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Abstract. Self-similar structures of river networks have been quantified as diverse scaling laws. Among them we investigated 

a power functional relationship between the apparent drainage density ρa and the pruning area Ap with an exponent η. We 10 

analytically derived the relationship between η and other scaling exponents known for fractal river networks. The analysis of 

14 real river networks covering diverse range of climate conditions and free-flow connectivity levels supports our derivation. 

We further linked η with non-integer fractal dimensions found for river networks. Synthesis of our findings through the lens 

of fractal dimensions provides an insight that the exponent η has fundamental roots in fractal dimension for the whole river 

network organization. 15 

1 Introduction 

Since first proposed by Horton (1945), the drainage density ρ has long been recognized as an important metric to describe 

geomorphological and hydrological characteristics of a catchment. Defined as ρ = LT / ATAΩ where ATAΩ is the totalconstant 

catchment area, ρ is a function of the total channel length LT in a catchment. Alternatively, ρ is a function of the channel 

forming area Ao (also called the source area or the critical contributing area) (Band, 1986; Montgomery and Dietrich, 1988; 20 

Tarboton et al., 1988), which is directly related to LT. The spatial variation of ρ among catchments is associated with their 

climates (Melton, 1957; Madduma Bandara, 1974; Wang and Wu, 2013), which can be represented by measures such as the 

precipitation effectiveness (PE) index (Thornthwaite, 1931). Also over time, Ao and so ρ of a given catchment dynamically 

vary. Ao reduces as the catchment becomes wetter, water accumulates more readily in the soils of low-gradient areas, and 

saturated areas expand accordingly. This mechanism leads to the enlargement of the stream network (greater LT). Conversely, 25 

when the catchment gets drier, Ao increases, which in turn results in the contraction of the stream network (Godsey and Kirchner, 

2014; Hooshyar et al., 2015; Durighetto et al., 2020)The variation of ρ among catchments is associated with the climatic 

condition, which can be represented by measures such as the precipitation effectiveness index (Melton, 1957; Madduma 

Bandara, 1974). Ao reduces as the catchment becomes wetter, which leads to the expansion of the stream network (greater LT) 

and vice versa (Godsey and Kirchner, 2014; Hooshyar et al., 2015; Durighetto et al., 2020). Therefore, LT and ρ are inversely 30 

related to Ao (Tarboton et al., 1991). 

On another note, the ‘rate’ at which LT (and so ρ) varies with Ao is likely determined by the shape of landscape or a given 

topography. The close relationship between the main channel length L and the drainage area A is well known as a power 

function with a positive exponent h (Hack, 1957), i.e., 𝐿 ∝ 𝐴 ,.             (1) 35 

whichAlthough Eq. (1) provides a clue about the relationship between LT and Ao. However, they differ in two senses: (1) LT is 

the total length counting all tributaries, while L is the length of the main channel only; and (2) L is the length within the area 

A while LT is the length of channels excluded from Ao. LT reduces as Ao increases, while L grows with A (Eq. (1)). 
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The usage of the digital elevation models (DEMs) in the river network analysis introduced a constant called the pruning area 

Ap. In extracting a stream network from a DEM, cells of the upslope area A less than Ap are considered as hillslope and excluded 40 

from the network. For the ideal delineation of a river network, Ap is expected to be Ao. However, Ap is ancan be any arbitrary 

value and differs from Ao by definition. If Ap = 0, every DEM cell is considered as channel while Ap can be as large as AΤΩ for 

a completely dry landscape. As Ap increases, less channels are extracted, resulting in a smaller ‘apparent’ drainage density ρa. 

We distinguish ρa from the real drainage density ρ, accommodating the difference between Ap and Ao. It was found that ρa 

decreases as Ap grows following a power function (Moglen et al., 1998), i.e., 45 𝜌 ∝ 𝐴 .             (2) 

While Eq. (2) should be distinguished from the relationship between ρ and Ao, it reflects the topographic characteristic which 

is likely similar for the relationship between ρ and Ao. 

The background described above naturally leads us to the basic question about the physical origin of the power-law Eq. (2) 

and its scaling exponent η. LT has been expressed as a power function of the discharge at the catchment outlet Q (Godsey and 50 

Kirchner, 2014; Hooshyar et al., 2015; Jensen et al., 2017), i.e., LT∝Qβ. Prancevic and Kirchner (2019) adopted the scaling 

relation of Eq. (2) in the derivation of the power function between LT and the discharge at the catchment outlet Q (Godsey and 

Kirchner, 2014; Hooshyar et al., 2015; Jensen et al., 2017), i.e., LT∝Qderivedβ, the relationship which quantifies the tendency 

of stream networks to expand and retreat. They expressed the exponent β as the combination of η and two other scaling 

exponents found in topographic attributes, i.e., β = η / (θ + γ + 1), where θ is the power-law exponent relating local channel 55 

slope to drainage area called the concavity (Montgomery and Foufoula-Georgiou, 1993; McNamara et al., 2006), and γ is the 

exponent of a hypothetical power function between A and valley transmissivity T (the product of subsurface cross-sectional 

area and conductivity, which in turn is expressed in units of cubic length per time (Prancevic and Kirchner, 2019)., and γ is the 

exponent of a hypothetical power function between valley transmissivity and A. Adopting this, we can reason η = β(θ + γ + 

1). However, Prancevic and Kirchner (2019) acknowledged that the above expression of β is yet to be generalizeddoes not 60 

hold confident generalization across a range of sizes and landscapes., suggesting the presence of diverse descriptions for η 

besides β(θ + γ + 1). Eq. (2) and the exponent η have awaited for deeper investigations. 

