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Abstract. With the help of a physically based recharge-groundwater flow model and robust detrended fluctuation 12 

analysis (r-DFAn), the effect of local (catchment-scale) forcing on groundwater levels’ scaling behavior in a 13 

riparian aquifer in Wallingford, UK, is investigated. The local forcings investigated in this study include the 14 

rainfall’s temporal scaling behavior (which is simulated by changing rainfall’s intermittency parameter in a 𝛽 -15 

lognormal multiplicative random cascade model), the aquifer’s physical parameters (saturated hydraulic 16 

conductivity, specific yield, the empirical coefficients of the water retention curve, and the river stage’s scaling 17 

behavior).  18 

Groundwater level’s scaling behaviour was found to be most sensitive to rainfall’s fractal behaviour. Additionally, 19 

there is preliminary evidence suggesting that changes to the rainfall’s local scaling behaviour (i.e., change to the 20 

series’ scaling that induces crossovers) affects the groundwater’s and the recharge’s local scaling behaviour. 21 

 22 

1 Introduction 23 

Fractal behaviour of a time series indicates how the time series statistics depend on scale, and has various 24 

implications. A major implication in water resources management is the level of persistence of a series, i.e., its 25 

likelihood to remain at its current value (Williams & Pelletier, 2015). Depending on the time series, implications 26 

of this may vary. In water resources management, the likelihood of a variable to remain at a high or a low value 27 

is certainly of significance when studying flood risks or planning for potential dry periods or droughts (Habib, A., 28 

2020).  29 

In the field of hydrology, the fractal behaviour of hydrological time series has long been acknowledged 30 

(Kantelhardt et al., 2001; Li & Zhang, 2007; Little & Bloomfield, 2010; Matsoukas, Islam & Rodriguez-Iturbe, 31 

2000). The fractal behaviour of a hydrological time series is a ‘fundamental hidden order’ (National Research 32 

Council, 1991), i.e. a property that is inherent in hydrological time series that can be quantified but not necessarily 33 

visually noticed. Being able to simulate this ‘fundamental hidden order’ and study the factors that affect it helps 34 

in gaining insights into the processes and variables being simulated. It is for this reason, among others, that 35 

researchers have gained interest in modelling fractal behaviour and studying it. Various researchers have modelled 36 

fractal behaviour of hydrological and other variables by converting simple and known models from the time-space 37 

domains to the spectral domain (Table A. 1), and others, more recently, used physically-based models in the time 38 

domain to simulate hydrological (or related) variables while incorporating fractal behaviour of the system being 39 

modelled by analysing the outputs and/or inputs using various known techniques (with power spectral analysis 40 

being the most commonly used). This helped them gain insights into the variables/processes being modelled 41 

(Table A. 1).  42 

To present a general picture of previous efforts for using models to incorporate or simulate fractal behaviour, a 43 

non-exhaustive list is presented in chronological order in Appendix A (Table A. 1). Spectral analysis was found 44 

to be the method of preference for studying fractal behaviour of time series by most researchers (Table A. 1), 45 

weather for representing the entire hydrological process in the frequency domain, like in (Gelhar, 1974), or simply 46 

for analysing the input and/or output time series with Fourier transform.  47 

In this work a physically based model is used to study the fractal behaviour of groundwater levels. However, the 48 

novelty of this work lies, firstly, in the use of robust detrended fluctuation analysis, r-DFAn (Habib, A. et al., 49 

2017), to objectively study the fractal behaviour of groundwater levels and the fractal behaviour of the input 50 

forcing. This enables reliable comparison between various series, and it enables the systematic study of changes 51 

to the scaling regime (which will be referred to as ‘local scaling behaviour’). Secondly, rainfall series of varying 52 

fractal properties are simulated and used to drive the physically based model and the benefits of this are addressed 53 

in the relevant section below.  54 
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The following section is the Methodology Section which explains the procedure adopted to study the sensitivity 55 

of simulated groundwater levels’ fractal behaviour to the various inputs and parameters required to run the coupled 56 

recharge-groundwater flow model. The stochastic rainfall model used to simulate rainfall series of varying fractal 57 

behaviour is also detailed in that section. The section following that is the Results and Discussion Section that 58 

presents the results in two parts, the first includes that forcing that produced statistically significant groundwater 59 

level fractal behaviour and the second includes those that didn’t. This is followed by the Conclusion Section.  60 

 61 

2 Methodology 62 

2.1 Study Site 63 

The study site is located in Wallingford, United Kingdom (Figure 1), and it comprises a shallow riparian aquifer, 64 

of about 5m depth, with groundwater levels that exhibit fluctuation over a wide variety of time scales. The data 65 

monitored at Wallingford includes high resolution 1-minute groundwater levels and river stage, 15-minute 66 

rainfall, among other meteorological variables, all of which are summarized in Table 1 and the gauge locations 67 

are indicated in Figure 1. The data available are 4 years long spanning from January 2012 to January 2016. 68 

