
::::
grids. The last most

important driver is again the GDP per capita, though still having some influence on the models’ performance in both
::
all grids.

:::::::
Looking

::
at

:::
the

::::::::
different

:::::::
patterns

::::::
across

::::::::::
resolutions,

::
it
:::::::

appears
::::

that
:::::

finer
:::::::::
resolutions

::::::::
increase

:::
the

:::::::
relative

::::::::
influence

:::
of

::::::::
predictors

:::::
other

::::
than

:::::::::
population

::::::
density.

:::::
This

:::::
makes

::::::
sense,

::
as

::::
these

:::::
other

::::::
drivers

:::::
likely

::::
have

::
a
::::::
greater

::::::
impact

::
at

:
a
:::::
local

:::::
level,

:::::::
whereas

:::::::::
population

::::::
density

::::::
reflects

::
a

::::::
broader

::::
need

:::
for

::::
crop

:::::::::
production

:::
in

::
the

:::::
area.375

4.2.2 Partial dependence

We compute the partial dependence of each predictor variable for both grid choices
::
all

:::
grid

:::::::
choices

:::
and

::::::
model

:::::::::::
specifications.

The partial dependence is obtained by gradually changing the value of one predictor variable and predicting the outcome vari-

able at each step, while leaving the remaining predictors constant. That way, the functional relationship between the predictor

and the dependent variable becomes visible. The larger the value range at the y-axis
::
on

:::
the

:::::::
vertical

::::
axis, the larger the influence380

of the predictor on the dependent variable. Figure 5 illustrates the results.

a)b)

Panel a) of Figure 5 illustrates the partial dependence of the predictor variables on the probability of irrigation
::::::::
predictors

::
of

:::::::
irrigation

::::::::::
probability. Overall, we see very intuitive dependence patterns.

Population density has a positive influence on the probability to irrigate, where the probability sharply increases at the begin-385

ning of the population density distribution. In other words, greater population density correlates with an increased likelihood

:::::::::
probability of irrigation, indicating that metropolitan regions with higher population densities and improved market acces-

sibility are more likely to engage in irrigation. This heightened probability is likely attributed to the requirement of capital
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a)b)c)d)

(a) Longitude-Latitude: Classification (b) Longitude-Latitude: Regression

(c) ISEA3H: Classification (d) ISEA3H: Regression

Figure 4. Relative importance, measured as decrease of node impurity. The results for the longitude-latitude grid choice
::::
grids can be seen

in purple
::
red

:
and the results for the ISEA3H grid choice is

::::
grids

:::
are displayed in magenta. Figure (a) corresponds to the classification and

Figure (b) to the regression random forest
:::
blue. Figure (c) corresponds to

::
The

:::::
order

:
of
:::::::

variables
::
in
:
the classification and (d)

::::::::
importance

::::
plots

::
are

:::::
robust

:
to the regression random forest

:::
500

:::::::
bootstrap

::::
steps.

investment for establishing irrigation systems. This aligns with the paper by Neumann et al. (2011), who also find
:::::
found

:
a

positive association between irrigation and population density.390

A similar pattern can be seen for the median potential increase in productivity, the second most influential predictor. This

:::
The

:
positive correlation demonstrates that farmers assess the potential increase in crop yield when they decide

:
is
::
a

:::::
factor

:::
for

::
the

::::::::
decision to implement irrigation systems.

Evaporation also has a positive, almost linearly increasing influence on the irrigation probability. Considering precipitation,

our results show that the probability to irrigate decreases with the amount of precipitation until the probability levels and does395

not change anymore with increasing precipitation values
:::
off. The amount of available discharge has a negative relationship

to
::::
with the probability to irrigate for both grid choices at the beginning of the distribution. Looking at the longitude-latitude

grid, this changes into a positive correlation, leaving us with a u-shaped dependence curve. Looking at the ISEA3H grid
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(a) Classification

(b) Regression

Figure 5. Partial dependence of the predictors and the dependent variable of (a) the classification random forests and (b) the regression

random forests. The results for the ISEA3H grid choice is
:::

grids
::::::::
(resolution

::
7,
::
8,

:::
and

::
9)

:::
are shown in magenta

:::::
shades

::
of

:::
blue

:
and the result

for the longitude-latitude grid choice is
::
and

:::
the

:::::
model

:::
with

::::
area

::::::
weights

:::
are shown in purple

::
red.



choice, the irrigation probability does not change anymore after reaching a certain discharge level. Overall, these results show

that water availability and climatic conditions play a role for the decision to irrigate, leaving rather dry areas and areas with400

higher evaporation levels more likely to be or become irrigated. Discharge is an accumulated variable of local runoff, with

very high differences between upstream and downstream cells in a watershed. This means that regions with relatively high

topography and thus potentially lower degrees of agriculture and irrigation are all coinciding with low discharge values, while

the major irrigation areas (India, Pakistan, US, East-Asia, Egypt, ...) generally lie close to large streams with high discharge.