Moglen et al. (1998) attempted direct DEM analyses to investigate the ρa–Ap relationships in real river networks. But, Ao and 

Ap were undistinguished and littlefurther discussion abouton η itself was given. Further, topographic data they adopted were 

limited, whilemissed in their study. To properly approach the given subject with terrain analyses, a greater resolution DEM for 65 

catchments of known Ao or blue-lines are needed to properly approach the given subject with terrain analyses. It is worth to realize 

that the power-law relationship of Eq. (2) implies fractal network formation. A river network is fractal, and many regular power-

laws have been reported as characteristic signatures of a naturally evolved river network (Dodds and Rothman, 2000). As the 

power-law relationship between ρa and Ap can also serve as a signature reflecting the self-similarity, it is plausible to claim the 

linkage between ρa–Ap relationship and other power-laws known in natural river networks. 70 

The exponent η brings further interesting questions. In Eq. (2),particular, η = 0.5 is anticipated to satisfy dimensional consistency 

in Eq. (2) (Tarboton et al., 1991). But the rough analysis of Moglen et al. (1998) raises a doubt whether η estimated from any real 

catchment meets this consistency. This issue is analogous to the question about the exponent h in Eq. (1), which should also be 

0.5 to keep consistency in dimension (Hjelmfelt, 1988). In fact, h values reported for natural rivers are mostly greater than 0.5, 

i.e., between 0.5 and 0.7 (Hack, 1957; Gray, 1961; Robert and Roy, 1990; Crave and Davy, 1997). This has brought the 75 

introduction of the fractal dimension (Mandelbrot, 1977), whose values for river networks range between 1 and 2 (e.g., Feder, 

1988) (further detailed explanations are provided in Sect. 4).. Similarly, we can claim that the dimensional inconsistency in Eq. 
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(2), if any, can be resolved by incorporating the fractal dimension. It is also an open question what controls η. While the 

relationship between ρa and Ap reflects the topography, if η is a fixed constant of 0.5, despite dimensional consistency, it implies 

limited role of topographic variation on η. If η is variable, the underpinning mechanism that changes local catchment topography 80 

and so η is to be explored. In particular, we are curious about roles of human intervention and ecosystem evolution in conjunction 

with climate forcing on the relationship between ρa and Ap. To understand this, it is desired to investigate a range of catchments 

under different developmental stages and climate conditions as wellintroducing the fractal dimension to express η. 

Here, we aimedaim to corroborate the aforementioned claims and hypothesis about the ρa–Ap relationship and its exponent η. To 

this end, in the next Sect. 2, we reviewed the scaling relationships known in a river network. Then, we presented analytical 85 

derivation of Eq. (2), and demonstrated how this is related with other power-laws known for a river network. To support our 

argument, many real catchments under the wide range of climaticclimate conditions and free-flow connectivity levels were 

analyzed with terrain analysis methods in a thorough manner using high resolution DEMs and trust-worthy blueline data. 

These are described in Sect. 3. With these results, we explored physical meanings embedded in the power-law relationship 

between ρa and Ap with the notion of fractal dimension in Sect. 4. Summary and conclusions are given in Sect. 5. 90 

2 Cross-Relationships among Scaling Laws  

2.1 Review on the scaling laws of a river network 

The river network has been perceived as an archetypal fractal network in nature (Mandelbrot, 1977; Rodríguez-Iturbe and 

Rinaldo, 2001), exhibiting scale-invariant organization. Systematic measures for characterizing structural hierarchy help 

manifest the self-similarity. Horton-Strahler ordering scheme (Horton, 1945; Strahler, 1957) has been popularly employed to 95 

investigate their structural characters. In this framework, the number, the mean length, and the mean drainage area of ω-order 

streams in a catchment, stated as 𝑁 , 𝐿 , and �̅� , respectively, are defined for an order ω ranging from 1 to Ω, where Ω is the 

highest order in the network. There is only one Ω–order stream in a river network (i.e., NΩ=1). Then, the total channel length 

LT used for the definition of the drainage density ρ, is given as 𝐿 = ∑ 𝑁 𝐿Ω .            (3) 100 

Following its definition, the length of any lower order stream is excluded in 𝐿 . Therefore, 𝐿Ω is neither the upslope length L 

of a main channel, nor LT. By contrast, �̅�  includes the drainage area of all upstream branches (of ω – 1 and lower orders). 

Therefore, 𝐿Ω is neither the upslope length L of a main channel, nor LT), e.g.,, while �̅�Ω is identical to AT.the total drainage area 

of the catchment. To resolve the discrepant definitions of 𝐿  and  �̅� , the cumulative mean length Γω was proposed to match 

the definition of area (Broscoe, 1959) as 105 𝛤 𝛯 = ∑ 𝐿              (4) 

which is an order-discretized approximation of L. Alternatively, to match the definition of length, the eigenarea, also called the 

interbasin area (Strahler, 1964) or the contiguous area (Marani et al., 1991), was proposed as the area directly draining to the ω–

order stream (Beer and Borgas, 1993). The mean eigenarea 𝐸  of ω–order streams is 𝐸 = �̅� − �̅� (𝑁 / 𝑁 ).           (5) 110 

The self-similar structure of a river network has been captured through the linear scaling of above quantities (𝑁 , 𝐿 , �̅� , and 𝐸 ) with ω on a semi-log paper (Horton, 1945; Schumm, 1956; Yang and Paik, 2017) as 𝑁 = 𝑅 Ω ;  𝐿 = 𝐿Ω𝑅 Ω;  �̅� = �̅�Ω𝑅 Ω; and 𝐸 = 𝐸Ω𝑅 Ω       (6) 

where RB, RL, RA, and RE are the bifurcation, the length, the area, and the eigenarea ratios, respectively. TheseThey are 

dimensionless ratios areof quantities between nearby orders, i.e., 𝑅 = 𝑁 /𝑁 , 𝑅 = 𝐿 /𝐿 , 𝑅 = �̅� /�̅� , and 𝑅 =115 
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𝐸 /𝐸 , and often called the Horton ratios as a group. They are related todependent on each other (Morisawa, 1962; Rosso, 

1984; Tarboton et al., 1990) and typically range as 3 < RB < 5, 1.5 < RL < 3, and 3 < RA < 6 (Smart, 1972), and RE ≈ RL (Yang and 

Paik, 2017). 