 69 

 70 
Figure 1: A Google Earth image of the study site in Wallingford, United Kingdom, with the automatic weather 71 
station (AWS), the Thames stilling well and the groundwater boreholes (WL84 and 85) indicated © Google Earth 72 
2022.  73 

 74 
Table 1: Summary of the data measured at the study site from January 2012 – January 2016 75 

Datasets Measuring Station Time Resolution 

(minutes) 

Meteorological Data 

Rainfall  

Automatic weather station 

(AWS) 

15 

Dry bulb temperature 15 

Wet bulb temperature  15 

Net solar radiation 15 

Wind speed 15 

Hydrological Data 

Groundwater levels WL84 1 

River Stage Thames stilling well 1 

 76 

 77 
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2.2 Fractal Behavior Quantification 78 

The data have been analysed for fractal behaviour using robust detrended fluctuation analysis (r-DFAn) (Habib, 79 

A. et al., 2017). r-DFAn is a recently developed procedure that utilizes the well-known detrended fluctuation 80 

analysis (Peng et al., 1994) and a number of statistical models to estimate reliable scaling behaviour. The statistical 81 

models used were robust regression, to estimate a global scaling exponent as explained in Figure 2, piecewise 82 

linear regression to estimate optimum crossover locations, analysis of covariance (ANCOVA) to determine 83 

whether the local scaling exponents (explained in Figure 2) were statistically different or not, and multiple 84 

comparison procedure to enable comparing three or more groups of data, which is the case when having three or 85 

more local scaling exponents. A detailed explanation of r-DFAn can be found in (Habib, A. et al., 2017). 86 

 87 

 88 
Figure 2. Explanation of the various components of fractal behaviour that robust detrended fluctuation analysis (r-89 
DFAn) quantifies. 90 

 91 

2.3 Groundwater Levels Simulation 92 

Groundwater levels at the study-site are simulated using a recharge-groundwater flow model (Habib, Abrar et al., 93 

2022). The model comprises of a Soil Moisture Accounting Procedure (SMAP) to simulate recharge (Mathias et 94 

al., 2015), and a 1D non-linear partial differential equation (the Boussinesq Equation) to simulate groundwater 95 

levels with a no-flow boundary at one end and a time-varying specified head boundary at the River Thames. The 96 

model is written in MATLAB with explicit discretization for the SMAP, which is derived from a simple water 97 

balance integrated over the depth of a soil column (Mathias et al., 2015), and implicit discretization of the 98 

Boussinesq Equation (Habib, Abrar et al., 2022). Potential evapotranspiration is estimated from the 99 

meteorological data monitored in Wallingford using the procedure explained in FAO Irrigation and Drainage 100 

Paper 56 (Allen, et al, 1998). A total of 14 parameters are included in the sensitivity analysis. The sensitivity 101 

analysis is performed using Latin Hypercube sampling which involved a total of 12,000 model runs. As a result, 102 

6 parameters are identified as sensitive (showed in Figure 3). Multi-objective optimization using a pattern search 103 

algorithm (Custódio et al., 2011) is used to determine the non-dominated parameter sets of the sensitive 104 

parameters. A total of 21 unique non-dominated parameter sets are identified. A mathematical representation of 105 

the model, the sensitivity analysis and optimization are presented in detail in (Habib, Abrar et al., 2022). A 106 

summary of the working of the model along with the input series and sensitive parameters is presented in Figure 107 

3. The model runs at a spatial resolution of 5m and a temporal resolution of 15 minutes.  108 

 109 
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 110 
Figure 3. A schematic showing the input time series and sensitive parameters of the recharge-groundwater flow 111 
model. Ovals represent time series, diamond shapes represent sensitive parameters and rectangles represent an 112 
algorithm. Orange highlighted shapes are the parameters/time series that are involved in the sensitivity study of 113 
groundwater levels’ fractal behaviour. PET is potential evapotranspiration, m and ɳ are empirical parameters from 114 
the recharge model (one value for summer and one for winter for each parameter), Ks is the hydraulic conductivity of 115 
the saturated zone, zb is the elevation of the base of the aquifer from ordnance datum, Sy is the specific yield of the 116 
aquifer, and I is the constant inflow near the no-flow boundary. 117 

 118 

The non-dominated (i.e. optimum) groundwater level simulations are presented in Figure 4, however, for the 119 

purpose of this research, one of these time series will be selected based on its performance in the fractal domain 120 

(i.e. its r-DFAn results). The selected GWL simulation is shown in Figure 4 and its fractal behaviour is presented 121 

in Figure 5. The selected simulation has a Nash Sutcliff Efficiency of 0.716. 122 