The correlation with elevation might explain why initially the dependence of irrigation on discharge decreases. For large values405

the large grid-size might be able to explain the differences between the grid, as for example along the Nile the irrigated areas

follow the river in a small band, being dispersed in the ISEA3H grid.

Lastly, we study the dependence of the GDP per capita categories on the probability to observe irrigation. We find a strictly

positive relationship from the categories ”Low”, ”Lower Middle”, ”Upper Middle” to ”High”. Therefore, the likelihood of

croplands being irrigated is higher for areas with generally higher economic performance. Hence, adverse socio-economic410

conditions hinder the development of irrigated agriculture. This result complements the findings by
::
of Neumann et al. (2011),

who find
:::::
found

:
similar effects considering government performance and government typeas a potential factors explaining areas

to become irrigated. The GDP per capita category ”missing” corresponds to a relatively lower irrigation probability, which
:
.

::::
This is in line

:::
with

:
the fact that with less areas being irrigated and less

::
in

::::::
earlier

::::
time

:::::::
periods,

::::
less

::::
areas

:::::
were

:::::::
irrigated

::::
and

::::
more

:
GDP per capita values observed in earlier time periods

::::::::::
observations

:::
are

:::::::
missing.415

Panel b) of Figure 5 displays the partial dependence curves for the predictor variables of irrigation intensity, i.e. the amount

of irrigation given a grid cell is irrigated. The most influential predictor, population density, positively impacts the amount of

irrigation.

Evaporation is also positively associated with the amount of irrigation, where the increase in irrigation appears to be almost

linear in evaporation levels. The amount of irrigation negatively depends on precipitation levels, while discharge is positively420

correlated with irrigation intensity. Hence, the effect of water availability differs between different sources of water, where

heavily precipitated areas seem to not
::
do

::::
not

:::::
seem

::
to

:
require as much irrigation, while discharge might be used to feed

irrigation systems.

The median potential productivity gain is positively associated with irrigation intensity, exhibiting a sharp peak in the de-

pendence curve at the beginning of the distribution. Much of the tails is probably irrelevant for a real-world scenario, where425

irrigation would never happen in remote and dry regions, with a high potential for productivity increases from irrigation. Larger

cell sizes in the ISEA3H grid mean "easier" access to streams (more area is in the same cell as the river), which is reflected in

the higher plateau level.

Considering GDP per capita, we see irrigation intensity only slightly differing between the categories.

Assessing our results in the context of our hypotheses (see Table 1), we generally observe a consistent alignment between430

our empirical results and our previous theoretical consideration.
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5 Conclusions

The careful choice of a discrete global grid system holds significant importance for conducting statistical analyses on a global

scale. In this paper, we make use of historical global irrigation data from the last century, to compare the standard longitude-

latitude grid to the ISEA3H discrete global grid
::::
grids

::
at

:::::::
different

:::::::::
resolutions. We employ a stacked random forest framework435

to model likelihood
::::::::
probability

:
of irrigation and irrigation intensity,

::::::::
magnitude

::
(once an area is irrigated, )

:
as a function of

potential drivers. We identify population density and the potential productivity increase in terms of crop yield as the most

influential factors for the decision to irrigate and population density and factors accounting for water availability as drivers for

intense irrigation. We further point to GDP per capita as having
::::
some

:
influence on irrigation behaviour.

Comparing the two grid choices
:::::::
systems, we find that the ISEA3H geodesic discrete global grid corresponds to a higher440

prediction accuracy
::::
grids

:::::
yield

::::::
higher

::::::::
prediction

::::::::::
accuracies. Using the assigned test data, the model built on the geodesic

discrete global grid
:
at

:::::::::
resolution

::
7 produces a 28% lower root normalised mean squared prediction error compared to the

model built on the longitude-latitude grid. This result is
::::::::
Although

:::
the

:::::::::
difference

::
in

::::::::
predictive

::::::::
accuracy

::::::::
decreases

::::
with

::::::
higher

:::::::::
resolutions,

:::
the

::::::::
ISEA3H

::::
grids

::
at

:::::::::
resolutions

::
8
:::
and

::
9
:::
still

:::::::
produce

:::::::::::
significantly

:::::
lower

::::
error

::::::
values

::::::::
compared

::
to

:::
the

::::::::::
benchmark

::::::
model.

:::
In

::::::::::
comparison,

::::
using

:::::::::
traditional

::::
area

::::::
weights

::
in

:::
the

:::::::::::::::
longitude-latitude

:::
grid

::::
does

:::::::
improve

:::::::::
prediction

:::::::
accuracy

:::::::::::
significantly.445

:::::
These

:::::
results

:::
are

:
robust to different normalisation definitions.