In addition to Eq. (6), power functional relationships between geomorphologic variates have also been found and served as 

evidence of the scale-invariant river network structures. The Hack’s law (Eq. (1)) is a classical principle in this line. Another 120 

interesting power-law relationship lies in the exceedance probability distributions of upstream area. Using a theoretical 

aggregation model, Takayasu et al. (1988) showed that the exceedance probability distribution of injected mass in a tree 

network always follows a power-law. In fact, their model is equivalent to the random-walk model of Scheidegger (1967) 

devised to mimic a river network (Takayasu and Nishikawa, 1986). Replacing the mass (flow) in the aforementioned study 

with the drainage area (which is rational if rainfall is spatially uniform), it leads to the power-law exceedance probability 125 

distribution of ‘drainage area.’ From all DEM cells composing a catchment, one can calculateIn a detail, the probability distribution 

of the upslope area A of a cell, i.e., P(A), which is minimal for A = AT (as only one cell at the outlet meets this case). It is found that the 

probability for a randomly designated point within a catchment to have  A  exceeding a reference value  δ  (0 ≤  δ ≤ AT) ≤ �̅�Ω) 

decreases with  δ (Rodríguez-Iturbe et al., 1992a), following a power-law as 𝑃(𝐴 ≥ 𝛿) ∝ 𝛿              (7) 130 

where the exponent ε is reported as between 0.40 and 0.46 for most river networks (Rodríguez-Iturbe et al., 1992a; Crave and 

Davy, 1997). Above two power-laws (Eqs. (1) and (7)) are related as h + ε =1 (Maritan et al., 1996), which suggests a trade-

off between the two exponents by balancing each other with their respective rangesrelationships to form the catchment 

boundary within a confined 2-d space. 

Two classes of scaling relationships reviewed above, i.e., Horton’s laws (Eq. (6)) and power-law relationships are linked as 135 

shown by La Barbera and Roth (1994), i.e., 𝜀 = 1 − ℎ =  ( / )  .           (8) 

Two other expressions, comparable to Eq. (8), appear in literature. de Vries et al. (1994) derived ε = 1 – ln RL/ln RB, which is 

a special case of Eq. (8) where RB = RA. Empirical studies support that RB is indeed close to RA (Smart, 1972). For a ‘topological’ 

Hortonian tree where no constraint on stream length in a finite area is given, Veitzer et al. (2003) and Paik and Kumar (2007) 140 

showed that ε = ln RB/ln RA – 1. This is another special case of Eq. (8) where RL = RA, the assumption used in the analysis of 

‘topological’ self-similar trees where only connections among nodes matter with no spatial constraint (Paik and Kumar, 2007). 
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2.2 Linkage to ρa–Ap relationship 

The inverseBelow, we analytically derived the relationship between the pruning area Ap and the resulting apparent drainage 

density ρa can be found in the DEM analysis (Fig. 1). Below, we analytically derived their plausible relationship (Eq.(Eq. (2)), 145 

using the scaling relationships reviewed above. Through this investigation, we importantly revealed η = ε, i.e., the scaling 

exponents in Eqs. (2) and (7) are identical. We arrived at the same conclusion from two different approaches, described below. 

Figure 1. Stream network (black line) of the Brushy catchment, the USA, extracted with varying pruning area. A blue circle indicates the 

outlet. For this catchment, the channel forming area Ao and the corresponding drainage density ρ are available from the National Hydrography 

Dataset Plus Version 2 (NHDPlusV2) (McKay et al., 2012) (see Sect.3 for detail). (a) River network given in the NHDPlusV2, and the 150 
corresponding Ao and ρ. (b – c) Extension and contraction of the river network with a pruning area Ap that is 5 times smaller and greater than 

Ao, respectively. The apparent drainage density ρa accordingly varies. 

2.2.1 Derivation 1 

For the Hortonian tree, Ap can vary in a discrete manner (order-by-order), as we set 𝐴 = �̅� . Given that up to ω-order streams 

are pruned in a river network, the total length after pruning is ∑ 𝑁 𝐿Ω , by revising Eq. (3). Replacing 𝑁  and 𝐿  in this 155 

equation with Eq. (6) leads to the expression of ρa as 

𝜌 = ΩΩ ΩΩ ∑ 𝑅 Ω 𝑅 ΩΩ .           (9) 

TheAbove sum of abovethe given geometric series is 𝜌 = Ω̅Ω( / ) = ΩΩ( / ) Ω − 1 .         

  (10) 160 

The logarithm of the term (RB/RL)Ω–ω in Eq. (10) can be written, using Eq. (6), as ln Ω = (Ω − 𝜔) ln =  ( ̅Ω/ ̅ )  ( Ω/ ̅ ) ln =   ( / ) ln ̅Ω̅ ln Ω̅  .     

 (11) 

Given that �̅� = 𝐴 , from Eq. (11) we can state (𝑅 𝑅⁄ )Ω = �̅�Ω 𝐴  ( / ) 𝐴Ω 𝐴⁄  ( / )  .        165 

  (12) 
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Substituting this into Eq. (10) yields an approximate power-law, i.e., 𝜌 = Ω̅Ω( / ) ̅Ω   ( / ) − 1 = ΩΩ( / ) Ω   ( / ) − 1 ∝ 𝐴   ( / )  .   

    (13) 

Given that RB ≈ RA > RL (Smart, 1972) for a typical river network, – 1 < –ln (RB/RL)/ln RA < 0. With this range and for Ap << 170 �̅�Ω ,AΩ, 𝐴 �̅�Ω⁄   ( / )  ⁄ 𝐴 𝐴Ω⁄   ( / )  ⁄ =  �̅�Ω 𝐴   ( / )  ⁄ 𝐴Ω 𝐴⁄   ( / )  ⁄ ≫ 1.  This 

allows the approximation [ �̅�Ω 𝐴   ( / )  ⁄ 𝐴Ω 𝐴⁄   ( / )  ⁄ − 1] ≈�̅�Ω 𝐴   ( / )  ⁄ . 𝐴Ω 𝐴⁄   ( / )  ⁄ . Empirical studies suggested Ao < 0.1�̅�Ω1AΩ to characterize fluvial channel 

networks (Montgomery and Foufoula-Georgiou, 1993; McNamara et al., 2006), implying the scope of this derivation, i.e., Ap 

<< �̅�Ω,AΩ, of practical range. Comparing Eqs. (2) and (13), we can explicitly express 175 𝜂 =  ( / )  .            (14) 

This expression is identical to Eq. (8), which implies η =ε. 

2.2.2 Derivation 2 

The conclusion of η =ε can also be derived by employing the eigenarea (Yang, 2016). Approximating an ω-order sub-

catchment as a rectangle, 𝐸  can be rewritten as 𝐸 = 𝑊𝐿  where the mean overland flow length is W/2. As W is regarded 180 

almost a constant (Hack, 1957; Yang and Paik, 2017), the apparent drainage density for the pruning area 𝐴 = 𝑊𝐿  where W 

is the mean overland flow length. As W is regarded almost a constant (Hack, 1957; Yang and Paik, 2017), the apparent drainage 

density for the pruning area 𝐴 = �̅�  becomes 𝜌 = ̅Ω Ω ∑ 𝑁 𝐿Ω = ̅Ω Ω ∑ 𝑁 𝐸Ω  .        