 123 

 124 
 125 
Figure 4. Simulated non-dominated groundwater levels (GWL) using the coupled recharge-groundwater flow model 126 
and observed GWL. 127 

 128 
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 129 
Figure 5. Fractal behaviour of the selected groundwater levels simulation and how it compares to the fractal 130 
behaviour of observed groundwater levels.   131 

 132 

The objective of this work is to investigate which forcing affects the fluctuation structure of groundwater levels 133 

in Wallingford. Hence, the recharge-groundwater flow model, with the selected optimum parameter set, is used 134 

to simulate groundwater levels while varying the input time series and parameters as explained below. The 135 

selected inputs and parameters, which will be varied, are highlighted in Figure 3 in orange and the fractal 136 

behaviour of the simulated groundwater levels will be analysed using r-DFAn.  137 

 138 

The procedure adapted for varying the parameters and input series is as follows: the selected optimum parameter 139 

values will be rescaled within certain limits that are found to produce reasonable groundwater levels in both time 140 

and fractal domains, a random permutation of river stage will be used to test the effect of river stage’s fractal 141 

behaviour on that of groundwater levels because randomly shuffling the series will break its temporal structure, 142 

and finally, rainfall input series with different fractal properties will be simulated and used to drive the coupled 143 

recharge-groundwater flow model. 144 

The rainfall model used to generate rainfall realizations with different fractal behaviour is explained in the 145 

following section. 146 

 147 

2.4 Stochastic Rainfall Model 148 

The 𝛽 -lognormal model used in (Molnar & Burlando, 2008; Over & Gupta, 1994; Paschalis, Molnar & Burlando, 149 

2012), which is a discrete multiplicative random cascade, will be used to downscale different realisations of the 150 

observed rainfall series. This is done by aggregating observed series to a daily time scale and then using the 151 

cascade generator for downscaling. The cascade generator (𝑤 ) is described as follows (Over, 1995): 152 

 153 

 𝑤 = 𝑤𝛽𝑤𝑙𝑜𝑔 𝑛  (1) 154 

 155 

where 𝑤𝛽  is the 𝛽 model’s cascade generator and 𝑤𝑙𝑜𝑔 𝑛  is the lognormally distributed cascade generator of the 156 

lognormal model and both are computed as follows (Over & Gupta, 1994; Over, 1995): 157 

 158 

 𝑤𝛽 = {
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝 = 1 − 2−𝛽

2𝛽 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  1 − 𝑝 = 2−𝛽
  (2) 159 

 160 

 𝑤𝑙𝑜𝑔 𝑛 = 2𝜇+𝜎𝑋  (3) 161 

 162 

where 𝜇  and 𝜎  are, respectively, the mean and variance of the lognormal cascade generator (𝑤𝑙𝑜𝑔 𝑛) and X is a 163 

standard Gaussian random variable. To preserve the mean of the generated rainfall series when downscaling, 𝜇  164 
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and 𝜎 are not independent. 𝛽 and 𝜎 are essential for describing the scaling field of the rainfall series, and it is from 165 

observed rainfall’s scaling field that the parameters are calibrated (Molnar & Burlando, 2008). The 𝛽 parameter 166 

indicates the level of intermittency of the generated rainfall series (Molnar & Burlando, 2008). 167 

In this context, the performance of the rainfall model is assessed based on its ability to preserve observed rainfall’s 168 

basic statistical properties such as its mean, standard deviation, probability of dry periods and its distribution. The 169 

assessment of the model’s performance is performed at a number of aggregation scales as shown in Figure 6. The 170 

performance of the model was found satisfactory for simulating rainfall at Wallingford. It should be noted that 171 

due to the discrete nature of the multiplicative random cascade, there is an overestimation of the probability of 172 

no-rainfall at the daily scale. The reason is that there is a non-zero probability that the downscaled rainfall is zero 173 

(e.g. if the first 2 multiplicative weights 𝑤𝛽 are both zero), even if the rainfall depth at the daily scale where the 174 

downscaling procedure started, is not. 175 

 176 

  

 
Figure 6. Top left: comparison between the standard deviations of each month of observed data (dots) and simulated 177 
rainfall (lines). Top right: comparison between the probability of dry periods of each month of observed data (dots) 178 
and simulated rainfall (lines). Bottom: comparison between empirically fitted cumulative distributions of observed 179 
data (dots) and simulated rainfall (lines) for each season. Three scales are selected for the model’s performance 180 
assessment: 15 minutes, 1 day and 1 week 181 

 182 

Following the calibration, the stochastic rainfall model is used to simulate various rainfall series of different fractal 183 

behaviour, and this is done by changing the values of the calibrated parameters. Results of this exercise, in addition 184 

to other results, are presented in the following section. 185 

 186 

3 Results and Discussion 187 

Time series and parameters used to drive the coupled recharge-groundwater flow model are altered to investigate 188 

their impact on the fractal behaviour of the simulated groundwater levels. The time series/parameters are changed 189 

one-at-a-time (while keeping the remaining time series/parameters unchanged) and are used to drive the model. 190 