In terms of the global irrigation prediction pattern, we find that the
::::::
models

:::::
based

:::
on

:::
the

:
ISEA3H grid comes

::::
grids

:::::
come

closer to the actually observed irrigation benchmark
:::::::
observed

::::::::
irrigation

::::
map. While the longitude-latitude grid choice leads to

some highly under-predicted areas in India, East-Asia and the United States, the ISEA3H grid choice is
::::
grids

:::
are

:
associated

with under-prediction in almost the same areas, although much smaller in magnitude. Although the increase in predictive450

accuracy might partly be due to the fact that the change in grid cell structure changes the scale and therefore the range of values

of the targeted irrigation variable, the advantages of the uniformly structured ISEA3H grids are evident and should be explored

and tested in future research.

While the combination of water availability, climate, and socioeconomic data offer valuable insights into the role of discrete

global grid choice and the drivers of historical irrigation expansion, it is clear that our setting does not come without limitations.455

We, for example,
::
For

::::::::
example,

:::
we

:
neglected seasonality, meaning that yearly values were used for the analysis. However in

reality water availability is much more relevant in the growing season than in the off season. We consider the discrete global

grid induced by the longitude-latitude graticule and the ISEA3H geodesic discrete global grid. While we offer new evidence

about the potential accuracy increase using a geodesic discrete global grid, our methodology does not include an exhaustive

search for the best-possible grid choice. Our goal is rather to set a starting
::::
first reference point for future research designs.460

We model irrigation fraction as a function of precipitation, discharge, evaporation, population density, potential productivity

increase in terms of crop yield, and GDP per capita. While these are important drivers of irrigation, there are likely other

contributing factors that we are not able to capture in our analysis, such as the access to groundwater, irrigation subsidies,

or other socioeconomic factors such as the type of government. The access to spatially explicit information would allow

researchers to further explore these potential drivers.465
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Another interesting avenue for future research is to include time-lag
::::::::
time-lags in the analysis. Potentially, not

:
It
:::::
might

:::
not

:::
be

the data of the year
::::
same

::::
year

::::
(e.g.

:
1990is most indicative for explaining

:
)
:::
that

:::
are

::::
most

:::::::::
indicative

::
of the irrigation fraction of

1990
:::
that

::::
year, but for example the (average) information

:::
data

:
of the previous decade.

:::::
These

::::::::
time-lags

:::::
might

::::
even

::
be

::::::::
different

::
for

::::::::
different

:::::::::
predictors.

Lastly, irrigation data and the data of predictors
:::
the

::::::::
irrigation

:::
and

::::::::
predictor

::::
data are based on a large variety of sources from470

different years, which have likely introduced uncertainties. However, the data sourced in our study comprise a selection of the

most appropriate data available.

Acknowledging these limitations, we consider our analysis as an important step towards understanding the role of discrete

global grids in global statistical modelling. Particularly, exploring the application of the ISEA3H geodesic grid system in

different global analytical contexts presents an intriguing avenue for future research.475

Code and data availability. The code and data used in this study are publicly available for download at Zenodo https://doi.org/10.5281/

zenodo.12542249.

Appendix A
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a)b)c)d)e)f)

(a) Population density

(b) Discharge (c) Evaporation

(d) Median increase in productivity (e) Precipitation

(f) GDP per capita

Figure A1. Evolution of the global means of the predictor variables across the study period 1902 to 2005.a) Population density, b) discharge,

c) evaporation, d) median increase in potential productivity, e) precipitation and f) GDP per capita.



a)b)

(a) Longitude-Latitude (b) ISEA3H resolution 7

(c) ISEA3H resolution 8 (d) ISEA3H resolution 9

Figure A2. Histograms, showing the irrigation fraction on the x-axes
:::::::
horizontal

::::
axes and the corresponding frequency of the observational

data used in the analysis in (a) the longitude-latitude grid and (b)
::
-(d)

:
the ISEA3H grid

::::
grids

::
(at

:::::::::
resolutions

:
7,
::

8,
:::
and

::
9)

:
on the y-axes

::::::
vertical

:::
axes.
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Figure A3. Frequency of GDP per capita categories over the study period 1902 to 2005.
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a) b)

(a) Longitude-Latitude

(b) ISEA3H resolution 7

(c)

Figure A4. Irrigation fraction in 2000 in a) the longitude-latitude discrete global grid and b) the ISEA3H
::::::::
(resolution

::
7) discrete global grid.