 (15) 185 

On the other hand, 𝑃 𝐴 ≥ 𝐴  is defined from geometry as 𝑃 𝐴 ≥ 𝐴 = ̅Ω Ω ∑ 𝑁 𝐸Ω           (16) 

which equals to Wρa from Eq. (15). As 𝑃 𝐴 ≥ 𝐴 ∝ 𝐴  (Eq. (7)), we realize that ρa∝Ap
−ε and thereby η = ε. While equation 

(13) was derived for Ap << �̅�Ω,AΩ, this alternative derivation shows the power-law regardless of the range in Ap. Earlier, we 

discussed the reciprocal nature of two relationships; one between LT and Ao, and the other between L and A. Combining above 190 

conclusion of η = ε and h + ε =1, we realize that η =1 – h, indeed implying the compensating function between themthe two 

relationships. 

3 Analyses of Real River Networks 

3.1 Data and methods 

To evaluate the power-law Eq. (2) and the derivation of η = ε, we analyzed real river networks in the contiguous United States. 195 

We have chosen 14 study networks (Fig. 21) from the pool investigated in previous studies of Tarboton et al. (1991), 

Rodríguez-Iturbe et al. (1992a), Botter et al. (2007), Hosen et al. (2021), and Carraro and Altermatt (2022). They are carefully 

selected to cover distinct hydro-climatic regions and a range of free-flowing capacity (Table 1). The climate feature is 

described by the Köppen-Geiger climate classification system (Beck et al., 2018). The free-flow characteristic is referred as 

an integrated connectivity status index (CSI) created at a global scale by Grill et al. (2019) for the first time. The CSI 200 

comprehensively and quantitatively describes the capacity of individual river reaches to freely flow based on the synthesis of 

observed and modelled datasets. The reported CSI values, ranging from 0 to 100 %, are the weighted average of estimated five 
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pressure indicators –- river fragmentation, flow regulation, sediment trapping, water consumption, and infrastructure 

development in riparian areas and floodplains –- which represent natural and human inferences within longitudinal, lateral, 

vertical, and temporal dimensions. If a river reach loses connectivity due to any of aforementioned pressures, its CSI value 205 

decreases. We calculated a catchment-unit CSI by weighting the length of individual reaches in a given catchment. The CSI 

of our 14 catchments rangesOur 14 study sites cover the CSI from 58 to 100 % which is irrelevant to each catchment size. 

 

Figure 2. Structure and location of 14 river networks investigated in this study. The central map displays their geographic locations in the 

contiguous US overlaid with the spatial PE index distribution. Layouts of individual river networks surround the map, labeled from (a) to 210 
(n), corresponding to the order in Table 1. A circle mark in each figure represents the catchment outlet. The river network layouts (light blue 

lines) originate from NHDPlusV2. Satellite images in the background of the study areas were obtained from ©Google Earth. 
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Figure 1. Studied 14 river networks across the contiguous United States and the Köppen-Geiger climate classifications. 

To shape the structure of each river network at the grid domain, we used the 1 arc-second raster data of flow direction and 

upslope area provided in the National Hydrography Dataset Plus Version 2 (NHDPlusV2) (McKay et al., 2012). In 215 

NHDPlusV2, the Deterministic 8 method (O'Callaghan and Mark, 1984) is used for flowFlow direction assignment. The flow 

direction extraction algorithm is underpinned by the principles of maximizing energy dissipation in surface water flow and 

minimizing power in groundwater flow (Schiavo et al., 2022). The DEM was for each cell was assigned through the 

deterministic 8 method (O'Callaghan and Mark, 1984) on the basis of post-processed DEM to discard depression or sink cell. 

Accordingly, upslope area was calculated for each cell. For detailed calculation steps and process, readers may refer to the 220 

user guide of NHDPlusV2. Detailed layouts of study networks are given in Fig. S1 in the Supporting Information (SI). To 

extract river networks resembling individual blue-lines most, we referred to the source areas recorded in the NHDPlusV2. In 

NHDPlusV2, a channel forming area Ao
* is given for stream channels at the most upstream points of individual flow pathsevery 

reach in each river network. This is very detailed information, while Ao in our notion is a single value which representsthat can 

represent the entire network. We draw probability distribution of Ao
* for each catchment (Fig. S1 in the Supporting 225 

Information,S2 in SI) and Ao was determined as the median (Table 1). Horton-Strahler ordering was assigned on the pruned 

river networks. 

To investigate any impact of climatic forcing on Eq. (2), we analyzed the PE index (Thornthwaite, 1931), which is defined as 

the sum of the ratio of mean monthly precipitation to mean monthly potential evaporation (Wang and Wu, 2013). Note that a 

higher PE index indicates more moisture available for plant growth. We utilized precipitation and potential evapotranspiration 230 

data from the Climatic Research Unit Time-Series (CRU TS) on high-resolution 0.5-by-0.5 degree grids at a global scale (CRU 

TS v. 4.06 in Harris et al. (2022)) for the 50-year period from 1970 to 2019. The CRU dataset is compiled from a comprehensive 

collection of observations at weather stations.  

DrawingRegarding the exceedance probability distribution of upstream area, i.e., 𝑃(𝐴 ≥ 𝛿), for a real catchment in log-log 

scale, (Eq. (7)), three segments are often characterized: curved-head, straight-trunk, and truncated-tail. The power-law (Eq. 235 

(7)) holds for the straight trunk which indicates channels. The head reflects hillslope (Moglen and Bras, 1995; Maritan et al., 
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1996). As A approaches AT, while the trunk indicates channels. As the upslope area becomes close to �̅�Ω, the probability rapidly 

drops because the size of a network is finite (Rodríguez-Iturbe et al., 1992a; Moglen et al., 1998; Perera and Willgoose, 1998). 

To combine the channel part and the truncated tail. To accommodate such an effect in the distribution function, the 

exponentially tempered power function was adopted (Aban et al., 2006; Rinaldo et al., 2014) as 240 𝑃(𝐴 ≥ 𝛿) = 𝑐 𝛿 exp(−𝑘 𝛿) , for 𝛿 > 𝐴          (17) 

where cd is a constant and kd is the tempering parameter. As kd approaches zero, the function represents abrupt truncation. 