This implementation will show which local forcing changes the groundwater level’s fractal behaviour. In other 191 

words, this is a sort of sensitivity analysis of the fractal behaviour of the simulated groundwater levels, however, 192 

the simulation is performed in the time domain and using a physically based model which will help us relate 193 

changes in the fractal behaviour to physical phenomenon.  194 

The effect of the following on groundwater levels’ fractal behaviour in the Wallingford study site is be studied:  195 

- Rainfall’s fractal behaviour.  196 

- Aquifer’s physical properties. These include the hydraulic conductivity and specific yield of the shallow 197 

unconfined aquifer in Wallingford. 198 

- Empirical parameters in the Van-Genuchten-Mualem Model describing the water retention curve.  199 

- River stage’s fractal behaviour and its distance from the borehole at which GWLs are observed.  200 
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Based on the results, we have divided the above time series/parameters into two main categories: sensitive ones 201 

and non-sensitive ones. Sensitive factors are those that produce statistically different fractal behaviour in 202 

groundwater levels and vice versa are the non-sensitive factors. Rainfall fractal behaviour resulted in statistically 203 

significant change in the groundwater levels’ global fractal behaviour. The remaining factors did not, however, 204 

some were found to affect groundwater level’s fractal behaviour on larger scales and others affected smaller scales 205 

as will be discussed in the following sections. 206 

 207 

3.1 Sensitive Factors 208 

3.1.1 Rainfall 209 

Using the stochastic rainfall model, different values of the intermittency parameter 𝛽 are used to simulate rainfall 210 

series of varying fractal properties. By altering the 𝛽 parameter we focus on the scaling of the probability of zero 211 

rainfall. For every change in the 𝛽 parameter, 5 realisations are simulated. A total of 40 rainfall realisations were 212 

simulated with resulting global scaling behaviour ranging from 0.6 to 1.05. Figure 7 presents a number of 213 

simulated groundwater level series using simulated rainfall. The range of 𝛽 parameter was large enough such that 214 

intensities at the lowest scale between extreme case simulations differ significantly. Rainfall amount at the daily 215 

scale are, for all simulations, preserved on average. 216 

 217 

 218 
Figure 7. Top panel: groundwater levels simulated using observed rainfall and selected rainfall realisations. Bottom 219 
panels: selected rainfall realisations.  220 

 221 

The 40 rainfall realisations were used to drive the coupled recharge-groundwater flow model to simulate 40 222 

drainage series and 40 groundwater levels. Figure 8 presents a summary of the global scaling exponents of all 223 

simulated rainfall realisations and corresponding drainage and groundwater levels. Notable is that the rainfall 224 

realizations for different 𝛽 parameters have statistically different global scaling exponents and these in turn 225 

produce statistically different global scaling exponents for both drainage and groundwater levels. Additionally, 226 

simulations with 𝛽 × 1.0 , i.e. with no change to the calibrated values, result in values of global scaling exponents 227 

that are similar to the observed values (Figure 8). 228 

 229 
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 230 
Figure 8. Box plots summarising the global scaling exponents of the 40 simulated rainfall realisations (top panel) and 231 
corresponding drainage (middle panel) and groundwater levels (bottom panel). The red line represents the median, 232 
box edges represent the 25th and 75th percentiles, whiskers represent the maximum range. 233 

 234 

Looking further into the effect of rainfall’s fractal behaviour, we find that changes to rainfall’s global scaling 235 

exponent strongly affects the fractal behaviour of drainage. This is evident from Figure 9 when comparing the 236 

slopes which describe the change of global scaling exponent of each variable relative to changes in rainfall’s 237 

global scaling exponent, where changes in the global scaling exponents of drainage are significantly larger than 238 

those of both rainfall and groundwater levels.  239 

This was attributed to the unsaturated zone which magnifies the effect of extended dry periods in the case of an 240 

intermittent rainfall signal or wetter circumstances in the case of a less intermittent rainfall signal. Additionally, 241 

the relatively wider range of variation of global fractal behaviour in the recharge signal was narrowed down as 242 

recharge flows into the saturated zone to produce groundwater fluctuation.   243 

This illustrates how groundwater is isolated from atmospheric changes to a great degree by the unsaturated zone 244 

and it takes a magnified change to the recharge signal to produce statistically significant change to the fluctuation 245 

structure of groundwater. 246 

A novel finding is the effect of change of global fractal behaviour of rainfall series on that of drainage/recharge 247 

and groundwater levels. Previous publications have highlighted the increase in memory of a white noise or 248 

observed rainfall series as it infiltrates through soil (Gelhar, 1974; Yang, Zhang & Liang, 2017; Zhang & Schilling, 249 