Irrigation fraction reflects the area irrigated of each grid cell and is based on the global Historical Irrigation Dataset (see Siebert et al., 2015).
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Figure A5. Recursive partitioning aperture 3 method. The hexagonal pattern is recursively constructed on top of the base icosahedron. The

first resolution is illustrated by the green hexagon, directly constructed inside a triangular face of the base icosahedron. The construction

of the resolution 2 grid is displayed in red in the middle. The resolution 3 hexagonal pattern is illustrated on the right side. Increasing the

resolution by one, leads to hexagons with a size of one third of the original hexagon size. The grey left over areas are the reason why overall,

a few pentagonal faces are needed to cover the Earth’s surface. The image is based on an illustration by de Wiljes (2015).
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a)b)c)d)

(a) Longitude-Latitude Classification: Ntree (b) Longitude-Latitude Classification: Mtry

(c) Longitude-Latitude Regression: Ntree (d) Longitude-Latitude Regression: Mtry

Figure A6. Cross-validation results of the longitude-latitude grid choice. The out-of-bags error and the prediction error are displayed as a

function of changing hyperparameter values for a) ntree in the classification random forest, b) mtry in the classification random forest, c)

ntree in the regression random forest and d) mtry in the regression random forest.
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a)b)c)d)

(a) ISEA3H Classification: Ntree (b) ISEA3H Classification: Mtry

(c) ISEA3H Regression: Ntree (d) ISEA3H Regression: Mtry

Figure A7. Cross-validation results of the geodesic discrete global grid choice. The out-of-bags error and the prediction error are displayed

as a function of changing hyperparameter values for a) ntree in the classification random forest, b) mtry in the classification random forest,

c) ntree in the regression random forest and d) mtry in the regression random forest.

29



Table A1. Summary statistics of the training data (1902-1999)

Mean Standard deviation Minimum Maximum Median

(1) (2) (3) (4) (5)

A. Longitude-latitude
::::::::::::
Longitude-Latitude

:
grid (n = 6.607,160)

Irrigation fraction 0.0077 0.0375 0.0000 0.9220 0.0000

Population density 19.5986 72.4894 0.0000 9832.0000 1.0000

Precipitation 716.3860 712.2138 0.0000 11155.0000 478.9372

Evaporation 116.6513 80.7215 0.0000 953.9896 97.3343

Discharge 469.6246 4524.4351 0.0000 270078.8232 28.0981

Median increase in productivity 7.6580 65.9509 -0.5596 17365.5508 0.0053

B. ISEA3H grid
::
res.

:
7
:
(n = 730,917)

Irrigation fraction 0.0084 0.0318 0.0000 0.8077 0.0000

Population density 23.5708 69.3340 0.0000 4575.0000 2.0000

Precipitation 905.5131 848.5934 0.0000 10853.0000 609.2273

Evaporation 134.0022 84.9666 0.0000 715.0584 116.7027

Discharge 517.9301 3245.9758 0.0000 134255.6759 70.7079

Median increase in productivity 8.9070 53.7531 -0.1054 4313.1124 0.0421

Notes: Panel A summarizes the descriptive statistics of the test data set in the original longitude-latitude grid. The test data set contains the years 1902

to 1999. Panel B summarizes the descriptive statistics of the ISEA3H grid, i.e. after transforming the data to the hexagonal grid. The GDP per capita

predictor is excluded from this summary table, as it is a factor variable.
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Table A2. GDP per capita category assignment

Class GDP Per Capita

High ≥ 12276$
:
≥

:::::
12,276$

Upper Middle > 3975$− 12275$
:
>

::::
3,975$

:
–
:::::
12,275$

Lower Middle > 1005− 3975$
:
>
::::
1,005$

:
–
:::::

3,975$

Low ≤ 1005$
:
≤
:::::

1,005$

Missing −
:
–

Notes: GDP per capita classification by income level for the ref-

erence year 2011, based on the classification of the World Bank

(2011).
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Table A3. Pearson correlation coefficient

Pearson Correlation Coefficient
Population density Median increase in productivity Discharge Precipitation

(1) (2) (3) (4)

Median increase in productivity −0.0212
Discharge 0.0116 −0.009

Precipitation 0.1349 −0.094 0.1111

Evaporation 0.2403 −0.0417 0.0588 0.720

Notes: In this table, the correlation matrix of the Pearson correlation coefficient of the predictors is presented. The displayed

values are the lower half of the correlation matrix.
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Table A4. Variance inflation factor

Variance Inflation Factor
Population density Median increase in productivity Discharge Precipitation Evaporation

(1) (2) (3) (4) (5)

VIF 1.065230 1.010816 1.013481 2.124101 2.183165

Notes: This table displays the variance inflation factor (VIF) of the predictor variables. The measure is used to

detect multicollinearity between potential predictor variables. A VIF below 5, means that the respective variable is

not collinear to the other variables (James et al. (2013)).
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