Similarly, we proposed an exponentially truncated power function for ρa, as a general form of Eq. (2), as 𝜌 = 𝑐 𝐴 exp −𝑘 𝐴 , for 𝐴 > 𝐴          (18) 

where cp is a constant and kp is the tempering parameter. To estimate the best-fitting fitted parameters, we employed Matlab’s 245 

nlinfit function of which is designed for nonlinear regression for a given dataset. The the objective of the function is to minimize 

the sum of the squares of the residuals for a defined nonlinearthe fitted model. The estimated range for a parameter was 

calculated with 95% confidence intervals. 

3.2 Results and discussion 

All studied networks well follow the power-law Eq. (1) (Fig. S2S3 in SI). The range of estimated Hack’s exponent h is 250 

0.55±0.03 (mean ± standard deviation) with R2 > 0.95 (Table 1), which is within the typical range shown in earlier studies 

(Hack, 1957). The laws of stream number, length, drainage area, and eigenarea (Eq. (6)) are satisfied for all study networks 

with R2 > 0.85 (Figs. S3 – S4 – S5 in SI). The resultant Horton ratios range as RB = 4.2 ± 0.5, RL = 2.3 ± 0.3, and RA = 4.6 ± 

0.7, and RE = 2.2 ± 0.3 (Table 1), which are within typical ranges (Horton, 1945; Schumm, 1956; Smart, 1972). Further, RE = 

2.2 ± 0.3, supporting the argument RE ≈ RL (Yang and Paik, 2017). These imply that our study networks hold statistically robust 255 

self-similar features. 

In the exceedance probability distributions of upstream area, three segments of curved-head, straight-trunk, and truncated-tail 

are clearly characterized for all study catchments (Fig. S5aS6a in SI). The visual interpretation is well demonstrated by the 

results of parameters fitted through Eq. (17) (mean squared error values < 2×10-8). The tempering parameter kd values are very 

small for all river networks, indicating an abrupt truncation in the tail part (Table 1 and; Fig. S5bS6b in SI). The power-law 260 

exponent ε ranges as 0.45 ± 0.02 (Table 1), which agrees with the range reported in earlier studies (e.g., Rodríguez-Iturbe et 

al., 1992a). ε values estimated in our study networks satisfy the coupled relation with Hack’s exponent h, resulting in ε + h = 

1.00 ± 0.03. 

The ρa–Ap relationship is plotted over all possible value of Ap from the area of a single DEM cell (~900 m2) to AT.the drainage 

area at the direct upstream of the basin outlet. The plot closelygreatly resembles the 𝑃(𝐴 ≥ 𝛿) distribution, exhibiting thethree 265 

segments of curved-head, straight-trunk, and truncated-tail (Fig. 3a). It is noteworthy that Ao defined2a). The representative 

source area Ao as the median of a given Ao
*

 distribution aligns with theis clearly located in the upper part of straight-trunk 

section for all studied rivers (refer to Table 1 for specific Ao values). Notably, the three sections can be visually distinguished 

as two zones, i.e., Zone 1 illustrating the hillslope extent, Ao = 0.29 ± 0.12 km2. For each study network, both minimum and 

Zone 2 indicatingmaximum Ao
* are also laid within the other two parts. Note that each catchment has its unique threshold for 270 

distinguishing between Zone 1trunk section, summarized as the minimum Ao
*
 = 0.04 ± 0.02 km2 and Zone 2. The separation 

line drawn in Fig. 3a merely serves as a visual aid, ensuring efficiency in representing all studied catchments. Interestingly, 

the visually extracted Ap value for the separation line closely approximates the minimum of all channel forming areas provided 

in NHDPlusV2maximum Ao
*

 = 3.86 ± 3.40 km2.  



10 

In Zone 2Indeed, Eq. (18) satisfies quantitative description of the ρa–Ap relationship for all study rivers (mean squared error 275 

values < 10-3). The fitted tempering parameter kp is nearly zero, corroborating the extremely sharp cut-off in the tail of a 

distribution (Fig. 3b and Table 1; Fig. 2b). The power-law exponent η  ranges as 0.45 ± 0.04 (Table 1), which is close to but 

slightly smaller than the ranges of 0.48 ± 0.04 reported in Moglen et al. (1998) for 7 catchments with the median size of 30 km2, 

and 0.47 ± 0.12 in Prancevic and Kirchner (2019) for 17 small mountainous catchments with the median size of 1.1 km2. 

Integrating these earlier empirical outcomes and results from this study, we can concludeit is clear that mostly η < 0.5. Further 280 

exploration linked to this dimensional inconsistency and fractal dimensions is given in the next section. We also investigated 

the functional distribution corresponding to hillslope, i.e., Zone 1. In our attempts, power-law function formatted as Eq. (2) 

seems applicable (Fig. S6 in SI). This is aligned with the findings of previous studies (Raff et al., 2004; Gangodagamage et 

al., 2011; Seybold et al., 2018). While hillslope area is outside of the scope of this study, this topic is worthy to be further 

investigated in subsequent research. 285 

For every study network, the fitted η value is very close to its ε value (difference in % = 0.47 ± 0.30), which supports our 

theoretical derivation of ε = η in Sect. 2.2. This means that the scaling exponent η also has intimate relation with h to be η + h ~ 

1. In addition, the entire shapes of the two distributions are almost identical given ε ≈ η as well as kd ≈ kp. The findings suggest 

that known physical meaning of ε can provide insights into what η physically stands for. By investigating the full range of binary 

trees from totally random to completely deterministic, Paik and Kumar (2007) highlighted that ε represents how compact the 290 

hierarchy of a given binary network is. Since they deal with tree topology, ε can be more explicitly expressed as ‘compactness of 

topological hierarchy.’ In the consistent context, ‘compactness of geometric hierarchy’ can be symbolized by η that is dependent 

on the concrete term of stream length. 