2004), however, comparing the degree of change of global fractal behaviour between rainfall, drainage and 250 

groundwater levels has, to the best of our knowledge, not been investigated previously. 251 

 252 
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 253 
Figure 9. Scatter plot of simulated rainfall, drainage and groundwater levels’ global fractal behaviour vs. simulated 254 
rainfall’s global fractal behaviour 255 

 256 

Further investigation of the effect of rainfall on both drainage and groundwater levels was performed by studying 257 

the effect of local fractal behaviour of rainfall on that of drainage and groundwater levels. This was done by 258 

investigating the degree of correlation between rainfall’s local fractal behaviour and that of both drainage and 259 

groundwater levels.  260 

Local fractal behaviour is described in terms of local scaling exponents and crossovers. Relating crossover 261 

locations is difficult because the number of crossovers is seldom equal in the series being compared and hence 262 

crossovers in two series cannot always be associated with each other. Local scaling exponents extend over 263 

different ranges of scales, and hence, comparing local scaling exponents is not straight forward either. This is 264 

illustrated in the left panel of Figure 10 where neither crossovers nor local scaling exponents in series A can be 265 

individually associated to those in series B. Hence, as illustrated in Figure 10, the r-DFA plot is transformed into 266 

a different series that contains information about the local scaling exponent and the range of scales over which it 267 

extends (hence indirectly reflecting the crossover location).  The correlation coefficient of the transformed series 268 

is then determined and the results of the 40 rainfall realisations and its corresponding drainage and groundwater 269 

levels are presented in Figure 11. The correlations between rainfall and drainage, rainfall and groundwater levels, 270 

and drainage and groundwater levels are determined. 271 

 272 
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 273 
Figure 10. Illustration that explains how the r-DFA1 plots are transformed in order to be able to compute a 274 
correlation coefficient between pairs of r-DFA1 plots. 275 

 276 

60%, 70% and 80% of the correlation coefficients determined between, respectively, rainfall and drainage, rainfall 277 

and groundwater levels, and drainage and groundwater levels, are higher than 0.7 (Figure 11). The bottom 278 

illustration in Figure 11 summarizes the correlation coefficients determined. They all lie towards the higher end 279 

of correlations with the correlations between drainage and groundwater levels significantly different than the other 280 

two correlation groups (evident from the non-overlapping confidence intervals). 281 

 282 
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 283 
Figure 11. Top panel: correlations between the 40 realisations of rainfall, drainage and groundwater levels’ local 284 
scaling exponents (r-DFA1). Bottom panel: Boxplots summarising the results presented in the top panel. The red line 285 
represents the median, notches represent the confidence intervals of the median with 95% significance level, box 286 
edges represent the 25th and 75th percentiles, red crosses represent outliers, and, whiskers represent the maximum 287 
range excluding the outliers. 288 

 289 

This shows preliminary evidence that local fractal behaviour in rainfall may affect local fractal behaviour in both 290 

drainage and groundwater levels. Nevertheless, this should be investigated further in other locations or using 291 

different models because of the non-negligible number of realisations that are not strongly correlated. 292 

 293 
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3.2 Non-Sensitive Factors 294 

3.2.1 Hydraulic Conductivity and Specific Yield 295 

Contrary to speculations of the dependence of groundwater’s fractal behaviour on the aquifer’s physical properties 296 

(Li & Zhang, 2007; Yu et al., 2016; Zhang & Schilling, 2004), results from the Wallingford site using the recharge-297 

groundwater flow model used here shows that changes to the physical parameters – the hydraulic conductivity 298 

and specific yield – between a range of 50% and 500% does not produce differences in the global fractal behaviour 299 

of groundwater levels that is statistically significant (top panels in Figure 12). As mentioned before, changes are 300 

made to one parameter at a time and the optimised parameter value is used as the starting point. 301 

 302 

 303 

 304 
 305 
Figure 12. Top panels: Effect of change of hydraulic conductivity (left) and specific yield (right) on the global scaling 306 
exponent of simulated groundwater level with 95% confidence intervals. Bottom panels: r-DFA1 results of 307 
groundwater levels simulated with varying hydraulic conductivities and specific yield.  308 

 309 

The bottom panels in Figure 12 present the r-DFA1 plots for the various hydraulic conductivity and specific yield 310 

values used. Even though there is no significant change to the global fractal behaviour of groundwater levels, one 311 

observes that, for changes to hydraulic conductivity (bottom left panel in Figure 12), changes tend to occur on 312 

larger scales (greater than a number of days), and with changes to the specific yield (bottom right panel in Figure 313 