Interestingly, the scaling exponent η tends to be negatively related with the PE index (Fig. 3c and Table 1). In the mathematical 

aspect of the ρa–Ap relationship, the decreasing linear regression model indicates that the total length of a river network (LT) 295 

formed in a catchment with higher PE index changes less sensitively when varying the pruning area (Ap). In the physical 

perspective, this finding suggests that a river network with a lower degree in the compactness of geometric hierarchy is likely 

to form in a landscape with greater availability of moisture for vegetation. The phenomenon is also hydrologically reasonable 

because surface water bodies, such as river networks, are naturally more pronounced in areas with an ample amount of 

groundwater, which is the dominant fraction of water resources used for vegetation survival (Mutzner et al., 2016; Zimmer 300 

and McGlynn, 2017; Durighetto et al., 2022). Despite the plausible reasoning, we acknowledge the need for thorough follow-

up research to explicitly demonstrate the joint contributions of climate and topography to η. 
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In contrast, our results reveal no significant distinction in η values across the examined range of CSI. This suggests that, within 

the scope of this study, the relationship between ρa and Ap is not proportionally influenced by natural and anthropogenic 

pressures on the capacity of river reaches to flow freely. Future research covering a wider range of CSI than this study is expected 305 

to provide a deeper understanding of how such forcing on free-flow river connectivity affects η. 



12 

 

Figure 3. Analyses2. Relationship between the apparent drainage density ρa and the pruning area Ap for 14 studied catchments. Color-codes for each catchment are maintained consistently 
across all three panels presented herein. (a) Variation of ρa with Ap normalized by AΤriver networks. (a) Distribution of ρa over varying Ap in a log-log scale. The dashedThe averaged η is 
calculated as 0.45. Bold black line differentiates Zone 1, which includes the curved-head part, from Zone 2, that encompasses both the straight-trunk and the truncated-tail segments. This 310 
line was visually extracted to ensure an efficient presentation, serving as a representative for all catchments.indicates the average of all Ao values reported in Table 1. Dashed lines depict 
the average of minimum and maximum Ao

* values shown in Fig. S2 in SI. (b) Normalized Ap–ρa distribution by individual power-law η exponents. The x-axis range corresponds to Zone 
2 in Fig. 3a. (c) Relationship between the scaling exponent η and the PE index. The dotted line represents the linear regression fitted as η = 0.47 – 1.28×10-4 PE index, which is statistically 
significant (p < 0.05, R2 > 0.6).Color-codes for each catchment is consistent between (a) and (b).  
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Table 1. Topographic characteristics of the 14 river networks analyzed in this study 315 

Catchment State 
Climate (1) 

(%) 
CSI (2) 

PE 
index 

Final 
stream-

order Ω 

Total 
area  

AΤ Ω  

(km2) 

Source 
area  

Aο  

(ο (km2) 

Horton ratios 
Hack’s 

exponent 

Area-
exceedance 
probability 
distribution 

Apparent 
drainage density-

pruning area 
relationship 

Fractal 
dimension 

RB RL RA RE h ε 
kd  

(10-4) 
η 

kp  

(10-4) 
Ds Db 

Labette Creek* KS Dfa (100) 58 112 5 222 0.21 4.2 2.3 4.8 2.1 0.60 0.46 20 0.46 22 1.0 1.8 
South Prong 
Alafia River* FL Cfa (100) 65 96 5 350 0.32 4.1 2.3 4.4 2.2 0.52 0.47 27 0.46 28 1.1 1.7 

North Fork Salt 
River* MO Dfa (100) 66 120 5 126 0.23 3.4 1.8 3.8 1.6 0.51 0.50 120 0.49 110 1.0 2.0 

Farmington CT Cfa, Cfb, Dfb 
(42, 42, 16) 87 210 6 979 0.35 3.8 2.0 4.0 2.0 0.50 0.45 25 0.45 24 1.0 1.9 

Ottauquechee VT Dfb (100) 94 255 6 572 0.55 3.1 1.8 3.0 1.8 0.53 0.45 11 0.45 11 1.1 1.9 

Schoharie NY Dfb, Dfa  
(99, 1) 94 229 6 2,408 0.34 4.3 2.3 4.8 2.2 0.56 0.46 0.4 0.46 0.5 1.0 1.8 

Raccoon PA Dfa (100) 96 164 5 476 0.20 5.0 3.0 5.4 2.8 0.58 0.43 3.3 0.43 3.6 1.3 1.4 

Carmel CA Csb, Csa 
(99, 1) 96 176 6 593 0.13 4.1 2.2 4.5 2.2 0.53 0.45 24 0.45 26 1.0 1.8 

St. Joe ID Dsb, Dsc 
(86, 14) 100 310 7 2,834 0.32 4.2 2.2 4.0 2.1 0.58 0.44 5.1 0.44 5.2 1.1 1.8 

French Broad NC Cfa, Cfb, Dfb 
(42, 42, 16) 100 203 6 2,074 0.20 4.8 2.6 5.3 2.3 0.59 0.43 6.6 0.43 6.8 1.2 1.6 

White River AR Cfa (100) 100 139 5 503 0.24 5.0 2.7 5.1 2.6 0.56 0.46 2.6 0.46 2.8 1.2 1.6 

Brushy AL Cfa (100) 100 156 5 322 0.14 4.1 2.4 4.5 2.4 0.55 0.43 22 0.43 23 1.2 1.6 

St. Regis River MT 
Dsb, Dsc, Dfb, 
Dfc  
(54, 39, 5, 2) 

100 280 5 796 0.35 4.7 2.5 5.3 2.4 0.52 0.43 52 0.43 50 1.1 1.7 

Molalla River OR Csb, Csc, Dsb 
(90, 2, 8) 100 5735 5 569 0.47 4.1 2.5 4.8 2.2 0.58 0.40 7.1 0.40 7.4 1.2 1.6 

Note: *Catchment name was referred from the Open Street Map as a creek or stream name at the outlet. (1) Climate zone was based on the Köppen climate classification scheme. (2) The reported Connectivity Status Index 
CSI was weighted by stream lengths for a given CSI. 
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4 Interpretation of Dimensional Inconsistency in η 

It is worthwhile to investigate η from dimensional perspective. Although η = 0.5 is anticipated for dimensional consistency 

(Tarboton et al., 1991), observed values are smaller than this in every network (see Table 1). As stated earlier, an analogous issue 320 

resides in Eq. (1): h is expected to be 0.5 but observed values are mostly greater. This inconsistency was relaxed by introducing 

the fractal dimension of a stream as Ds=2h (Mandelbrot, 1977), which was based on the assumption that the shapes of 

catchments are self-similar in a downstream direction (Feder, 1988; Rigon et al., 1996). For a stream reach, the fractal nature 

stems from stream sinuosity. Considering the typical range of h, Ds is greater than unity, i.e., exceeding the dimension of a 

line, and mostly between 1 and 1.4 (Rosso et al., 1991). Motivated by this, we hypothesized that the deviation of the observed 325 

η values from 0.5 implies the presence of non-integer fractal dimension of the topography. 

 We sought for thea simple expression of η as a function of fractal dimension, like h = Ds/2. As η = ε = 1 – h, from h = Ds/2 it is 

clear that 𝜂 = 1 − 𝐷 2⁄ .            (19) 

We found that η values estimated from Eq. (19) well agrees with observed values.  330 

However, above relationship becomesis deceptive as Eq. (19) is identical to ε + h = 1 ifgiven Ds=2h is applied. To resolve this 

issue, an independent relationship for Ds should be introduced. We can employ the expression of Ds from Horton ratios (Rosso 

et al., 1991) as 𝐷 = max(1, 2 ln𝑅 ln𝑅⁄ ).           (20) 

Two extreme values of Ds, i.e., 1 (a line with no sinuosity) and 2 (full sinuosity of streams filling a plane), correspond to cases 335 

of RA = RL
2 and RA = RL, respectively. Our 14 study networks show the Ds range of 1.10 ± 0.10 (Table 1). Substituting Eq. (20) 

into Eq. (19) gives 𝜂 = 1 − ln 𝑅 ln 𝑅⁄ .           (21) 

While Ds represents the fractal dimension originated from the sinuousaforementioned fractal stream (single corridor), there is 

another fractal nature stemming from the network organization of stream branches. Denoting the fractal dimension covering 340 

the latter feature as Db, La Barbera and Roth (1994) derived an expression of ε as a function of two fractal dimensions Ds and 

Db. As η =ε, we can use their derivation as 𝜂 = 𝜀 = 𝐷 (𝐷 − 1) 2⁄ .           (22) 

For Db, we refer to the equation of La Barbera and Rosso (1989) as  𝐷 = min(2,  ln𝑅 ln𝑅⁄ ).           (23) 345 

According to Eq. (23), the lower and upper limits in Db (1 and 2) correspond to the cases of RB = RL and RB = RL
2, respectively. 

Considering the typical ranges of RB and RL found in river networks, Db is mostly between 1.5 and 2 (La Barbera and Rosso, 

1989; Rosso et al., 1991), and our study networks present  Db ranging 1.73 ± 0.16 (Table 1). Substituting Eqs. (20) and (23) 

into (22) yields 𝜂 = ln(𝑅 /𝑅 ) ln 𝑅⁄ .           (24) 350 

In that both Ds and Db are considered, Eq. (24) is regarded as more comprehensive thana general form of Eq. (21). Indeed, Eq. 

(21)one can be considered as a special form ofnotice that Eq. (24) whenbecomes Eq. (21) if RB = RA. As stated, empirical findings 

suggest RB ≈ RA, but calculated η can be sensitive to their differences. For RB < RA, which are found in most of our study networks 

(Table 1), Eq. (24) gives smaller value for η than Eq. (21). 
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Besides Eq. (24),Whilst Eq. (24) is regarded as a general expression of η as a function of Horton ratios, derived on the 355 

foundation of fractal dimension studies, we can suggest another relationship which is from a very different perspective. 

Examining analyzed results, we found η=αDb, the linear tendency. Further, the coefficient is fairly invariant as α = 0.26±0.01, 

from our 14 networks, which is very close to 1/4. Interestingly, this is similar to the quarter-power scaling laws widely found 

in self-similar biological systems, such as the Kleiber’s law (Kleiber, 1932; Ballesteros et al., 2018).(Kleiber, 1932; Ballesteros 

et al., 2018). Motivated by this finding and inspired by the simple expression of h = Ds/2, we suggest 360 𝜂 = 𝐷 /4 = (ln𝑅 /ln𝑅 )/4.          (25) 

For all studied river networks, η values estimated from Eqs. (24) and (25) have a high correlation coefficient of 0.95. 

Nonetheless, the two mathematical expressions for η result a contrasting trend whenwere compared with those observed η 

values from the ρa–Ap relationship (Fig. 4).3). Between two, Eq. (24) yields much greater deviations from observations, and 

mostly under-estimates η values. It is interesting that the simple Eq. (25) is well supported by analysis results, with the estimated 365 

η mean of 0.44 under merely ~6 % difference from the observed η, which is around half of that calculated for Eq. (24). The 

inter-networks variability of the estimated η for each equation is fairly similar to that of the observed values (standard deviation 

= 0.06 and 0.04 for Eqs. (24) and (25), respectively). 

We perceive the poor performance of Eq. (24) as the consequence of weak assumptions which form the basis of theoretical 

derivations of Eqs. (20) and (23), i.e., Horton’s laws hold precisely at all scales of a unit length to measure (La Barbera and 370 

Rosso, 1989; Rosso et al., 1991). Indeed, this assumption is too ideal to be satisfied in real river networks, as corroborated in 

the non-perfect straight fits when estimating Horton’s ratios of our studied networks (Figs. S3- S4- S5 in SI). For Ds, the stream 

sinuosity cannot be directly analyzed with our DEM analysis due to limited resolution, and so large uncertainty is embedded. As 

a result, Ds values estimated from Eq. (20) (shown in Table 1) differ from Ds=2h with h in Table 1 (Mandelbrot, 1977). About 

Db,About Db, the importance of fulfilling the assumption to employ Eq. (23) is also demonstrated by Phillips (1993) who 375 

studiedstudying very small catchments in the Southern Appalachians in the USA also demonstrates that satisfying the 

assumption is necessary to employ Eq. (23). . 
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Figure 43. Comparison of η value observed from the ρa–Ap relationship (Eq. (18)), with η values estimated as the functions 

of the fractal dimensions expressed as the Horton ratios. Results of Eqs. (24) and (25) are presented as hollow-circle and filled-

square markers, respectively. Color-codes for our studied river networks are the same as indicated in Fig. 32. 380 
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As shown in Fig. 43, estimated/observed η values are less than 0.5. This can be understood in three perspectives. First, taking 

Eq. (25), 0.5 becomes the upper limit of η, given the physical range of 1 ≤ Db ≤ 2. Second, the finding of η < 0.5 can also be 

understood from earlier studies on ε, given η = ε. In earlier studies about Eq. (7), ε < 0.5 is reported for most river networks 

(Rodríguez-Iturbe et al., 1992a; Crave and Davy, 1997). AlthoughAs Eq. (7) is about probability, no attention has been given 385 

to theits  dimensional consistency in Eq. (7),. Nevertheless, in theory, random critical trees should follow ε ≈ 0.5 (Harris, 1963). 