12), there is a general reduction in groundwater level’s variance with increase in specific yield, however this 314 

change is constant over all scales because there is very minor change to the groundwater level’s global fractal 315 

behaviour but there is a reduction in the mean of the variances of the r-DFA1 plots (as shown in the bottom right 316 

panel in Figure 12). 317 

 318 

3.2.2 Recharge Parameters 319 

The same procedure followed for the aquifer’s physical parameters, the recharge parameters were varied between 320 

25% and 175% of the optimized values. This range was found to produce groundwater levels that are acceptable 321 

given the aquifer’s dimensions and the river levels. The recharge parameters (𝑚 and 𝜂) are empirical parameters 322 

from the Van Genuchten-Maulem Model used in the SMAP recharge model (Habib, Abrar et al., 2022).   323 

https://doi.org/10.5194/hess-2023-27
Preprint. Discussion started: 8 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 

13 

 

Figure 13 (top left and right) shows the overlapping confidence intervals of the global scaling exponents of 324 

groundwater levels that are simulated using different recharge parameters. The 𝑚 recharge parameter affects 325 

smaller scales (smaller than days) in the groundwater levels scaling behaviour (bottom left panel in Figure 13), 326 

contrary to the effect of hydraulic conductivity which affects the larger scales only. The 𝜂 parameter does not 327 

appear to affect groundwater levels local fractal behaviour in any way (bottom right panel Figure 13). The effect 328 

that recharge has on the smaller scales of groundwater levels’ fractal behaviour can be related to previous work 329 

(Katul et al., 2007). 330 

 331 

 332 
 333 
Figure 13. Top panel: Effect of change of different recharge parameter values on the global scaling exponent of 334 
simulated groundwater level with 95% confidence intervals. Bottom: r-DFA1 results of groundwater levels simulated 335 
with varying recharge parameter values. 336 

 337 

3.2.3 River Stage’s Fractal Behavior and Distance from Groundwater Level Measurements 338 

Simulating groundwater levels with the observed river stage series after randomly shuffling it (i.e. after breaking 339 

its scaling structure while maintaining the original distribution of the series) did not affect groundwater levels that 340 

are monitored at a distance of 420m from the river. This illustrates that the fractal behaviour of river stage does 341 

not affect groundwater levels at this distance. 342 

Ground water levels closer to the river, at a vicinity of 100m, on the other hand, showed small change to the global 343 

fractal behaviour with change to the river stage’s fractal behaviour (Figure 14 middle panel). Notable, as well, is 344 

the reduction of groundwater level’s fractal behaviour to values lower than that of river stage’s global fractal 345 

behaviour. This is explained by the fact that the flow of groundwater computed by the recharge-groundwater flow 346 

model is governed solely by change in head gradient (Darcy’s Equation) and the complex dynamics at the river-347 

aquifer interface are not modelled. Hence, at close vicinity to the river, fluctuation of river stage may result in 348 

reverse flows (i.e. flow from the river into the aquifer) during some periods as shown in the simulated time series 349 

in the top panel of Figure 14, which, may not be the case in reality. It is speculated that in reality the global fractal 350 

behaviour of groundwater levels is not lower than that of river stage (Little & Bloomfield, 2010). However, in 351 

order to ascertain the correctness of this hypothesis, observations of groundwater levels closer to the river should 352 

be analysed. 353 
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 354 

 355 
 356 
Figure 14. Top panel: Simulated groundwater time series at different locations. Middle Panel: Global fractal 357 
behaviour of simulated groundwater levels at different locations with, first, observed river stage as boundary 358 
condition and then a constant (mean value) river stage as boundary condition. Bottom panel: Local scaling behaviour 359 
of first order (i.e., r-DFA1) at different locations. 360 

 361 

Figure 14 also shows that the groundwater level’s local fractal behaviour is affected mainly across larger scales 362 

especially for groundwater levels closer to the river and this is similar to previously published results (Liang, 363 

Xiuyu & Zhang, 2013).  364 
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 365 

4 Summary, Conclusions and Recommendations 366 

A physically-based recharge-groundwater flow model, that was developed, calibrated and assessed in both time 367 

and fractal domains for a riparian aquifer in Wallingford, United Kingdom (Habib, Abrar et al., 2022), has been 368 

used here to study the sensitivity of groundwater levels’ fractal behaviour to various forcings and parameters 369 

required to run the model. The forcings and parameters considered were rainfall’s fractal behaviour, the aquifer’s 370 

physical parameters, the empirical parameters for simulating recharge, the river stage’s fractal behaviour and its 371 

distance from the borehole at which groundwater levels were measured. 372 

It was found that changes to rainfall’s fractal behaviour – which were simulated by changing a parameter that 373 

represents rainfall’s intermittency in a stochastic rainfall model, – was the only factor that resulted in statistically 374 

different global fractal behaviour of groundwater levels. Furthermore, the local fractal behaviour of rainfall was 375 

found to influence the fractal behaviour of recharge and groundwater levels. While this paper presents evidence 376 

that the local fractal behaviour of rainfall is indeed transferred to drainage and then to groundwater levels, further 377 

investigation of this is required.  378 

With the help of a reliable method for studying fractal behaviour, which, in this case, was robust detrended 379 

fluctuation analysis (r-DFAn), our perception of the factors that influence the fluctuation structure of a time series 380 

is improved and this was illustrated. Nevertheless, repeating this exercise using different hydrological models and 381 

for different sites is essential for confirming the results found.  382 

Additionally, the issue of parameter interaction during calibration/optimization may be projected on this study 383 

where certain combinations of change to parameters may yield significant change to groundwater level’s fractal 384 

behaviour. This may be noticed when observing the change that the recharge parameters and the aquifer 385 

parameters had on the local fractal behaviour of groundwater levels where the former affected smaller time scales 386 

and the latter affected larger time scales.  387 
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Appendix A 
Table A. 1 A non-exhaustive list of published research that involves the study of fractal behaviour along with the use 

of models. 

Paper Model used Variable 

analysed 

Fractal analysis 

method 

Summary/ 

relevant outcomes/ 

relevant highlights 

(Gelhar, 

1974) 
• Linear 

Reservoir 

Model,  

• Dupuit 

Aquifer 

Model, and 

• Laplace 

Aquifer 

Model, all 

represented in 

the spectral 

domain 

Groundwater 

levels 

Stochastic 

Spectral Analysis 

The analytical models were found to 

properly replicate the spectral 

behaviour of the groundwater system 

when the models were properly 

calibrated. Hence, they suggested the 

use of spectral analysis to determine 

the aquifer’s parameters. 

(Duffy, 

C. & 

Gelhar, 

1986; 

Duffy, 

C. J. & 

Gelhar, 

1985) 

Three transport 

models expressed 

in the frequency 

domain which are:  

• Lumped 

parameter 

linear 

reservoir 

model,  

• convective 

(advective) 

dispersion in a 

curvilinear 

flow field, and  

• convective-

dispersive 

transport in a 

uniform flow 

field 

Solute transport 

in groundwater 

Power spectral 

analysis 

Parameters of the physical system are 

determined in the frequency domain 

by comparing theoretical and 

observed spectral response and using 

‘type curve techniques’. Based on the 

type of contaminant source and 

groundwater flow fields (i.e. uniform 

or non-uniform), unique spectral 

behaviours are observed.  

(Zhang 

& 

Schillin

g, 2004) 

Linear reservoir 

model (in spectral 

domain) that was 

used in (Gelhar, 

1974) 

Recharge Power spectral 

analysis 

The recharge signal, estimated from 

the model, exhibited scaling and the 

value of the scaling was found to be 

dependent on the specific yield and 

transmissivity of the aquifer (based 

on the theoretical model used). 

(Zhang 

& Li, 

2006) 

• Numerical 

simulation of 

Boussinesq 

Equation and  

• spectral 

representation 

of the linear 

reservoir 

model used in 

(Gelhar, 

1974) 

Groundwater 

levels 

Power spectral 

analysis 

Recharge with known spectral 

properties was simulated using 

derived equations for covariance and 

variance from the linear reservoir 

model. Spectral properties of 

groundwater levels simulated using 

the Boussinesq equation and the 

simulated recharge as input matched 

those determined using the linear 

reservoir model. 
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Paper Model used Variable 

analysed 

Fractal analysis 

method 

Summary/ 

relevant outcomes/ 

relevant highlights 

(Katul et 

al., 

2007) 

Spectral model 

derived from the 

water balance 

equation that 

determines soil-

moisture’s 

memory 

Soil moisture Power spectral 

analysis 

Using the analytical model with 

white noise precipitation as input, the 

resulting soil moisture exhibits 

memory at the shorter time scales 

(higher frequencies) and is a white 

noise at larger time scales. 

Precipitation is believed to govern 

the soil moisture memory at the 

shorter time scales (higher 

frequencies). 

There is energy imbalance in the 

measured soil moisture series and 

this implies that for time scales 

greater than 12 hours, the diurnal 

cycle in evapotranspiration can be 

ignored. 

 

(Lo & 

Famigli

etti, 

2010) 

National Centre 

for Atmospheric 

Research 

Community Land 

Model (a land 

surface model) 

Soil moisture Power spectral 

analysis 

Spectral analysis was used to study 

the effect of including a groundwater 

module in a Land Surface Model. 

They concluded that the land surface 

hydrologic memory, estimated from 

soil moisture, is dependent on the 

depth of groundwater levels.  

(Thomp

son & 

Katul, 

2011) 

Some of the 

models used: 

• Deterministic 

models: 

Linear 

catchment 

water balance, 

non-linear 

water balance 

(such as 

Boussinesq 

Equation) 

• Stochastic 

models: 

reservoirs in 

parallel/series 

with random 

time 

constants. 