Paik and Kumar (2007) investigated trees, ranging from purely deterministic to completely random, and according to observed 

ε values, river network organization is based on self-repetitive trees with some randomness in connectivity structure. In their 

follow-up study, Paik and Kumar (2011) dealt with more scaling laws of river networks to investigate the roles of the 

connectivity structures in tree organizations. Particularly for Hack’s law analysis, they corroborated that partially random trees 390 

grounded on deterministic self-repetitive trees only exhibited the Hack’s exponent h within the range found from river networks. 

Lastly, η < 0.5 can be explored from plausible optimality in the network formation. To explain physical mechanisms resulting 

the connectivity pattern of treelike river structures, various optimality hypotheses have been proposed, such as minimizing 

total energy expenditure (Rodríguez-Iturbe et al., 1992b; Rinaldo et al., 2006), total stream power (Chang, 1979), and total 

energy dissipation rate (Yang and Song, 1979), as summarized in (Paik and Kumar, 2010). Although debates on the physical 395 

mechanisms are still ongoing (Paik (2012), the typical hypotheses share the underlying principle: direct connectivity from 

individual elements to a common outlet is maximized while total length of flow paths is minimized, in turn efficient flow 

connection under a given space. It is noteworthy that optimal channel networks, which were created towards achieving the 

minimum total energy expenditure, showed the satisfactions of Hack’s law with h ~ 0.6 (Ijjasz-Vasquez et al., 1993) and the 

area-exceedance probability distribution with ε ~ 0.44 (Bizzi et al., 2018; Carraro et al., 2020). The results suggest that the 400 

minimization of total energy expenditure needs to be considered not as a necessary condition but a sufficient condition. The 

notion of optimality resides in the quarter-power scaling laws which is linked to Eq. (25). West et al. (1997) suggested “an 

idealizeda coarse-grained zeroth- order theory” to explain the emergence of the quarter-power scaling laws in biological 

systems, based on three essential and generic properties of networks in organisms: (1) space filling to serve sufficient resources 

to everywhere in a system, (2) invariant size and characteristics of terminal units, and (3) optimized designs to minimize energy 405 

loss. According to their theory (West et al., 1999; West, 2017), the ubiquitous number ‘four’ in the scaling exponentlaw 

exponents indicates the total number of domains that all metabolic mechanisms are operated through optimized space-filling 

branching networks, thereby as a sum of the normal three domains representing three-dimensional appearance, and the 

additional one domain revealing fractal dimension feature. Indeed, it is broadly recognized that river network is an excellent 

analogue of biological networks in living organisms (Banavar et al., 1999). It implies that the interpretation for the number 410 

‘four’ in the quarter-power scaling laws in biology may help to obtain a mechanism-based insight on the role of denominator 

‘four’ in Eq. (25) for river networks of which fractal structures have been explained by optimality hypotheses. 

5 Summary and Conclusions  

Thorough investigations on the power-law relationship between the apparent drainage density ρa and the pruning area Ap with 

the exponent of η were conducted. We unraveled the meanings of η with dimensional inconsistency in diverse aspects. We 415 

analytically demonstrated that η is equivalent to the fractal scaling exponent ε in the area-exceedance probability distribution, 

based on a hypothetical network following the Hortonian tree framework. This pinpointed the coupled relationship between η 

and Hack’s exponent h that is also deviated from the dimensional consistency, i.e., (η = ε ) + h = 1. 

Our arguments are well supported by evidence from many real river networks, coveringanalyzed with NHDPlusV2 dataset. 

Analyzed networks in this study cover wide ranges of climate conditionclimatic and free-flow connectivity levelconditions 420 
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over the contiguous United States, analyzed with NHDPlusV2 dataset. . The ρa–Ap relationships for all studied catchments 

clearly exhibitwere obviously distinct into curved-head, straight-trunk, and truncated-tail parts, which is identical shape as the 

area-exceedance probability distributions. We showed that the range of extracted source areas was clearly overlapped with the 

upper part of the straight-trunk section in each ρa–Ap distribution. Our findings highlighted that the empirical analyses results 

are in good agreement with the analytically found ones. It suggested that two scaling exponents η and ε are fundamentally 425 

identical but conceptually distinguishable, since geometric and topological attributes are inherent in the calculation procedure 

for η and ε, respectively. Hence, we enabled to define physical meaning of η as ‘compactness of geometric hierarchy.’  

Given the scaling exponent η values for the studied catchments, we identified that they were negatively related with climate 

condition which represented as the precipitation effectiveness index, while not with free-flow connectivity level. The former 

finding was supported by not only physical aspect on the hierarchy of river network structure, but also hydrological 430 

mechanisms on the interaction between vegetation and the availability of surface water and groundwater. The latter finding 

implied that the exponent η might not be linearly controlled by pressures on the capacity of river reaches to flow freely. Both 

findings provide compelling topics for follow-up research to deeply understand how climate and topography jointly contribute 

to η and how forcing on free-flow connectivity affects η, respectively.  

We further examined the physical implication of η  based on non-integer fractal dimensions. Such effort was elaborated as 435 

expressing η as the functions of fractal dimensions on a single stream and the entire river organization, including the quarter-

power scaling relationship. Despite the presence of inevitable uncertainty in quantifying fractal dimensions, the estimated 

η values were likely aligned with the observed ones for all studied rivers. Given that, this study contributed to deeper 

understanding of the ρa–Ap relationship. Our findings, further, lay the foundation of future studies on the interlinkage between 

fractal dimensions and indicators characterizing self-similar structures of river networks. 440 

Overall, our study sites followed representative scaling laws of river networks, despite the differences in climate condition and 

connectivity level. In particular, our findings suggestedsuggest that the interplay between ε and h for rivers is insensitive to the 

diverse conditions. It leads to a natural curiosity whether the diversity scope of the conditions was not sufficient or critical 

anthropogenic stressors were missing to uncover exceptional real river networks exhibiting the deviation from the well-known 

scaling properties. A follow-up study may need to resolve such curiosity with extended study sites at a global scale and 445 

additional descriptors for anthropogenic effects on river network structures and functions. 
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