 

Streamflow Power spectral 

analysis 

Classic linear systems replicated the 

observed streamflow power spectra 

well. 

(Istanbu

lluoglu 

et al., 

2012) 

(Annual) linear 

reservoir model 

coupled with the 

Budyko 

hypothesis 

Runoff, 

groundwater 

dynamics 

Hurst coefficient Aquifer water storage and the aridity 

index, along with the stochastic 

nature of the input climate series, are 

believed to be the governing factors 

for the effect that climate series have 

on transforming precipitation to 

groundwater. 

(Russia

n et al., 

2013) 

A multicontinuum 

approach which is 

an extension of 

the classical 

Aquifer 

discharge  

Power spectral 

analysis 

The approach presented relates the 

scaling of the frequency transfer 

function with the aquifer’s 

storativity, catchment size and a 

stochastic representation of 
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Paper Model used Variable 

analysed 

Fractal analysis 

method 

Summary/ 

relevant outcomes/ 

relevant highlights 

Linear and Dupuit 

Models  

heterogeneity of hydraulic 

conductivity.  

(Liang, 

Xiuyu & 

Zhang, 

2013) 

Boussinesq 

Equation 

represented in 

spectral form 

Groundwater 

levels 

Power spectral 

analysis 

The analytical representation of 

groundwater spectral behaviour can 

be fitted to observed groundwater 

spectra, hence, the parameters of the 

analytical expression can be fitted 

using observed data. Scaling of 

groundwater levels are found to be 

affected at longer time scales by the 

existence of a constant head 

boundary which results in a 

crossover. 

(Condo

n & 

Maxwel

l, 2014) 

Integrated 

physical 

hydrology model 

ParFlow-CLM 

Groundwater 

fluctuation in 

irrigated 

catchments and 

latent heat flux. 

Power spectral 

analysis 

Irrigation affects the temporal 

behaviour of groundwater levels. 

The idea of a ‘fractal filter’ is 

demonstrated. Water table 

fluctuations appear to be affected by 

differences in hydraulic 

conductivity. Water management 

operations (such as pumping and 

irrigation) seem to add persistence to 

the groundwater levels. 

(Willia

ms & 

Pelletier

, 2015) 

Linear Langevin 

Equation (the 

Bousinesq 

Equation with a 

white noise 

recharge input) 

Lake-level 

fluctuation 

Power spectral 

analysis 

The model reproduced the size-

dependent spectral scaling of lake-

levels.  

(Rahma

n, Sulis 

& 

Kollet, 

2016) 

ParFlow and 

common land 

model 

(ParFlow.CLM) 

Soil moisture, 

evapotranspiratio

n, and other land 

surface processes 

Continuous 

Wavelet 

Transform 

From model simulations, 

groundwater dynamics are found to 

affect the variance of land surface 

processes and potentially the forecast 

of hydrological droughts. 

(Liang, 

X., 

Zhang 

& 

Schillin

g, 2016) 

Boussinesq 

Equation 

represented in 

spectral form 

Groundwater 

levels 

Power spectral 

analysis 

Heterogeneity of the aquifer’s 

transmissivity increases the variation 

of groundwater levels. 

(Yang, 

Zhang 

& 

Liang, 

2017) 

GSFLOW which 

combines USGS’s 

precipitation-

runoff modelling 

system (PRMS) 

with 

MODFLOW-

2005 

Precipitation, 

infiltration at the 

land surface, 

seepage through 

unsaturated zone, 

recharge to water 

table, 

groundwater 

flow and 

discharge from 

aquifer.  

Power spectral 

analysis 

The hydrological system acts as a 

cascade of hierarchical fractal filters 

which transforms white noise to a 

fractal signal. The unsaturated zone 

exhibits the greatest dampening 

effect compared to the land surface 

and unsaturated zone. Simulated soil 

moisture series has increased 

temporal scaling at increased vertical 

depth.  

(Habib, 

Abrar et 

al., 

2022) 

Coupled recharge-

groundwater flow 

model. The 

models include a 

soil moisture 

accounting 

Groundwater 

levels 

Robust detrended 

fluctuation 

analysis, r-DFAn 

(Habib, A. et al., 

2017) 

The physically-based model 

replicated the groundwater level’s 

fractal behaviour to an acceptable 

degree. The concept of ‘fractal-

domain-refinement’ was introduced 

and this involves using fractal 
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Paper Model used Variable 

analysed 

Fractal analysis 

method 

Summary/ 

relevant outcomes/ 

relevant highlights 

procedure 

(Mathias et al., 

2015) and a 1D 

Boussinesq 

Equation model. 

behaviour of the simulated variable 

to refine the optimum parameters 

determined through optimisation. 
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